





(' A REFERENCE MANUAL

Fifth Edition

Samuel P. Harbison III Texas Instruments

Guy L. Steele Jr.  Sun Microsystems



Library of Congress Cataloging-in-Publication Data
CIP data on file.

Vice President and Editorial Director, ECS: Marcia Horton

Senior Acquisitions Editor: Petra J.Recter

Vice President and Director of Production and Manufacturing, ESM: David W.Riccardi
Executive Managing Editor: Vince O 'Brien

Assistant Managing Editor: Camille Trentacoste

Production Editor: Lakshmi Balasubramanian

Cover Designer: Bruce Kenselaar

Manufacturing Manager: Trudy Pisciotti

Manufacturing Buyer: Lisa McDowell

INEIN G © 2002 by Prentice Hall

Hall Prentice-Hall, Inc.
Upper Saddle River, NJ 07458

All rights reserved. No part of this book may be reproduced in any form or by any means,
without permission in writing from the publisher.

The author and publisher of this book have used their best efforts in preparing this book. These
efforts include the development, research, and testing of the theories and programs to determine
their effectiveness. The author and publisher make no warranty of any kind, expressed or implied,
with regard to these programs or the documentation contained in this book.

Printed in the United States of America

109 87 6 54321

ISBN 0-13-089592X

Pearson Education Ltd., London

Pearson Education Australia Pty. Ltd., Sydney
Pearson Education Singapore, Pte. Ltd.

Pearson Education North Asia Ltd., Hong Kong
Pearson Education Canada, Inc., Toronto

Pearson Educac yon de Mexico, S.A.de C.V.
Pearson Education —Japan, Tokyo

Pearson Education Malaysia, Pte.Ltd.

Pearson Education, Upper Saddle River, New Jersey



For Diana, Drew, and Mike Harbison.






Contents

List of Tables
Preface
PART 1 TheC Language

1 Introduction

1.1 The Evolution of C 3
1.2 Which Dialect of C Should You Use? 6

1.3 An Overview of C Programming 7
1.4 Conformance 8
1.5 Syntax Notation 9

2 Lexical Elements

2.1 Character Set 11

2.2 Comments 18

2.3 Tokens 20

24 Operators and Separators 20

2.5 Identifiers 21

2.6 Keywords 23

2.7 Constants 24

2.8 G+ Compatibility 38

2.9 On Character Sets, Repertoires, and Encodings 39
2.10 Exercises 41

3 The C Preprocessor

3.1 Preprocessor Commands 43

3.2 Preprocessor Lexical Conventions 44
3.3 Definition and Replacement 46

34 File Inclusion 59

3.5 Conditional Compilation 61

3.6 Explicit Line Numbering 66
3.7 Pragma Directive 67

3.8 Error Directive 69

3.9 C+ Compatibility 70

3.10 Exercises 71

XV

xvii

11

43

vii



viii

4 Declarations

4.1 Organization of Declarations 74
4.2 Terminology 75
4.3 Storage Class and Function Specifiers 83

4.4 Type Specifiers and Qualifiers 86
4.5 Declarators 95

4.6 Initializers 103

4.7 Implicit Declarations 113

4.8 External Names 113

4.9 C+H Compatibility 116

4.10 Exercises 119

S Types

5.1 Integer Types 124

52 Floating-Point Types 132
53 Pointer Types 136

54 Array Types 140

5.5 Enumerated Types 145
5.6 Structure Types 148

5.7 Union Types 160

5.8 Function Types 165

59 The Void Type 168

5.10 Typedef Names 168

5.11 Type Compatibility 172
5.12  Type Names and Abstract Declarators 176
5.13 G+ Compatibility 178
5.14 Exercises 179

6 Conversions and Representations

6.1 Representations 181

6.2 Conversions 188

6.3 The Usual Conversions 194
6.4 G+ Compatibility 200

6.5 Exercises 201

7 Expressions

7.1 Objects, Lvalues, and Designators 203
7.2 Expressions and Precedence 204

1.3 Primary Expressions 207

7.4 Postfix Expressions 210

7.5 Unary Expressions 219

7.6 Binary Operator Expressions 227

1.1 Logical Operator Expressions 242

7.8 Conditional Expressions 244

7.9 Assignment Expressions 246

7.10 Sequential Expressions 249

Contents

73

123

181

203



Contents

7.11
7.12
7.13
7.14
7.15
7.16

8 Statements

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13

9 Functions

9.1
9.2
9.3
94
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12

Constant Expressions 250

Order of Evaluation 253

Discarded Values 255

Optimization of Memory Accesses 256
G+ Compatibility 257

Exercises 258

General Syntactic Rules for Statements 260
Expression Statements 260
Labeled Statements 261
Compound Statements 262
Conditional Statements 264
Iterative Statements 266

Switch Statements 274

Break and Continue Statements 277
Return Statements 279

Goto Statements 280

Null Statements 281

C+ Compatibility 282

Exercises 282

Function Definitions 286

Function Prototypes 289

Formal Parameter Declarations 295
Adjustments to Parameter Types 298
Parameter-Passing Conventions 299
Agreement of Parameters 300
Function Return Types 301
Agreement of Return Types 302
The Main Program 303

Inline Functions 304

C+ Compatibility 306

Exercises 307

PART 2 The C Libraries

10 Introduction to the Libraries

10.1
10.2
10.3

Standard C Facilities 312
G+ Compatibility 313
Library Headers and Names 316

11 Standard Language Additions

11.1
11.2
11.3

NULL, ptrdiff_t, size_t, offsetof 325
EDOM, ERANGE, EILSEQ, ermo, strerror, perror
bool, false, true 329

iX

259

285

309
311

325

327



X Contents
11.4 va_list, va_start, va_arg, va_end 329
11.5 Standard C Operator Macros 333
12 Character Processing 335
12.1 isalnum, isalpha, iscntrl, iswalnum, iswalpha, iswcntrl 336
12.2 iscsym, iscsymf 338
12.3 isdigit, isodigit, isxdigit, iswdigit, iswxdigit 338
12.4 isgraph, isprint, ispunct, iswgraph, iswprint, iswpunct 339
12.5 islower, isupper, iswlower, iswupper 340
12.6 isblank, isspace, iswhite, iswspace 341
12.7 toascii 341
12.8 toint 342
12.9 tolower, toupper, towlower, towupper 342
12.10  wctype_t, wctype, iswctype 343
12.11  wectrans_t, wctrans 344
13 String Processing 347
13.1 strcat, strncat, wcscat, wesncat 348
13.2 strcmp, strncmp, wesemp, wesnemp 349
13.3 strcpy, strncpy, wescpy, wesnepy 350
13.4 strlen, wcslen 351
13.5 strchr, strrchr, weschr, wesrchr 351
13.6 strspn, strcspn, strpbrk, strrpbrk, wesspn, wescspn, wespbrk 352
13.7 strstr, strtok, wcsstr, westok 354
13.8 strtod, strtof, strtold, strtol, strtoll, strtoul, strtoull 355
13.9 atof, atoi, atol, atoll 356
13.10  strcoll, strxfrm, wcscoll, wesxfrm 356
14 Memory Functions 359
14.1 memchr, wmemchr 359
14.2 memcmp, wmemcmp 360
14.3 memcpy, memccpy, memmove, wmemcepy, wmemmove 361
14.4 memset, wmemset 362
15 Input/Output Facilities 363
15.1 FILE, EOF, wchar_t, wint_t, WEOF 365
15.2 fopen, fclose, fflush, freopen, fwide 366
15.3 setbuf, setvbuf 370
154 stdin, stdout, stderr 371
15.5 fseek, ftell, rewind, fgetpos, fsetpos 372
15.6 fgetc, fgetwe, getc, getwc, getchar, getwchar, ungetc, ungetwe 374
15.7 fgets, fgetws, gets 376
15.8 fscanf, fwscanf, scanf, wscanf, sscanf, swscanf 377
15.9 fputc, fputwc, putc, putwc, putchar, putwchar 385
15.10 fputs, fputws, puts 386
15.11  fprintf, printf, sprintf, snprintf, fwprintf, wprintf, swprintf 387



Contents Xi

15.12  viprintf, viwprintf, vprintf, vwprintf, vsprintf, vswprintf, vfscanf, vf-
wscanf, vscanf, vwscanf, vsscanf, vswscanf 401

15.13  fread, fwrite 402

15.14  feof, ferror, clearerr 404

15.15 remove, rename 404

15.16 tmpfile, tmpnam, mktemp 405

16 General Utilities 407

16.1 malloc, calloc, mlalloc, clalloc, free, cfree 407

16.2 rand, srand, RAND MAX 410

16.3 atof, atoi, atol, atoll 1 411

16.4 strtod, strtof, strtold, strtol, strtoll, strtoul, strtoull 412
16.5 abort, atexit, exit, Exit, EXIT FAILURE, EXIT_SUCCESS 414
16.6 getenv 415

16.7 system 416

16.8 bsearch, gsort 417

16.9 abs, labs, llabs, div, Idiv, lldiv 419

16.10 mblen, mbtowc, wctomb 420

16.11 mbstowcs, wcstombs 422

17 Mathematical Functions 425

17.1 abs, labs, llabs, div, 1div, lldiv 426

17.2 fabs 426

17.3 ceil, floor, Irint, llrint, Iround, llround, nearbyint, round, rint,
trunc 427

17.4 fmod, remainder, remquo 428

17.5 frexp, ldexp, modf, scalbn 429

17.6 exp, exp2, expml, ilogb, log, log10, loglp, log2,logb 430

17.7 cbrt, fma, hypot, pow, sqrt 432

17.8 rand, srand, RAND_MAX 432

17.9 cos, sin, tan, cosh, sinh, tanh 433

17.10 acos, asin, atan, atan2, acosh, asinh, atanh 434

17.11 fdim, fmax, fmin 435

17.12  'Type-Generic Macros 435

17.13  erf, erfc, lgamma, tgamma 439

17.14  fpclassify, isfinite, isinf, isnan, isnormal, signbit 440

17.15  copysign, nan, nextafter, nexttoward 441

17.16  isgreater, isgreaterequal, isless, islessequal, islessgreater,
isunordered 442

18 Time and Date Functions 443

18.1 clock, clock_t, CLOCKS_PER_SEC, times 443
18.2 time, time_t 445

18.3 asctime, ctime 445

18.4 gmtime, localtime, mktime 446

18.5 difftime 447



Xii Contents
18.6 strftime, wcsftime 448

19 Control Functions 453

19.1 assert, NDEBUG 453

19.2 system, exec 454

19.3 exit, abort 454

19.4 setyjmp, longjmp, jmp_buf 454

19.5 atexit 456

19.6 signal, raise, gsignal, ssignal, psignal 456
19.7 sleep, alarm 458

20 Locale 461

20.1 setlocale 461
20.2 localeconv 463

21 Extended Integer Types 467

21.1 General Rules 467

21.2 Exact-Size Integer Types 470

21.3 Least-Size Types of a Minimum Width 471

214 Fast Types of a Minimum Width 472

21.5 Pointer-Size and Maximum-Size Integer Types 473

21.6 Ranges of ptrdiff_t, size_t, wchar_t, wint_t, and sig_atomic_t 474
21.7 imaxabs, imaxdiv, imaxdiv_t 474

21.8 strtoimax, strtouimax 475

21.9 wcestoimax, westoumax 475

22 Floating-Point Environment 477

22.1 Overview 477

22.2 Floating-Point Environment 478
22.3 Floating-Point Exceptions 479
22.4  Floating-Point Rounding Modes 481

23 Complex Arithmetic 483

23.1 Complex Library Conventions 483

23.2 complex, _Complex_I, imaginary, _Imaginary_I, I 484
23.3 CX_LIMITED_RANGE 484

234 cacos, casin, catan, ccos, csin, ctan 485

23.5 cacosh, casinh, catanh, ccosh, csinh, ctanh 486

23.6 cexp, clog, cabs, cpow, csqrt 487

23.7 carg, cimag, creal, conj, cproj 488

24 Wide and Multibyte Facilities 489

24.1 Basic Types and Macros 489

24.2 Conversions Between Wide and Multibyte Characters 490
24.3 Conversions Between Wide and Multibyte Strings 491
24.4 Conversions to Arithmetic Types 493

24.5 Input and Output Functions 493



Contents Xiii

24.6 String Functions 493
24.7 Date and Time Conversions 494
24.8 Wide-Character Classification and Mapping Functions 494

A The ASCII Character Set 497
B Syntax 499
C Answers to the Exercises 513

Index 521






List of Tables

Table 2—-1
Table 22
Table 2-3
Table 24
Table 2-5
Table 2-6
Table 2—7
Table 2—8
Table 3—1
Table 3-2
Table 4-1
Table 4-2
Table 4-3
Table 44
Table 4-5
Table 4-6
Table 4-7
Table 5-1
Table 5-2
Table 5-3
Table 54
Table 6-1
Table 6-2
Table 6-3
Table 64
Table 6-5
Table 6-6
Table 7-1
Table 7-2
Table 7-3
Table 74
Table 7-5
Table 7-6
Table 7-7

Graphic characters 12

ISO trigraphs 15

Operators and separators 21

Keywords in C99 23

Types of integer constants 27

Assignment of types to integer constants 28

Character escape codes 36

Additional G+ keywords 39

Preprocessor commands 44

Predefined macros 52

Identifier scopes 75

Overloading classes 78

Storage class specifiers 83

Default storage class specifiers 84

Function declarators 101

Form of initializers 104

Interpretation of top-level declarations 115

C types and categories 124

Values defined in 1imits.h 127

Values defined in £loat.h 134

IEEE floating-point characteristics 135

Memory models on early PCs 186

Permitted casting conversions 194

Allowable assignment conversions 195

Conversion rank 196

Usual unary conversions (choose first that applies) 197
Usual binary conversions (choose first that applies) 199
Nonarray expressions that can be lvalues 204
Operators requiring lvalue operands 204

C operators in order of precedence 205

Binary operator expressions 227

Conditional expression 2nd and 3rd operands (pre-Standard)
Conditional expression 2nd and 3rd operands (Standard C)
Assignment operands 247

245

245



XVi

Table 7-8
Table 12-1
Table 15-1
Table 15-2
Table 15-3
Table 154
Table 15-5
Table 15-6
Table 15-7
Table 15-8
Table 15-9
Table 15-10
Table 15-11
Table 15-12
Table 15-13
Table 15-14
Table 15-15
Table 15-16
Table 17-1
Table 18-1
Table 18-2
Table 19-1
Table 20-1
Table 20-2
Table 20-3
Table 204
Table 21-1
Table 23-1
Table 23-2
Table 23-3
Table 234
Table 241
Table 242
Table 24-3

Operand types for compound assignment expressions 249
Property names for wetype 344

Type specifications for fopen and £reopen 368
Properties of fopen modes 368

Input conversions (scanf, £scanf, sscanf) 380
Input conversions of the ¢ specifier 382

Input conversions of the s specifier 383

Output conversion specifications 393

Examples of the d conversion 394

Examples of the u conversion 394

Examples of the o conversion 395

Examples of the x and X conversions 395
Conversions of the ¢ specifier 396

Examples of the ¢ conversion 396

Conversions of the s specifier 397

Examples of the s conversion 397

Examples of the £ conversion 398

Examples of e and E conversions 399
Type-generic macros 437

Fields in struct tmtype 447

Formatting codes for strftime 449

Standard signals 458

Predefined setlocale categories 462

1lconv structure components 465

Examples of formatted monetary quantities 465
Examples of 1conv structure contents 466

List of Tables

Format control string macros for integer types (N = width of type in bits) 469

Domain and range of complex trigonometric functions 485
Domain and range of complex hyperbolic functions 486
Domain and range of complex exponential and power 487

Domain and range of miscellaneous complex functions 488

Wide input/output functions 494
Wide-string functions 495
Wide-character functions 495



Preface

This text is a reference manual for the C programming language. Our aim is to provide a
complete and precise discussion of the language, the run-time libraries, and a style of C
programming that emphasizes correctness, portability, and maintainability.

We expect our readers to already understand basic programming concepts, and
many will be experienced C programmers. In keeping with a reference format, we present
the language in a bottom-up order: lexical structure, preprocessor, declarations, types,
expressions, statements, functions, and run-time libraries. We have included many cross-
references in the text so that readers can begin at any point.

This Fifth Edition now includes a complete description of the latest international C
standard, ISO/IEC 9899:1999 (C99). I have been careful to indicate which features of the
language and libraries are new in C99 and point out how C99 differs from the previous
standard, C89. This is now the only book that serves as a reference for all the major
versions of the C language: traditional C, the 1989 C Standard, the 1995 Amendment and
Corrigenda to C89, and now the 1999 C Standard. It also covers the Clean C subset of
Standard C and Standard C++. Although there is much new material in C99, I have not
changed the chapter and section organization of the book significantly, so readers familiar
with previous editions will not have problems finding the information they need.

This book originally grew out of our work at Tartan, Inc. developing a family of C
compilers for a range of computers—f{rom micros to mainframes. We wanted the compil-
ers to be well documented, provide precise and helpful error diagnostics, and generate
exceptionally efficient object code. A C program that compiles correctly with one compil-
er must compile correctly under all the others insofar as the hardware differences allow.

In 1984, despite C’s popularity, we found that there was no description of C precise
enough to guide us in designing the new compilers. Similarly, no existing description was
precise enough for our programmer/customers, who would be using compilers that
analyzed C programs more thoroughly than was the custom at that time. In this text, we
have been especially sensitive to language features that affect program clarity, object code
efficiency, and the portability of programs among different environments.

WEB SITE

We encourage readers to visit the book’s Web site: CAReferenceManual.com. We’ll
post example code, expanded discussions, clarifications, and links to more C resources.

XVii
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Introduction

Dennis Ritchie designed the C language at Bell Laboratories in the early 1970s, and its an-
cestry is traced from ALGOL 60 (1960), through Cambridge’s CPL (1963), Martin Rich-
ards’s BCPL (1967), and Ken Thompson’s B language (1970) at Bell Labs. Although C is
a general-purpose programming language, it has traditionally been used for systems pro-
gramming. In particular, the popular UNIX operating system was originally written in C.

C’s popularity is due to many factors. It is a small, efficient, yet powerful program-
ming language with a rich run-time library. It provides precise control over the computer
without a lot of hidden mechanisms. Since it has been standardized for over 10 years, pro-
grammers are comfortable with it. It is generally easy to write C programs that will be por-
table across different computing systems in different countries with different languages.
Finally, there is a lot of legacy C code out there that is being modified and extended.

Starting in the late 1990s, C’s popularity began to be eclipsed by its “big brother,”
C+. However, there is still a loyal following for the C language, and it continues to be
popular where programmers do not need the features in C+H or where the overhead of G+
1s not welcome.

C has withstood the test of time. It remains a language in which the experienced
programmer can write quickly and well. Millions of lines of code testify to its usefulness.

1.1 THE EVOLUTION OF C

At the time we wrote the First Edition of this book in 1984, the C language was in wide-
spread use, but there was no official standard or precise description of the language. The
de facto standards were the C compilers being used. C became an international standard in
1989, was revised in 1994, and underwent a major revision in 1999,

Simply changing the definition of a language does not automatically alter the hun-
dreds of millions of lines of C program code in the world. We have strived to keep this

3



4 Introduction Chap. 1

book up to date so that programmers can use it as a reference for all of the dialects of C
they are likely to encounter.

1.1.1 Traditional C

The original C language description is the first edition of the book, The C Programming
Language, by Brian Kernighan and Dennis Ritchie (Prentice-Hall, 1978), usually referred
to as “K&R.” After the book was published, the language continued to evolve in small
ways; some features were added and some were dropped. We refer to the consensus
definition of C in the early 1980s as traditional C, the dialect before the standardization
process. Of course, individual C vendors had their own extensions to traditional C, too.

1.1.2 Standard C (1989)

Realizing that standardization of the language would help C become more widespread in
commercial programming, the American National Standards Institute (ANSI) formed a
committee in 1982 to propose a standard for C and its run-time libraries. That committee,
X3J11 (mow NCITS J11), was chaired by Jim Brodie and produced a standard formally
adopted in 1989 as American National Standard X3.159-1989, or “ANSI C.”

Recognizing that programming is an international activity, an international stan-
dardization group was created as ANSI C was being completed. ISO/IEC JTC1/SC22/
WG14 under by P. J. Plauger turned the ANSI standard into an international standard,
ISO/IEC 9899:1990, making only minor editorial changes. The ISO/IEC standard was
thereafter adopted by ANSI, and people referred to this common standard as simply “Stan-
dard C.” Since that standard would eventually be changed, we refer to it as Standard C
(1989), or simply “C89.”

Some of the changes from traditional C to C89 included:

e The addition of a truly standard library.
e New preprocessor commands and features.

e Function prototypes, which let you specify the argument types in a function declara-
tion.

* Some new keywords, including const, volatile, and signed.
e Wide characters, wide strings, and multibyte characters.

 Many smaller changes and clarifications to conversion rules, declarations, and type
checking.

1.1.3 Standard C (1995)

As a normal part of maintaining the C standard, WG14 produced two Technical Corrigen-
da (bug fixes) and an Amendment (extension) to C89. Taken together, these made a rela-
tively modest change to the Standard mostly by adding new libraries. The result is what
we call either “C89 with Amendment 17 or “C95.” The changes to C89 included:

e three new standard library headers: 1is0646 .h, wctype.h, and wchar.h,
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e several new tokens and macros used as replacements for operators and punctuation
characters not found in some countries’ character sets,

e some new formatting codes for the printf/scanf family of functions, and

e a large number of new functions, plus some types and constants, for multibyte and
wide characters.

1.1.4 Standard C (1999)

ISO/IEC standards must be reviewed and updated on a regular basis. In 1995, WG14 be-
gan work on a more extensive revision to the C standard, which was completed and ap-
proved in 1999. The new standard, ISO/IEC 9899:1999, or “C99,” replaces the previous
standard (and all corrigenda and amendments) and has now become the official Standard
C. Vendors are updating their C compilers and libraries to conform to the new standard.

C99 adds many new features to the C89/C95 language and libraries, including:

e complex arithmetic

* extensions to the integer types, including a longer standard type

e variable-length arrays

* aBoolean type

» better support for non-English character sets

e better support for floating-point types, including math functions for all types

o Ct+-style comments (/ /)

C99 is a much larger change than C95 since it includes changes to the language as
well as extensions to the libraries. The C99 Standard document is significantly larger than
the C89 document. However, the changes are “in the spirit of C,” and they do not change
the fundamental nature of the language.

1.1.5 Standard C++

G+, designed by Bjarne Stroustrup at AT&T Bell Labsin the early 1980s, has now large-
ly supplanted C for mainstream programming. Most C implementations are actually C/
C+H implementations, giving programmers a choice of which language to use. C++ has it-
self been standardized, as ISO/IEC 14882:1998, or “Standard Ci+.” C++ includes many
improvements over C that programmers need for large applications, including improved
type checking and support for object-oriented programming. However, C++ is also one of
the most complex programming languages, with many pitfalls for the unwary.

Standard C++ is nearly—but not exactly—a superset of Standard C. Since the C and
C++ standards were developed on different schedules, they could not adapt to each other in
a coordinated way. Furthermore, C has kept itself distinct from C++. For example, there
has been no attempt to adopt “simplified” versions of C++’s class types.

It is possible to write C code in the common subset of the Standard C and C++ lan-
guages—called Clean C by some—so that the code can be compiled either as a C program
or a C++ program. Since C+ generally has stricter rules than Standard C, Clean C tends to
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be a good, portable subset in which to write. The major changes you must consider when
writing Clean C are:

e C(lean C programs must use function prototypes. Old-style declarations are not per-
mitted in G+,

e C(Clean C programs must avoid using names that are reserved words in G+, like
class and virtual.

There are several other rules and differences, but they are less likely to cause problems. In
this book, we explain how to write Standard C code so that it is acceptable to G+ compil-
ers. We do not discuss features of G+ that are not available in Standard C. (Which, of
course, includes almost everything interesting in Gi+.)

1.1.6 What’s in This Book

This book describes the three major variations of C: traditional C, C89, and C99. It calls
out those features that were added in Amendment 1 to C89, and it describes the Clean C
subset of C and C++. We also suggest how to write “good” C programs—programs that
are readable, portable, and maintainable.

Officially, “Standard C” is C99. However, we use the term Standard C to refer to
features and concepts of C89 that continue through C99. Features that exist only in C99
will be identified as such so that programmers using C89 implementations can avoid them.

1.2 WHICH DIALECT OF C SHOULD YOU USE?

Which dialect of C you use depends on what implementation(s) of C you have available
and on how portable you want your code to be. Your choices are:

1. C99, the current version of Standard C. It has all the latest features, but some imple-
mentations may not yet support it. (That will change rapidly.)

2. C89, the previous version of Standard C. Most recent C programs and most C imple-
mentations are based on this version of C, usually with the Amendment 1 additions.

3. Traditional C, now encountered mostly when maintaining older C programs.
4. Clean C, compatible with C+.

C99 is generally upward compatible with C89, which is generally upward
compatible with traditional C. Unfortunately, it is hard to write C code that is backward
compatible. Consider function prototypes, for example. They are optional in Standard C,
forbidden in traditional C, and required in C+. Fortunately, you can use the C preproces-
sor to alter your code depending on which implementation is being used—and even on
whether your Standard C includes the Amendment 1 extensions. Therefore, your C pro-
grams can remain compatible with all dialects. We explain how to use the preprocessor to
do this in Chapter 3. An example appears in Section 3.9.1.

If you are not limited by your compiler or an existing body of C code, you should
definitely use Standard C as your base language. Standard C compilers are now almost
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universally available. The Free Software Foundation’s GNU C (gcce) is a free, Standard C
implementation (with many extensions).

1.3 AN OVERVIEW OF C PROGRAMMING

We expect most of our readers to be familiar with programming in a high-level language
such as C, but a quick overview of C programming may be helpful to some.

A C program 1s composed of one or more source files, or translation units, each of
which contains some part of the entire C program—typically some number of external
functions. Common declarations are often collected into seader files and are included into
the source files with a special #include command (Section 3.4). One external function
must be named main (Section 9.9 ); this function is where your program starts.

A C compiler independently processes each source file and translates the C program
text into instructions understood by the computer. The compiler “understands” the C pro-
gram and analyzes it for correctness. If the programmer has made an error the compiler
can detect, then the compiler issues an error message. Otherwise, the output of the compil-
er is usually called object code or an object module.

When all source files are compiled, the object modules are given to a program called
the linker. The linker resolves references between the modules, adds functions from the
standard run-time library, and detects some programming errors such as the failure to de-
fine a needed function. The linker is typically not specific to C; each computer system has
a standard linker that is used for programs written in many different languages. The linker
produces a single executable program, which can then be invoked or run. Although most
computer systems go through these steps, they may appear different to the programmer. In
integrated environments such as Microsoft’s Visual Studio, they may be completely hid-
den. In this book, we are not concerned with the details of building C programs; readers
should consult their own computer system and programming documentation.

Example

Suppose we have a program to be named aprogram consisting of the two C source files
hello.c and startup.c. The file hello. ¢ might contain these lines:

#include <stdio.h> /* defines printf */
void hello(void)

{
}

Since hello. ¢ contains facilities (the function hello) that will be used by other parts of
our program, we create a header file hello.h to declare those facilities. It contains the line

printf ("Hello!\n");

extern void hello (void);

File startup.c contains the main program, which simply calls functionhello:
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#include "hello.h"
int main(void)

{

hello();
return 0;

}

On a UNIX system, compiling, linking, and executing the program takes only two steps:

% cc -o aprogram hello.c startup.c
% aprogram

The first line compiles and links the two source files, adds any standard library functions
needed, and writes the executable program to file aprogram. The second line then executes
the program, which prints:

Hello!

Other non-UNIX implementations may use different commands. Increasingly, modern pro-
gramming environments present an integrated, graphical interface to the programmer. Build-
ing a C application in such an environment requires only selecting commands from a menu or
clicking a graphical button.

1.4 CONFORMANCE

Both C programs and C implementations can conform to Standard C. A C program is said
to be strictly conforming to Standard C if that program uses only the features of the lan-
guage and library described in the Standard. The program’s operation must not depend on
any aspect of the C language that the Standard characterizes as unspecified, undefined, or
implementation-defined. There are Standard C test suites available from Perennial, Inc.
and Plum Hall, Inc. that help establish conformance of implementations to the standard.

There are two kinds of conforming implementations—hosted and freestanding. A C
implementation is said to be a conforming hosted implementation if it accepts any strictly
conforming program. A conforming freestanding implementation is one that accepts any
strictly conforming program that uses no library facilities other than those provided in the
header files £loat.h, iso646.h (C95), limits.h, stdarg.h, stdbool.h
(C99), stddef.h, and stdint.h (C99). Chapter 10 lists the contents of these header
files. Freestanding conformance is meant to accommodate C implementations for embed-
ded systems or other target environments with minimal run-time support. For example,
such systems may have no file system.

A conforming program is one that is accepted by a conforming implementation.
Thus, a conforming program can depend on some nonportable, implementation-defined
features of a conforming implementation, whereas a strictly conforming program cannot
depend on those features (and so is maximally portable).

Conforming implementations may provide extensions that do not change the mean-
ing of any strictly conforming program. This allows implementations to add library rou-
tines and define their own #pragma directives, but not to introduce new reserved
identifiers or change the operation of standard library functions.
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Compiler vendors continue to provide nonconforming extensions to which their
customers have grown accustomed. Compilers enable (or disable) these extensions with
special switches.

1.5 SYNTAX NOTATION

This book makes use of a stylized notation for expressing the form of a C program. When
specifying the C language grammar, terminal symbols are printed in fixed type and are to
appear in the program exactly as written. Nonterminal symbols are printed in italic type;
they are spelled beginning with a letter and can be followed by zero or more letters, digits,
or hyphens:

expression argument-list declarator

Syntactic definitions are introduced by the name of the nonterminal being defined fol-
lowed by a colon. One or more alternatives then follow on succeeding lines:

character :
printing-character
escape-character

When the words one of follow the colon, this signifies that each of the terminal symbols
following on one or more lines is an alternative definition:

digit : one of
01 2345¢6 1789

Optional components of a definition are signified by appending the suffix opt to a termi-
nal or nonterminal symbol:

enumeration-constant-definition :
enumeration-constant enumeration-initializer,,,,

initializer :
expression
{ initializer-list , ,p; }






2

Lexical Elements

This chapter describes the lexical structure of the C language—that is, the characters that
may appear in a C source file and how they are collected into lexical units, or tokens.

2.1 CHARACTER SET

A C source file is a sequence of characters selected from a character set. C programs are
written using the following characters defined in the Basic Latin block of ISO/IEC 10646:

1. the 52 Latin capital and small letters:

ABCDEFGHIJKLMNOPQQRST
UVWXYZabcdefghijklm
nopgqgrs=:tuvwzxyz

2. the 10 digits:
0123456789

3. the SPACE,
4. the horizontal tab (HT), vertical tab (vVT), and form feed (FF) control characters, and

5. the 29 graphic characters and their official names (shown in Table 2-1).

There must also be some way of dividing the source program into lines; this can be done
with a character or character sequence or with some mechanism outside the source
character set (e.g., an end-of-record indication).

11
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Table 2-1 Graphic characters

Char Name Char Name Char Name
! EXCLAMATION MARK + PLUS SIGN " QUOTATION MARK
# NUMBER SIGN = EQUALS SIGN { LEFT CURLY BRACKET
% PERCENT SIGN ~ TILDE } RIGHT CURLY BRACKET
~ CIRCUMFLEX ACCENT [ LEFT SQUARE BRACKET ’ COMMA
& AMPERSAND ] RIGHT SQUARE BRACKET . FULL STOP
* ASTERISK ! APOSTROPHE < LESS-THAN SIGN
( LEFT PARENTHESIS l VERTICAL LINE > GREATER-THAN SIGN
_ LOWLINE \ REVERSE SOLIDUS / SOLIDUS
(underscore) (backslash) (slash, divide sign)
) RIGHT PARENTHESIS ; SEMICOLON ? QUESTION MARK
- HYPHEN-MINUS : COLON

Some countries have national character sets that do not include all the graphic char-
acters in Table 2—1. C89 (Amendment 1) defined trigraphs and token respellings to allow
C programs to be written in the ISO 646-1083 Invariant Code Set.

Additional characters are sometimes used in C source programs, including:

1. formatting characters such as the backspace (BS) and carriage return (CR) characters,
and

2. additional Basic Latin characters, including the characters $ (DOLLAR SIGN), @
(COMMERCIAL AT), and ~ (GRAVE ACCENT).

The formatting characters are treated as spaces and do not otherwise affect the source pro-
gram. The additional graphic characters may appear only in comments, character con-
stants, string constants, and file names.

References Basic Latin 2.9; character constants 2.7.3; comments 2.2; character encoding
2.1.3; character escape codes 2.7.6; execution character set 2.1.1; string constants 2.7.4; token re-
spellings 2.4; trigraphs 2.1.4

2.1.1 Execution Character Set

The character set interpreted during the execution of a C program is not necessarily the
same as the one in which the C program is written. Characters in the execution character
set are represented by their equivalents in the source character set or by special character
escape sequences that begin with the backslash (\) character.

In addition to the standard characters mentioned before, the execution character set
must also include:

1. a null character that must be encoded as the value O

2. anewline character that is used as the end-of-line marker
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3. the alert, backspace, and carriage return characters

The null character is used to mark the end of strings; the newline character is used to
divide character streams into lines during input/output. (It must appear to the programmer
as if this newline character were actually present in text streams in the execution environ-
ment. However, the run-time library implementation is free to simulate them. For
instance, newlines could be converted to end-of-record indications on output, and end-of-
record indications could be turned into newlines on input.)

As with the source character set, it is common for the execution character set to in-
clude the formatting characters backspace, horizontal tab, vertical tab, form feed, and car-
riage return. Special escape sequences are provided to represent these characters in the
source program.

These source and execution character sets are the same when a C program is com-
piled and executed on the same computer. However, occasionally programs are cross-
compiled; that is, compiled on one computer (the host) and executed on another computer
(the target). When a compiler calculates the compile-time value of a constant expression
involving characters, it must use the target computer’s encoding, not the more natural (to
the compiler writer) source encoding.

References character constants 2.7.3; character encoding 2.1.3; character set 2.1; constant
expressions 7.11; escape characters 2.7.5; text streams Ch. 15

2.1.2 Whitespace and Line Termination

In C source programs the blank (space), end-of-line, vertical tab, form feed, and horizontal
tab (if present) are known collectively as whitespace characters. (Comments, discussed
next, are also whitespace.) These characters are ignored except insofar as they are used to
separate adjacent tokens or when they appear in character constants, string constants, or
#include file names. Whitespace characters may be used to lay out the C program in a
way that is pleasing to a human reader.

The end-of-line character or character sequence marks the end of source program
lines. In some implementations, the formatting characters carriage return, form feed, and
(or) vertical tab additionally terminate source lines and are called line break characters.
Line termination is important for the recognition of preprocessor control lines. The char-
acter following a line break character is considered to be the first character of the next line.
If the first character is a line break character, then another (empty) line is terminated, and
so forth.

A source line can be continued onto the next line by ending the first line with a re-
verse solidus or backslash (\) character or with the Standard C trigraph ?? /. The back-
slash and end-of-line marker are removed to create a longer, logical source line. This
convention has always been valid in preprocessor command lines and within string con-
stants, where it is most useful and portable. Standard C, and many non-Standard imple-
mentations, generalize it to apply to any source program line. This splicing of source lines
conceptually occurs before preprocessing and before the lexical analysis of the C program,
but after trigraph processing and the conversion of any multibyte character sequences to
the source character set.
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Example

Even tokens may be split across lines in Standard C. The two lines:

if (a==b) x=1; el\
se x=2;

are equivalent to the single line

if (a==b) x=1; else x=2;

If an implementation treats any nonstandard source characters as whitespace or line
breaks, it should handle them exactly as it does blanks and end-of-line markers, respec-
tively. Standard C suggests that an implementation do this by translating all such charac-
ters to some canonical representation as the first action when reading the source program.
However, programmers should probably beware of relying on this by, for example, ex-
pecting a backslash followed by a form feed to be eliminated.

Most C implementations impose a limit on the maximum length of source lines both
before and after splicing continuation lines. C89 requires implementations to permit logi-
cal source lines of at least 509 characters; C99 allows 4,095 characters.

References character constants 2.7.3; preprocessor lexical conventions 3.2; source charac-
ter set 2.1.1; string constants 2.7.4; tokens 2.3; trigraphs 2.1.4

2.1.3 Character Encoding

Each character in a computer’s (execution) character set will have some conventional en-
coding—that is, some numerical representation on the computer. This encoding is impor-
tant because C converts characters to integers, and the values of the integers are the
conventional encoding of the characters. All of the standard characters listed earlier must
have distinct, non-negative integer encodings.

A common C programming error is to assume a particular encoding is in use when,
in fact, another one holds.

Example

The C expression 'Z"' - 'A' +1 computes one more than the difference between the encoding
of Z and A and might be expected to yield the number of characters in the alphabet. Indeed,
under the ASCII character set encoding the result is 26, but under the EBCDIC encoding, in
which the alphabet is not encoded consecutively, the result is 41.

References source and execution character sets 2.1.1

2.1.4 Trigraphs

A set of trigraphs is included in Standard C so that C programs may be written using only
the ISO 646-1083 Invariant Code Set, a subset of the seven-bit ASCII code set and a code
set that is common to many non-English national character sets. The trigraphs, introduced
by two consecutive question mark characters, are listed in Table 2-2. Standard C also pro-
vides for respelling of some tokens (Section 2.4) and header <iso0646 . h> defines macro
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alternatives for some operators, but unlike trigraphs those alternatives will not be recog-
nized in string and character constants.

Table 2-2 ISO trigraphs

Trigraph Replaces Trigraph Replaces
22 ( [ ??) ]
??< { ??> }
??/ \ 2?1 |
27! ~ ?7- ~
??= #

The translation of trigraphs in the source program occurs before lexical analysis (to-
kenization) and before the recognition of escape characters in string and character con-
stants. Only these exact nine trigraphs are recognized; all other character sequences (e.g.,
??&) are left untranslated. A new character escape, \?, is available to prevent the inter-
pretation of trigraph-like character sequences.

Example

If you want a string to contain a three-character sequence that would ordinarily be interpreted
as a trigraph, you must use the backlash escape character to quote at least one of the trigraph
characters. Therefore, the string constant "What?\? ! " actually represents a string contain-
ing the characters What??!.

To write a string constant containing a single backslash character, you must write two consec-
utive backslashes. (The first quotes the second.) Theneach of the backslashes can be translat-
ed to the trigraph equivalent. Therefore, the string constant "??/?? /" represents a string
containing the single character \.

References character set 2.1; escape characters 2.7.5; is0646.h 11.9; string concatena-
tion 2.7.4; token respellings 2.4

2.1.5 Multibyte and Wide Characters

To accommodate non-English alphabets that may contain a large number of characters,
Standard C introduces wide characters and wide strings. To represent wide characters and
strings in the external, byte-oriented world, the concept of multibyte characters is
introduced. Amendment 1 to C89 expands the facilities for dealing with wide and multi-
byte characters.

Wide characters and strings A wide character is a binary representation of an
element of an extended character set. It has the integer type wehar t, which is declared
in header file stddef.h. Amendment 1 to C89 added the integer type wint t, which
must be able to represent all values of type wchar t plus an additional, distinguished,
nonwide character value denoted WEOF. Standard C does not specify any encoding for
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wide characters, but the value zero is reserved as a “null wide character.” Wide-character
constants can be specified with a special constant syntax (Section 2.7.3).

Example

It is typical for a wide character to occupy 16 bits, so wechar t could be represented as
short orunsigned short on a 32-bit computer. If wechar t were short and the value
—1 were not a valid wide character, then wint t could be short and WEOF could be 1.
However, it is more typical forwint t tobe int orunsigned int.

If an implementor chooses not to support an extended character set—which is common
among the U.S. C vendors—then wehar t can be defined as char, and the “extended char-
acter set’ 1s the same as the normal character set.

A wide string is a contiguous sequence of wide characters ending with a null wide
character. The null wide character is the wide character whose representation is 0. Other
than this null wide character and the existence of WEOF, Standard C does not specify the
encoding of the extended character set. Wide-string constants can be specified with spe-
cial string constants (Section 2.7.4).

Multibyte characters Wide characters may be manipulated as units within a C
program, but most external media (e.g., files) and the C source program are based on byte-
sized characters. Programmers experienced with extended character sets have devised
multibyte encoding, which are locale-specific ways to map between a sequence of byte-
sized characters and a sequence of wide characters.

A multibyte character is the representation of a wide character in either the source
or execution character set. (There may be different encoding for each.) A multibyte string
is therefore a normal C string, but whose characters can be interpreted as a series of multi-
byte characters. The form of multibyte characters and the mapping between multibyte and
wide characters is implementation-defined. This mapping is performed for wide-character
and wide-string constants at compile time, and the standard library provides functions that
perform this mapping at run time.

Multibyte characters might use a state-dependent encoding, in which the interpreta-
tion of a multibyte character may depend on the occurrence of previous multibyte charac-
ters. Typically such an encoding makes use of shift characters—control characters that are
part of a multibyte character and that alter the interpretation of the current and subsequent
characters. The current interpretation within a sequence of multibyte characters is called
the conversion state (or shift state) of the encoding. There is always a distinguished, initial
conversion (shift) state that is used when starting a conversion of a sequence of multibyte
characters and that frequently is returned to at the end of the conversion.

Example

Encoding A—a hypothetical encoding that we use in examples—is state-dependent, with two
shift states, “up” and “down.” The character T changes the shift state to “up” and the character
l changes it to “down.” In the down state, which is the initial state, all nonshift characters
have their normal interpretation. In the up state, each multibyte character consists of a pair of
alphanumeric characters that define a wide character in a manner that we do not specify.
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The following sequences of characters each contain three multibyte characters under Encod-
ing A, beginning in the initial shift state.

abc abTe3 TablbT23 lalble

The last string includes shift characters that are not strictly necessary. If redundant shift se-
quences are permitted, multibyte characters may become arbitrarily long (e.g., L{..lx). Un-
less you know what the shift state is at the start of a sequence of multibyte characters, you
cannot parse a sequence like abede £, which could represent either three or six wide charac-
ters.

The sequence ab | ?x is invalid under Encoding A because a nonalphanumeric character ap-
pears while in the up shift state. The sequence a | b is invalid because the last multibyte char-
acter ends prematurely.

Multibyte characters might also use a state-independent encoding, in which the in-
terpretation of a multibyte character does not depend on previous multibyte characters.
(Although you may have to look at a multibyte sequence from the beginning to locate the
beginning of a multibyte character in the middle of a string.) For example, the syntax of
C’s escape characters (Section 2.7.5) represents a state-independent encoding for type
char since the backslash character (\) changes the interpretation of one or more follow-
ing characters to form a single value of type char.

Example

Encoding B—another hypothetical encoding—is state-independent and uses a single special
character, which we denote V, to change the meaning of the following non-null character. The
following sequences each contain three multibyte characters under Encoding B:

abec VaVbVe VVVVVV a Vbe

The sequence VVV is not valid under Encoding B because a non-null character is missing at
the end.

Standard C places some restrictions on multibyte characters:

1. All characters from the standard character set must be present in the encoding.

2. In the initial shift state, all single-byte characters from the standard character set re-
tain their normal interpretation and do not affect the shift state.

3. A byte containing all zeroes is taken to be the null character regardless of shift state.
No multibyte character can use a byte containing all zeroes as its second or subse-
quent character.

Together, these rules ensure that multibyte sequences can be processed as normal C
strings (e.g., they will not contain embedded null characters) and a C string without spe-
cial multibyte codes will have the expected interpretation as a multibyte sequence.

Source and execution uses of multibyte characters Multibyte characters may
appear in comments, identifiers, preprocessor header names, string constants, and charac-
ter constants. Each comment, identifier, header name, string constant, or character con-
stant must begin and end in the initial shift state and must consist of a valid sequence of
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multibyte characters. Multibyte characters in the physical representation of the source are
recognized and translated to the source character set before any lexical analysis, prepro-
cessing, or even splicing of continuation lines.

Example

A Japanese text editing program might allow Japanese characters to be written in string con-
stants and comments. If the text were written to a byte-stream file, then the Japanese charac-
ters would be translated to multibyte sequences, which would be acceptable to—and, in the
case of string constants, understood by—Standard C implementations.

During processing, characters appearing in string and character constants are trans-
lated to the execution character set before they are interpreted as multibyte sequences.
Therefore, escape sequences (Section 2.7.5) can be used in forming multibyte characters.
Comments are removed from a program before this stage, so escape sequences in multi-
byte comments may not be meaningful.

Example

If the source and execution character sets are the same, and if 'a' has the value 1414 in the
execution character set, then the string constant "Vaa™ contains the same two multibyte
characters as "V\141\141" (Encoding B).

References character constant 2.7.3; comments 2.2; multibyte conversion facilities 11.7,
11.8; string constants 2.7.4; wchar_ t 11.1; WEOF 11.1; wide character 2.7.3; wide string 2.7.4;
wint t11.1

2.2 COMMENTS

There are two ways to write a comment in Standard C. Traditionally, a comment begins
with an occurrence of the two characters /* and ends with the first subsequent occurrence
of the two characters * /. Comments may contain any number of characters and are al-
ways treated as whitespace.

Beginning with C99, a comment also begins with the characters // and extends up
to (but does not include) the next line break. It is possible, but unlikely, that this change
could break an older C program,; it is left as an exercise to determine how this might hap-
pen.

Comments are not recognized inside string or character constants or within other
comments. The contents of comments are not examined by the C implementation except
to recognize (and pass over) multibyte characters and line breaks.

Example

The following program contains four valid C comments:
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// Program to compute the squares of
// the first 10 integers

#include <stdio.h>

void Squares( /* no arguments */ )

{
int i;
/*
Loop from 1 to 10,
printing out the squares
*/
for (i=1l; i<=10; i++)
printf ("%$d //squared// is %d\n",i,i*i);
}

Comments are removed by the compiler before preprocessing, so preprocessor com-
mands inside comments will not be recognized, and line breaks inside comments do not

terminate preprocessor commands.

Example

The following two #define commands have the same effect:

##define ten (2*5)

#define ten /* ten:
one greater than nine
*/ (2%*5)

Standard C specifies that all comments are to be replaced by a single space character for
the purposes of further translation of the C program, but some older implementations do
not insert any whitespace. This affects the behavior of the preprocessor and is discussed in

Section 3.3.9.
A few non-Standard C implementations implement “nestable comments,” in which

each occurrence of /* inside a comment must be balanced by a subsequent * /. This im-
plementation is not standard, and programmers should not depend on it. For a program to
be acceptable to both implementations of comments, no comment should contain the char-

acter sequence /* inside it.

Example

To cause the compiler to ignore large parts of a C program, it is best to enclose the parts to be
removed with the preprocessor commands

#if O
#endif

rather than insert /* before and */ after the text. This avoids having to worry about / *-style
comments in the enclosed source text.

References #if preprocessor command 3.5.1; preprocessor lexical conventions 3.2;
whitespace 2.1
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2.3 TOKENS

The characters making up a C program are collected into lexical tokens according to the
rules presented in the rest of this chapter. There are five classes of tokens: operators, sepa-
rators, identifiers, keywords, and constants.

The compiler always forms the longest tokens possible as it collects characters in
left-to-right order, even if the result does not make a valid C program. Adjacent tokens
may be separated by whitespace characters or comments. To prevent confusion, an identi-
fier, keyword, integer constant, or floating-point constant must always be separated from a
following identifier, keyword, integer constant, or floating-point constant.

The preprocessor has slightly different token conventions. In particular, the Stan-
dard C preprocessor treats # and ## as tokens; they would be invalid in traditional C.

Example
Characters C Tokens
forwhile forwhile
b>x b, > x
b->x b, ->x
b--x b, --,x
b---x b,--,-,x

In the fourth example, the sequence of characters b—-x is invalid C syntax. The tokenization
b, -, -, x would be valid syntax, but that tokenization is not permitted.

References comments 2.2; constants 2.7; identifiers 2.5; preprocessor tokens 3.2; key-
words 2.6; token merging 3.3.9; whitespace characters 2.1

2.4 OPERATORS AND SEPARATORS

The operator and separator (punctuator) tokens in C are listed in Table 2-3. To assist pro-
grammers using [/O devices without certain U.S.—English characters, the alternate spell-
ings <%, %>, <:, :> %:,and %:%: are equivalent to the punctuators {, }, [, 1, #, ##,
respectively. In addition to these respellings, the header file 1is0646 . h defines macros
that expand to certain operators.

In traditional C, the compound assignment operators were considered to be two sep-
arate tokens—an operator and the equals sign—that can be separated by whitespace. In
Standard C, the operators are single tokens.

References compound assignment operators 7.9.2; is0646 .h 11.9; preprocessor tokens
3.2; trigraphs 2.1.4
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Table 2-3 Operators and separators

Token class Tokens

Simple operators 1'% " & * - + =
~ | < > / 2

Compound assignment operators 4= -= *= [= %=

Other compound operators -> ++ -- << >>

<= >= == != && ||
Separator characters ()Y 1 {3}, ;
Alternate token spellings <% %> <: > %: %:%:

2.5 IDENTIFIERS

An identifier, or name, is a sequence of Latin capital and small letters, digits, and the un-
derscore or LOWLINE character. An identifier must not begin with a digit, and it must not
have the same spelling as a keyword.

Beginning with C99, identifiers may also contain universal character names (Sec-
tion 2.9) and other implementation-defined multibyte characters. Universal characters
must not be used to place a digit at the beginning of an identifier and are further restricted
to be “letter-like” characters and not punctuators. An exact list is provided in the C99 stan-
dard (ISO/IEC 9899:1999, Annex D) and in ISO/IEC TR 10176-1998.

identifier :
identifier-nondigit
identifier identifier-nondigit
identifier digit

identifier-nondigit
nondigit
universal-character-name
other implementation-defined characters

nondigit : one of

A B C D E F G H I J K L M
N O P Q R s T U V W X Y Z
a b ¢ d e £f g h i 3 k 1 m
n o p qgq r 8 t u v W X Yy 2z

digit : one of
o 1 2 3 4 5 6 7 8 9

Two identifiers are the same when they are spelled identically, including the case of all
letters. That is, the identifiers abe and aBc are distinct.
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In addition to avoiding the spelling of the keywords, a C programmer must guard
against inadvertently duplicating a name used in the standard libraries, either in the current
Standard or in the “future library directions” portion of the standard. Standard C further
reserves all identifiers beginning with an underscore and followed by either an uppercase
letter or another underscore; programmers should avoid using such identifiers. C imple-
mentations sometimes use these identifiers for extensions to Standard C or other internal

purposes.

C89 requires implementations to permit a minimum of 31 significant characters in
identifiers, and C99 raises this minimum to 63 characters. Each universal character name
or multibyte sequence is considered to be a single character for this requirement.

Example

In a pre-Standard implementation that limited the length of identifiers to eight characters, the
identifiers countless and countlessone would be considered the same identifier.
Longer names tend to improve program clarity and thus reduce errors. The use of underscores
and mixed letter case make long identifiers more readable:

averylongidentifier
AVeryLongIdentifier
a very long identifier

External identifiers—those declared with storage class extern—may have addi-
tional spelling restrictions. These identifiers have to be processed by other software, such
as debuggers and linkers, which may be more limited. C89 requires a minimum capacity
of only six characters, not counting letter case. C99 raises this to 31 characters, including
letter case, but allowing universal character names to be treated as 6 characters (up to
\UOO0OOFFFF) or 10 characters (\U00010000 or above). Even before C99, most
implementations allowed external names of at least 31 characters.

Example

When a C compiler permits long internal identifiers, but the target computer requires short ex-
ternal names, the preprocessor may be used to hide these short names. In the following code,
an external error-handling function has the short and somewhat obscure name eh?7 3, but the
function is referred to by the more readable nameerror handler. This is done by making
error handler a preprocessor macro that expands to the name eh73.

#define error handler eh73
extern void error handler();

error handler ("nil pointer error");

Some compilers permit characters other than those specified earlier to be used in
identifiers. The dollar sign ($) is often allowed in identifiers so that programs can access
special non-C library functions provided by some computing systems.

References #define command 3.3; external names 4.2.9; keywords 2.6; multibyte se-
quence 2.1.5; reserved library identifiers 10.1.1; universal character name 2.9
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2.6 KEYWORDS

The identifiers listed in Table 2—-4 are keywords in Standard C and must not be used as or-

dinary identifiers. They can be used as macro names since all preprocessing occurs before

the recognition of these keywords. The keywords Bool, Complex, Imaginary,
inline, and restrict are new to C99.

Table 2-4 Keywords in C99

auto _Bool? break case

char _Complex? const continue
default restrict? do double
else enum extern float

for goto if _Imaginary?
inline int long register
return short signed sizeof
static struct switch typedef
union unsigned void volatile
while

? These keywords are new in C99 and are not reserved in C++.

In addition to those listed, the identifiers asm and fortran are common language
extensions. Programmers might wish to treat as reserved the macros defined in header
iso646.h (and, and eq, bitand, bitor, compl, not, not eq, or, or eq,
xor, and xor eq). Those identifiers are reserved in C++.

Example

The following code is one of the few cases in which using a macro with the same spelling as a
keyword is useful. The definition allows the use of void in a program built with a non-
Standard compiler.

#ifndef  STDC
#define void int
#endif

References Bool 5.1.5; C++ keywords 2.8; Complex 5.2.1; #define command 3.3;
identifiers 2.5; #ifndef command 3.5; inline 9.10; <is0646 .h> header 11.5; restrict
44.6; STDC  11.3; void type specifier 5.9

2.6.1 Predefined Identifiers

Although not a keyword, C99 introduces the concept of a predefined identifier and defines
one such:  func . Unlike a predefined macro, a predefined identifier can follow nor-
mal block scoping rules. Like keywords, predefined identifiers must not be defined by
programmers.
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The identifier func _ is implicitly declared by C99 implementations as if the
following declaration appeared after the opening brace of each function definition:

static const char _ func_ [] = "function-name";

This identifier could be used by debugging tools to print out the name of the enclosing
function, as in:

if (failed) printf("Function %s failed\n",  func );
When translating C programs for targets with tight memory constraints, C implementa-
tions will have to be careful about getting rid of these strings if they are not needed at run
time.

References function definition 9.1; predefined macro 3.3.4; scope 4. 2.1

2.7 CONSTANTS

The lexical class of constants includes four different kinds of constants: integers, floating-
point numbers, characters, and strings:

constant :
integer-constant
floating-constant
character-constant
string-constant

Such tokens are called literals in other languages to distinguish them from objects whose
values are constant (i.e., not changing) but that do not belong to lexically distinct classes.
An example of these latter objects in C is enumeration constants, which belong to the lex-
ical class of identifiers. In this book, we use the traditional C terminology of constant for
both cases.

Every constant is characterized by a value and type. The formats of the various
kinds of constants are described in the following sections.

References character constant 2.7.3; enumeration constants 5.5; floating-point constant
2.7.2; integer constant 2.7.1; string constant 2.7.4; tokens 2.3; value 7.3

2.7.1 Integer Constants

Integer constants may be specified in decimal, octal, or hexadecimal notation:

integer-constant :
decimal-constant integer-suﬁixopt
octal-constant integer-suffix
hexadecimal-constant integer-suffix,;
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decimal-constant :
nonzero-digit
decimal-constant digit

octal-constant :
0
octal-constant octal-digit

hexadecimal-constant :
0x hex-digit
0X hex-digit
hexadecimal-constant hex-digit

digit : one of
O 1 2 3 4 5 6 7 8 9

nonzero-digit : one of
1 2 3 4 5 6 7 8 9

octal-digit : one of
0O 1 2 3 4 5 6 17

hex-digit : one of
0O 1 2 3 4
A B C D E F a b ¢ 4 e f£f

n
o)
~
(o o]
(Vo]

integer-suffix :
long-suffix unsigned-suﬁcixop,

long-long-suffix unsigned-suffix,,; (C99)
unsigned-suffix long-suffix,,,
unsigned-suffix long-long-suffix,,, (C99)

long-suffix : one of
1 L

long-long-suffix : one of (C99)
11 LL

unsigned-suffix . one of
u U

These are the rules for determining the radix of an integer constant:

1. If the integer constant begins with the letters 0x or 0X, then it is in hexadecimal no-
tation, with the characters a through £ (or A through F) representing 10 through 15.

2. Otherwise, if it begins with the digit 0, then it is in octal notation.

3. Otherwise, it is in decimal notation.
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An integer constant may be immediately followed by suffix letters to designate a mini-
mum size for its type:

e letters 1 or L indicate a constant of type long

e letters 11 or LL indicate a constant of type 1long long (C99)

e letters u or U indicate an unsigned type (int, long, or long long)

The unsigned suffix may be combined with the 1long or 1long long suffix in any or-
der. The lowercase letter 1 can be easily confused with the digit 1 and should be avoided
in suffixes.

The value of an integer constant is always non-negative in the absence of overflow.
If there is a preceding minus sign, it is taken to be a unary operator applied to the constant,
not part of the constant.

The actual type of an integer constant depends on its size, radix, suffix letters, and
type representation decisions made by the C implementation. The rules for determining
the type are complicated, and they are different in pre-Standard C, C89, and C99. All the
rules are shown in Table 2-5.

If the value of an integer constant exceeds the largest integer representable in the
last type within its group in Table 2-5, then the result is undefined. In C99, an implemen-
tation may instead assign an extended integer type to these large constants, following the
signedness conventions in the table. (If all the standard choices are signed, then the ex-
tended type must be signed; if all are unsigned, then the extended type must be unsigned;
otherwise, both signed and unsigned are acceptable.) In C89, information about the repre-
sentation of integer types is provided in the header file 1imits.h. In C99, the files
stdint.h and inttypes.h contain additional information.

To illustrate some of the subtleties of integer constants, assume thattype int uses a
16-bit twos-complement representation, type long uses a 32-bit twos-complement repre-
sentation, and type long long uses a 64-bit twos-complement representation. We list in
Table 2—6 some interesting integer constants, their true mathematical values, their types—
conventional and under the Standard C rules—and the actual C representation used to
store the constant.

An interesting point to note from this table is that integers in the range 215 through
—1 will have positive values when written as decimal constants but negative values
when written as octal or hexadecimal constants (and cast to type int). Despite these
anomalies, the programmer is rarely surprised by the values of integer constants because
the representation of the constants is the same even though the type is in question.

216

C99 provides some portable control over the size and type of integer constants with
the macros INTN _C, UINTN C, INTMAX C, and UINTMAX C defined in stdint.h.

Example

If type 1ong has a 32-bit, twos-complement representation, the following program deter-
mines the rules in effect:
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Table 2-5 Types of integer constants

Constant Original C? C892 C992P
dd...d int int int
long long long
unsigned long long long
0dd...d unsigned int int
0Xdd...d long unsigned unsigned
long long
unsigned long unsigned long
long long
unsigned long long
dd...du not applicable unsigned unsigned int
0dd...dU unsigned long unsigned long
0Xdd...d U unsigned long long
dd...d L long long long
unsigned long long long
0dd...d L long long long
0Xdd...d L unsigned long unsigned long
long long
unsigned long long
dd...d UL not applicable unsigned long unsigned long
0dd...d UL unsigned long long
0Xdd...d UL
dd...dLL not applicable not applicable long long
0dd...d LL not applicable not applicable long long
0Xdd...d LL unsigned long long
dd...d ULL not applicable not applicable unsigned long long
0dd...d ULL
0Xdd...d ULL

4 The chosen type is the first one from the appropriate group that can represent the value of the

constant without overflow.
b If none of the listed types is large enough, an extended type may be used if it is available.

#define K OxFFFFFFFF /*
#include <stdio.h>

int main ()

{

-1 in 32-bit,

2's compl.

*/

if (0<K) printf("K is unsigned (Standard C)\n");
else printf("K is signed (traditional C)\n");
return O0;

References

27

conversions of integer types 6.2.3; extended integer types 5.1.4; integer types
5.1; INTMAX C21.5; INTN _C21.3; 1limits.h 5.1.1; overflow 7.2.2; stdint.h Ch. 21; unary
minus operator 7.5.3; unsigned integers 5.1.2
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Table 2-6 Assignment of types to integer constants
C constant True Traditional Standard C Actual
notation value type type representation
0 0 int int 0
32767 2 15 -1 int int Ox7FFF
077777 2 15 -1 unsigned int Ox7FFF
32768 2 15 long long 0x00008000
0100000 2 15 ungigned unsigned 0x8000
65535 2161 1ong long 0x0000FFFF
OXFFFF 2 16 -1 unsigned unsigned OxFFFF
65536 216 long long 0x00010000
0x10000 2 16 long long 0x00010000
2147483647 2 31 -1 long long Ox7FFFFFFF
OX7FFFFFFF 2 31 -1 long long Ox7FFFFFFF
2147483648 231 long® unsigned long 0x80000000
C99: 1long long
0x80000000 231 long® unsigned long 0x80000000
4294967295 232 -1 long® unsigned long O0xFFFFFFFF
C99: long long 0x00000000FFFFFFFF
O0xFFFFFFFF 2 32 -1 long® unsigned long OxFFFFFFFF
4294967296 2 32 undefined undefined 0x0
C99: 1long long 0x0000000100000000
0x100000000 2 °2 undefined undefined 0x0
C99: long long 0x0000000100000000

2 The type cannot represent the value exactly.

2.7.2 Floating-Point Constants

Floating-point constants may be written with a decimal point, a signed exponent, or both.
Standard C allows a suffix letter (floating-suffix) to designate constants of types £loat
and 1long double. Without a suffix, the type of the constant is double:

floating-constant :
decimal-floating-constant

hexadecimal-floating-constant (C99)

decimal-floating-constant :
digit-sequence exponent floating-suffix,
dotted-digits exponent,,, floating-suffix,,,

digit-sequence :
digit
digit-sequence digit
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dotted-digits :
digit-sequence .
digit-sequence . digit-sequence
. digit-sequence

digit : one of
O 1 2 3 4 5 6 7 8 9

exponent :
esign-partopt digit-sequence
E sign-partops digit-sequence

sign-part : one of
+ -

floating-suffix : one of
f F 1 L

The value of a floating-point constant is always non-negative in the absence of
overflow. If there is a preceding minus sign, it is taken to be a unary operator applied to
the constant, not part of the constant. If the floating-point constant cannot be represented
exactly, the implementation may choose the nearest representable value V or the larger or
smaller representative value around V. If the magnitude of the floating-point constant is
too great or too small to be represented, then the result is unpredictable. Some compilers
will warn the programmer of the problem, but most will silently substitute some other val-
ue that can be represented. In Standard C, the floating-point limits are recorded in the
header file £1loat.h. Special floating-point constants such as infinity and NaN (not a
number) are defined inmath. h.

In C99, a complex floating-point constant is written as a floating-point constant ex-
pression involving the imaginary constant Complex I (or I) defined in complex.h.

Example

These are valid decimal floating-point constants: 0., 3el, 3.14159, .0, 1.0E-3, 1le-3,
1.0, .00034, 2e+9. These additional floating-point constants are valid in Standard C:
1.0£,1.0e67L, OE1L.

An example of a C99 complex constantis 1.0+1.0*I (if complex.h has been included).

C99 permits floating-point constants to be expressed in hexadecimal notation; previ-
ous versions of C had only decimal floating-point constants. The hexadecimal format uses
the letter p to separate the fraction from the exponent because the customary letter e could
be confused with a hexadecimal digit. The binary-exponent is a signed decimal number
that represents a power of 2 (not a power of 10 as in the case of decimal floating-point
constants, nor a power of 16 as one might guess).

hexadecimal-floating-constant: (C99)
hex-prefix dotted-hex-digits binary-exponent ﬂoating-suﬁixopt
hex-prefix hex-digit-sequence binary-exponent floating-suffix,,,
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hex-prefix:
ox
0X

dotted-hex-digits :
hex-digit-sequence .
hex-digit-sequence . hex-digit-sequence
. hex-digit-sequence

hex-digit-sequence -
hex-digit
hex-digit-sequence hex-digit

binary-exponent :
P Ssign-partop; digit-sequence
P sign-partop; digit-sequence

It may not be possible to represent a hexadecimal floating-point constant exactly if
FLT RADIX (float.h)is notequal to 2. If it is not representable exactly, the designat-
ed value must be correctly rounded to the nearest representable value.

References complex.h 23.2; double type 5.2; £loat.h 5.2; overflow and underflow
7.2.2; sizes of floating-point types 5.2; unary minus operator 7.5.3

2.7.3 Character Constants

A character constant is written by enclosing one or more characters in apostrophes. A spe-
cial escape mechanism is provided to write characters or numeric values that would be in-
convenient or impossible to enter directly in the source program. Standard C allows the
character constant to be preceded by the letter L to specify a wide character constant.

character-constant :
' c-char-sequence
L' c-char-sequence ' (C89)

c-char-sequence :
c-char
c-char-sequence c-char

c-char :
any source character except the apostrophe ('), backslash (\), or newline
escape-character
universal-character-name (C99)

The apostrophe, backslash, and newline characters may be included in character constants
by using escape characters, as described in Section 2.7.5. It is a good 1dea to use escapes
for any character that might not be easily readable in the source program, such as the
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formatting characters. C99 allows the use of universal character names in character con-
stants (Section 2.9).

Character constants not preceded by the letter L have type int. It is typical for such
a character constant to be a single character or escape code (Section 2.7.7), and the value
of the constant is the integer encoding of the corresponding character in the execution
character set. The resulting integer value is computed as if it had been converted from an
object of type char. For example, if type char were an eight-bit signed type, the charac-
ter constant ' \377 ' would undergo sign extension and thus have the value -1. The value
of a character constant is implementation-defined if:

1. there is no corresponding character in the execution character set,
2. more than a single execution character appears in the constant, or
3. anumeric escape has a value not represented in the execution character set.

Example
Here are some examples of single-character constants along with their (decimal) values under
the ASCII encoding.
Character Value Character Value
1! 97 1A 65
Pt 32 1ot 63
"\r' 13 "\O' 0
rme 34 "\377" 255
1% ! 37 "\23" 19
181 56 "\ 92

Standard C wide character constants, designated by the prefix letter L, have type
wchar t, an integral type defined in the header file stdde£ . h. Their purpose is to al-
low C programmers to express characters in alphabets (e.g., Japanese) that are too large to
be represented by type char. Wide character constants typically consist of a sequence of
characters and escape codes that together form a single multibyte character. The mapping
from the multibyte character to the corresponding wide character is implementation-
defined, corresponding to the mbtowc function, which performs that conversion at run
time. If multibyte characters use a shift-state encoding, then the wide character constant
must begin and end in the initial shift state. The value of a wide character constant is
implementation-defined if it contains more than a single wide character.

Multicharacter constants Integer and wide character constants can contain a se-
quence of characters; after mapping that sequence to the execution character set, there
may still be more than one execution character. The meaning of such a constant is
implementation-defined.

One convention with older implementations was to express a four-byte integer con-
stant as a four-character constant, such as 'gR8t'. This usage is nonportable because
some implementations may not permit it and implementations differ in the sizes of
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integers and in their “byte ordering” (i.e., the order in which characters are packed into
words).

Example

In an ASCII implementation with four-byte integers and left-to-right packing, the value of
"ABCD' would be 41424344,. (The value of A" is 0x41, 'B"' is 0x42, etc.) However, if
right-to-left packing were used, the value of 'ABCD ' would be 4443424 1.

References ASCII characters App. A; byte order 6.1.2; character encoding 2.1; char type
5.1.3; escape characters 2.7.5; formatting characters 2.1; mbtowe facility 11.7; multibyte characters
2.1.5;wechar t11.1

2.7.4 String Constants

A string constant is a (possibly empty) sequence of characters enclosed in double quotes.
The same escape mechanism provided for character constants can be used to express the
characters in the string. Standard C allows the string constant to be preceded by the letter
L to specify a wide string constant.

string-constant :
" s-char-sequencegp "
L" s-char-sequencegps " (C89)

s-char-sequence :
s-char
s-char-sequence s-char

s-char :
any source character except the double quote ",
backslash \, or newline character
escape-character
universal-character-name (C99)

The double quote, backslash, and newline characters may be included in character con-
stants by using escape characters as described in Section 2.7.5. It 1s a good idea to use es-
capes for any character that might not be easily readable in the source program, such as the
formatting characters. C99 allows the use of universal character names in string constants
(Section 2.9).

Example
Five string constants are listed next.

n \ nn

"Total expenditures: "
"Copyright 2000 \

Texas Instruments. "
"Comments begin with '/*'.\n"
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The fourth string is the same as "Copyright 2000 Texas Instruments." ;it does
not contain a newline character between the 0 and the T.

For each nonwide string constant of »n characters, at run time there will be a
statically allocated block of n+1 characters whose first n characters are the characters from
the string and whose last character is the null character, '\ 0'. This block is the value of
the string constant and its type is char [n+1]. Wide string constants similarly become n
wide characters followed by a null wide character and have type wechar t [n+1].

Example

The sizeof operator returns the size of its operand, whereas the strlen function (Section
13.4) returns the number of characters in a string. Therefore,sizeof ("abcdef") is 7, not
6, and sizeof ("") is 1, not 0. strlen("abcdef") is6and strlen("") is O.

If a string constant appears anywhere except as an argument to the address operator
&, an argument to the sizeof operator, or as an initializer of a character array, then the
usual array conversions come into play, changing the string from an array of characters to
a pointer to the first character in the string.

Example

The declaration char *p = "abcdef"; results in the pointer p being initialized with the
address a block of memory in which seven characters are stored—'a', 'b"', 'c', 'd",
'e', '£', and '\ 0", respectively.

The value of a single-character string constant and the value of a character constant are quite
different. The declaration int X = (int) "A"; results in X being initialized with (the inte-
ger value of) a pointer to a two-character block of memory containing A" and "\ 0" (if such
a pointer can be represented as type int); but the declaration int ¥ = (int) 'A'; results
in Y being initialized with the character code for "A' (0x41 in the ISO 646 encoding).

Storage for string constants You should never attempt to modify the memory
that holds the characters of a string constant since that memory may be read-only—that is,
physically protected against modification. Some functions (e.g., mktemp) expect to be
passed pointers to strings that will be modified in place; do not pass string constants to
those functions. Instead, initialize a (non-const) array of characters to the contents of the
string constant and pass the address of the first element of the array.

Example

Consider these three declarations:

char pl[]l= "Always writable";
char *p2 = "Possibly not writable";
const char p3[] = "Never writable"; /* Standard C only */

The values of pl, p2, and p3 are all pointers to character arrays, but they differ in their writ-
ability. The assignment pl [0] ='x"' will always work; p2 [0] ='x"' may work or may
cause a run-time error; and p3 [0] ="x"' will always cause a compile-time error because of
the meaning of const.
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Do not depend on all string constants being stored at different addresses. Standard C
allows implementations to use the same storage for two string constants that contain the
same characters.

Example

Here is a simple program that discriminates the various implementations of strings. The as-
signment to stringl [0] could cause a run-time error if string constants are allocated in
read-only memory.

char *stringl, *string2;
int main() {
stringl = "abecd"; string2 = "abcd";
if (stringl==string2) printf ("Strings are shared.\n");
else printf("Strings are not shared.\n");
stringl[0] = '1'; /* RUN-TIME ERROR POSSIBLE */
if (*stringl=='1l') printf("Strings writable\n");
else printf("Strings are not writable\n");
return 0;

}

Continuation of strings A string constant is typically written on one source pro-
gram line. If a string is too long to fit conveniently on one line, all but the final source
lines containing the string can be ended with a backslash character, \, in which case the
backslash and end-of-line character(s) are ignored. This allows string constants to be writ-
ten on more than one line. Some older implementations may remove leading whitespace
characters from the continuation line, although it is incorrect to do so.

Standard C automatically concatenates adjacent string constants and adjacent wide
string constants, placing a single null character at the end of the last string. Therefore, an
alternative to using the \ continuation mechanism in Standard C programs is to break a
long string into separate strings. In C99, a wide string and a normal string constant can
also be concatenated in this way, resulting in a wide string constant; in C89, this was not
allowed.

Example

The string initializing s1 is acceptable to Standard and pre-Standard C compilers, but the
string initializing s2 is allowed only in Standard C:

char sl1l[] = "This long string is acc\
eptable to all C compilers.";
char s82[] = "This long string is permissible "

"in Standard C.";

A newline character (i.e., the end of line in the execution character set) may be in-
serted into a string by putting the escape sequence \n in the string constant; this should
not be confused with line continuation within a string constant.

Wide strings A string constant prefixed by the letter L is a Standard C wide string
constant and is of type “array of wechar t.” It represents a sequence of wide characters
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from an extended execution character set, such as might be used for a language like Japa-
nese. The characters in the wide string constant are a multibyte character string, which is
mapped to a sequence of wide characters in an implementation-defined manner. (The
mbstowcs function performs a similar function at run time.) If multibyte characters use a
shift-state encoding, the wide string constant must start and end in the initial shift state.

References array types 5.4; const type specifier 4.4.4; versions from array types 6.2.7;
escape characters 2.7.5; initializers 4.6; mbstowes facility 11.8; mktemp facility 15.16; multibyte
characters 2.1.5; pointer types 5.3; preprocessor lexical conventions 3.2; sizeof operator 7.5.2;
strlen facility 13.4; whitespace characters 2.1; usual unary conversions 6.3.3; wchar t 11.1;
universal character names 2.9

2.7.5 Escape Characters

Escape characters can be used in character and string constants to represent characters that
would be awkward or impossible to enter in the source program directly. The escape char-
acters come 1n two varieties: “character escapes,” which can be used to represent some
particular formatting and special characters; and “numeric escapes,” which allow a char-
acter to be specified by its numeric encoding C99 also includes universal character names

as escapes.

escape-character :
\ escape-code
universal-character-name (C99)

escape-code :
character-escape-code
octal-escape-code
hex-escape-code (C89)

character-escape-code : one of
n t b r f£
v \ 1 n
a ? (C89)

octal-escape-code :
octal-digit
octal-digit octal-digit
octal-digit octal-digit octal-digit

hex-escape-code
x hex-digit
hex-escape-code hex-digit (C89)

The meanings of these escapes are discussed in the following sections.

If the character following the backslash is neither an octal digit, the letter x, nor one
of the character escape codes listed earlier, the result is undefined. (In traditional C, the
backslash was ignored.) In Standard C, all lowercase letters following the backslash are re-
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served for future language extensions. Uppercase letters may be used for implementation-
specific extensions.

References universal character name 2.9

2.7.6 Character Escape Codes

Character escape codes are used to represent some common special characters in a fashion
independent of the target computer character set. The characters that may follow the back-
slash, and their meanings, are listed in Table 2-7.

Table 2-7 Character escape codes

Escape code Translation Escape code Translation
a? alert (e.g., bell) v vertical tab

b backspace \ backslash

£ form feed ' single quote

n newline " double quote

r carriage return ?? question mark
t horizontal tab

4 Standard C addition.

The code \a is typically mapped to a “bell” or other audible signal on the output de-
vice (e.g., ASCII control-G, whose value is 7). The \? escape is needed to obtain a ques-
tion mark character in the rare circumstances in which it might be mistaken as part of a
trigraph.

The quotation mark (") may appear without a preceding backslash in character con-
stants, and the apostrophe (') may appear without a backslash in string constants.

Example

To show how the character escapes can be used, here is a small program that counts the num-
ber of lines (actually the number of newline characters) in the input. The function getchar
returns the next input character until the end of the input is reached, at which pointgetchar
returns the value of the macro EOF defined in stdio.h:
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#include <stdio.h>
int main(void) /* Count the number of lines in the input. */

{
int next char;
int num lines = 0;
while ((next char = getchar()) != EOF)
if (next char == '\n')
++num lines;
printf ("%d lines read.\n", num lines);
return 0;
}

References character constants 2.7.3; EOF 15.1; getchar facility 15.6; stdio.h 15.1;
string constants 2.7.4; trigraphs 2.1.4

2.7.7 Numeric Escape Codes

Numeric escape codes allow a character from the execution character set to be expressed
by writing its coded value directly in octal or—in Standard C—hexadecimal notation. Up
to three octal or any number of hexadecimal digits may appear, but Standard C prohibits
values outside the range of unsigned char for normal character constants and values
outside the range of wechar t for wide character constants. For instance, under the
ASCII encoding the character 'a' may be written as '\141"' or '\x61' and the charac-
ter '?' as '\77"' or '\x3F'. The null character, used to terminate strings, is always
written as \ 0. The value of a numeric escape that does not correspond to a character in the
execution character set is implementation-defined.

Example

The following short code segment illustrates the use of numeric escape codes. The variable
inchar has type int.

for (;;) {

inchar = receive();

if (inchar == ’\0’) continue; /* Ignore */
if (inchar == "\004’) break; /* Quit */
if (inchar == ’\006’) reply(’\006’); /* ACK */
else reply(’\0257); /* NAK */

}

There are two reasons for the programmer to be cautious when using numeric es-
capes. First, of course, the use of numeric escapes may depend on character encoding and
therefore be nonportable. It is always better to hide escape codes in macro definitions so
they are easy to change:

#define NUL '\0O°

#define EOT '\004°
#define ACK '\006°
#define NAK '\025'°
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Second, the syntax for numeric escapes is delicate; an octal escape code terminates
when three octal digits have been used or when the first character that is not an octal digit
is encountered. Therefore, the string "\0111" consists of two characters, \011 and 1,
and the string "\ 090" consists of three characters, \0, 9, and 0. Hexadecimal escape se-
quences also suffer from the termination problem especially since they can be of any
length; to stop an Standard C hexadecimal escape in a string, break the string into pieces:

"\xabc™" /* This string contains one character. */
"\xab" "¢" /* This string contains two characters. */

Some non-Standard C implementations provide hexadecimal escape sequences that, like
the octal escapes, permit only up to a fixed number of hexadecimal digits.

References character constant 2.7.3; #define 3.3; macro definitions 3.3; null character
2.1; string constant 2.7.4; execution character set 2.1

2.8 C+ COMPATIBILITY
This section lists the lexical differences between C and C++.

2.8.1 Character Sets

The token respellings and trigraphs in Standard C are part of the C++ standard, but they are
not common in pre-Standard G+ implementations. Both C and C++ allow universal char-
acter names with the same syntax, but only C explicitly allows other implementation-
defined characters in identifiers. (One expects that C++ implementations will provide
them as an extension.)

2.8.2 Comments

C99 comments are acceptable as C+H and vice versa. Before C99, the characters // did
not introduce a comment in Standard C, and so the sequence of characters //* in C could
be interpreted differently in C++. (The details are left as an exercise.)

2.8.3 Operators
There are three new compound operators in C++:

* —->%

Since these combinations of tokens would be invalid in Standard C programs, there is no
impact on portability from C to C++.
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2.8.4 Identifiers and Keywords

The identifiers listed in Table 2—8 are keywords in C++, but not in C. However, the key-
word wehar t is reserved in Standard C, and the keywords bool, true, false are re-
served in C99 as part of the standard libraries.

Table 2-8 Additional CGi+ keywords

asm export private throw
bool false protected true
catch friend public try
class mutable reinterpret cast typeid
const cast namespace static_cast typename
delete new template using
dynamic cast operator this virtual
explicit wchar t

2.8.5 Character Constants

Single-character constants have type int in C, but have type char in C++. Multicharac-
ter constants—which are implementation-defined—have type int in both languages. In
practice, this makes little difference since in C++ character constants used in integral con-
texts are promoted to int under the usual conversions. However, sizeof ('c') is
sizeof (char) in G+, whereas it is sizeof (int) in C.

2.9 ON CHARACTER SETS, REPERTOIRES, AND ENCODINGS

The C language was originally designed at a time when the needs of an international, mul-
tilingual programming community were not well understood. Standard C extends the C
language to accommodate that community. This section is an informal overview of the
history and problems to be addressed in Standard C to make the language more friendly to
non-English users.

Repertoires and ASCII Every culture bases its written communication on a char-
acter repertoire of printable letters or symbols. For U.S.—English, the repertoire consists
of the usual 52 upper- and lowercase letters, the decimal digits, and some punctuation
characters. There are about 100 of these characters, and they were assigned particular bi-
nary values (by U.S.—English programmers and computer manufacturers) using a seven-
bit encoding known as ASCII. These encoded characters appeared on standard keyboards
and found their way into places such as the C language definition.

Unfortunately, other cultures have different repertoires. For example, English
speakers in the United Kingdom would rather have £ than §, but seven-bit ASCII does not
contain it. Languages such as Russian and Hebrew have entirely different alphabets, and
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Chinese/Japanese/Korean (CJK) cultures have repertoires with thousands of symbols. Pro-
grammers today want to build C programs that read and write text in many languages, in-
cluding their native ones. They also want native language comments and variable names
in their programs. Programs so written should be portable to other cultures, at least to the
extent of not being invalid. (You will not be able to read a Sanskrit comment unless you
understand Sanskrit and your computer can display Sanskrit characters.)

The full scope of this problem was only gradually realized, by which time several
partial solutions had been devised and are still supported. For example, the ISO 646-1083
Invariant Code Set was defined as a subset of ASCII that is common across many non-
English character sets, and ways were invented to replace C characters not in the smaller
set, including {, }, [, 1, and #.

ISO/IEC 10646 The general solution for character sets is defined by the ISO/IEC
standard 10646 (plus amendments), Universal Multiple-Octet Coded Character Set
(UCS). This defines a four-byte (or four-octet) encoding, UCS-4, that is capable of repre-
senting all the characters in all Earthly cultural repertoires with plenty of space left over.
There is a useful 16-bit subset of UCS-4 called the Basic Multilingual Plane (UCS-2),
which consists of those UCS-4 encodings whose upper two bytes are zero. UCS-2 can rep-
resent all the major cultural repertoires, including about 20,000 CJK ideograms. However,
16 bits are not quite enough in general, and no larger size less than 32 bits is convenient to
manipulate on computers, which is why there is UCS-4.

The Unicode character set standard was originally a 16-bit encoding produced by
the Unicode Consortium (www.unicode.org). Unicode 3.0 is now fully compatible with

ISO/TEC 10646. Previous versions were compatible only with UCS-2. The Unicode Web
site has a good technical introduction to character encoding.

The character set standards UCS-4, UCS-2, and Unicode are compatible with
ASCII. The 16-bit characters whose high-order 8 bits are all zero are just the 8-bit extend-
ed ASCII characters, now called Latin-1. The original seven-bit ASCII characters, now
called Basic Latin, are UCS-2 characters whose upper nine bits are zero.

Wide and multibyte characters Character representations larger than the tradi-
tional eight bits are called wide characters. Unfortunately, the eight-bit (or seven-bit)
character is not so easily eradicated. Many computers and legacy applications are based on
eight-bit characters, and various schemes have been devised to represent larger character
repertoires and wide characters using sequences of eight- or seven-bit characters. These
are called multibyte encodings or multibyte characters. Whereas wide characters all use a
fixed-size representation, multibyte characters typically use one byte for some characters,
two bytes for others, three bytes for others, and so forth. One or more eight-bit characters
are treated as “escape” or “shift” characters, which start multibyte sequences.

What we see today in Standard C is a combination of techniques: ways to deal with
the obvious ASCII variations (trigraphs and digraphs), ways to deal with a fully modern
wide character environment, ways to deal with multibyte character sequences during /O,
and, most recently, a way to represent any culturally adapted C program in a portable fash-
ion (universal characters and locale-specific characters in identifiers).
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Universal Character Names (99 introduces a notation that allows any UCS-2 or
UCS-4 character to be specified in character constants, string constants, and identifiers.
The syntax is:

universal-character-name:
\u hex-quad
\U hex-quad hex-quad

hex-quad.:
hex-digit hex-digit hex-digit hex-digit

Each hex-quad is four hexadecimal digits, which can specify a 16-bit value. The values of
the hex-quads are specified in ISO/IEC 10646 as the four-digit and eight-digit “short iden-
tifiers” for universal characters. The character designated by \unnnn is the same as the
one designated by \U000Onnnn.

C does not permit universal character names whose short identifier are less than
00A0 except for 0024 ($), 0040 (@), and 0060 ('), nor those whose short identifier lies
in the range D800 through DFFF. These are control characters, including DELETE, and
characters reserved for UTF-16. The result of using token merging to create a universal
character name is undefined.

References identifiers and universal character names 2.5; token merging 3.3.9

2.10 EXERCISES
1.  Which of the following are lexical tokens?
(a) keywords (e) trigraphs
(b) comments (f) wide string constants
(¢) whitespace (g) parentheses

(d) hexadecimal constants

2.  Assume the following strings of source characters were processed by a Standard C compiler.
Which strings would be recognized as a sequence of C tokens? How many tokens would be
found in each case? (Do not worry if some of the token sequences could not appear in a valid C

program.)

(a) X++Y () =x**2

(b) -12ul (g) "X??/"
(c) 1.37E+6L (h) BSC

(d) “String nnpoQnnn (1) A*=B

(e) "String+\"FOO\"" (j) while##DO

3. Eliminate all the comments from the following C program fragment.
AV AVARA YAV ALYIAN VALY AV

4. A Standard C compiler must perform each of the following actions on an input program. In
what order are the actions performed?
collecting characters into tokens
removing comments
converting trigraphs
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processing line continuation
5. Some poor choices for program identifiers are shown here. What makes them poor choices?

(a) pipesendintake (d) 077U
(b) Const (e) SYS$input
(c) 1o

6. Write some simple code fragments in Standard C that would be invalid or interpreted different-
ly in G+ for the reason listed:
(a) No //-style comments in C89 (c) keyword conflicts
(b) type of constants
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The C Preprocessor

The C preprocessor is a simple macro processor that conceptually processes the source
text of a C program before the compiler proper reads the source program. In some imple-
mentations of C, the preprocessor is actually a separate program that reads the original
source file and writes out a new “preprocessed” source file that can then be used as input
to the C compiler. In other implementations, a single program performs the preprocessing

and compilation in a single pass over the source file.

3.1 PREPROCESSOR COMMANDS

The preprocessor is controlled by special preprocessor command lines, which are lines of
the source file beginning with the character #. Lines that do not contain preprocessor com-
mands are called lines of source program text. The preprocessor commands are shown in
Table 3-1.

The preprocessor typically removes all preprocessor command lines from the source
file and makes additional transformations on the source file as directed by the commands,
such as expanding macro calls that occur within the source program text. The resulting
preprocessed source text must then be a valid C program.

The syntax of preprocessor commands is completely independent of (although in
some ways similar to) the syntax of the rest of the C language. For example, it is possible
for a macro definition to expand into a syntactically incomplete fragment as long as the
fragment makes sense (i.e., is properly completed) in all contexts in which the macro is
called.

43
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Table 3-1 Preprocessor commands

Command Meaning Sec.
#define Define a preprocessor macro. 3.3
#undef Remove a preprocessor macro definition. 3.3.5
#include Insert text from another source file. 3.4
#if Conditionally include some text based on the value of a con- 3.5.1

stant expression.

#ifdef Conditionally include some text based on whether a macro 3.5.3
name is defined.

#ifndef Conditionally include some text with the sense of the test oppo-  3.5.3
site to that of #ifdef.

#else Alternatively include some text if the previous #i £, #ifdef, 3.5.1
#ifndef, or #elif test failed.

#endif Terminate conditional text. 3.5.1

#line Supply a line number for compiler messages. 3.6

#elif? Alternatively include some text based on the value of another 3.5.2

constant expression if the previous #1if, #ifdef,
#ifndef, or #elif test failed.

defined? Preprocessor function that yields 1 if a name is defined as a pre-  3.5.5
processor macro and O otherwise; used in #1 £ and #elif.

# operatorb Replace a macro parameter with a string constant containing the ~ 3.3.8
parameter’s value.

## operatorb Create a single token out of two adjacent tokens. 3.3.9

#prag'mab Specify implementation-dependent information to the compiler. 3.7

$error’® Produce a compile-time error with a designated message. 3.8

2 Not originally part of C, but now common in ISO and non-ISO implementations.
® New in Standard C.

3.2 PREPROCESSOR LEXICAL CONVENTIONS

The preprocessor does not parse the source text, but it does break it up into tokens for the
purpose of locating macro calls. The lexical conventions of the preprocessor are somewhat
different from the compiler proper; the preprocessor recognizes the normal C tokens, and
additionally recognizes as “tokens” other characters that would not be recognized as valid
in C proper. This enables the preprocessor to recognize file names, the presence and ab-
sence of whitespace, and the location of end-of-line markers.

A line beginning with # is treated as a preprocessor command; the name of the com-
mand must follow the # character. Standard C permits whitespace to precede and follow
the # character on the same source line, but some older compilers do not. A line whose
only non-whitespace character is a# is termed a null directive in Standard C and is treated
the same as a blank line. Older implementations may behave differently.

The remainder of the line following the command name may contain arguments for
the command if appropriate. If a preprocessor command takes no arguments, then the
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remainder of the command line should be empty except perhaps for whitespace characters
or comments. Many pre-ISO compilers silently ignore all characters following the expect-
ed arguments (if any); this can lead to portability problems. The arguments to preprocessor
commands are generally subject to macro replacement.

Preprocessor lines are recognized before macro expansion. Therefore, if a macro ex-
pands into something that looks like a preprocessor command, that command will not be
recognized by the preprocessors in Standard C or in most other C compilers. (Some older
UNIX implementations violate this rule.)

Example

The result of the following code is not to include the file math. hin the program being com-
piled:

/* This example doesn’t work as one might think! */
#define GETMATH #include <math.h>
GETMATH

Instead, the expanded token sequence
# include < math . h >

is merely passed through and compiled as (erroneous) C code.

As noted in Section 2.1.2, all source lines (including preprocessor command lines)
can be continued by preceding the end-of-line marker by a backslash character, \. This
happens before scanning for preprocessor commands.

Example

The preprocessor command

#define err(flag,msg) if (flag) \
printf (msg)

is the same as
#define err(flag,msg) if (flag) printf (msg)
If the backslash character below immediately precedes the end-of-line marker, these two lines

#define BACKSLASH \
#define ASTERISK *

will be treated as the single preprocessor command

#define BACKSLASH #define ASTERISK *

As explained in Section 2.2, the preprocessor treats comments as whitespace, and
line breaks within comments do not terminate preprocessor commands.

References comments 2.2: line termination and continuation 2.1: tokens 2.3
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3.3 DEFINITION AND REPLACEMENT

The #define preprocessor command causes a name (identifier) to become defined as a
macro to the preprocessor. A sequence of tokens, called the body of the macro, is associat-
ed with the name. When the name of the macro is recognized in the program source text or
in the arguments of certain other preprocessor commands, it is treated as a call to that mac-
ro; the name is effectively replaced by a copy of the body. If the macro is defined to accept
arguments, then the actual arguments following the macro name are substituted for formal
parameters in the macro body.

Example

If a macro sum with two arguments is defined by
#define sum(x,y) =x+y

then the preprocessor replaces the source program line
result = sum(5,a*b);

with the simple (and perhaps unintended) text substitution

result = 5+a*b;

Since the preprocessor does not distinguish reserved words from other identifiers, it
1s possible, in principle, to use a C reserved word as the name of a preprocessor macro, but
to do so is usually bad programming practice. Macro names are never recognized within
comments, string or character constants, or #include file names.

3.3.1 Objectlike Macro Definitions

The #define command has two forms depending on whether a left parenthesis immedi-
ately follows the name to be defined. The simpler, objectlike form has no left parenthesis:

#tdefine name sequence-of-tokens,y,

An objectlike macro takes no arguments. It is invoked merely by mentioning its name.
When the name is encountered in the source program text, the name is replaced by the body
(the associated sequence-of-tokens, which may be empty). The syntax of the #define
command does not require an equal sign or any other special delimiter token after the name
being defined. The body starts right after the name.

The objectlike macro is particularly useful for introducing named constants into a
program, so that a “magic number” such as the length of a table may be written in exactly
one place and then referred to elsewhere by name. This makes it easier to change the num-
ber later.

Another important use of objectlike macros is to isolate implementation-dependent
restrictions on the names of externally defined functions and variables. An example of this
appears in Section 2.5.
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Example

Here are some typical macro definitions:

#define BLOCK SIZE 0x100

#define TRACK SIZE (16*BLOCK SIZE)
#define EOT '\004'

#define ERRMSG "*** Error %d: %s.\n"

A common programming error is to include an extraneous equal sign:
#define NUMBER OF TAPE DRIVES = 5 /* Probably wrong. */

This 1s a valid definition, but it causes the name NUMBER _OF TAPE DRIVES to be defined

13

as “= 57 rather than as “5”. If one were then to write the code fragment
if (count != NUMBER OF TAPE DRIVES)

it would be expanded to
if (count != = 5)

which is syntactically invalid. For similar reasons, also be careful to avoid an extraneous
semicolon:

#define NUMBER OF TAPE DRIVES 5 ; /* Probably wrong. */

References compound assignment operators 7.9.2; operators and separators 2.4

3.3.2 Defining Macros with Parameters

The more complex, functionlike macro definition declares the names of formal parameters
within parentheses separated by commas:

#define name ( identifier-list,,, ) sequence-of-tokens,,

where identifier-list is a comma-separated list of formal parameter names. In C99, an el-
lipsis (. . .; three periods) may also appear after identifier-list to indicate a variable argu-
ment list. This is discussed in Section 3.3.10; until then, we consider only fixed argument
lists.

The left parenthesis must immediately follow the name of the macro with no inter-
vening whitespace. If whitespace separates the left parenthesis from the macro name, the
definition is considered to define a macro that takes no arguments and has a body begin-
ning with a left parenthesis.

The names of the formal parameters must be identifiers, no two the same. There is
no requirement that any of the parameter names be mentioned in the body (although nor-
mally they are all mentioned). A functionlike macro can have an empty formal parameter
list (i.e., zero formal parameters). This kind of macro is useful to simulate a function that
takes no arguments.

A functionlike macro takes as many actual arguments as there are formal parame-
ters. The macro is invoked by writing its name, a left parenthesis, then one actual argu-
ment token sequence for each formal parameter, then a right parenthesis. The actual
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argument token sequences are separated by commas. (When a functionlike macro with no
formal parameters is invoked, an empty actual argument list must be provided.) When a
macro is invoked, whitespace may appear between the macro name and the left parenthe-
sis or in the actual arguments. (Some older and deficient preprocessor implementations do
not permit the actual argument token list to extend across multiple lines unless the lines to

be continued end with a \.)

An actual argument token sequence may contain parentheses if they are properly
nested and balanced, and it may contain commas if each comma appears within a set of
parentheses. (This restriction prevents confusion with the commas that separate the actual
arguments.) Braces and subscripting brackets likewise may appear within macro argu-
ments, but they cannot contain commas and do not have to balance. Parentheses and com-
mas appearing within character-constant and string-constant tokens are not counted in the
balancing of parentheses and the delimiting of actual arguments.

In C99, arguments to a macro can be empty; that is, consist of no tokens.

Example

Here is the definition of a macro that multiplies its two arguments:
#define product(x,y) ((x)*(y))

It is invoked twice in the following statement:
x = product(a+3,b) + product (c, d4d);

The arguments to the product macro could be function (or macro) calls. The commas with-
in the function argument lists do not affect the parsing of the macro arguments:

return product( f(a,b), g(a,b) ); /* OK */

Example

The getchar macro has an empty parameter list:
#define getchar () getc(stdin)

When it is invoked, an empty argument list i1s provided:
while ((c=getchar()) != EOF)

(getchar, stdin, and EOF are defined in the standard header stdio.h.)

Example

We can also define a macro that takes as its argument an arbitrary statement:
#define insert(stmt) stmt

The invocation
insert ( {a=1; b=1l;} )

works properly, but if we change the two assignment statements to a single statement contain-
ing two assignment expressions:

insert( {a=1, b=1;} )
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then the preprocessor will complain that we have too many macro arguments for insert. To fix
the problem, we would have to write:

insert( {(a=1, b=1);} )

Example

Defining functionlike macros to be used in statement contexts can be tricky. The following
macro swaps the values in its two arguments, x and y, which are assumed to be of a type
whose values can be converted to unsigned long and back without change, and to not in-
volve the identifier temp.

#define swap(x, y) { unsigned long temp=x; x=y; y= temp; }

The problem is that it is natural to want to place a semicolon after swap, as you would if
swap were really a function:

if (x > y) swap(x, y); /* Whoops! */
else x = y;

This will result in an error since the expansion includes an extra semicolon (Section 8.1). We
put the expanded statements on separate lines next to illustrate the problems more clearly:

if (x > y) { unsigned long temp=x; x=y; y= temp; }

else x = y;

A clever way to avoid the problem is to define the macro body as a do-while statement,
which consumes the semicolon (Section 8.6.2):

#define swap(x, y) \
do { unsigned long temp=x; x=y; y= temp; } while (0)

When a functionlike macro call is encountered, the entire macro call is replaced, after
parameter processing, by a processed copy of the body. Parameter processing proceeds as
follows. Actual argument token strings are associated with the corresponding formal pa-
rameter names. A copy of the body is then made in which every occurrence of a formal
parameter name is replaced by a copy of the actual argument token sequence associated
with it. This copy of the body then replaces the macro call. The entire process of replacing
a macro call with the processed copy of its body is called macro expansion; the processed
copy of the body is called the expansion of the macro call.

Example

Consider this macro definition, which provides a convenient way to make a loop that counts
from a given value up to (and including) some limit:

#define incr(v,low,high) \
for ((v) = (low); (v) <= (high); (v)++)

To print a table of the cubes of the integers from 1 to 20, we could write
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#include <stdio.h>
int main (void)

{
int j;
incr(j, 1, 20)
printf ("%2d %6d\n", j, j*j*j);
return 0;
}

The call to the macro incr is expanded to produce this loop:
for ((3) = (1); (3) <= (20); (3)++)

The liberal use of parentheses ensures that complicated actual arguments are not be
misinterpreted by the compiler. (See Section 3.3.6.)

References do statement 8.6.2; statement syntax 8.1; unsigned long 35.1.2;
whitespace 2.1.2

3.3.3 Rescanning of Macro Expressions

Once a macro call has been expanded, the scan for macro calls resumes at the beginning of
the expansion so that names of macros may be recognized within the expansion for the
purpose of further macro replacement. Macro replacement is not performed on any part of
a #define command, not even the body, at the time the command is processed and the
macro name defined. Macro names are recognized within the body only after the body has
been expanded for some particular macro call.

Macro replacement is also not performed within the actual argument token strings of
a functionlike macro call at the time the macro call is being scanned. Macro names are rec-
ognized within actual argument token strings only during the rescanning of the expansion,
assuming that the corresponding formal parameter in fact occurred one or more times
within the body (thereby causing the actual argument token string to appear one or more
times in the expansion).

Example

Given the following definitions:

#define plus(x,y) add(y,x)
#define add(x,y) ((x)+(y))

The 1nvocation

plus (plus(a,b),c)
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1s expanded as shown next.

Step Result
1. (original) plus (plus(a,b),c)
2. add(c,plus(a,b))
3. ((e) + (plus(a,b)))
4, ((e)+(add(b,a)))

5. (final) ((e)+(((b)+(a))))

Macros appearing in their own expansion—either immediately or through some in-
termediate sequence of nested macro expansions—are not reexpanded in Standard C. This
permits a programmer to redefine a function in terms of its old definition. Older C prepro-
cessors traditionally do not detect this recursion, and will attempt to continue the expan-
sion until they are stopped by some system error.

Example

The following macro changes the definition of the square root function to handle negative ar-
guments in a different fashion than is normal:

#define sqrt(x) ((x)<0 ? sqgrt(-(x)) : sqgrt(x))

Except that it evaluates its argument more than once, this macro would work as intended in
Standard C, but might cause an error in older compilers. Similarly:

#define cha mnsigned char

See Section 7.4.3 for an interesting example of using a macro to trace function
calls.

3.3.4 Predefined Macros

Preprocessors for Standard C are required to define certain objectlike macros (Table 3-2).
The name of each begins and ends with two underscore characters. None of these pre-
defined macros may be undefined (#undef) or redefined by the programmer.

The LINE and FILE  macros are useful when printing certain kinds of
error messages. The  DATE  and _ TIME _ macros can be used to record when a
compilation occurred. The values of = TIME and  DATE  remain constant
throughout the compilation. The values of the LINE and FILE _ macros are es-
tablished by the implementation, but are subject to alteration by the #1ine directive (Sec-
tion 3.6). The C99 predefined identifier func__ (Section 2.6.1) is similar in purpose
to LINE |, butis actually a block-scope variable, not a macro. It supplies the name of
the enclosing function.

The STDC and  STDC VERSION _ macros are useful for writing code
compatible  with  Standard and non-Standard C  implementations. The
__STDC _HOSTED __ macro was introduced in C99 to distinguish hosted from

freestanding implementations. The remaining C99 macros indicate whether the implemen-
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Table 3-2 Predefined macros

Macro Value

__LINE * The line number of the current source program lineexpressed as a decimal
integer constant.

__FILE °? The name of the current source file expressed as a string constant.

___DATE The calendar date of the translation expressed as a string constant of the
form "Mmm dd yyyy".Mmm is as produced by asctime.

__TIME The time of the translation expressed as a string constant of the form
"hh:mm:88", as returned by asctime.

___STDC The decimal constant 1 if and only if the compiler is an ISO-conforming

__STDC_VERSION _

___STDC HOSTED _

__STDC_IEC 559

implementation.

If the implementation conforms to Amendment 1 of C89, then this macro
has the value 1994 09L. If the implementation conforms to C99, then the
macro has the value 199901L. Otherwise, its value is not defined.

(C99) Defined as 1 if the implementation is a hosted implementation, O if it
is a freestanding implementation.

(C99) Defined as 1 if the floating-point implementation conforms to IEC
60559; otherwise undefined.

__STDC_IEC 559 COMPLEX

__STDC_ISO 10646

(C99) Defined as 1 if the complex arithmetic implementation conforms to
IEC 60559; otherwise undefined.

(C99) Defined as a long integer constant, yyyymmL to signify that
wchar t values adhere to the ISO 10646 standard with corrections and
amendments as of the given year and month; otherwise undefined.

? These macros are common in non-ISO implementations also.

tation’s floating-point and wide character facilities adhere to other relevant international
standards. (Adherence is recommended, but not required.)

Ex

Implementations routinely define additional macros to communicate information
about the environment, such as the type of computer for which the program is being com-
piled. Exactly which macros are defined is implementation-dependent, although UNIX
implementations customarily predefine unix. Unlike the built-in macros, these macros
may be undefined. Standard C requires implementation-specific macro names to begin
with a leading underscore followed by either an uppercase letter or another underscore.
(The macro unix does not meet that criterion.)

ample

The predefined macros are useful in certain kinds of error messages:

if (n != m)

fprintf (stderr, "Internal error: line %d, file %s\n",
__LINE , FILE );

Other implementation-defined macros can be used to isolate host or target-specific code. For
example, Microsoft Visual C++ defines  WIN32 to be 1:
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#ifdef  WIN32
/* Code for Win32 environment */
#endif

The STDC and STDC VERSION  macros are useful when writing programs that
must adapt to both Standard and non-Standard implementations:

#ifdef STDC
/* Some version of Standard C */
#if defined( STDC VERSION ) && _ STDC VERSION >=199901L
/* C99 */
#elif defined( STDC VERSION ) && _ STDC VERSION >=199409L
/* C89 and Amendment 1 */
#else
/* C89 but not Amendment 1 */
#endif
#else /* STDC  not defined */
/* Not Standard C */
#endif

References asctime facility 20.3; complex arithmetic Ch. 23; fprintf 15.11; free-
standing and hosted implementations 1.4; #i £def preprocessor command 3.5.3; #1i £ preprocessor
command 3.5.1; undefining macros 3.3.5; wchar_ t 24.1

3.3.5 Undefining and Redefining Macros

The #undef command can be used to make a name be no longer defined:
#undef name

This command causes the preprocessor to forget any macro definition of name. Itis not an
error to undefine a name currently not defined. Once a name has been undefined, it may
then be given a completely new definition (using #define) without error. Macro re-
placement is not performed within #undef commands.

The benign redefinition of macros is allowed in Standard C and many other imple-
mentations. That is, a macro may be redefined if the new definition is the same, token for
token, as the existing definition. The redefinition must include whitespace in the same lo-
cations as in the original definition, although the particular whitespace characters can be
different. We think programmers should avoid depending on benign redefinitions. It is
generally better style to have a single point of definition for all program entities, including
macros. (Some older implementations of C may not allow any kind of redefinition.)

Example

In the following definitions, the redefinition of NULL is allowed, but neither redefinition of
FUNC is valid. (The first includes whitespace not in the original definition, and the second
changes two tokens.)
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# define NULL O

# define FUNC(x) x+4

# define NULL /* null pointer */ 0
# define FUNC(x) x + 4

# define FUNC(y) y+4

Example

When the programmer for legitimate reasons cannot tell if a previous definition exists, the
#ifndef command can be used to test for an existing definition so that a redefinition can be
avoided:

#ifndef MAXTABLESIZE
#define MAXTABLESIZE 1000
#endif

This idiom is particularly useful with implementations that allow macro definitions in the
command that invokes the C compiler. For example, the following UNIX invocation of C pro-
vides an initial definition of the macro MAXTABLESIZE as 5000. The C programmer would
then check for the definition as shown before:

cc -c -DMAXTABLESIZE=5000 prog.c

Although disallowed in Standard C, a few older preprocessor implementations han-
dle #define and #undef so as to maintain a stack of definitions. When a name is rede-
fined with #define, its old definition is pushed onto a stack and then the new definition
replaces the old one. When a name is undefined with #undef£, the current definition is
discarded and the most recent previous definition (if any) is restored.

References #define command 3.3; #ifdef and #ifndef command 3.5.3

3.3.6 Precedence Errors in Macro Expansions

Macros operate purely by textual substitution of tokens. Parsing of the body into declara-
tions, expressions, or statements occurs only after the macro expansion process. This can
lead to surprising results if care is not taken. As a rule, it is safest to always parenthesize
each parameter appearing in the macro body. The entire body, if it is syntactically an ex-
pression, should also be parenthesized.

Example

Consider this macro definition:
#define SQUARE (x) x*x

The idea is that SQUARE takes an argument expression and produces a new expression to
compute the square of that argument. For example, SQUARE (5) expands to 5*5. However,
the expression SQUARE (z+1) expands to z+1*z+1, which is parsed as z+ (1*z) +1 rather
than the expected (z+1) * (z+1) . A definition of SQUARE that avoids this problem is:

#define SQUARE (x) ((x)*(x))
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The outer parentheses are needed to prevent misinterpretation of an expression such as
(short) SQUARE(z+1).

References cast expressions 7.5.1; precedence of expressions 7.2.1

3.3.7 Side Effects in Macro Arguments

Macros can also produce problems due to side effects. Because the macro’s actual argu-
ments may be textually replicated, they may be executed more than once, and side effects
in the actual arguments may occur more than once. In contrast, a true function call—
which the macro invocation resembles—evaluates argument expressions exactly once, so
any side effects of the expression occur exactly once. Macros must be used with care to
avoid such problems.

Example

Consider the macro SQUARE from the prior example and also a function square that does
(almost) the same thing:

int square(int x) { return x*x; }

The macro can square integers or floating-point numbers; the function can square only inte-
gers. Also, calling the function is likely to be somewhat slower at run time than using the
macro. But these differences are less important than the problem of side effects. In the pro-
gram fragment

a= 3;
b = square(a++);

the variable b gets the value 9 and the variable a ends up with the value 4. However, in the
superficially similar program fragment

a = 3;
b = SQUARE (a++) ;

the variable b may get the value 12 and the variable a may end up with the value 5 because
the expansion of the last fragment is

a = 3;
b = ((a++)*(a++));

(We say that 12 and 5 may be the resulting values of b and a because Standard C implemen-
tations may evaluate the expression ( (a++) * (a++) ) in different ways. See Section 7.12.)

References increment operator ++ 7.4.4

3.3.8 Converting Tokens to Strings

There 1s a mechanism in Standard C to convert macro parameters (after expansion) to
string constants. Before this, programmers had to depend on aloophole in many C prepro-
cessors that achieved the same result in a different way.

In Standard C, the # token appearing within a macro definition is recognized as a
unary “stringization” operator that must be followed by the name of a macro formal
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parameter. During macro expansion, the # and the formal parameter name are replaced by
the corresponding actual argument enclosed in string quotes. When creating the string,
each sequence of whitespace in the argument’s token list is replaced by a single space char-
acter, and any embedded quotation or backslash characters are preceded by a backslash
character to preserve their meaning in the string. Whitespace at the beginning and end of
the argument is ignored, so an empty argument (even with whitespace between the com-
mas) expands to the empty string " ".

Example

Consider the Standard C definition of macro TEST:
#define TEST(a,b) printf( #a "<" #b "=%d\n", (a)<(b) )
The statements TEST (0, OXFFFF) ; TEST('\n"', 10) ; would expand into

printf ("0" "<" "OxFFFF" "=%d\n", (0)<(OxXFFFF) );
printf(lll\\nlll Ngn nQmn "=%d\n", (|\n|)<(10) );

After concatenation of adjacent strings, these become

printf ("0<0xFFFF=%d\n", (0)<(OXFFFF) );
printf ("'\\n'<10=%d\n", ('\n')<(10) );

A number of non-Standard C compilers will substitute for macro formal parameters
inside string and character constants. Standard C prohibits this.

Example

In these nonconforming C implementations, the TEST macro could be written this way:
#define TEST(a,b) printf( "a<b=%d\n", (a)<(b) )

The result of expanding TEST (0, OxFFFF) would resemble the result of stringization:
printf ("0<0xFFFF=%d\n", (0)<(0OxFFFF) );

However, the expansion of TEST ('\n"', 10) would almost certainly be missing the extra
backslash and the output of the print£f function would be garbled with unexpected line
breaks in the output:

printf ("'\n'<10=%d\n", ('\n')<(10) );

The handling of whitespace in non-ISO implementations is also likely to vary from com-
piler to compiler—another reason to avoid depending on this feature except in Standard C
implementations.

3.3.9 Token Merging in Macro Expansions

Merging of tokens to form new tokens in Standard C is controlled by the presence of a
merging operator, ##, in macro definitions. In a macro replacement list—before rescan-
ning for more macros—the two tokens surrounding any ## operator are combined into a
single token. There must be such tokens: ## must not appear at the beginning or end of a
replacement list. If the combination does not form a valid token, the result is undefined.
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#define TEMP (i) temp ## i
TEMP (1) = TEMP(2 + k) + Xx;

After preprocessing, this becomes
templ = temp2 + k + Xx;

In the previous example, a curious situation can arise when expanding TEMP () +X.
The macro definition is valid, but ## is left with no right-hand token to combine (unless it
grabs +, which we do not want). This problem is resolved by treating the formal parameter
i as if it expanded to a special “empty” token just for the benefit of ##. Thus, the
expansion of TEMP () + x would be temp + x as expected.

Token concatenation must not be used to produce a universal character name.

As with the conversion of macro arguments to strings (Section 3.3.8), programmers
can obtain something like this merging capability through a loophole in many non-
Standard C implementations. Although the original definition of C explicitly described
macro bodies as being sequences of tokens, not sequences of characters, nevertheless
many C compilers expand and rescan macro bodies as if they were character sequences.
This becomes apparent primarily in the case where the compiler also handles comments
by eliminating them entirely (rather than replacing them with a space)—a situation ex-
ploited by some cleverly written programs.

Example

Consider the following example:

#define INC ++

#define TAB internal table
#define INCTAB table of increments
#define CONC(x,y) x/**/y

CONC (INC, TAB)

Standard C interprets the body of CONC as two tokens, x and y, separated by a space. (Com-
ments are converted to a space.) The call CONC (INC, TAB) expands to the two tokens
INC TAB. However, some non-Standard implementations simply eliminate comments and
then rescan macro bodies for tokens; these expand CONC (INC, TAB) to the single token

INCTAB.:
Step Standard C expansion Possible non-Standard expansion
1 CONC (INC, TAB) CONC (INC, TAB)
2 INC/**/TAB INC/**/TAB
3 INC TAB INCTAB
4 ++ internal table table of increments

References increment operator ++ 7.5.8; universal character name 2.9
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3.3.10 Variable Argument Lists in Macros

In C99, a functionlike macro can have as its last or only formal parameter an ellipsis, sig-
nifying that the macro may accept a variable number of arguments:

#define name (identifer-list, ...) sequence-of-tokens

#define name(...) sequence—of—tokensopt

When such a macro is invoked, there must be at least as many actual arguments as
there are identifiers in identifier-list. The trailing argument(s), including any separating
commas, are merged into a single sequence of preprocessing tokens called the variable
arguments. The identifier VA ARGS  appearing in the replacement list of the macro
definition is treated as if it had been a macro parameter whose argument was the merged
variable arguments. Thatis, VA ARGS  1isreplaced by the list of extra arguments, in-
cluding their comma separators. VA ARGS _ can only appear in a macro definition
that includes . . . in its parameter list.

Macros with a variable number of arguments are often used to interface to functions
that take a variable number of arguments, such as print£. By using the # stringization
operator, they can also be used to convert a list of arguments to a single string without
having to enclose the arguments in parentheses.

Example

These directives create a macro my print£ that can write its arguments either to the error
or standard output.

#ifdef DEBUG

#define my printf(...) fprintf(stderr, VA ARGS )
#else

#define my printf(...) printf( VA ARGS )

#endif

It can be used this way:

my printf("x = %d\n", x);

Example

Given the definition

#define make em a string(...) # VA ARGS
the invocation

make em a string(a, b, c, d)
expands to the string

lla, b, c’ dll
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3.3.11 Other Problems

Some non-Standard implementations do not perform stringent error checking on macro
definitions and calls, including permitting an incomplete token in the macro body to be
completed by text appearing after the macro call. The lack of error checking by certain im-
plementations does not make clever exploitation of that lack legitimate. Standard C reaf-
firms that macro bodies must be sequences of well-formed tokens.

Example

For example, the following fragment in one of these non-ISO implementations:

#define FIRSTPART "This is a split

printf (FIRSTPART string."); /* Yuk! */
will, after preprocessing, result in the source text

printf ("This is a split string.");

3.4 FILE INCLUSION

The #include preprocessor command causes the entire contents of a specified source
text file to be processed as if those contents had appeared in place of the #include com-
mand. The #include command has the following three forms in Standard C:

# include < h-char-sequence >
# include " g-char-sequence "
# include preprocessor-tokens (Standard C)

h-char-sequence
any sequence of characters except > and end-of-line

q-char-sequence :
any sequence of characters except " and end-of-line

preprocessor-tokens :
any sequence of C tokens—or non-whitespace characters
that cannot be interpreted as tokens—that does not begin with< or "

In the first two forms of #include, the characters between the delimiters should
be a file name in some implementation-defined format. There should be only whitespace
after the closing > or ". These two forms of #include are supported by all C compilers.
The file name is subject to trigraph replacement in Standard C and source-line continua-
tion, but no other processing of the characters occurs.

In the third form of #include, the preprocessor-tokens undergo normal macro ex-
pansion, and the result must match one of the first two forms (including the quotes or an-



60 The C Preprocessor Chap. 3

gle brackets). This form of #include is seen less often and may not be implemented or
may be implemented in a different fashion in non-Standard compilers.

Example

Here is one way to use this third form of #include:

#if some thing==this thing

# define IncludeFile "thisname .h"
#else

# define Includefile <thatname .h>
#endif

#include Includefile

This style can be used to localize customizations, but programmers interested in compatibility
with older compilers should instead place #include commands at the site of the #define
commands earlier:

#if some thing==this thing
# include "thisname.h"
#else

# 1include <thatname.h>
#endif

File name syntax is notoriously implementation-dependent, but Standard C requires
that all implementations permit file names in #include consisting of letters and digits
(beginning with a letter), followed by a period and a single letter. C99 allows up to eight
letters and digits before the period, but C89 only guaranteed up to five letters before the
period. By permit we mean that file names in this form must be mapped to an
implementation-defined file.

Files delimited by quotes and files delimited by angle brackets differ in how they are
located by the C implementation. Both forms search for the file in a set of (possibly differ-
ent) implementation-defined places. Typically, the form

#include < filename >

searches for the file in certain standard places according to implementation-defined search
rules. These standard places usually contain the implementation’s own header files, such
as stdio.h. The form

#include " filename "

will also search in the standard places, but usually after searching some local places, such
as the programmer’s current directory. Often implementations have some standard way
outside of the C language for specifying the set of places to search for these files. The gen-
eral intent is that the "..." form is used to refer to header files written by the programmer,
whereas the <...> form is used to refer to standard implementation files.
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In fact, standard header files like stdio.h are treated as special cases in Standard
C. Standard C requires that implementations recognize the standard library header names
when they appear in <>-delimited #include commands, but there is no requirement that
those names specify true file names. They can be handled as special cases, their contents
simply “known” to the C implementation. For this reason, the Standard calls them stan-
dard headers and not standard header files. We refer to them both ways in this book.

An included file may contain #include commands. The permitted depth of such
#include nesting is implementation dependent, but Standard C requires support for at
least 8 levels (15 levels in C99). The location of included files can affect the search rules
for nested files.

Example

Suppose that we are compiling a C program, £irst. c, in the file system directory /near.
The file first. c contains the lines

// In /near/first.c
#include "/far/second.h"

which specifies that second.h is to be found in directory /far. The header file
second.h contains the lines

// In /far/second.h
#include "third.h"

which specifies no directory. Will the implementation choose the file /near/third.h in
the original working directory, or will it choose /far/third.h in the directory of the file
that included it? Some UNIX C compilers would find /far/third.h. The original de-
scription of C seems to suggest that /near/third.h should be found. Most implementa-
tions let the programmer specify a list of directories to search, in order, for included files
whose directories are not specified.

References string constants 2.7.4; trigraphs 2.1.4

3.5 CONDITIONAL COMPILATION

The preprocessor conditional commands allow lines of source text to be passed through or
eliminated by the preprocessor on the basis of a computed condition.

3.5.1 The #if, #else, and #endif Commands

The following preprocessor commands are used together to allow lines of source text to be
conditionally included in or excluded from the compilation: #if, #else, and #endif.
They are used in the following way:

#1£f constant-expression
group-of-lines—1
#else
group-of-lines—2
#endif
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The constant-expression is subject to macro replacement and must evaluate to a constant
arithmetic value. Restrictions on the expression are discussed in Section 7.11.1. A “group
of lines” may contain any number of lines of text of any kind, even other preprocessor
command lines or no lines at all. The #else command may be omitted, along with the
group of lines following it; this is equivalent to including the #else command with an
empty group of lines following it. Either group of lines may also contain one or more sets
of #if-#else-#endif commands.

A set of commands such as shown before is processed in such a way that one group
of lines will be passed on for compilation and the other group of lines will be discarded.
First, the constant-expression in the #if command is evaluated. If its value is not 0, then
group-of-lines—1 is passed through for compilation and group-of-lines—2 (if present) is
discarded. Otherwise, group-of-lines—1 is discarded; and if there is an #else command,
then group-of-lines-2 is passed through; but if there is no #else command, then no
group of lines is passed through. The constant expressions that may be used in a #1i £ com-
mand are described in detail in Sections 3.5.4 and 7.11.

A group of lines that is discarded is not processed by the preprocessor. Macro re-
placement is not performed, and preprocessor commands are ignored. The one exception
is that, within a group of discarded lines, the commands #if, #ifdef, #ifndef,
#elif, #else, and #endif are recognized for the sole purpose of counting them,; this
is necessary to maintain the proper nesting of the conditional compilation commands. This
recognition in turn implies that discarded lines are scanned and broken into tokens and
string constants and comments are recognized and must be properly delimited.

If an undefined macro name appears in the constant-expression of #if or #elif, it
is replaced by the integer constant 0. This means that the commands “#i fdef name” and
“#1f name” will have the same effect as long as the macro name, when defined, has a
constant, arithmetic, nonzero value. We think it is much clearer to use #ifdef or the de-
fined operator in these cases, but Standard C also supports this use of #i£.

References defined 3.5.5; #elif 3.5.2; #ifdef 3.5.3

3.5.2 The #elif Command

The #elif command is present in Standard C and in the more modern pre-ISO compilers
as well. It is convenient because it simplifies some preprocessor conditionals. It is used in
the following way:

#if constant-expression—1I (or #ifdef or #ifndef)
group-of-lines—1

#elif constant-expression—2
group-of-lines—2

#elif constant-expression—n
group-of-lines—n
#else
last-group-of-lines
#endif
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This sequence of commands is processed in such a way that at most one group of lines is
passed on for compilation and all other groups of lines are discarded. First, the constant-
expression—I in the #1i £ command is evaluated. If its value is not 0, then group-of-lines—1
is passed through for compilation and all other groups of lines up to the matching #endif
are discarded. If the value of the constant-expression—1 in the #1i £ command is O, then the
constant-expression—2 in the first #elif command is evaluated; if that value is not 0, then
group-of-lines—2 is passed through for compilation. In the general case, each constant-
expression—i 1s evaluated in order until one produces a nonzero value; the preprocessor
then passes through the group of lines following the command containing the nonzero con-
stant expression, ignoring any other constant expressions in the command set, and discards
all other groups of lines. If no constant-expression—i produces a nonzero value and there is
an #else command, then the group of lines following the #else command is passed
through; but if there is no #else command, then no group of lines is passed through. The
constant expressions that may be used in a #eli f command are the same as those used in
a #1f command (see Sections 3.5.4 and 7.11).

Within a group of discarded lines, #elif commands are recognized in the same
way as #if, #ifdef, #ifndef, #else, and #endif commands for the sole purpose
of counting them,; this is necessary to maintain the proper nesting of the conditional com-
pilation commands.

Macro replacement is performed within the part of a command line that follows an
#elif command, so macro calls may be used in the constant-expression.

Example

Although the #eli £ command is convenient when it is appropriate, its functionality can be
duplicated using only #1 £, #else, and #endi £. An example is shown below.

Using #elif Without #elif
#1if constant-expression—I #1f constant-expression—I
group-of-lines—1 group-of-lines—1
#elif constant-expression—2 #else
group-of-lines—2 #1£f constant-expression—2
#else group-of-lines—2
last-group-of-lines #else
#endif last-group-of-lines
#endif
#endif

3.5.3 The #ifdef and #ifndef Commands

The #ifdef and #i fndef commands can be used to test whether a name is defined as a
preprocessor macro. A command line of the form

#ifdef name

1s equivalent in meaning to
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#if 1
when name has been defined (even with an empty body)and is equivalent to
#if O

when name has not been defined or has been undefined with the #undef command. The
#ifndef command has the opposite sense; it is true when the name is not defined and
false when it is.

Note that #ifdef and #1i£fndef test names only with respect to whether they have
been defined by #define (or undefined by #undef); they take no notice of names ap-
pearing in declarations in the C program text to be compiled. (Some C implementations al-
low names to be defined with special compiler command-line arguments.)

Example

The #ifndef and #ifdef commands have come to be used in several stylized ways in C
programs. First, it is a common practice to implement a preprocessor-time enumeration type
by having a set of symbols of which only one is defined. For example, suppose that we wish
to use the set of namesVAX, PDP11, and CRAY?2 to indicate the computer for which the pro-
gram is being compiled. One might insist that all these names be defined, with one being de-
fined to be 1 and the rest O:

#define VAX O
#define PDP1ll O
#define CRAY2 1

One could then select machine-dependent source code to be compiled in this way:

#if VAX
VAX-dependent code
#endif
#if PDP11
PDP1I-dependent code
#endif
#if CRAY2
CRAY2-dependent code
#endif

However, the customary method defines only one symbol:

#define CRAY2 1
/* None of the other symbols is defined. */

Then the conditional commands test whether each symbol is defined:

#ifdef VAX
VAX-dependent code

#endif

#ifdef PDP11l
PDP1I1-dependent code

#endif
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#ifdef CRAY2
CRAY2-dependent code
#endif

Example

Another use for the #ifdef and #ifndef commands is to provide default definitions for
macros. For example, a library file might provide a definition for a name only if no other def-
inition has been provided:

#ifndef TABLE_SIZE
#define TABLE SIZE 100
#tendif

static int intermnal table [TABLE SIZE];
A program might simply include this file:

#include <table.h>

in which case the definition of TABLE SIZE would be 100, both within the library file and
after the #include; or the program might provide an explicit definition first:

#define TABLE SIZE 500
#include <table.h>

in which case the definition of TABLE SIZE would be 500 throughout.

It 1s a common C programming error to test whether a name is defined by writing
“#if name” instead of “#ifdef name” or “#if defined (name)”. The incorrect form
often works because the preprocessor replaces any name in the #i £ expression that is not
defined as a macro with the constant 0. Therefore, if name is not defined, all three forms
are equivalent. However, if name is defined to have the value 0, then “ #if name” will be
false even though the name is defined. Similarly, if name is defined with a value that is not
a valid expression, then “#if name” will cause an error.

References #define 3.3; defined operator 3.5.5; #include 3.4; preprocessor lexical
conventions 3.2; #undef 3.3

3.5.4 Constant Expressions in Conditional Commands

The expressions that may be used in #1 £ and #elif commands are described in Section
7.11.1. They include integer constants and all the integer arithmetic, relational, bitwise,
and logical operators.

C99 mandates that all preprocessor arithmetic be performed using the largest integer
type found on the target computer, which is intmax t or uintmax T defined in
stdint.h. Previously, Standard C did not require that the translator have the arithmetic
properties of the target computer.

References intmax t 21.5;uintmax t 21.5
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3.5.5 The defined Operator

The defined operator can be used in #i £ and #elif expressions but nowhere else. An
expression in one of the two forms

defined name
defined ( name )

evaluates to 1 if name is defined in the preprocessor and to O if it is not.

Example

The defined command allows the programmer to write
#if defined (VAX)

instead of
#ifdef VAX

The defined operator may be more convenient to use because it is possible to build up
complex expressions such as this:

#if defined(VAX) && !defined (UNIX) && debugging

3.6 EXPLICIT LINE NUMBERING

The #line preprocessor command advises the C compiler that the source program was
generated by another tool and indicates the correspondence of places in the source program
to lines of the original user-written file from which the C source program was produced.
The #1ine command may have one of two forms. The form

# line n " filename "

indicates that the next source line was derived from line » of the original user-written file
named by filename. n must be a sequence of decimal digits. The form

# line n
indicates that the next source line was derived from line » of the user-written file last men-
tioned in a #1line command. Finally, if the #1ine command does not match either of
the prior forms, it is interpreted as

# line preprocessor-tokens

Macro replacement is performed on the argument token sequence, and the result must
match one of the two previous forms of #line.
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The information provided by the #1ine command is used in setting the values of
the predefined macros  LINE and FILE . Otherwise, its behavior is unspecified
and compilers may ignore it. Typically, the information is also used in diagnostic messag-
es. Some tools that generate C source text as output will use #1ine so that error messages
can be related to the tool’s input file instead of the actual C source file.

Some implementations of C allow the preprocessor to be used independently of the
rest of the compiler. Indeed, sometimes the preprocessor is a separate program that is exe-
cuted to produce an intermediate file that is then processed by the real compiler. In such
cases, the preprocessor may generate new #line commands in the intermediate file; the
compiler proper is then expected to recognize these even though it does not recognize any
other preprocessor commands. Whether the preprocessor generates #1line commands is
implementation dependent. Similarly, whether the preprocessor passes through, modifies,
or eliminates #1ine commands in the input is also implementation dependent.

Older versions of C allow simply “#” as a synonym for the #1ine command, al-
lowing this form:

# n filename

This syntax is considered obsolete and is not permitted in Standard C, but many imple-
mentations continue to support it for the sake of compatibility.

References @ FILE 334; LINE 334

3.7 PRAGMA DIRECTIVE

The #pragma command is new in Standard C. Any sequence of tokens can follow the
command name:

# pragma preprocessor-tokens

The #pragma directive can be used by C implementations to add new preprocessor func-
tionality or provide implementation-defined information to the compiler. No restrictions
are placed on the information that follows the #pragma command, and implementations
should ignore information they do not understand. The argument to #pragma is subject
to macro expansion.

There is obviously the possibility that two implementations will place inconsistent
interpretations on the same information, so it is wise to use #pragma conditionally based
on which compiler is being used.

Example

The following code checks that the proper compiler (tce), computer, and standard-
conforming implementation are in use before issuing the #pragma command:
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#if defined( TCC) && defined(_STDC ) && defined (vax)
#pragma builtin(abs),inline (myfunc)
#endif

References defined 3.5.3; memory models 6.1.5; #i £ 3.5.1

3.7.1 Standard Pragmas

In C99, certain pragmas were introduced with specific meanings. To differentiate them, all
standard pragmas must be preceded by the token STDC. That is, the directive

#pragma FENV_ACCESS ON
is an implementation-defined pragma, but the directive
#pragma STDC FENV_ACCESS ON

specifies the C99 FENV_ACCESS pragma. Implementations would be kind to issue a
warning if a standard pragma name were used not preceded by STDC since this is likely to
be a common error.

The only standard pragmas defined by C99 are FP_ CONTRACT, FENV_ACCESS,
and CX LIMITED RANGE. They all take as an argument an on-off-switch:

on-off-switch:
ON
OFF
DEFAULT

The argument DEFAULT sets the pragma to its initial default value (on or off). The default
is specified for each standard pragma. (Sometimes it is specified as implementation-
defined.)

References CX LIMITED RANGE 23.2; FENV_ACCESS 22.2

3.7.2 Placement of Standard Pragmas

The standard pragmas must follow certain placement rules, which make it somewhat easi-

er to process the pragmas and allow the pragmas to nest. Standard pragmas may appear in

two places: at the top level of a translation unit before any external declarations, or before
all explicit declarations and statements at the beginning of a compound statement.

When placed at the top level, the pragma remains in effect until the end of the trans-
lation unit or until another instance of the same pragma is encountered. This second prag-
ma might be another one at the top level, in which case it supersedes the first, or it might
be a pragma in a compound statement.

When placed at the beginning of a compound statement, the pragma remains in ef-
fect until the (lexical) end of the compound statement or until another instance of the same
pragma is encountered within the compound statement. This second pragma might be at
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the beginning of the same compound statement, in which case it supersedes the first one,
or it might be in an inner compound statement. At the end of a compound statement con-
taining a standard pragma, the pragma is restored to its state before the compound was en-
countered. That is, standard pragmas nest, following normal variable scoping rules, except
that they can be specified more than once at the same scope level.

References scope 4.2.1

3.7.3 _Pragma Operator

C99 adds a _Pragma operator to make the pragma facility more flexible. After macro ex-
pansions, an operator expression of the form

__Pragma ( "string-literal™ )
is treated as if the contents of the string literal (after removing the outer quotations, chang-

ing \ " to ", and changing \ \ to \) were the preprocessing-tokens appearing in a #prag-
ma directive. For example, the expression

_Pragma ("STDC FENV ACCESS ON")
would be treated as if the following pragma had appeared at that location:
#pragma STDC FENV_ACCESS ON

While #pragma must appear on a line by itself, and its preprocessing-tokens are not mac-
ro expanded, Pragma can be surrounded by other expressions and can be produced by
macro expansion.

3.8 ERROR DIRECTIVE

The #error directive is new in Standard C. Any sequence of tokens can follow the com-
mand name:

# error preprocessor-tokens

The #error directive produces a compile-time error message that includes the argument
tokens, which are subject to macro expansion.

Example

The #error directive is most useful in detecting programmer inconsistencies and violations
of constraints during preprocessing. Here are some examples:

#if defined (A THING) && defined (NOT A THING)
#error Inconsistent things!
#endif
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#include "gizes.h" /* defines SIZE */
#if (SIZE % 256) != 0

#error "SIZE must be a multiple of 256!"
#endif

In the first #error example, we did not use a string constant. In the second, we did because
we do not want the token SIZE to be expanded in the output message.

References defined 3.5.3; #if 3.5.1

3.9 C++ COMPATIBILITY

C++ uses the C89 preprocessor, so there are few differences going from C to G+,

3.9.1 Predefined Macros

The macro  cplusplus is predefined by C+ implementations and can be used in
source files meant to be used in both C and C++ environments. The name does not follow
Standard C spelling conventions for predefined macros, but rather is compatible with ex-
isting C++ implementations. In Standard C++, its value i1s a version number, such as
199711L.

Whether STDC _ is defined in G+ environments is—in the current definition of
C+H—implementation-defined. There are enough differences between Standard C and C++
that it is not clear whether STDC _ should be defined.

None of the C99-only macros in Table 3-2 are in C++.

Example

For compatibility with traditional C, Standard C, and C++, you should test the environment in
this fashion:

#ifdef  cplusplus

/* It's a C++ compilation */
#else
#ifdef STDC

/* It’'s a Standard C compilation */
#else

/* It's a non-Standard C compilation */
#endif
#endif

If you know that your C implementations will be Standard C conforming, this can be short-
ened to
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#if defined( cplusplus)

/* It's a C++ compilation */
#else

/* It's a Standard C compilation */
#endif

References = STDC 3.34; STDC VERSION 334

3.10 EXERCISES

Which of the following Standard C macro definitions are (probably) wrong? Why? Which def-
initions might cause problems in traditional C?

(a) #define ident (x) x (c) #define PLUS +
(b) # define FIVE = 5; (d) #define wvoid int

Following are some macro definitions and invocations. How would each macro invocation be
expanded by Standard C and by traditional C?

Definition Invocation
(a) #define sum(a,b) a+b sum (b, a)
(b) #define paste(x,y) x/**/y paste(x, 4)
(c) #define str(x) # x str (a book)
(d) #define free(x )x ? free(x) : NULL free (p)

Two header files and a C program file are shown next. If the C preprocessor is applied to the
program file, what is the result?

/* File blue.h */ /* File red.h */ /* File test.c */
int blue = 0; #ifndef red #include "blue.h"
#include "red.h" #define red #include "red.h"

#include "blue.h"
int red = 0;
#endif
A friend shows you the following definition for a macro that is supposed to double its numeric
argument. What is wrong with the macro? Rewrite the macro so that it operates correctly.
#define DBL (a) a+a

In the following Standard C program fragment, what is the expansion of M (M) (A, B)?

#define M(x) M ## x
#define MM(M,y) M = # vy
M(M) (A,B)

Write a sequence of preprocessor directives that will cause a Standard C program to fail to
compile if the macro SIZE has not been defined or if it has been defined but has a value not in
the range 1 through 10.

Give an example of a sequence of characters that is a single token to the preprocessor but not to
the C compiler proper.

What is wrong with the following program fragment?

if (x != 0)
y = z/x%;
else

# error "Attempt to divide by zero, line " LINE






Declarations

To declare a name in the C language is to associate an identifier with some C object, such
as a variable, function, or type. The names that can be declared in C are

e variables e structure and union components
e functions * enumeration constants

* types e statement labels

* type tags * preprocessor macros

Except for statement labels and preprocessor macros, all identifiers are declared by
their appearance in C declarations. Variables, functions, and types appear in declarators
within declarations, and type tags, structure and union components, and enumeration con-
stants are declared in certain kinds of type specifiers in declarations. Statement labels are
declared by their appearance in a C function, and preprocessor macros are declared by the
#define preprocessor command.

Declarations in C are difficult to describe for several reasons. First, they involve
some unusual syntax that may be confusing to the novice. For example, the declaration

int (*f) (void) ;

declares a pointer to a function taking no arguments and returning an integer.

Second, many of the abstract properties of declarations, such as scope and extent,
are more complicated in C than in other programming languages. Before jumping into the
actual declaration syntax, we discuss these properties in Section 4.2.

Finally, some aspects of C’s declarations are difficult to understand without a
knowledge of C’s type system, which is described in Chapter 5. In particular, discussions
of type tags, structure and union components, and enumeration constants are left to that

73
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chapter, although some properties of those declarations are discussed here for
completeness.

References enumeration type 5.5; #define preprocessor command 3.3; statement labels
8.3; structure types 5.6; type specifiers 4.4; union types 5.7

4.1 ORGANIZATION OF DECLARATIONS

Declarations may appear in several places in a C program, and where they appear affects
the properties of the declarations. A C source file, or translation unit, consists of a se-
quence of top-level declarations of functions, variables, and other things. Each function
has parameter declarations and a body; the body in turn may contain various blocks, in-
cluding compound statements. A block may contain a sequence of inner declarations.

The basic syntax of declarations is shown next. A discussion of function definitions
is deferred until Chapter 9.

declaration :
declaration-specifiers initialized-declarator-list ;

declaration-specifiers :
storage-class-specifier declaration-specifiers
type-specifier declaration-specifiers,,
type-qualifier declaration-specifiers ,p,
Junction-specifier declaration-specifiers,,, (C99)

initialized-declarator-list :
initialized-declarator
initialized-declarator-list , initialized-declarator

initialized-declarator :
declarator
declarator = initializer

At most one storage class specifier and one type specifier may appear in the declaration-
specifiers, although a single type specifier may be formed of several tokens (e.g.,
unsigned long int). In C99, a type specifier is required. Each of the type qualifiers
can appear at most once in the declaration-specifiers. The C99 function specifier (in-
line) can appear only on function declarations. Within these constraints, type specifiers,
storage class specifiers, function specifiers, and type qualifiers can appear in any order in
declaration-specifiers.

Example

It is customary to put any storage class specifier first, followed by any type qualifiers, and fi-
nally the type specifiers. In the following declarations, 1 and j have the same type and stor-
age class, but the declaration of 1 is better style.
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unsigned volatile long extern int const j;
extern const volatile unsigned long int i;

References declarators 4.5; expressions Ch. 7; function definitions Ch. 9; initializers 4.6;
statements ch. 8; storage class specifiers 4.3; type specifiers and qualifiers 4.4

4.2 TERMINOLOGY
This section establishes some terminology used to describe declarations.

4.2.1 Scope

The scope of a declaration is the region of the C program text over which that declaration
is visible. In C, identifiers may have one of the six scopes listed in Table 4-1.

Table 4-1 Identifier scopes

Kind Visibility of declaration
Top-level identifiers Extends from its declaration point (section 4.2.3) to the end of the source pro-
gram file.
Formal parameters in func- Extends from its declaration point to the end of the function body.

tion definitions

Formal parameters in Extends from its declaration point to the end of the prototype.
function prototypes®

Block (local) identifiers Extends from its declaration point in a block to the end of the block.

Statement labels Encompasses the entire function body in which it appears.

Preprocessor macros Extends from the #define command that declares it through the end of the
source program file, or until the first #undef command that cancels its defi-
nition.

4 New in Standard C.

Nonpreprocessor identifiers declared within a function definition or block (includ-
ing formal parameters) are often said to have block scope or local scope. Identifiers in pro-
totypes have prototype scope. Statement labels have function scope. All other identifiers
have file scope.

A block is most commonly a compound statement. In C99, there are also implicit
blocks associated with selection and iteration statements.

The scope of every identifier is limited to the C source file in which it occurs. How-
ever, some identifiers can be declared to be external, in which case the declarations of the
same identifier in two or more files can be linked as described in Section 4.8.

References #define preprocessor command 3.3; external names 4.8; prototypes 9.2;
#undef preprocessor command 3.3
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4.2.2 Visibility

A declaration of an identifier is visible in some context if a use of the identifier in that con-
text will be bound to the declaration (i.e., the identifier will be associated with that decla-
ration). A declaration might be visible throughout its scope, but it may also be hidden by
other declarations whose scope and visibility overlap that of the first declaration.

Example

In the following program, the declaration of £00 as an integer variable is hidden by the inner
declaration of £o0 as a floating-point variable. The outer £00 is hidden only within the
body of functionmain.

int foo = 10 /* foo defined at the top level */
int main (void)

{

float foo; /* this foo hides the outer foo */

}

In C, declarations at the beginning of a block can hide declarations outside the
block. For one declaration to hide another, the declared identifiers must be the same, must
belong to the same overloading class, and must be declared in two distinct scopes, one of
which contains the other.

In Standard C, the scope of formal parameter declarations in a function definition is
the same as the scope of identifiers declared at the beginning of the block that forms the
function body. However, some earlier implementations of C have considered the parame-
ter scope to enclose the block scope.

Example

The following redeclaration of x is an error in Standard C, but some older implementations
permit it, probably allowing a troublesome programming error to go undetected.

int £ (x)
int x;
{
long x = 34; /* invalid? */

return x;

References block 8.4; overloading class 4.2.4; parameter declarations 9.3; top-level decla-
rations 4.1

4.2.3 Forward References

An identifier may not normally be used before it is fully declared. To be precise, we define
the declaration point of an identifier to be the end of the declarator that contains the iden-
tifier’s lexical token. Uses of the identifier after the declaration point are permitted. In the
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following example, the integer variable, intsize, can be initialized to its own size be-
cause the use of intsize in the initializer comes after the declaration point:

static int intsize = sizeof (intsize);

When an identifier is used before it is completely declared, a forward reference to
the declaration is said to occur. C permits forward references in three situations:

1. A statement label may appear in a goto statement before it appears as a label since
its scope covers the entire function body:

if (error) goto recover;

recover:
CloseFiles () ;

2. An incomplete structure, union, array, or enumeration type may be declared, allow-
ing it to be used for some purposes before it is fully defined (Section 5.6.1).

3. A function can be declared separately from its definition, either with a declaration or
implicitly by its appearance in a function call (Sections 4.7 and 5.8). C99 does not
permit a function call to implicitly declare a function.

Example

Invalid forward references are illustrated in this example. The programmer is attempting to
define a self-referential structure with a typedef declaration. In this case, the last occur-
rence of cell on the line is the declaration point, and therefore the use of cell within the
structure 1s invalid.

typedef struct { int Value; cell *Next; } cell;

The correct way to declare such a type is by use of a structure tag, S, which is defined on its
first appearance and then used later within the declaration:

typedef struct S { int Value; struct S *Next; } cell;

See also the later discussions of implicit declarations (Section 4.7) and duplicate
declarations (Section 4.2.5).

References duplicate declarations 4.2.5; function types 5.8; goto statement 8.10; implicit
declarations 4.7; pointer types 5.3; structure types 5.6

4.2.4 Overloading of Names

In C and other programming languages, the same identifier may be associated with more
than one program entity at a time. When this happens, we say that the name 1s overloaded,
and the context in which the name 1s used determines the association that is in effect. For
instance, an identifier might be both the name of a variable and a structure tag. When used
In an expression, the variable association is used; when used in a type specifier, the tag as-
sociation is used.
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There are five overloading classes for names in C. (We sometimes refer to them as
name spaces.) They are listed and described in Table 4-2.

Table 4-2 Overloading classes

Class Included identifiers
Preprocessor macro Because preprocessing logically occurs before compilation, names used by the
names preprocessor are independent of any other names in a C program.
Statement labels Named statement labels are part of statements. Definitions of statement labels are

always followed by ¢ (and are not part of case labels). Uses of statement labels
always immediately follow the reserved word goto.

Structure, union, and These tags are part of structure, union, and enumeration type specifiers and, if

enumeration tags present, always immediately follow the reserved words struct, union, or
enum.

Component names Component names are allocated in name spaces associated with each structure and

(“members” in Stan- union type. That is, the same identifier can be a component name in any number of

dard C) structures or unions at the same time. Definitions of component names always

occur within structure or union type specifiers. Uses of component names always
immediately follow the selection operators . and ->.

Other names All other names fall into an overloading class that includes variables, functions,
typedef names, and enumeration constants.

These overloading rules differ slightly from those in the original definition of C.
First, statement labels were originally in the same name space as ordinary identifiers. Sec-
ond, all structure and union component names were placed in single name space instead of
separate name spaces for each type.

When a name is overloaded with several associations, each association has its own
scope and may be hidden by other declarations independent of other associations. For in-
stance, if an identifier is being used both as a variable and structure tag, an inner block
may redefine the variable association without altering the tag association.

C++ injects structure and union tags into the “other” name space (Section 4.9.2).

References component names 5.6.3; duplicate definition 4.2.5; enumeration tags 35.5;
goto statement 8.10; selection operators 7.4.2; statement labels 8.10; structure tags 5.6; structure
type specifiers 5.6; typede £ names 5.10; union tags 5.7; union type specifiers 5.7

4.2.5 Duplicate Declarations

It is invalid to make two declarations of the same name (in the same overloading class) in
the same block or at the top level. Such declarations are said to conflict.

Example

The two declarations of howmany, next, are conflicting, but the two declarations of str are
not (because they are in different name spaces).



Sec. 4.2 Terminology 79

extern int howmany;

extern char str[10];

typedef double howmany () ;

extern struct str {int a, b;} x;

There are two exceptions to the prohibition against duplicate declarations. First, any
number of external (referencing) declarations for the same name may exist as long as the
declarations assign the same type to the name in each instance. This exception reflects a
belief that declaring the same external library function twice should not be invalid.

Second, if an identifier is declared as being external, that declaration may be fol-
lowed with a definition (Section 4.8) of the name later in the program, assuming that the
definition assigns the same type to the name as the external declaration(s). This exception
allows the user to generate valid forward references to variables and functions.

Example

We define two functions, £ and g, that reference each other. Normally, the use of £ within g
would be an invalid forward reference. However, by preceding the definition of g with an ex-
ternal declaration of £, we give the compiler enough information about £ to compile g. (With-
out the initial declaration of £, a one-pass compiler could not know when compiling g that £
returns a value of type double.)

extern double f (double z);

double g(double x, double y)

{

. £(x-y)
}
double f (double z)
{

- g(z, 2/2.0)
}

References defining and referencing declarations 4.8; extern storage class 4.3; forward
references 4.2; overloading class 4.2; static storage class 4.3

4.2.6 Duplicate Visibility

Because C’s scoping rules specify that a name’s scope begins at its declaration point rath-
er than at the head of the block in which it is defined, a situation can arise in which two
nonconflicting declarations can be referenced in different parts of the same block.

Example

In the following code, there are two variables named 1 referenced in the block labeled B—the
integer i declared in the outer block is used to initialize the variable j, and then a floating-
point variable i is declared, hiding the first i.
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{
B: {
int j = 1i;
float 1 = 10.0;
}
}

The reference to i in the initialization of j is ambiguous. Which i was wanted? Most compil-
ers will do what was (apparently) intended; the first use of i in block B is bound to the outer
definition, and the redefinition of i then hides the outer definition for the remainder of the
block. This is the Standard C rule. We consider this usage to be bad programming style; it
should be avoided.

4.2.7 Extent

Variables and functions, unlike types, have an existence at run time—that is, they have
storage allocated to them. The extent (or lifetime) of these objects is the period of time that
the storage is allocated. Standard C calls this the storage duration.

An object is said to have static extent when it is allocated storage at or before the be-
ginning of program execution and the storage remains allocated until program termina-
tion. In C, all functions have static extent, as do all variables declared in top-level
declarations. Variables declared in blocks may have static extent depending on the decla-
ration.

An object is said to have local extent when it is created on entry to a block or
function and is destroyed on exit from the block or function. If a variable with local extent
has an initializer, the variable is initialized each time it is created. Formal parameters have
local extent, and variables declared at the beginning of blocks may have local extent
depending on the declaration. A variable with local extent is called automatic in C.

Finally, it is possible in C to have data objects with dynamic extent—that 1s, objects
that are created and destroyed explicitly at the programmer’s whim. However, dynamic
objects must be created through the use of special library routines such as malloc and
are not viewed as part of the C language.

References auto storage class 4.3; initializers 4.6; malloc function 16.1; static
storage class 4.3; storage allocation functions 16.1

4.2.8 Initial Values

Allocating storage for a variable does not necessarily establish the initial contents of that
storage. Most variable declarations in C may have initializers—eXxpressions used to set the
initial value of a variable at the time that storage is allocated for it. If an initializer is not
specified for a local variable, its value after allocation is unpredictable. (Static variables
are initialized to zero by default.)

It is important to remember that a static variable is initialized only once and retains
its value even when the program is executing outside that variable’s scope.
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In the following code, two variables, L and S, are declared at the head of a block and both are
initialized to 0. Both variables have local scope, but S has static extent while L has local (au-
tomatic) extent. Each time the block is entered, both variables are incremented by one and the
new values printed.

{

}

static int S = 0;

auto int L = 0;
L =L+ 1;
S =8 + 1;

printf ("L = %d, S = %d\an", L, 8S);

What values will be printed? If the block is executed many times, the output will be this:
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There is one dangerous feature of C’s initialization of automatic variables declared
at the beginning of blocks. The initialization is guaranteed to occur only if the block is en-
tered normally—that is, if control flows into the beginning of the block. Through the use
of statement labels and the goto statement, it is possible to jump into the middle of a
block; if this is done, there is no guarantee that automatic variables will be initialized. In
fact, most Standard and non-Standard implementations do not initialize them. In the case
of a switch statement, it is normal to jump into the block that is the switch statement’s
body to a case or default label, so automatic variables before the first such label will
not be initialized.

Example

The initialization of variable sum, next, will (probably) not occur when the goto statement
transfers control to label L. This causes sum to begin with an indeterminate value.

goto L;

;

static int vector[10] = {1,2,3,4,5,6,7,8,9,10};
int sum = 0;

/* Add up elements of "vector". */
for ( i=0; i<10; i++ ) sum += vector|[i]:;
printf ("sum is %d", sum);

References goto statement 8.10; initialization of variables 4.6; storage classes 4.3;
switch statement 8.7
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4.2.9 External Names

A special case of scope and visibility is the external identifier, also called an identifier
with external linkage. All instances of an external identifier among all the files making up
a C program will be forced to refer to the same object or function and must be declared
with compatible types in each file or else the result is undefined.

External names must be declared extern explicitly or implicitly, but not all names
declared extern are external. External names are usually declared at the top level of a C
program and therefore have file scope. However, non-Standard implementations differ on
how external names declared within a block are handled.

Example

The following program fragment is acceptable to many C compilers; it declares an external
name within a block and then uses it outside the block:

{

extern int E;

}
E = 1;

According to normal block-scoping rules, the declaration should not be visible outside the
block, but many implementations of C implicitly give E file scope and so compile this frag-
ment without error. Standard C requires the declaration to have block scope, but does not state
that the prior fragment should be invalid. Technically, the behavior of an implementation in
this case is undefined, thus permitting a conforming implementation to accept the program.
We think programmers should treat this fragment as a programming error even if the compiler
accepts it and the r}m-time behavior is correct.

It is indisputably an error if two external declarations (in the same file or different
files within the same program) specify incompatible types for the same identifier.

Example

In the following program, the two declarations of X do not conflict in the source file, although
their behavior at run time is undefined:

int £() { extern int X; return X; }
double g() { extern double X; return X; }

References external name conventions 2.5; external name definition and reference 4.8;
scope 4.2.1; type compatibility 5.11; visibility 4.2.2

4.2.10 Compile-Time Names

So far the discussion has focused mainly on variables and functions, which have an exist-
ence at run time. However, the scope and visibility rules apply equally to identifiers asso-
ciated with objects that do not necessarily exist at run time: typedef names, type tags,
and enumeration constants. When any of these identifiers are declared, their scope is the
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same as that of a variable defined at the same location. Macros and labels are also com-
pile-time names, but their scopes are different.

References enumeration constants 5.5; scope 4.2.1; structure type 5.6; typedef name
5.10; visibility 4.2.2

4.3 STORAGE CLASS AND FUNCTION SPECIFIERS

We now proceed to examine the pieces of declarations: storage class specifiers, type spec-
ifiers and qualifiers, function specifiers, declarators, and initializers.

A storage class specifier determines the extent of a declared object (except for
typedef, which is special). At most one storage class specifier may appear in a declara-
tion. It is customary for storage class specifiers (if any) to precede type specifiers and
qualifiers in declarations.

storage-class-specifier : one of
auto extern register static typedef

The meanings of the storage classes are given in Table 4-3. Note that not all storage class-
es are permitted in every declaration context.

Table 4-3 Storage class specifiers

Specifier Usage
auto Permitted only in declarations of variables within® blocks. It indicates that the variable
has local (automatic) extent. (Because this is the default, auto is rarely seen in C pro-
grams.)
extern May appear in declarations of external functions and variables, either at the top level

or within® blocks. It indicates that the object declared has static extent and its name is
known to the linker. See Section 4.8.

register May be used for local variables or parameter declarations. It is equivalent to auto,
except that it provides a hint to the compiler that the object will be heavily used and
should be allocated in a way that minimizes access time.

static May appear on declarations of functions or variables. On function definitions, it is
used only to specify that the function name is not to be exported to the linker. On func-
tion declarations, it indicates that the declared function will be defined—with storage
class static—Ilater in the file. On data declarations, it always signifies a defining
declaration that is notexported to the linker.Variables declared with this storage class
have static extent (as opposed to local extent, signified by auto).

typedef Indicates that the declaration is defining a new name for a data type, rather than for a
variable or function. The name of the data type appears where a variable name would
appear in a variable declaration, and the data type itself is the type that would have
been assigned to the variable name (see Section 5.10).

4 C99 permits declarations anywhere within a block. Previous versions of C permitted them only before the
first statement.
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Standard C allows register to be used with any type of variable or parameter,
but it is not permitted to compute the address of such an object, either explicitly (with the
& operator) or implicitly (e.g., by converting an array name to a pointer when subscripting
the array). Many non-Standard C compilers behave differently:

e They may restrict the use of register to objects of scalar types.
e They may permit the use of & on register objects.

 They may implicitly widen small objects declared with register (e.g., treating
the declaration register char x asifit were register int x).

Implementations are permitted to treat the register storage class specifier the
same as the auto specifier. However, programmers can expect the use of register on
one or two heavily used variables in a function to increase performance. Using
register on many declarations is likely to be ineffective or counterproductive. The use
of register with most modern compilers is likely to have less effect since those com-
pilers already allocate variables to registers as necessary.

References address operator & 7.5.6; formal parameter declarations 9.3; initializers 4.6;
subscripts 7.4.1; top-level declarations 4.1; typede£f names 5.10

4.3.1 Default Storage Class Specifiers

If no storage class specifier is supplied with a declaration, one will be assumed based on
the declaration context as shown in Table 4-4.

Table 44 Default storage class specifiers

Location of declaration Kind of declaration Default storage class
Top level All extern

Function parameter All none (i.e., “not register”)
Within blocks Functions extern

Within blocks Nonfunctions auto

Omitting the storage class specifier on a top-level declaration may not be the same
as supplying extern, as discussed in Section 4.8. As a matter of good programming
style, we think programmers should supply the storage class extern when declaring an
external function inside a block. The auto storage class is rarely seen in C programs; it is
usually defaulted.
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