Total Pages - 8

UG/3rd Sem/CHEM(H)/T/19

2019

B.Sc.

3rd Semester Examination CHEMISTRY (Honours)

Paper - C 7-T

Full Mark .: 40

Time: 2 Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Group - A

1. Answer any five questions:

 2×5

(a) Account for the following structural change:

$$CH_3 - C = \overset{*}{C}H_2 \xrightarrow{Cl_2} CH_3 - C - \overset{*}{C}H_2 - Cl$$

$$CH_3 \xrightarrow{CH_3} CH_2$$

(b) The orientation in the addition of HBr to allyl bromide depends on whether or not the

[Turn ()ver]

reactants are contaminated with peroxide impurities - Explain.

(d) Hydration of an alkyne is not a reasonable propartive method for each of the following compounds. Explain why?

(e) State which of the following compounds will undergo haloform reaction and why?

$$CH_3$$
 CO_2Et ; CH_3 CH_3 ; CH_3 CH_3 CH_3 CH_3 CH_3

- (f) When phenol is prepared from chloro benene and NaOH at 400°C the major side product is diphenyl ether. Explain.
- (g) Convert : RCHO → RCOOCH₂R

(h) When vinyl magnesium bromide is prepared from vinyl bromide and Mg, tetrahydrofuran (THF) is used as solvent instead of diethyl ether. Why?

Group - B

2. Answer any four questions:

4×5

Identify 'A' and 'B'. Shows mechanism.

2

(b) Explain mechanistically:

$$\begin{array}{c}
\text{OH} \\
\downarrow \\
\text{CH}_2 - \text{CH}_2 - \text{Br}
\end{array}$$
(i) $\xrightarrow{\text{NaOMe}} \text{MeOH}$

(ii)
$$H_3O^+$$

[Turn ()ver]

3. (a) cis-2-butene
$$\xrightarrow{\text{(i) OsO}_4}$$
? (mention stereochemistry)

(b) Put suitable reagents/conditions:

- (c) How will you convert 1-pentyne to 2-pentyne?
- 4. (a) Predict the major product of the following reactions:

(i)
$$\xrightarrow{\text{CH}_3}$$
 $\xrightarrow{\text{B}_2\text{H}_6}$?

(ii)
$$CH_3 - CH - CH - CH_2 - Br \xrightarrow{NaBH_3CN}$$
?

(iv)
$$+ (CH_3CO)_2O \xrightarrow{CH_3COONa} 180^{\circ}C$$

(v)
$$+ I_2 + AgOAC \xrightarrow{AcOH} ?$$

- 5. (a) Which of the following would be most and least readily hydrolysed with NaOH and why?
 - MeCO₂Me; Me₃CHCO₂Me; MeCO₂But 2
 - (b) Write down the B_{AC^2} mechanism of ester hydrolysis. OH 2
 - (c) Predict the product(s): CHCl₃/KOH ?
- 6. (a) Predict the product(s) of the following reaction showing mechanism in each case. 2×2

(i)
$$\xrightarrow{\text{Br}} \xrightarrow{\text{CO}_2\text{CH}_3} \xrightarrow{\text{(i) Zn}} ?$$

 $\xrightarrow{\text{(ii) CH}_3\text{CN}} (\text{iii) H}_2\text{O}$

$$\begin{array}{c}
CH_3\\
Bn-N
\end{array}$$

$$CI^{\odot} S$$

$$\xrightarrow{Et_3N}$$

$$EiOH$$

(b) Give suitable regent and conditions:

$$CH_3 \xrightarrow{CH_3} Br \xrightarrow{?} CH_3 \xrightarrow{CH_3} I$$

$$CH_3 \xrightarrow{CH_3} CH_3$$

- 7. (a) Write down the chanism of Vilsmeir-Haack reaction.
 - (b) What will happen when phenyl magnesium bromide is reacted with excess oxygen followed by acidification with dilute aqs. acid? 2
 - (c) Give suitable reagent(s) in the following conversion.

$$= \xrightarrow{?} \bigoplus_{H} 1$$

Group - C

8. Answer any one question:

1×10

(a) Identify the compounds A, B, C, D, E in the following reactions:

$$Et \xrightarrow{O} Ph \xrightarrow{(i) PhMgBr} A$$

$$CH_3 \xrightarrow{(ii) H_2O/H} A$$

$$\xrightarrow{H^{\bigoplus}} B \xrightarrow{(i) C_3} C + D$$

$$C \xrightarrow{I_2} E$$

5

(b) How would you carry out the following transformations?

$$(i) \bigcup_{NO_2}^{CH_3} \longrightarrow \bigcup_{Br}^{CH_3}$$

$$(ii) \bigcup_{NO_3}^{CH_3} \longrightarrow \bigcup_{NO_3}^{COCH_3}$$

11/2+11/2

[Turn Over]

2

Y .

9. (a) Indicate the product(s) and explain the mechanism involved:

$$\begin{array}{ccc}
& & \text{CH}_3 & & \text{Br} & & \text{(i) Li} \\
& & & \text{CH}_3 & & \text{(ii) CO}_2
\end{array}$$
?

- (b) What happens when PhCOCHO is treated with concentrated NaOH?
- (c) Identify A and B in the following reactions.

OMe
$$CH_3 \xrightarrow{\text{Li}/\text{liq NH}_3} A \xrightarrow{CH_2I_2} B$$

$$2$$

(d) Convert:

$$\begin{array}{ccc}
O & O \\
CH_{3} & O & O \\
CH_{3} & O & O
\end{array}$$

$$\begin{array}{ccc}
CH_{3} & O & O \\
O & O & O
\end{array}$$

$$\begin{array}{cccc}
O & O & O \\
O & O & O
\end{array}$$

(e) When an optically active (R) -2-Phenyl propanoic acid is brominated under H-V-Z condition, is the product optically active or racemic? Explain.