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FOREWORD TO THE FIRST EDITION

Physics is subtle, yet simple. The fundamental laws of physics encompass a large variety
of physical, technological and natural phenomena. Physics influenced our material well-
being as well as our philosophical outlook. Physics is therefore rightly regarded as natural
philosophy.

In the last century, the time gap between a new discovery and its practical applications
was measured in decades. It has now been reduced to a few years. The development of
this close link between science and technology heavily depends on the availability of well-
trained scientific and technical minds in a country. This is facilitated if the curriculum is
so designed that it develops a sensitivity towards nature, and students are able to see the
principles of physics in operation. Due to these varied demands on a teacher of physics,
good books play a very important role in this endeavour. It is my considered view that this
book on thermal physics satisfies many of these requirements and is therefore a valuable
addition to our store of knowledge.

Thermal physics is one of the most fascinating courses taught to our undergraduate
students. The authors of this volume present the subject matter on kinetic theory,
thermodynamics and statistical mechanics, spread over thirteen chapters, in lucid and simple
language. This book would also prove useful to those studying chemistry, engineering,
technology or any other science course which requires a knowledge of thermal physics.

The best way to teach and learn a subject is to develop a healthy attitude towards
problem solving. The numerous solved examples included should help in clarifying the
concepts which are introduced and discussed in the text. A large number of problems given
within and at the end of each chapter would help the students become active participants
in the teaching learning process.

One of the major deficiencies in the higher education system in India is the paucity of
well written textbooks which are within the reach of a majority of students. Any effort to
improve the quality of higher education will not succeed until this requirement is met. The
authors have succeeded in meeting a felt need. I am sure, this book will be a great source
of help to students of physics in the years to come.

V C KULANDAI SWAMY

Vice Chancellor

Indira Gandhi National Open University
New Delhi
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PREFACE TO THE SECOND EDITION

ABOUT THE BOOK

When we began to develop the manuscript of the first edition of this book in 1990, we
took a conscious decision to make it interactive so that students would be encouraged to
participate in the learning process. This was based on the realization that an average Indian
student was not comfortable with problem solving or shied away from participating in
the classroom discussion. It was a challenging task and quite unlike all other available
books on this subject. Yet in this experiment, we chose to swim against the tide and were
fortunate to receive support from the editorial team of Tata-McGraw Hill Education. Pvt
Ltd. It is a matter of great satisfaction that our approach has been accepted by the peers
as well as the students.

The book has grown out of our lectures delivered to our undergraduate students and we
have continued to use it for different batches and groups of learners. In addition, useful
feedback from the peers coupled with the research team of TMH currently associated with
this project also helped us to collate the perceived gaps. In so doing, we have included
many new topics and rewritten a few chapters to further improve the quality of content. For
instance, Chapter 11 has been added on Radiation and Chapters 12-15 on the Statistical
Physics have been almost completely rewritten to facilitate better understanding of the
subject. New topics such as measurement of temperature and temperature scales, power
and refrigeration cycles, and liquefaction of gases and applications of low temperatures
have been added in Chapters 4, 6 and 10. Moreover, many and varied new solved examples
and unsolved problems with graded difficulty levels have been interspersed in the text. A
conscious effort has been made to assist learners to apply acquired theoretical knowledge
to real-life applications, phenomena and problems. We hope that these changes will extend
the coverage and enhance the utility of the book further.

Latest learning theories suggest that use of access devices— learning objectives, in-text
questions, practise problems and summary—should give strategic as well as adequate
opportunities, information and instruction to aid understanding and make learning an
enjoyable experience for students.

NEW TO THIS EDITION

¢ Change in the title of the book from Thermal Physics to Thermal Physics—Kinetic
Theory, Thermodynamics and Statistical Mechanics

¢ A new chapter on Radiation has been added as Chapter 11

Chapters 12 to 15 have been rewritten to facilitate better understanding among students

¢ New topics such as measurement of temperature and temperature scales, power and
refrigeration cycles, and liquefaction of gases and applications of low temperatures
have been added in Chapters 4, 6 and 10

*
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Xviii Preface to the Second Edition

¢ Discussion of Joule-Thomson Effect has be added in Chapter 3 as an implication of
interatomic interactions between the molecules of a real gas.

¢ 200 new solved numericals

¢ New and enhanced pedagogical features include Learning Objectives and Summary
at the end of each chapter.

SALIENT FEATURES

¢ Comprehensive coverage of the syllabi of all major universities and the new UGC
syllabus.

¢ Addition of a new chapter of Radiation and new topics such as Liquefaction of gases,
Power and Refrigeration cycles and applications of low temperatures in the new edition.

¢ The treatment of the subject matter is rigorous while still retaining a student-friendly
approach.

¢ Strong in-text pedagogy with numerous figures, solved examples and practise sets, to

support learning.

Rich pedagogy devices include Learning Objectives, Summary and Mnemonics.

252 solved examples

149 practise problems with answers

107 unsolved exercises with answers

180 Illustrations

* & & o o0
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PREFACE TO THE FIRST EDITION

The foundations of the subject of thermodynamics were laid by Joule in 1840 when he
established that heat is intimately connected to motion. It developed on a postulatory
basis without reference to the microscopic details of matter and soon blossomed into
a powerful science, which dealt with systems in stable equilibrium. With the growth in
our understanding of the nature and behaviour of constituents (electrons, atoms and/or
molecules) of a system, Boltzmann showed, by supplementing statistical methods with
the laws of (classical) mechanics, that the laws of thermodynamics have sound theoretical
basis. The advent of quantum mechanics added a new dimension to the subject. Today,
statistical mechanics together with quantum mechanics, lays the foundation of modern
physics. In fact, thermodynamics and statistical mechanics are of vital importance in
chemistry, biology, metallurgy, material science and engineering.

In its present state, thermal physics is one of the most fascinating courses taught to
undergraduate science and engineering students in India and abroad. There are many
books of good quality on the subject. Some of these are so costly that not many students
can afford them. Moreover, while teaching this course to our undergraduate students, we
could never recommend a textbook which presented lucid treatment of all the topics in one
cover. Our book is a sincere effort in this direction. The language is simple and all care
has been taken to make the book self-contained so that it is suitable for self-study as well.

The structure of the book has evolved out of classroom experience. The book contains
thirteen chapters which can be classified into three parts. The first part deals with kinetic
theory of gases which postulates that atoms/molecules are the building blocks of every
gas and that they move about randomly. In Chapter 1, we begin by deriving expression
for the pressure exerted by a perfect gas on the walls of the container. A detailed account
of Maxwell-Boltzmann distribution is also given in this chapter. Chapter 2 deals with
mean free path, viscosity, thermal conductivity, diffusion, Brownian motion and radom
walk under the title, Transport Phenomena. The random walk problem has been discussed
in detail because of its importance. Moreover, students do not find its discussion in any
existing book on thermal physics. The discussion in these two chapters pertains to a
perfect gas. But in practice, perfect gas behaviour is hardly observed. In Chapter 3 we have
discussed behaviour of real gases within the framework of van der Waals’ equation of state.

The second part of the book, spread over eight chapters, is devoted to thermodynamics.
There are two distinct approaches to learn this subject. The traditional approach is
phenomenological; based on some abstract postulates derived from experience. In the
statistical approach, firm theoretical basis of thermodynamics is demonstrated by relating
the properties of bulk systems to the behaviour of their elementary constituents. One can
argue for and against both alternatives. But we have preferred the historical sequence of
events—the formal postulatory approach. The basic concepts of thermodynamics have
been introduced in Chapter 4. The first law of thermodynamics and its applications to
diverse phenomena are discussed in Chapter 5. The second law of thermodynamics forms
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XX Preface to the First Edition

the subject matter of Chapter 6. This law is intimately connected to entropy. The students
will learn that entropy is the most effective vehicle for communicating observations on
natural processes. Keeping this in view, a separate chapter is devoted to the discussion of
entropy. The working tools of thermodynamics—Maxwell’s relations are derived in Chapter
8 and their applications in widely differing processes/systems are also discussed here. The
students will learn of their use in the study of phase transitions, which apart from their
immense technological importance, involve a lot of good physics. Every thermodynamic
system has an inherent tendency to approach equilibrium. To describe the general condition
of equilibrium, we must know free energy functions which constitute a fountainhead of
vital information about the thermodynamic behaviour of a system. These are discussed
in Chapter 9. Chapter 10 is devoted to the production of low temperatures. Here we have
described Joule-Thomson effect and adiabatic demagnetisation in great detail and also
outlined a few other techniques. The third law of thermodynamics and its consequences,
including unattainability of absolute zero, are also discussed in this chapter.

The third part, spread over three chapters, is devoted to statistical mechanics. Chapter 11
serves to introduce basic concepts and tools used to study the behaviour of a system, using
statistical mechanics. The relation connecting thermodynamics with statistical mechanics,
and expressions for the Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein distribution
functions are also derived. These distribution functions suggest that partition function is
the most important, effective and convenient mathematical device to unfold information
about a system. The evaluation of partition function for computing heat capacities of gases
and solids as well as lasers and negative temperatures is illustrated clearly in Chapter 12.
All these topics are presented in the most lucid and coherent form. In Chapter 13 we have
discussed the important applications of ideal F-D and B-E distributions including white
dwarf stars and liquid helium.

We believe that learning efficiency of students is increased when they are active
participants in the course. The best way to ensure this is to make them do numerical
problems and pose application-oriented, reason-based questions. With this in mind, we have
included more than one hundred ‘in-text’ and a hundred and fifty end-of-chapter practice
exercises. More than one hundred solved examples are also given. We feel that if a student
does all these thoroughly he or she would both appreciate and enjoy the subject better.

We wish to express sincere thanks to Mr Sunder Singh of the School of Sciences,
IGNOU, New Delhi, for his help at various stages in the preparation of the manuscript.
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IDEAL GASES: ELEMENTARY KINETIC
THEORY AND MAXWELLIAN
DISTRIBUTION

@ Learning Objectives

In this chapter, you will learn how to
e list the basic assumptions of kinetic theory of gases;

e derive expression for pressure exerted by an ideal gas in terms of
microscopic properties of the molecules;

¢ interpret temperature in terms of molecular properties and obtain ideal gas
laws starting from the expression for pressure;'

e derive expressions for Maxwell distribution function of molecular velocities
as well as speeds;

e obtain expression for average speed, most probable speed and root mean
square speed of molecules;

e discuss indirect evidences in favour of Maxwell’s distribution law for gases;
and

e describe methods for direct experimental verification of Maxwell’s distribution
law.

1.1 INTRODUCTION

Matter is made up of atoms.” A few atoms bind together to form a molecule.* A molecule
is the smallest unit that can exist in a free state, and possesses all the basic properties of
the substance concerned. Molecules move continuously and this motion becomes more
and more chaotic on increased thermal excitation, but is constrained due to cohesive
forces between molecules. We know that cohesive force is maximum in solids and almost
negligible in gases. That is why a solid has a definite shape™ and size but a gas does not.

In their efforts to obtain information about thermal properties of different states of matter,
the earliest physicists, particularly Bernoulli, Clausius, Maxwell, van der Waals and Jeans
focussed their attention on the gaseous state and developed a mathematical formulation
of the kinetic theory. This emphasis seems to be due to the fact that gaseous systems are
relatively simple to analyse and understand. Moreover, it helps illustrate all essential
physical mechanisms and basic concepts. Towards the beginning of the 19th century, the
kinetic theory gained recognition and acceptability of wider scientific community, with

“This concept was proposed by Democritus in 5th century B.C.

*The existence of molecules was proposed by Avogadro in 1811.

"It has been found that an orderly arrangement of molecules can even be seen in some liquids. This however
exists over an extremely short range (= 10 nm).
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1.2 Thermal Physics

indirect as well as direct experimental evidences to support it. In particular, Brownian
motion put this theory on a very firm footing.

Broadly speaking, kinetic theory of gases is based on two basic postulates:
(i) Matter is made up of identical molecules and (ii) Thermal energy can be identified
with molecular motion. Accordingly, a few assumptions are made about the nature of
molecules, interactions among the atoms and their movement. To describe this motion,
simple laws of mechanics are used. This helps us to obtain elegant explanations of the laws
governing the behaviour of ideal gases in equilibrium. Today, we understand the gaseous
state, almost fully. A detailed discussion of the kinetic theory of gases forms the subject
matter of this chapter.

In kinetic theory, we apply the laws of (classical) mechanics to each individual molecule.
As you may recall from your school physics classes, a gas consists of an extremely large
number of identical molecules and it is not possible to keep track of the positions and
velocities of them all. Therefore, to obtain useful results, say for the pressure exerted by
a gas, we resort to statistical averaging. Within the framework of this theory, we can also
study the transport processes like viscosity, conduction, diffusion, effusion and Brownian
motion. You will learn about these in detail in Chapter 2.

In Sec. 1.2, you will learn the assumptions of kinetic theory of gases. We have given
justifications for their appropriateness as far as possible. In Sec. 1.3, you will learn to
derive expression for pressure exerted by a gas on the walls of a container and use it
to correlate temperature with molecular properties. In particular, you will discover that
absolute zero is that temperature at which all molecular motion ceases to exist. You will use
this expression for pressure to deduce gas laws and calculate the magnitude of molecular
speeds for different gases. These help us to explain the observed distribution of gases in
our atmosphere. Here we have also discussed the law of equipartition of energy. You will
learn to express heat capacities of ideal monatomic, diatomic and polyatomic gases in
terms of the gas constant, R. The ratio of heat capacities of a gas can be determined from
their experimentally observed values and this proved to be a valid mechanism to test the
validity of kinetic theory of gases in its initial years.

When Maxwell began to study the problems of kinetic theory of gases, he was aware
of the work of Clausius. In his characteristically novel and profound work published in
1860, he provided the correct answer for the distribution of molecular velocities and
introduced statistical concepts in kinetic theory of gases. His theory marked the beginning
of a new era in physics; it formed the basis of modern theory of statistical mechanics
and led to statistical interpretation of the laws of thermodynamics. Using the theory of
probability, Boltzmann put Maxwellian theory on firm mathematical foundations. For
this reason, distribution function for molecular velocities is also referred to as Maxwell—
Boltzmann distribution function. In Sec. 1.4, you will learn to derive the expressions for
Maxwell-Boltzmann distribution function for molecular velocities as well as speeds.
Molecular distribution of velocities helps us to estimate the number of molecules having
velocities in a particular range. The knowledge of Maxwell distribution function will
then be used to obtain expressions for average speed, most probable speed and root mean
square speed of molecules. The energy distribution of Maxwellian gas will be discussed in
Sec.1.5. In science, no theory is accepted till such time that it is directly verified. In case
of Maxwell distribution law, indirect evidences came much before direct measurements.
In Sec. 1.6, you will learn about indirect evidences. The first direct proof of Maxwell’s
law was given by Stern in 1920. His technique was subsequently modified by Zartman
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Ideal Gases: Elementary Kinetic Theory and Maxwellian Distribution 1.3

and Ko. A detailed discussion of these and other more significant experiments is given in
Sec.1.7.

To develop the understanding of elementary kinetic theory, stating its basic assumptions
with reference to an ideal gas forms a convenient starting point.

1.2 BaAsic AsSsUMPTIONS OF KINETIC THEORY

The basic assumptions made by the early contributors to the subject of kinetic theory of
ideal gases are:

1. A gas consists of a very large number of identical molecules. As we now know, this
assumption is quite justified. The number of molecules in a kilo-mole is 6.03 x 10%.
(This is commonly known as Avogadro’s number.) From experimental evidences, we
know that 1 cm? of an ideal gas at standard temperature and pressure (STP)" contains
3 x 10" molecules. (This number is about four billion times the population of the
world as of now.)

2. The gas molecules can be regarded as point masses. Experiments show that the
diameter of a gas molecule is about 2 — 3 x 107! m. The distance between any two
neighbouring gas molecules at STP, on an average, is about 3 x 10~° m, which is an
order of magnitude bigger than their diameter.

3. The gas molecules are in a state of con- -
stant random motion. This is shown -
in Fig. 1.1. (In fact, the motion of gas \:—' I
molecules resembles the motion of 4_.

honeybees disturbed from their hive.)

In essence, it means that molecules of an \’\ ./V

ideal gas can move in all possible direc-

tions and all positions are equally prob- ~ ’\ / I

able. The support for this flssumptlon - /
came in the form of Brownian motion.

4. In the absence of any external force
field, the molecules are distributed Fig.1.1 Depiction of random motion of
uniformly in the container. It means molecules of a gas.
that an ideal gas behaves as an isotropic
medium. In practise, however, some randomness in the direction of the velocities may
arise because of irregularity in the walls of the container.

5. The molecules of a gas experience force only during collisions. This assumption
implies that there are no intermolecular forces (of mutual attraction or repulsion)
between the molecules and the walls of the container. That is, molecule of a gas can
be thought of as moving about freely unaware of the presence of other molecules. In
other words, the molecules of an ideal gas possess only kinetic energy.

" Standard conditions for temperature and pressure (STP) refer to commonly agreed sets of conditions
under which experimental measurements are reported. Internationally, two standards are in use: International
Union of Pure and Applied Chemistry (IUPAC) and the National Institute of Standards and Technology
(NIST). The IUPAC’s standard refers to a temperature of 0 °C (273.15 K) and an absolute pressure of
100 kPa (0.986 atm), while NIST’s standard is a temperature of 20 °C (293.15 K) and an absolute pressure
of 101.325 kPa (1 atm).
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6. The molecules of a gas behave as rigid, perfectly elastic hard spheres. It means
that molecules neither lose energy nor deform in shape when they collide amongst
themselves or with the walls of the container. (Its mechanical equivalence can be
thought of as collisions between glass marbles.)

7. The duration of collision is negligible compared to the time interval between
successive collisions.

8. All molecules do not move with the same speed. That is, there is a spread of molecular
speeds ranging from zero to infinity”. An indirect justification for this assumption lies
in the finite width of spectral lines.

9. The gravitational potential energy does not in any way affect the motion of gas molecules.
This assumption is quite justified since the magnitude of gravitational force is 10~ N,
which is much less than the molecular force whose magnitude is about 101> N for normal
separation between two molecules.

You now know the basic assumptions which provided the pedestal for development of
kinetic theory of gases. Based on these assumptions, we will now obtain an expression
for pressure exerted by the molecules of a gas on the walls of a container. This expression
will then be used to obtain gas laws and some other useful results. The correctness of its
various predictions put faith in the kinetic theory model in its formative years. However,
some of these assumptions were modified in the light of experimental evidences and to
conform our understanding of various phenomena to observed results.

1.3 PRESSURE EXERTED BY AN IDEAL GAS

Suppose that u kilo-mole of a gas are confined in a cubical container of side L, as shown
in Fig. 1.2a. If the total number of particles in the container is N, we can say that the
number density n = N/V molecules per m>, where V = L3 is volume of the cube. (We may
mention that volume, not shape, of the container plays a role and we have chosen cubic
geometry for mathematical convenience.) We assume that mass of each molecule is m.
The gas molecules move randomly (Assumption 3) and at times these will collide with
the walls of the container.

In general, the gas molecules move with different velocities (Assumption 8). But their
number is large and to simplify mathematical derivation, we subdivide these into G energy
groups (1,2,3,...G), each group having n, (i = 1,2,3,...G) molecules per m? and moving
with average velocity v;. In the absence of an external field, these molecules will exhibit
complete chaos and collide with the walls of the container.

Let us first consider the motion of molecules in group 1 moving with velocity v;.
We resolve v, into three mutually orthogonal components v,,, v;, and v,, along the x, y
and z-axes and parallel to the sides of the cube, as shown in Fig. 1.2(b). Using the basic
knowledge of vectors, you can write
=V, +vi, Vi, (1.1)

2
Y1

* Strictly speaking, at ordinary temperatures and pressures, neither of these limits is justified. The upper
limit is not justified in view of the theory of relativity since no material particle can have velocity greater
than the velocity of light. In any case, the relativistic effects are not important for molecular velocities.
Similarly, a gas molecule does not cease to have motion until absolute zero. However, for mathematical
convenience, we will keep the lower and upper limits as zero and infinity and there would not be much of
a loss of generality.
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Fig. 1.2 (a) Velocity vectors of the molecules of a gas in a cubical container. The molecular
motion is random and (b) Resolution of velocity of a molecule into components.

We now consider motion of the n; molecules in group 1 along any one of the three
axes and the expression for pressure so obtained could then be generalised for other
directions and groups of molecules. For simplicity, let us consider the motion of one of
these molecules, which we identify as ‘tagged’ molecule, along the x-axis, which is normal
to the faces A; and A, of the cube.

The (initial) momentum of the tagged molecule of group 1 at face A; moving along
x-axis will be mv,, normal to the face of the cube. It moves to the face A, at x = L and makes
an elastic collision. As a result, the molecule rebounds without any loss of momentum
(Assumption 7). So, its momentum after the collision will be —mv,,. (The negative sign
signifies that the tagged molecule is moving in —x direction.) Therefore, the change in
momentum of the molecule at the face x = L is mv,,— (—mv,,) = 2 mv, .. After rebounding,
the tagged molecule will travel back to face A, and strike it again after travelling a distance
2L across the cube. That is, the tagged molecule covers a distance 2L before it strikes the
same face of the cube again.

The time between any two successive collisions of the tagged molecule with face
A, will be At = 2L/v,,. Hence, the momentum imparted to face A, by a molecule per
second along x-axis, i.e., the rate of change of momentum of a molecule is given by
2 M ﬁ . The total momentum transferred per second by all the molecules of group

At L

2
1 moving along x-axis will be "M Yx | You may now recall that the rate of change of

L
momentum gives force (Newton’s second law of motion). So we can say that the force
exerted by all the molecules in group 1 on face A; while moving along the x-axis is given

2
mn, v,

belx =

The force per unit area defines pressure. Since group 1 molecules moving along the
x-axis exert force f,, over a surface area L2, the expression for pressure exerted by all such
group 1 molecules can be written as

2
fl X le
= L2 =mn, L3 . (1.2)

Prx
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Let us pause for a while and reflect on the discussion so far. You will realise that we
have almost achieved the goal we had set for ourselves. What remains to be done is to
consider the motion of all other groups moving along the x-axis and generalise the results
so obtained for molecules moving along the y- and z-directions.

The pressure communicated to the wall at x = L by the molecules of groups 2,3,...G
moving along the x-axis, by analogy, can be written as

Dy =—n, V2
2x 2 "2x
L3
_m 2
Psx _L3 n3v3x
_m 2
Pcx _L_3nGva

Hence, the total pressure exerted by all the molecules moving along the x-axis is
G
m 2
px=;Pix =5 v (1.3)

i=1

We now define the average value of v, 2 as

Here the bar indicates the average over the total number of molecules in the container.
Using this result in Eq. (1.3), we can write

i
Py =—NV: (1.4)

L3
Proceeding further, we note that when the gas is in equilibrium, the molecules move
entirely randomly and all directions of motion are equally probable. Physically, it means
that gas molecules do not have any preferred direction of motion (Assumption 4). So we
can write

\4

=v =€=§(vf+v§+v22)=7, (1.5)

2

where is the mean square velocity of all the molecules in the gas,

2 2 2 2 2
v_z_nlvl +nyv; +mvy .t ng Ve _Znivi

mo+ny, +n +..t+ng N
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On combining Egs. (1.4) and (1.5), we can write"

p=lmnv_2=L Nv_2
3 3V
or PV =§m1vv_2 (1.6)

where n = N/V is number density and V= I3 is volume of the container. This is an important
result; it relates macroscopic properties (pressure p and volume V) with microscopic

properties (mass m and mean square velocity v? ) of individual molecules making up
the system.
For one mole of a gas, N is Avogadro’s number, N,, and we can write

1 2 _ 1 2
V=—mN, v ==Mv 1.7
p 3 A 3 (1.7)

where M is the molecular weight of the gas. We know that 1 kmol of a substance has
6.023 x 10% molecules and if a machine counts 10° molecules per second, it will take
about 19 billion years to count them all. This is nearly three times the age of the earth.

We can rewrite Eq. (1.6) in a slightly different form as
p=%mnv2 ==p? (1.8)

where n is number density and p is density of the gas.

If we define root mean square speed as

N (19)

the expression for pressure exerted by a gas on the walls of a container can also be written as

1
p= gmnvfms (1.10)

Note that in this elementary derivation, intermolecular forces as well as finite size of
gas molecules have been ignored. Before we give a more rigourous proof (Example 1.5)
of Eq. (1.8), we would like you to go through the following example.

IB Gl 1S Bl One mole of a gas is contained in a cube of side 0.2 m. If these
molecules, each of mass 5 x 1072 kg, move with translational speed 483 ms~!, calculate
the pressure exerted by the gas on the sides of the cube.

Solution: The change in the momentum of the gaseous molecule between any two
successive collisions with a wall of the container will be

Ap,=2mv, =2X(5x1072 kg)x (483 ms™') =4.83x1072 Ns

* We have derived the expression for pressure exerted by a gas by considering a cubical container. Since
only V occurs in Eq. (1.6), the shape of the container has no role in determining the magnitude of pressure
exerted on it. It means that this result is valid for any type/shape of container.
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The time interval between successive collisions on the same face
2L 2x02m

Ar=2=
vV, 483ms’!

Hence, the rate of change of momentum of one molecule
Ap, 4.83x107% Ns

At 83x10%s
Therefore, the total force exerted by all the molecules of the gas on a wall is

£, =(0.582x107"" N)x (6 x10%)=3.49 x 10*N

=83x107%s

=0.582x10"°N

Hence, average pressure exerted by all the molecules of the gas on the walls of the container

349%x10*N
= -29x10° Nm™

p =
3x4x1072 m?
You will recall that one atmospheric pressure is nearly 1 x 10> Nm™2. So one mole of
the gas contained in a cube of side 0.2 m exerts pressure nearly 3 atm on its sides. Yet we
do not observe any change in the shape of a container.

You now know that though we started from a purely mechanical picture of a gas as a
collection of randomly moving molecules, we have obtained an expression for pressure in
terms of the microscopic properties of individual molecules. Let us now discover kinetic
interpretation of temperature and learn to use Eq. (1.8) to deduce gas laws.

1.3.1 Kinetic Interpretation of Temperature
To seek kinetic interpretation of temperature, we first rewrite Eq. (1.8) as

pV=§N(%mv2)=§N£, (1.11)

1 5 . . e
where €= Em v? signifies the average kinetic energy of a molecule.

It is instructive to compare this equation with the ideal gas equation:
pV=UuRT (1.11a)

where y= N is the number of kilo-mole of the gas, T is absolute temperature and R is

A
kilo-molar gas constant. Its value is 8314 Jkmol'K-' = 1.987 kcal kmol~! K~!. NA denotes

Avogadro number and its presently accepted value is 6.023 x 10%° molecules per kilo-mole.
Using Egs. (1.11) and (1.11a), we can connect the average kinetic energy of a molecule
to temperature through the relation

%uNAzz:/,LRT
so that
e=> R 3,71, (1.12)
2N, 2

where kg = RIN, is Boltzmann constant. Its value is 1.38 x 1072* JK™!. You can easily
convince yourself that kinetic energy of a molecule will be 6.21 x 1072 J (= 0.04 eV)
at 300 K and 1.6 x 107'° J at 7730 K. Note that Eq. (1.12) relates a purely mechanical

8 @ 5/2/2012 5:06:37 PM




Ideal Gases: Elementary Kinetic Theory and Maxwellian Distribution 1.9

quantity—the average kinetic energy of a molecule—to temperature. This is a big step
as it connects molecular and macroscopic viewpoints through Boltzmann constant. (In
Chapter 12, you will learn that Boltzmann constant appears in the relation that bridges the
statistical and the thermodynamic viewpoints for a system in equilibrium). Equation (1.12)
assigns a completely new and deeper meaning to temperature. In particular, we note that

1. Temperature is linearly proportional to average (kinetic) energy of molecules.

2. Ata given temperature, the (kinetic) energy of the molecules of all gases, irrespective
of the differences in their masses, will be constant and the same. It implies that motion
of gas molecules will become more lively and vigorous at higher temperatures and
vice versa.

3. Asmentioned earlier, at 300 K, € = 6 X 107! J or 0.04 eV. This energy is too small to
increase the internal energy of colliding molecules, even if all this could be absorbed
in a head-on collision between them. This justifies the assumption that gas molecules
behave as perfect hard spheres without any internal structure.

4. At absolute zero of temperature, the gas molecules will be devoid of all motion. So
kinetic theory predicts that at absolute zero, all molecules will behave as if they were
frozen in space (In Chapter 14 on Fermi-Dirac statistics, you will learn that due to
quantum effects, the energy is finite even at absolute zero for some typical systems.
This is known as zero-point energy.)

To test how far the model of gaseous state discussed in this section is reliable, let us use
it to calculate the values of molecular speeds of different gases and compare these values
with measured values. Let us discover the extent of agreement and usefulness of the model.

1.3.2 Root Mean Square Speed

To know how fast the molecules in a gas move, we rewrite Eq. (1.12) as

Ly =3pr=32 L1
2 2 2N,

so that

7 _3keT _3RT
m M

where M = mN, is the molecular weight of the gas. It is important to mention here that
when the molecules of a gas are in random motion, the velocity of a molecule averages
out to zero. So we calculate the square of the velocity, which is non-zero, take its average
and then obtain the square root. This gives root mean square speed.

The square root of mean square velocity is usually denoted as v, and is called root

mean square speed:
= 3k, T
Vims =V V2 =,f—3RT =,/—B (1.13)
M m

Note that v, is directly proportional to the square root of temperature of a gas. It means
that the r.m.s. speed of a gas at 68.2 K will be one-half of its value at 273 K. At what
temperature will r.m.s. speed of a gas be one-fourth of its value at 0°C? You should be
able to compute it orally as = 17 K.
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The elementary kinetic theory further predicts that at a given temperature, r.m.s. speed of a
gas molecule is inversely proportional to the square root of its molecular weight. It means
that molecules of a lighter gas will move faster. For a few typical gases in our atmosphere,
the values of v, ¢ at 300 K are given in Table 1.1. As may be noted, hydrogen molecules
move faster than any other gas. This result has an interesting consequence for existence of
life on our planet. Gases like hydrogen, helium, nitrogen and water vapour move upward
in earth’s atmosphere, whereas oxygen is available near earth’s surface. Further, in your
school mechanics classes, you have learnt that if an object acquires radially outward
velocity greater than 11.2 km s}, it will escape from the influence of gravity of earth.
(v, = w/ 2 gR , where R is radius of the earth.) Since no gas molecule has speed greater
than v,, there is little chance of their escaping from the earth instantaneously. For
Moon, Jupiter and the Sun, the values of escape velocity are 2.3 km s~!, 60 km s™! and
600 km s7!, respectively. This explains why over a period of time, all gases have escaped
from the surface of Moon, whereas even hydrogen is held back in the core of the Sun.

Table 1.1  Values of v, for different gases at 300 K

3k T 3k,T
Gas Yems = P Gas Vrms = .
(ms™) (ms™)
H, 1934 0, 483
He 1367 Ar 433
H,0 615 CoO, 412
N, 517

We can also predict the presence of dust particles and pollutants such as carbon
monoxide and oxides of nitrogen in atmospheric air, as also the greenhouse gases. These
gases are emitted by factories which burn coal, vehicular/air traffic, air conditioners and
refrigerators in our atmosphere. This highlights why emission standards for vehicles are
being reviewed periodically and why we should get our vehicles regularly checked for
pollution. In the upper layers of the atmosphere, these gases are breaking up ozone, which
is so vital for sustaining life on this planet. (Ozone absorbs ultraviolet radiations generated
in the outer space and stops these from entering the biosphere.)

In the early days of the formulation of kinetic theory, correct prediction of vertical
distribution of gases in the atmosphere provided indirect but sound evidence in its favour
and boosted the confidence of physicists in it. Another step in the positive direction was
the deduction of various gas laws from the expression for pressure. Before you learn about
these, we would like you to solve the following practise problem.

1240113 Wl Dust particles suspended in a monatomic gas are in equilibrium with
the gas at 300 K. If the mass of a suspended particle is 10-?’ kg, calculate v, .

Ans: 3.5x10° ms™'
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1.3.3 Some Elementary Deductions from Kinetic Theory
Boyle’s Law From Eq. (1.11), we recall that for a given mass of a gas
2
V==Neg¢
b 3
Since kinetic energy depends only on temperature, the right-hand side in the above relation
will remain constant at a fixed temperature. Hence, we can write
pV = constant (1.14)
Thus, the pressure exerted by a given mass of a gas varies inversely with its volume, when

temperature remains constant. This is Boyle’s law.

Gay-Lussac’s Law From Eq. (1.14), we can also conclude that at constant volume,
pressure exerted by a given mass of a gas is directly proportional to its kinetic energy, i.e.,
temperature. This is Gay—Lussac’s law.

Charle’s Law When pressure remains constant, Eq. (1.11) implies that volume of a given
mass of a gas increases linearly with kinetic energy, i.e., temperature. This is Charle’s law.
These laws are graphically depicted in Fig. 1.3.
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Fig. 1.3 Graphical depiction of (a) Boyle’s law, (b) Gay-Lussac’s law and (c) Charle’s law.
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We may mention that these laws were originally formulated based on experimental
observations and are strictly valid only for ideal gases.

Avogadro’s Law Avogadro’s law states that at constant temperature and pressure,
equal volume of all gases contains the same number of molecules. Let us consider two
different gases at the same temperature and pressure. Then, from Eq. (1.8), we can write

1 2 _1 2
p=§m1 v =§m2 n, vy, (1.15)

where "12 and v% are respectively the mean squared speeds of the molecules of two gases.
Recall that at constant temperature, the mean molecular energies of these gases will be
equal. So we can write
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On combining this result with Eq. (1.15), we get
n,=n,. (1.16)

This is the mathematical statement of Avogadro’s law. It may be pointed out here that
Avogadro put forward this hypothesis while studying weights and proportions. So we
can say that it had nothing to do with the motion of molecules. But the fact that the same
result had been obtained from the theory of molecular motion proved a significant success
for kinetic theory.

Before proceeding further, you should answer the following practise problem.

1201/ Wl Graham’s law of diffusion states that the rate of diffusion of a gas
is inversely proportional to the square root of its density. Deduce this law from Eq. (1.8).

To get a feel of these results, you should go through the following example carefully.

151} ) WAl The number density of air at 1 atm = 1.013 x 10° Nm™2 and
T =300 K is 2.7 x 10% m™. Calculate the number density at 1.33 x 10 Nm™2, provided
the temperature is kept constant.

Solution: From Eq. (1.8), we recall that

1
=—mnv
b 3

so that we can write

1 = 1 2
=—mn, v° and p, =—mn, v
D 3" 12 3"
Since temperature is kept constant, the value of mean square speed remains unchanged.
Hence, we can write
Py Xy
ny=———
b
On inserting the given values, we get
_ (1.33x10* Nm ™) x (2.7x10% m™)
(1.013x10° Nm~2)

n, =3.57%x10"® m~

The elegance with which elementary kinetic theory was used to explain vertical
distribution of gases in our atmosphere as well as the gas laws proved an important
milestone for its further development. Also, its aesthetic appeal in that the motion of
extremely large number of molecules can be described in terms of basic laws put faith in
its profundity. In its progress, this theory was put to litmus test when its predictions about
heat capacities of monatomic and diatomic gases were verified experimentally. We now
discuss classical theory of heat capacities in some detail.
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1.4 CLASSICAL THEORY OF HEAT CAPACITIES OF GASES

When no external field is present, an ideal gas possesses only kinetic energy; there is no
potential energy. For one kilo-mole of a gas, the total kinetic energy is given by

U=NA£=%NAkBT=%RT (1.17)

This result implies that molar heat capacity, defined as the energy required to raise the
temperature of one kilo-mole of an ideal gas by one kelvin, at constant volume is given by
3

c, = (B_U) =3 R =2.98 kcal kmol ™ K! (1.18)
T )y

Hence, molar heat capacity at constant pressure is given by
C =C, +R=2R=487kcal kmol"' K-! (1.19)
p v 2

and the ratio of molar heat capacity at constant pressure to molar heat capacity at constant
volume is

C
P _5
=—=—=1.67 1.20
4 C 3 (120

14

Let us pause for a while and reflect on these results. We can conclude that the molar heat
capacities at constant pressure and at constant volume as also their ratio are the same and
independent of temperature for all gases. These predictions of elementary kinetic theory
agree rather well with experimental results for monatomic gases (Table 1.2). However, for
diatomic and polyatomic gases, we note that

1. The ratio of molar heat capacities decreases with increasing atomicity.
2. There are significant deviations between theoretical and measured values of molar
heat capacities at constant volume.

Table 1.2 kilo-molar heat capacities at constant volume for a few common gases at
room temperature

Gas Cy, (kcal kmol ' K™) y
Ar 2.98 1.67
He 2.98 1.66
H, 4.88 1.41
0, 5.03 1.401
N, 4.96 1.404
Cl, 6.15 1.360
Co, 6.80 1.304
NH, 6.65 1.310

To explain these differences between theoretical and experimental values, we need to
introduce the concept of the degrees of freedom of the molecules of a gas.
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Degrees of Freedom The degree of freedom (d.f.) of a molecule is defined as the
number of independent coordinates required to specify its position completely. A point
moving along a curved path has only one d.f, though two coordinates are required to specify
its motion. This is because only one coordinate is independent; they have to satisfy the
equation of the curve. For example, for every point in the path of an oscillating simple
pendulum, the equation x* + y? = /2 is satisfied. It means that x and y are not independent.
Such an equation constitutes an equation of constraint. Similarly, an ant moving on a
stretched string has only one d.f. as we can completely specify its motion/position with
only one coordinate. However, when an ant moves on the floor, its degrees of freedom
increase to two. And when a housefly flies, its motion is three-dimensional and we require
three coordinates (x, y, z) to describe it. So, the number of degrees of freedom will be
three. How many d.f. a randomly moving molecule of monatomic gas (like helium, argon,
or krypton) has? If you are thinking that it has three translational degrees of freedom, you
have visualised its motion correctly.

In addition to translational degree of freedom, a diatomic or a polyatomic molecule
has a tendency to rotate (about fixed axes). Since the angular velocity of a rotating body
(molecule in the instant case) can be resolved along three mutually perpendicular coordinate
axes, you may expect a rigid diatomic molecule (H,, O, N, ...) to have three rotational
degrees of freedom. But the moment of inertia of a diatomic molecule about an axis along
or parallel to the axis of the molecule (i.e., line joining the atoms) is very small and no
rotation of the molecule as a whole is possible about it. So a linear diatomic molecule, in
general, has only two rotational degrees of freedom. That is, a linear diatomic molecule
will have a total of five degrees of freedom. (A non-linear molecule like H,O has three
rotational degrees of freedom.)

The number of d.f (f) of a molecule can be obtained from the general result

f=3p-c, (1.21)

where p is the number of particles constituting the system and c is the total number of
constraints.

For a monatomic gas molecule, p = 1, and ¢ = 0 so that f= 3. That is, a monatomic gas
molecule has three degrees of freedom. These correspond to translational motion along
three mutually perpendicular directions. 7’

For a diatomic molecule, p=2 and c=1 as e *
the distance between the atoms is fixed. So we
have f=5. o e

The number of degrees of freedom can also L
be defined as the total number of independent
squared terms appearing in the expression of
energy of a system. The general expression for
the internal energy U of a gas may contain four *
separate terms corresponding to translational, o, : 3
rotational, vibrational and potential energies of | **
the molecules. This is depicted in Fig. 1.4. In  Fig. 1.4 Internal energy of a gaseous
the language of mathematics, we can write molecule.

*

:

U= Etrzms + Erot + Evib + Epot (1 22)
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The total energy of a monatomic gas is given by

2 2 2
1 |(dx dy dz
Egs =—m|| = | +|—| +|— 1.23

) (dt) (dt] (dt) (123)

Note that energy of a monatomic gas molecule is only translational and accordingly

there are three squared terms in Eq. (1.23) so that f= 3. This is consistent with Eq. (1.21).

Since a diatomic molecule can execute translational as well as rotational motion, there

will be two additional terms to signify rotational motion about two mutually perpendicular
axes:

Lo’ Lo’
E, = + >
2 2
where I; and I, are the moments of inertia about these axes and @, and @, are the

corresponding components of angular velocity. Note that there cannot be any rotation about
the line joining the atoms. So a diatomic molecule will have five degrees of freedom in all;

(1.24)

f=15.In analogy with monatomic molecule, we find that the internal energy of a diatomic
.5 . . .
molecule is ERT. Hence, for a diatomic molecule, molar heat capacity at constant volume

and at constant pressure are given by

5
Cy = ER =4.87 kcal kmol™! K. (1.25a)
7
C,=Cy +R= ER =6.85 kcal kmol™' K. (1.25b)

and the ratio of molar heat capacities for a diatomic molecule is

C
r _7
y=—==-=140. 1.25¢
C 5 ( )

14

As may be noted, Egs. (1.25a) and (1.25c¢) are in better agreement with observed results
for nitrogen and oxygen.

The first sign of disagreement between theory and experiments came to the knowledge
when ¥ was used to determine the number of degrees of freedom and the result was not,
in general, an exact integer. Now refer to Fig. 1.5. It shows the temperature variation of
heat capacity of hydrogen and chlorine. As may be noted, the measured value of C, for

hydrogen decreases to %R at 20 K, whereas it increases to %R at room temperature.

Beyond 1000 K, it increases further. Physically we can say that at 20 K only translational
modes are present whereas rotational modes begin to contribute at room temperature. At
very high temperatures, vibrational modes are also excited and begin to contribute to the
energy of hydrogen molecule. On the other hand, for chlorine, vibrational modes begin
to contribute around 600 K.

Principle of Equipartition of Energy The general dependence of ¥ on f can
be obtained from the principle of equipartition of energy. It states that for a system in
equilibrium at temperature T, the total energy is equally partitioned among the several
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Fig. 1.5 Temperature variation of heat capacity of hydrogen and chlorine.
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kyT
degrees of freedom and energy associated with each d.f. is equal to BT. You will learn

the general proof of this result in Chapter 12. However, from Sec. 1.3.1, you may recall
that translational kinetic energy of a molecule of a monatomic gas is given by
e=Ltmv? = éks T
2 2

We also know that molecular motion is completely random. So when an isotropic
distribution is in equilibrium, all three directions are equivalent and translational kinetic
energy associated with each component of velocity of an ideal (perfect) gas molecule is
one-third of its total translational kinetic energy, which is equal to kzT/2. In other words,
we can say that energy is equally partitioned among the three components of velocity. This
is an important result of classical physics. In Sec. 1.4, we will show that it readily follows
from Maxwell’s velocity distribution law.

According to the principle of equipartition of energy, the internal energy of a system
per kmol is given by

f f
U=—kzTN, =—RT
2 BTA T
fo. f
so that CV=ER’CP=CV +R=R E+1
2
and Y= 1+? (1.26a)

You can convince yourself that Egs. (1.20) and (1.25¢) for monatomic and diatomic gases
readily follow from this general result.
Since f is an indicator of atomicity of a gas, we can rearrange Eq. (1.26a) to obtain

2
f= 71 (1.26b)

Now refer to Fig. 1.6, which shows a molecule of ammonia (NH,), a polyatomic gas.
In this case, E,,,, and E, , will contain three terms each, whereas E;;, will have six terms
k2

of the form > corresponding to the possible vibrational modes along the lines joining
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the atoms. So if f= 12, Cy = 6R, Cp =7R and y = N
1.17, which differs significantly from the experimental

value. However, if we assume that vibrational modes

are not excited at room temperature, we can choose

f = 6. This gives ¥ = 1.33, which agrees with the

experimental value.

The explanation of heat capacities of gases H
established the kinetic theory. However, its failure to
explain the observed temperature dependence of heat
capacity of diatomic gases presented a really serious
challenge. A successful explanation of temperature
variation of heat capacities of diatomic gases could be H
provided on the basis of quantum theories. You will ~ Fig. 1.6 Anammonia molecule.
learn these in Chapter 13.

So far we have referred to the root mean square speed of the molecules in a gas.
We refrained from saying anything about the actual distribution of velocities among the
molecules. In a gas, constant random motion of molecules makes them to collide against
each other as well as against the walls of the container. This results in a continuous change
both in magnitude and direction of their velocities. It implies that in a real system, even if
all the molecules have the same velocity at a given time, we should expect that molecular
collisions will result in a wide dispersion of molecular velocities at some later time. So
the problem we wish to address now is: How many molecules will have velocities within
a certain range? It is also interesting to know how this number changes with velocity,
temperature and/or pressure. The correct answer to this more sophisticated problem was
provided by Maxwell in his characteristically novel and profound work published in 1860.

Historically, while working out the solution, Maxwell introduced statistical concepts in
kinetic theory of gases. His theory marked the beginning of a new era in physics; it formed
the basis of modern theory of statistical mechanics and led to statistical interpretation of
the laws of thermodynamics. Using the theory of probability, Boltzmann put Maxwellian
theory on firm mathematical foundations. For this reason, distribution function for
molecular velocities is also referred to as Maxwell-Boltzmann distribution function. We
will now discuss it in some detail.

1.5 DISTRIBUTION OF MOLECULAR VELOCITIES IN A
PERFECT GAS: MAXWELL-BOLTZMANN DISTRIBUTION
LAaw

The derivation of the distribution law is based on a number of assumptions. These are in
addition to the basic assumptions of elementary kinetic theory (Sec. 1.2). The assumptions
are as follows:

Assumptions

1. In the equilibrium state, the molecules have complete randomness of direction and
velocity.

2. There is no mass motion or convection current in the body of the gas. As long as
there is no net force (or pressure gradient) acting on the system, this assumption is
quite justified.
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3. The probability of a molecule having x-velocity component, say after a large number
of collisions, does not depend on the y- and z-velocity components. This assumption
follows from random motion of gas molecules.

4. The probability that a molecule selected at random has velocity component in the
given range is a function only of the magnitude of velocity component and the width
of the interval.

5. The gas molecules have no vibrational or rotational energies. This assumption is
quite justified because vibrational and rotational energies remain unchanged when
gas molecules undergo collisions.

Derivation Consider a gas having N molecules enclosed in a vessel of arbitrary shape
and moving randomly. To each molecule, we attach a vector, which represents its velocity
in magnitude and direction as shown in Fig. 1.7a. We then transfer these vectors (not the
molecules) to a common origin (Fig. 1.7b). In doing so, we use the property that a vector
remains unchanged when it is translated parallel to itself. We represent these molecules
on a velocity diagram with Ox, Oy and Oz as the coordinate axes as shown in Fig. 1.7c.
Here dv is an infinitesimal volume element.

Note that each velocity vector will be defined by the coordinates of its end point. Let us
denote the x, y and z components of the velocity v of a particle by v,, v, and v,. Therefore,
in terms of these three rectilinear components, we can write

v2=vf +v§ +vz2 (1.27)

The number of velocity vectors ending in element dv = dv, dv, dv, gives the average
number of molecules whose velocities lie between given limits v and v + dv after a large
number of collisions among identical molecules. It means that we have to calculate the
number of molecules simultaneously having velocity components in the range v, to v, +
dv,, v tov, +dv, and v, to v, + dv,. Assumption (4) stated above implies that the fraction of
molecules having velocity components in the range v, to v, , dv, is equal to f{v,) dv,. That is

dN

Vx

N

=f(v,)dv, or dN‘,x =Nf@)dv, (1.28)

where dN,_is the number of molecules having velocity components in the range v, and

v, +dv,, N is the total number of molecules and fis an unknown function, which we have to

z

dv

@) (b) x (©)

Fig. 1.7 (a) Gas molecules in random motion, (b) All velocity vectors transferred to a
common origin and (c) A volume element dv in velocity space for a molecule of
velocity v.
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dn,

x

determine. Mathematically, the ratio denotes the probability” of finding a molecule

with x-component of velocity in the range v, to v, + dv,. Let us denote it by the symbol p,.
Proceeding further, we note that existence of velocity component v, does not in any
way affect velocity components v, and v,, since these are mutually perpendicular and
independent of each other. So we can write the expression for the probability that a
molecule having velocity components in the range vytov, +dvyand v, tov, +dv, as
py= f(vy) dvy (1.29)
and
p,=fv,) dv, (1.30)
Note that we have taken the same functional dependence in all three cases. It signifies that
there is no preferred direction of motion of gas molecules.
Since the three perpendicular components of velocity are independent, we can express the
probability for a molecule to simultaneously have velocity components in the range v, to v,
+dv,, v, to v, +dv, and v, to v, + dv, using the law of compound probabilities (According
to the law of compound probabilities, the composite probability for independent events is
equal to the product of the probabilities of individual events.) This gives
Y

vV v

N

Hence, the number of molecules simultaneously having velocity components lying between
vetov, +dv, v tov, +dvyandv tov, +dv, is

=p. PP, =f (W) f(v) f(v,)dv,dv, dv, (1.31)

A°N, ,\ =NLE) L) v,)dv, dv, dv, (1.32)

VX |7y
Note that all these d3N‘,x‘,y‘,z molecules lie in the small volume element dv, dv, dv,. In Fig.
1.7c, these molecules are depicted as velocity points (A point representing a molecule with
velocity components in the three coordinate directions is called velocity point.) Therefore,
the density of velocity points, i.e., number density of gas molecules can be expressed as
&N

v v vy
x'y'z

= (1.33)
dv, dv dv,

p

On combining Egs. (1.32) and (1.33), we can write
p=Nf(v) f(v) F(v)
Since the velocity space has been assumed to be isotropic, the density of velocity points
can be taken to be independent of inclination of v to the axes. So we can write
Nf(v,) f(vy) f(v,) = constant = NF (v) = NIV, (1.34)
where F and J are some other function. Note that this equation holds for a fixed value of
v, i.e., it is subject to the condition

V2= vﬁ + v§ + v? = constant (1.35)

* The probability of an event is the ratio of the number of outcomes favourable to the event to the total
number of outcomes. For example, the probability of getting a head in tossing a coin is one-half.
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1.20 Thermal Physics

Physically, it means that after a large number of collisions, the distribution will be isotropic.
Therefore, for fixed v, J0/?) is constant and d[J(v*)] = 0.
In terms of dv,, dvy and dv,, we can write

) of (v, v )
J;(V)d f(v)f(v)+f(v) f(v)dv +f(v)f(v)f dv,=0 (1.36)
x y V.
On dividing Eq. (1.36) by f(v,) Jwy) fv), we obtain
9
AU WA WS S P (1.37)

fv,) ov, Vs f,) ov, Yy f,) o, z

The differential form of Eq. (1.35), which expresses the condition under which VeV,
and v, can vary while v? remains constant is

vdv, +vdv, +vdv, =0 (1.38)

From this equation, it is clear that the differentials dv,, dvy and dv, are not mutually
independent; these can take any value but must satisfy Eq. (1.38). To relax this constraint,
we use Lagrange’s method of undetermined multipliers. In this method, the constraining
relation is multiplied by a constant and the resultant expression is added to the constrained
equation. In this case, we choose the undetermined multiplier to be 2B. Accordingly, on
multiplying Eq. (1.38) by 2B and adding the resultant expression to Eq. (1.37), we get

)
{ 1 af(v")+2Bvx]dx [ ALY 2va]dvy

f) ov, f,) v,
of (v,)
+{f(1v) >, 2Bv2]dvz=o (1.39)
Let us choose the constant B such that
1 of )
2Bv_=0
) v, +25v, (1.40)

Then Eq. (1.39) reduces to

of (v,) of v,)
1 1 _
[f(v) . +2Bv ]d +{f(v) >, +2Bv, |dv, =0 (1.41)

Of the three variables dv,, dvy and dv,, we can consider any two variables as constant. So let
us take dvy and dv, to be independent. Then, for finite values of dvy and dv,, Eq. (1.39) will
be satisfied if the coefficients of these differentials in Eq. (1.41) vanish separately. That is,

1 af(vy)
+2Bv, =0
f,) o, Y (1.42)
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and
of (v,)
1 “+2Bv,=0 (1.43)
fv,) ov,
To proceed further, we rewrite Eq. (1.40) as
daf (v
M =-2Bv, dv,
UM
This equation can be easily integrated to obtain
2 Bv?
Inf,)=- +InA
where In A is an integration constant.
We can rewrite this result as
f,)=Aexp[-Bvl] (1.44)

where A and B are unknown constants. Note that the Lagrange’s method of
undetermined multipliers has helped us to discover the form of the function f; it is a
decreasing exponential. But now we will have to deal with two unknown constants
(A and B) rather than one unknown function (f).

On combining this result with Eq. (1.28), we can express the number of molecules having
velocity components in the range v, to v, + dv, as

dN, = NA exp (-Bv,%) dv, (1.45a)

Proceeding further, we note that the differential equations satisfied by f(v,) and f(v,) are
similar to that satisfied by f(v,), and by analogy, we can write

_ — Bv§
Jy)=4e (1.45b)

and

_ — szz

J ) =4e (1.45¢)

On combining Egs. (1.45a), (1.45b) and (1.45c) we obtain the required expression for
&N

Vv

_B[v2 42 442
BN, , =NAYe (5] dv, dv, dv, =NA*e®" dv dv, dv,  (1.46)
x'y'z
and number density
p=NA3 exp[—B(v? +v§ +v22)]=NA3 exp[—Bv2 ] (1.47)

This is the required expression for the Maxwell’s velocity distribution function. In
Fig. 1.8, we have plotted p versus Bv?. As may be noted, the molecular number density
decreases exponentially with velocity and its maximum value is NA%, which corresponds to
v=0.
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P A
>V,
NA3
0 > By?
Fig. 1.8 Plot of Maxwell’s velocity Fig. 1.9 A spherical shell of radius v and

distribution function versus Bv?. thickness dv.

1.5.1 Molecular Distribution of Speeds

Usually it is more convenient to express the distribution function in other forms since one
is generally not interested in knowing the molecular distribution for individual velocity
components. In particular, we wish to know the number of molecules having speeds in
the range v to v + dv. Since the distribution has been assumed to be isotropic, we do not
expect gas molecules to show any preferential direction of motion. We can easily calculate
this number by considering a spherical shell of radius v and thickness dv in the velocity
space (see Fig. 1.9). The number of velocity vectors ending in such a spherical shell gives
the required number.

The volume of the shell in velocity space will be 4722 dv. In view of the geometry
under consideration, it is more appropriate to express the volume element dv, dv, dv, in
terms of spherical polar coordinates. From your mathematical physics classes, you may
recall that dv, dv, dv, = v* sin 8 d6 d¢ dv. The limits of integration over 6 vary from 0 to 7
and over ¢ from O to 2. This gives

n 2n
dN,=dN, ,, = [ [ NA’e B v?sing dO do dv
TYI g0 g0

= NA3v2e B [(— cos T + cos 0) 2 rc]dv

_ 3.2 —_ B2
=4 7NA>v* exp[ - Bv*1dv (1.48)

dN

v

The ratio determines the Maxwellian distribution of molecular speeds.

The qualitative shape of the Maxwellian distribution function as a function of molecular
speed is shown in Fig. 1.10.

Note that

1. The shape of the curve is determined by the interplay of an increasing quadratic
function and a decaying exponential.

2. For smaller values of v, the quadratic function dominates and induces the curve to
rise. The exponential function begins to become important gradually.

3. Beyond a certain value of v, the exponential term begins to dominate and limits the
maximum value of the function. At that point, the curve shows an inversion and
decays exponentially thereafter.
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Fig. 1.10 A plot of Maxwellian distribution function versus molecular speed.

If we consider a strip of width dv, its area (shown by the shaded part) gives us the number
of molecules with speeds between v and v + dv. As may be seen, the number of molecules
with very small and very large speeds is extremely small. The area under the entire curve
gives the total number of molecules in the gas.

As mentioned earlier, we introduced only one unknown constant (2B) to relax the
constraint expressed by Eq. (1.38), but Eq. (1.48) for molecular distribution of speeds has
two unknowns (A and B). Therefore, we must determine these to obtain the quantitative
shape of the distribution curve. Let us do so now.

Determination of Constants To evaluate the unknown constants A and B, we first
make use of the fact that if we integrate Eq. (1.48) for dN, over all possible values of v
from O to oo, we will get the total number of molecules:

N=[dN,=47NA> [v? exp[- Bv*]dv (1.49)
0

Note that at ordinary temperatures, all molecules move with finite speed. However, for
mathematical convenience, we will work within the limits 0 and oo without any reference
to relativistic effects.

We use the standard integral

fe_sz Vidv = L 1‘("+1)
0 28((n+1)/2) 2

where I'(n) is gamma function. In Table 1.3, we have listed its values for a few values of
n. For n =2, the integral on the RHS of Eq. (1.49) can be expressed in terms of the gamma

function as F(nTH) = F(%) = g . Using this result, Eq. (1.49) for the total number of

particles takes an elegant form,

3 ym
L r@py=37NA N7 (1.50)
83/2 233/2 2

N =47NA®
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Table 1.3 Values of gamma function integral

n I' (n)
L Iz
1l 1
: Ix
2 2
2 1

To apprise you of how the integral in Eq. (1.49) is evaluated, we introduce a change of

variable by putting Bv?= x so that 2Bvdv=dxorvd v = 1 gxandvidv=—L _x1”2
2B 2 B3/2

However, the limits of integration will not change since x = 0 for v =0 and x = o for
v =0, Hence, we can write

2313/2 Je*x"? dx @
0

The integral in this expression denotes a special function, known as gamma function:

N =47NA3

1"(n)=_|’e"‘x"‘1 dx
0

In this case, n=23/2. Therefore, the integral in (i) is equalto I (3/2)=(1/2)I" (1/2) = \/; /2.

In writing the last step, we have used the relation I'(n)=(n—1)I'(n—1)and I" (1/2)=+v 7.
Hence, the expression for total number of particles in the gas takes a simple form:

1 =

B2 2

N =47 NA?
2

On simplification and arrangement of terms in Eq. (1.50), we can express A in terms
of B as

A=+Bl/=n (1.51)
We can determine B, either by calculating the average speed or the mean square speed
v’ of amolecule, ie., by relating B to the momentum or the average energy of a molecule.

Here we will calculate v,,,, and define v? as

[v*dN,
L (1.52)

oo

JdN
0

v
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On substituting for dN, from Eq. (1.48), we get

j47cNA3 exp[—sz]v2 Vidy _[v“ exp[—Bv2]dv
iy 0

0
v2= =

_[47:NA3 exp[ - Bv?]v? dv jvz exp[ — Bv?1dv
0 0

By referring to the integral in the box, you can write

1
5 g2 _2B’T(52)

13/2 rar) 2B7TGR)

T'(5/2)
V- =

Since I'(5/2) = (3/2)"(3/2), we get

2 3
Vo= .
B (1.53)

From Eq. (1.12), we recall that the average kinetic energy of a molecule is (3/2)kgT.
Therefore, we can write

Loy? =3 4,1

2 2

On combining this result with Eq. (1.53), we can write

1 —>_1 3 3

—mv: =—m.——==kg
2 2 2B 2
so that
m
B=2k T (1.54)
B

Before proceeding further, you should answer the following practise problem.

12N I Verify Eq. (1.54) by starting with the definition of average speed as

On substituting this value of B in Eq. (1.51), we obtain the value of the constant A:

A= [T (1.55)
27k, T

If we now substitute these values of A and B in Eq. (1.48), we can express the number of
molecules in a Maxwellian gas having speeds in the range v to v + dv as
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312
2
dN,=4rnN n v2 exp| - my dv (1.56)
2mkyT 2kyT

Let us pause for a while and reflect as to what we have achieved so far. Equation (1.56)
tells us that distribution of molecular speeds depends on the nature of the gas (through
mass of the molecules) as well as the temperature. For a given gas at a fixed temperature:

dN,
1. The Maxwellian distribution function of molecular speeds, f, = d—‘ , will be zero
v

for v=0 as well as v = oo, This is consistent with the physical situation that molecular
speeds can have only finite values.

2. For small molecular speeds, Maxwellian distribution function f, increases quadratically
with v.

3. Asvincreases, the exponential function, which is a decaying term, starts becoming
important. Therefore, the curve representing the Maxwellian distribution function
increases initially, attains a maximum value and then decreases exponentially. This
is illustrated in Fig. 1.11 for three different temperatures.

4. As temperature increases, the curve becomes flatter and its peak value becomes
smaller since the total area (number of molecules) under it has to remain constant.
However, entire distribution is pushed towards the right including the peak value. This
is because greater fraction of gas molecules becomes more energetic.

5. If we integrate f(v) for all values of v from zero to infinity, we get unity. This means
that the Maxwellian distribution is a true probability density function.

VA
/300K
/100K
S X N 200K

Fig. 1.11 Plot of Maxwell distribution function for molecular speeds at temperatures of
300K, 1000 K and 2000 K.

Before proceeding further, you should answer the following practise problem.

Consider a mixture of molecules of different gases in complete
equilibrium such that each type of molecule has the same Maxwellian distribution that
it would have if other types of molecules were not present. Will the distribution of the
mixture be also Maxwellian?

Since molecular distribution of speeds in a gas depends only on T and m, the mixture will
have the same distribution as individual gases. That is, the distribution will be Maxwellian.
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To help you grasp the ideas developed in this section and get a feel of the numbers
involved, we would like you to go through the following example carefully.

m Calculate the probability that the speed of an oxygen molecule will
1

ie between 100 ms~' and 101 ms™ at 200 K. The mass of oxygen molecule is 32 u. Take
kp=1.38x 1072 JK ! and N, = 6 x 10% kmol™".

Solution: From Eq. (1.56) we know that the probability of a molecule having speed in
the range v to v + dv is given by

3/2 5
=47 vT exp| — v
£ =4 m 2 exp mv d
27k, T 2k, T

The interval of speeds under consideration is dv = 101 — 100 = 1 ms™!' and
v=100ms™'. -
The mass of an oxygen molecule, m=——————=531x10" kg

6.02 x10%

AtT=200K, kzT=(1.38x1072JK!)x200K=2.76 x 107! J. On substituting these
values in the expression for f,, we get

2
302 5.31x107 kg x(100ms™)
x (100)? exp x1
2x(2.76x1072! J)

PR 5.31x107% kg
=471
Y 2 x(2.76x1072 1)

=12.57 x 10%(3.06 x 107%)>? exp (—9.6196)
=12.57x10* % (535 x10°) x 6.64 x 10° =447 x 107%

1.5.2 Some Useful Deductions from Maxwell’s Law

You now know that molecules of a gas move randomly with all velocities between zero and
infinity. Therefore, we cannot characterise a Maxwellian gas with average velocity, which
will be zero. For this reason, we consider average speed V. Since Maxwell distribution
function comprises an increasing quadratic function and a decaying exponential function, it
should be possible to determine the value at which the function will have maximum value.
It is referred to as the most probable speed, v,. From Sec.1.2, you may recall that energy of
amolecule is defined in terms of root mean square speed, v, .. (Most authors still choose to
designate these as average velocity, root mean square velocity and most probable velocity,
which is not correct strictly speaking.) It will be instructive to derive an expression for v,
for a Maxwellian gas. An estimate of the values of these speeds gives us an idea about the
nature of molecular distribution. We obtain expressions for these now.

Average Speed The average speed is defined as

fvan,

v=L =%jdev (1.57)
[dn, °
0
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1.28 Thermal Physics

On substituting for dN, from Eq. (1.56), we get

32 5
7=L47I'N m _[v3 exp| — m_|ldy
N 2nkyT o kgT

The value of the integral on the RHS of this expression is

= 1

=—TI(2)
2(m/2kyT)

Since I'(2) = 1, the expression for average speed simplifies to

32
8k, T  [255k,T
V=47t( m ] 1 =\/ i =\/ L (1.58)

2mkyT 2 m m
m
2
(2kBT]

Root Mean Square speed You may recall that root mean square speed is defined as

2
Vims =NV

From Eq. (1.53), we recall that for a Maxwellian gas, mean square speed is related to
constant B. On substituting the value of B from Eq. (1.54), we get

— 3 3kT
Vv = —=

2B m

= [3k.T
Voms =V V2 =,/—B (1.59)
m

Note that Eq. (1.59) obtained for a Maxwellian gas is same as Eq. (1.13) obtained for an
ideal gas.

By comparing Egs. (1.58) and (1.59) for average speed and root mean square speed,
respectively, you will note that v,,,,. > v. This can be seen from Table 1.4, where we have
listed numerical values of root mean square speeds computed at STP for a few typical
gases based on Eq. (1.59).

Hence,

Most Probable speed Refer to Fig.1.10 again. The speed at which the Maxwellian
distribution function f, exhibits a maximum is known as the most probable speed and is
denoted by the symbol v,. To obtain an expression for most probable speed, we use the
elementary knowledge of calculus: At the maximum of a function, the first derivative with

respect to the independent variable is zero and the second derivative is negative. Therefore,

af,
we first calculate d—' using Eq. (1.56). This gives
v

3/2
df, 2
—f‘ =4 N m 4 v? exp< — my
dv 2mky T dv 2kgT
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B [ m? ) [ m? _2my
—C{Zvexp{ (2/(37“]}-‘) exp{ (2kBTH( 2kBT]} (1.60)

daf,
We now equate ({—' =0 and solve for v. This value will define v=v,.
y

mv? mv) 2mv,
Hence, 2v, exp| — +v? exp| - - =0
b 2kgT b 2kgT 2kgT

J-o

We can rewrite it as

my
2v, exp| - P p—_ vlz,
2kgT 2kgT

For a non-zero value of v, this equality will hold only if
m_ 2

1-—2 32 =
2k, T 7

or v =

Hence, the most probable speed of a Maxwellian gas is given by

[2k,T
VvV =
p n (1.61)

If you calculate the second order derivative of Maxwellian distribution function
and substitute the value of most probable speed given by Eq. (1.61), you will find that

a f,
dv?
The numerical values of average speed, root mean square speed and most probable
speed calculated for a few typical gases on the basis of Eqs. (1.58), (1.59) and (1.61),
respectively at STP are given in Table 1.4. You will note that root mean square speed of a

Maxwellian molecule is greater than its average speed, which, in turn, is greater than the
most probable speed. You can easily convince yourself thatv, : v : v, : 1:1.128: 1.224.

=—4. We leave it as an exercise for you.

Table 1.4 Valuesof v, v,,,.and v, for different gases at STP

rms

Gas v (ms™) Vyms (ms™) U (ms™)
H, 1695 1838 1501
H,0 567 615 502
N, 455 493 403
Air 447 485 396
0, 425 461 376
CO, 362 393 321
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To highlight the utility of the quantities discussed in this section, we now solve a few
examples.

IRl 1R For a Maxwellian gas, show that ¥ X (l] -4 .
v =m

Solution: We define (l] as
v

1) Lflgy
v) Nyv

32 5
=47 m jvexp | dvy
2nkyT o kg T

The value of the integral on the RHS of this expression is

1

1=2(m/2kBT)F(”

Since I'(1) = 1, the expression for (l] takes the form
v

_ 3/2
1 —4rx m 1 _ | 2m
v 2k T 2( m ] kg T

2k, T

, we get
- (1 8kgT
vx| L= /—Bx 2m__4
v mn nkpT &

1B G111 ] WIl Starting from Maxwell’s distribution function, obtain the expression
for pressure exerted by the molecules of a gas on the walls of the container.

Solution Let us assume that the molecular number density is n. Suppose that of these
molecules, a fraction f(v) dv has velocity components between v and v + dv and f(v) is
Maxwell’s distribution function.

From elementary mathematics, we know that the solid angle included between the polar
angles 6 and 6 + d@ is 2z sin 6 d6. This is a fraction (1/47x) 2z sin 6 d6, i.e., (1/2) sin 6
d6 of the total solid angle around a point. Hence, in unit volume, there are (n/2) sin 6 d@
f(v)dv molecules, which approach the surface between angles 8 and 6 + d6 and having
velocities in the range v and v + dv. The projection of their velocity perpendicular to the
surface will be v cos 6. Thus, the number of molecules hitting unit area of the container
surface per unit time is (n/2) sin 6 d6 v cos 8 f(v)dv.
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Each of these molecules has a component of momentum mv cos 6 normal to the surface.
So on rebound, the total exchange of momentum normal to the surface is 2mv cos 6.
Hence, the total rate of change of momentum per unit area per unit time communicated
by these molecules is

(n/2) sin 8dOv cos 6 f(v) dv(2mv cos 6) @)
But rate of change of momentum per unit area defines the pressure exerted by the molecules
on the walls of the container. So total pressure is obtained by integrating the expression
in (i) over all values of 8 and v. This gives

n/2 oo
p=mn _[ sin@ cos? 0 dejvzf(v) dv
0 0

We can easily show that
n/2 1

| sin@cos? @6 ==

o 3

and J’vzf(v)dv:v_2
0

You may now like to know if this definition holds for any f(v). Definitely not. We have
got v on the right-hand side only because f(v) is a probability distribution function (see
point 5 on page 1.26).

Hence, we obtain the desired expression for pressure exerted by the molecules on the
walls of a container:

1
=—mnv
k 3

IB Gl 1R Calculate the most probable speed, average speed and the root mean
square speed for oxygen molecules at 300 K using the following data: m(0,) =531 x 10726
kg and kz=1.38 x 10722 JK1.

Solution: From Egs. (1.58), (1.59) and (1.61), you will note that for calculation of all

’ kT
three speeds, we need the value of 5. Therefore, let us calculate this first.
m

kgT (1.38x107% JK™')x (300 K)
m 5.31x107% kg

k, T
Hence, B —28x%102 ms™!
\} m

v, =v2 x2.8x10*=395 ms™!
v=42.55 x2.8x10%>=446 ms!
and Vs =N 3 X2.8%10%=484 ms™!

=7.8%10* m? s

I G R Calculate the fraction of molecules of a gas within 1% of the most
probable speed at STP. Will its value be same for all gases at all temperatures?
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Solution: The fraction of molecules having speeds between v and v + dv is given by

312
dN 2

Y =4p| v? exp|—| 22— ||dv @)
N 2rkg T 2k, T

The most probable speed is given by

2ky T

m

Vp=

We can rewrite Eq. (i) in terms of the most probable speed as

dn, 2
_‘=LLX v2 exp _v_ dv (ii)

vV

Since v varies within 1% of the most probable speed, we can take v =, and dv=1.01v,

—0.99v, = 0.02v,. Hence, the fraction of molecules having speeds within 1% of the most
probable speed is

dN, 4 1
——=—=—x(0.02v,) exp(-1)
N v,
=wx exp(-1)
T

=0.045 exp(-1) = 0.0166.

We may therefore conclude that Maxwell’s law predicts that

1. About 2% molecules will have speeds within 1% of the most probable speed.
2. The fraction of molecules is constant; independent of temperature as well as the
nature of the gas.

IB Gl R B Calculate the temperature at which the root mean square speed of
hydrogen and oxygen molecules will be equal to their escape velocities from the earth’s
gravitational field. Take the radius of the earth as 6400 km.

Solution: The average kinetic energy of a gas molecule of mass m and root mean square
speed v, is

lm v = sz T

2 2

We also know that the escape velocity from the surface of the earth is given by
V= / 2 gR, , where g is acceleration due to gravity and R, is radius of the earth.

m
The kinetic energy of a molecule moving with escape velocity will be ?Vesz and we

3
can write EkB T =mgR,
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(a) For hydrogen molecules

m(H,) 2R,
T(H2)=§ ( kz)g 0
B
2 2
Here m(H,)=——=—=—kg,g=98ms 2 R,=64x 10°m and k,= 1.38 x 10°2 JK"1.
2 N, 6x10% 88 0 B
Hence,
9.8ms %) X (6.4x10® m
T(H2)=3><(#k ]x ( )X( ) =10.1x10° K
3 \6x10% 1.38x107 JK!

(b) For oxygen molecules

m(0,) gR
T(0,)=2"02 8k
3 ky

32
Since m(0,) =————— kg, we find that
> 6x10% §

T(0,) =2x

2 6
2 ( 32 k]x[(9.8ms )X (6.4x10° m)

6x10% 1.38x107% JK!
= 16T(H,)

]=161.6><103K

1511711/ (-3 WPIll Obtain an expression for the mean translational energy per degree
of freedom for the molecules of a Maxwellian gas.

Solution: For molecules constrained to move along a particular direction, say x-axis,
the distribution function is

f()dv, =Aexp(-Bv2)dv,

m
2k T

The average kinetic energy of molecules moving along x- axis is

where A=+/B/mand B=

— m bl
£, =?j v2fv,)dv,

—oco

On substituting for f(v,), the expression for average kinetic energy of molecules moving
along x-axis takes the form

€, = % | v,2 Aexp(~Bv,?)dv, = % x2A [v,? exp(-Bv,})dv,
~ 0

T
You may recall that this integral is > Bl3 > ranr)= 437 Hence, the expression for

average kinetic energy of molecules moving along x-axis simplifies to
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__mA\/;=m( m ]1/2\/;(2kBT]3/2=kBT

E. =
Y4B 2mkgT) 4 m 2

This result is consistent with the principle of equipartition of energy.

IDGIII R WY Determine the temperature at which speeds of nitrogen gas
molecules, v, = 300 ms™' and v, = 600 ms™' are associated with equal values of the
Maxwellian distribution function f,.

Solution: Let the temperature at which the two distributions (with v, and v,) are same
be T. Then, we can write

3/2
f =4nN| 2 e (M /2ksT) 2
" 2mky T !

and

32
f. =4nN m e—(mvg/szT)V%
" 2mky T

For f, =/,,, we can write
2
1%
2 e—(mvg 12kgT)

2
Vi

2
1%

_| 2 e—(mvg 12kgT)
Vi

Taking natural logarithm of both sides, we get

2 2
my \%Z my.
' —9m (_2] __ 2

v, ) 2kgT

e—(mvl2 12kgT) _

We can rewrite it as

v
n (v%—vf)=2ln 2
2k T v,

2 2 2 2
m(vy —vy) My —v)
so that = =

vy 1§
4kyIn| -2 | 4RIn|->
Vi Vi

_ (0.028 kgmol™")x (36 -9) x 10* (ms™)?
4% (831JK ' mol™')x In(2)

_0.028x27x10*
 4x831x0.693
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756X 102
T 23.03
=328K

Before proceeding further, you should answer the following practise problem.

1LY Wl Calculate the v, for neutrons and electrons at 300 K. Given

m,=1.675x 102" kg and m,=9.11 x 107 kg.
Ans: 2.723 x 10° ms™! ; 6.700 x 10* ms™!

So far we have confined our discussion to molecular distribution of velocities/speeds for
a Maxwellian gas at a finite temperature. Another physical quantity of interest is energy
of a gas molecule. Let us now learn about the energy distribution of a Maxwellian gas.

1.6 ENERGY DISTRIBUTION OF A MAXWELLIAN GAS

In pragmatic situations, we are frequently interested in the energy distribution function
rather than the distribution of speeds. This can be easily obtained by recalling that the
kinetic energy of a molecule of mass m moving with speed v is E = (1/2)mv?. We use this
relation to correlate the spread in speed with the spread in energy:

dE = mvdv

so that dv=(2mE)"'? dE (1.62)

We now assume that the number of molecules having kinetic energies in the range E to
E + dE is the same as the number of molecules having speeds in the range vto v +dv, i.e.,

dN;=dN, (1.63)

On substituting for v? and dv in terms of energy, we get

3/2
dN,=4aN| 2 (—2E)exp S
2k T m kg T 2mE

On simplification, we can write

12 3/2
dNE=2N(£) L | exp|——E_|dE (1.64)
7) kT kyT

This expression gives the number of molecules of a Maxwellian gas with energies in the
range E and E + dE. Hence, the energy distribution function, fg, of a Maxwellian gas can

be expressed as
AN 2 32
" =2N(£) L ep| £ (1.65)
dE /2 kgT kT
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Note that at a given temperature, energy distribution function is a product of square root
of energy and a decaying exponential. These features are depicted in Fig. 1.12 where we
have plotted f as a function of E/kpT.

Je A

0 > E/kBT

Fig. 1.12 Plot of Maxwellian distribution function for molecular energies.

Note that just like velocity distribution function, the energy distribution function also
exhibits a maximum. The energy corresponding to the peak value is known as most probable
energy, €,. Another physical quantity of great interest is mean energy. The expressions for
€ and ¢, are derived in following example.

I GRS EM Derive expressions for mean energy and most probable energy of
the molecules of a Maxwellian gas.

Solution: The mean energy of a molecule in a Maxwellian gas is defined as

oo

| EaNg

On substituting for dN from Eq. (1.64), we get

12 312 o
E=2(i) 1 _[Em exp __E dE
/2 kgT 0 kgT

To evaluate the integral on the RHS, we introduce a change of variable by defining x= E/kzT so
that dx = (kzT)"'dE. On substituting these results in the expression for mean energy, we get

L o
E=2(—) kBTJ’)cy2 exp (—x)dx
T 0

37

This integral is, by definition, I" (5/2) = 0 Hence, the mean energy of a Maxwellian

gas molecule is € = %ks T . This expression shows that the mean energy of a molecule of
an ideal monatomic gas at 273 K is 5.65 x 102! J. Similarly, hydrogen atoms will have

to be heated to about 7.9 x 10* K to excite them to their first excited state, which occurs
at 10.2 eV.
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To calculate the most probable energy, we differentiate the expression for probability
distribution with respect to energy and put the resultant expression equal to zero. That is

dfe
dE

=0

This for E = €,, We can write

4 [ _ _
dE[E exp( E/kBT)]_o

1L 1 n _ _
T _kBTg” exp( £, lkgT)=0
P

This equation will hold only if the term within the parentheses vanishes identically. This
leads to the required result:

kyT
8”=T

Note that

1. The mean energy of a Maxwellian gas molecule is three times its most probable
energy.

2. The values of € and ¢, do not follow from their definitions in terms of corresponding
velocities.

3. At a given temperature, the mean energy is same for all gases, irrespective of their
nature. At room temperature (7 =300 K), € =6.21 x 1021 T=0.0388 eV.

Yet another physical quantity of interest is momentum of a gas molecule. You may like
to express the Maxwellian distribution function in terms of momentum. The number of
molecules whose momenta lie between p and p + dp is given by

2
47N p 2
dN, =———exp|— p-dp (1.66)
" (2mmk, T )" l [2kaTﬂ

It is important to mention here that Maxwell’s law of distribution of velocities proved a
landmark in improving our understanding of the behaviour of ideal gases. But its direct
experimental verification remained elusive for quite some time, though several indirect
evidences were cited in its support. We will now discuss these in some detail.

1.7 EXPERIMENTAL VERIFICATION OF MAXWELL'S
DISTRIBUTION LAw

In science, no theory is accepted till such time that it is supported by experimental
evidences. In case of Maxwell’ distribution law, only indirect evidences were available till
1920. The finite width of spectral lines was cited as the first indirect evidence. Subsequently,
Sir Owen W. Richardson qualitatively explained the behaviour of thermionic emission of
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electrons by assuming that electrons behave as Maxwellian gas. (The exact explanation
though came when electrons were treated as fermions and Fermi—Dirac statistics was used.)
This was also interpreted as evidence in favour of Maxwell’s law. The first direct proof
of Maxwell’s law was given by Stern in 1920. His technique was subsequently modified
by Zartman and Ko. You will now learn about these and other more elegant experiments.

1.7.1 Indirect Evidences

Finite Width of Spectral Lines While measuring the wavelength of spectral lines of
mercury in your B.Sc Physics Laboratory, you must have used a spectrometer and a glass
prism or a diffraction grating. Did you obtain fairly sharp lines? Even if so, these have
finite width. We can understand their genesis as well as why their width is finite based on
Bohr’s theory and its underlying physical considerations.
We know that when energy is given to an atom in its ground state, electrons in its outermost
orbit jump to permitted higher orbits. If this energy is not enough to make electrons leave
the atom, they fall back to the lower energy states and the excess energy is emitted in
the form of radiation. When a stationary atom is excited, the wavelength of the emitted
radiation is determined only by the difference of the energies corresponding to the energy
levels involved in transitions. Hence, the width of the spectral line should, in principle,
be vanishingly small. That is, for a stationary atom, there is no broadening of the spectral
line. But in actual practise, we observe that a spectral line has finite width. This can be
understood if we assume that atoms move with finite velocities, obey Maxwell’ distribution
law of velocities and the frequency of emitted radiation changes on account of Doppler
Effect.

For an atom at rest, the frequency of radiation emitted by it when it returns to its initial
state is given by

Jo=->— (1.67)

If we assume that the atoms are moving freely, their frequency of radiation will be
influenced by Doppler’s effect. To calculate Doppler broadening, let us consider the motion
of an atom along the x-axis. If it moves towards an observer with velocity v,, the frequency

v
of the spectral line will change to f = f (1 + -2 |, where c is velocity of light. On the
c
other hand, if an atom moves away from the observer, the emitted frequency will be
v
T (1 ——=|. Since v, can have any value in the range O to e, we can conclude that an
c

atom can have all frequencies about f;,. It means that if Maxwell’s law for distribution of
molecular velocities holds, a spectral line can have infinite width. In practice, the number
of particles having large speeds is rather small and the intensity of a spectral line falls off
very rapidly about a central maximum.

We know that the frequency is inversely proportional to wavelength. Let us assume that

v
Jo (1 + i] corresponds to the wavelength A, F x. Then, we can write
c

-1
g —x=— 9 - 1+VL] (1.68)
Ve fo c
fo (“‘T]
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2
Using binomial expansion {(1 +x)y'=1-x+ x? - } and retaining terms only up to

first order in v, /c, we can rewrite Eq. (1.68) as

v
Ag—x=S- X
fo So
vX
so that xX=— (1.69)
fo

This result shows that spread of a spectral line is directly proportional to molecular velocity.
We also know that intensity of a spectral line is proportional to the number of molecules,
i.e., I =< N. Since the number of particles having velocity components in the range v, to
v, + dv, is given by Eq. (1.45a), we can write

my ?
dN, =NAexp AT dv,
P
B

so that intensity of spectral line along x-axis can be expressed as

I o1 my?
=1, exp| —
SR Y
On combining this result with Eq. (1.69), we get

mx2 f02
2kgT

I.=1, exp[— (1.70)
where [, = NA denotes the maximum intensity of radiation emitted by an assembly of N
stationary atoms.

Thus, we can express the intensity at half-width” as

I, mb? f,*
—_ = exp J——
I, 2kgT
Taking natural logarithm of both sides, we get
mb2 f2
In2= g
2k T
so that the half width b
=L\/2kBTln2=&\/2RTln2 a7
Jo m c M ’

where M = mN, is the molecular weight. We thus find that half-width of a spectral line is
inversely proportional to the square root of the molecular weight of the substance emitting
it. This implies that spectral lines in the hydrogen spectrum will be diffused, whereas
cadmium and mercury lines should be sharp. (It is for this reason that heavier nuclei are
used for precision work). This is in conformity with our observation and provided much
needed indirect support to Maxwell’s law.

* Actually, it signifies full-width at half-maximum.
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1.40 Thermal Physics

You should now go through the following example.

IDGIII B W WA Calculate the Doppler broadening in sodium line having wavelength
589 nm at 400 K. Take R = 8.31 kJ kmol™' K™! and atomic weight of sodium is 23.

Solution From Eq. (1.71) we recall that half-width of a spectral line is given by

A [2RTh2

T M
On substituting the given values, we get

be (589x107° m) |2x(8.31x10% JK'kmol!)x2.3x0.3010x (400K)
(3x10% ms™) (23 kg kmol™)
=8.78 x 10 nm

Thermionic emission of electrons by metallic filaments When a metallic wire
is heated continuously, electrons are emitted. By considering the electrons to behave as
a Maxwellian gas, Richardson obtained an expression for current density. Here we just
quote the result without giving any details:

j=cr? exp(—L] (1.72)
kgT
where ¢ is work function, T is the temperature of the filament and C is an arbitrary constant.
This equation qualitatively explained the process of thermionic emission and provided
indirect evidence in favour of Maxwell’s law.
The first direct experimental measurement was
made by Zartman and Ko. Let us discuss it now.

1.7.2 Direct Experiments

The first direct proof of Maxwell’s law was given
by Stern in 1920. His technique was subsequently
modified by Zartman and Ko. In 1947, one of the
most convincing and elegant experiments was
performed by Estermann et al. A more precise
measurement was reported by Miller and Kus in
1955. We now discuss these experiment in some
detail.

Zartman and Ko experiment The apparatus
used by Zartman and Ko is illustrated in Fig. 1.13.
A beam of bismuth molecules, produced in an oven,
was collimated by a series of slits S, S5, S5. A glass
plate P fixed inside a cylindrical drum, which can
be rotated at a high speed, about an axis passing
through its centre, was used to collect bismuth
molecules. (Instead of the plate, a photographic

Fig.1.13 A schematic diagram
of the apparatus used
by Zartman and Ko to
verify Maxwell’s law for
distribution of molecular
velocities.

40 @ 5/2/2012 5:06:39 PM




TP_01.indd

Ideal Gases: Elementary Kinetic Theory and Maxwellian Distribution 1.41

film could also be placed). The entire apparatus was placed in an evacuated chamber. Note
that the molecules could enter the drum only when the slit S crossed the molecular beam.

When the drum is stationary, the beam will strike the glass plate at a particular spot,
A, say. As the drum is rotated clockwise, the glass plate moves towards the right and the
faster moving molecules entering the cylinder will strike it to the left of A, the point of
impact when the cylinder was stationary. Suppose that the slower molecules reach the plate
between B and C. These features are illustrated in Fig. 1.14.

Slit

A ‘pulse’ of molecules
is ‘cut’ from the beam

Fig. 1.14 Spread of deposit across the plate.

The ‘pulse’ spreads as
it crosses the drum

Slit

Slit

(O (O

The molecules are smeared

out along the plate

The density of deposit across the plate gives a measure of the velocity distribution of
molecules. A schematic representation is shown in Fig. 1.15.

Zero mark

Blackening of plate

Plate

Theoretical

Position across plate relative to zero mark

Fig. 1.15 Data on density of deposit obtained in the rotating drum experiment of

Zartmann and Ko.

The results obtained by Zartman and Ko
are shown in Fig. 1.16. As may be noted, the
agreement between theoretical and experimental
values is surprisingly good.

Estermann, Simpson and Stern
Experiment Refer to Fig. 1.17. It depicts
a schematic diagram of the apparatus used by
Estermann et al. The atoms are deflected by grav-
ity only, i.e., use is made of the free fall of the
molecules in a beam. A molecular beam of cesium
emerges from the oven placed in a long, highly
evacuated chamber (p ~ 10~ mm of Hg). It is made
to pass through the collimating slits and impinges

41 @

Density of deposit

xxx Experimental
——Theoretical

Speed

Plot of the density of
deposit as a function of
molecular speed.
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Fig.1.17 A schematic diagram of the apparatus used by Estermann, Simpson and Stern.

on a hot tungsten wire D. The cesium atoms striking the wire get ionised and leave the
wire as a positive ion. These are collected by a negatively charged cylinder surrounding
the wire (not shown in the diagram). The current in the collecting cylinder gives a measure
of the number of cesium atoms striking the detecting wire per unit time.

In the absence of gravitational field, all atoms emerging horizontally from the oven would
pass through the slit S, travel without any deviation and strike the collector at P, irrespective
of their velocities. However, due to gravitational

field, each atom emerging horizontally would 201
behave as a projectile and follow a parabolic path.

Atoms proceeding along path 1 (speed v;) would

reach the collector at P, and those proceeding along 15¢
path 2 (speed v,) would reach the collector at P,.

The measurement of the ion current as a function of %’ 1ok
the vertical height of the collector gives a measure  §

of the velocity distribution. E

As may be seen from Fig. 1.18, the agreement sk
between theoretical predictions and experimental
results is exceedingly good.

In 1955, Miller and Kusch reported a still more o+ 1+ 11
precise measurement using a beam of thallium 02 06 10 14 18
atoms. Their results show that the velocity distri- vy
bution of thallium atoms agrees with the theoretical ~ Fig. 1.18 Variation of ionisation
predictions to within 1% current with (v/v,).

¢y ADDITIONAL EXAMPLES

IO ER At what temperature is the rms speed of hydrogen molecules equal
to twice of that of oxygen molecules at 63°C? It is given that oxygen molecule is about
16 times heavier than a hydrogen molecule.

Solution: From Eq. (1.13), we can write

RT=Lpm?

3 rms
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M2
or 3R=—"12°
T

It shows that
write M Vims

is constant . If T is the required temperature of hydrogen, we can

T _(@273+63)K 336K
My, (2V)’ M, v; 16 My Vi

rms
On simplification, we get
4x336)K
p 4X30K
16
Required temp. = (84 — 273)°C =-189°C.

m Calculate the rms speed of methane at 20°C and pressure of 5 atm.
Take 1 atm = 10° Nm™2.)

(

Solution: Let the volume of the gas be V litre under the given conditions. We know that at
STP, i.e., 0°C (=273 K) and 1 atm pressure, the volume occupied by one mole of an ideal

or =84K

14
gas = 22.4 lit. Therefore, using the ideal gas equation of state, pT = constant, we can write

(latm)x (224 litmol™')  (5atm)x V

273K T (20+273)K
293x224
or =———lit mol
273%5

We know that atomic weight of carbon is 12 and that of hydrogen is 1. So the mol. wt. of
CH,=12+1x4=16.

) 16 gmol™!
Density p=————
V lit mol ™!

- 16 g lit™!
293x22.4

273%5

16x273x5 3
=——gcm
293%22.4x10°
=3.328x102 gem>=3.328kgm™.

Hence, the root mean square speed is given by

/3 3x(5x10° Nm™
Vims = 7}7 =\/ ( ) =\]4507X102 ms‘l

3.328 kgm™
=6.71 x 10> ms™"
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1501 11 Rl Calculate the number of molecules in (a) 1 litre of an ideal gas at
300 K and 1.5 atm pressure. The mean K.E of a molecule at 300 K is 4 x 10~ J, and
(b) a room of size 5m x4 m x 3 m (1 atm = 10° Nm™2).

Solution: (a) From Eq. (1.8), we recall that pressure exerted by a gas is given by

|
=—mnv
b 3
On arranging terms, we can write
éP éP
_3p _ 2" 2
n= — = —=—
mv2 lmv2 €
2

where € = %m v? is mean energy. On substituting the values of p and &, we get

- 1.5x10° Nm™2
4x107!" Nm

To calculate the number density per litre, we write

=3.75%x10” m™

g2 375108 _ 3.75x10"
1 m’ 106 cm?

so that
n=3.75x 10" per 1000 cm®
or
n=3.75x 10'? per litre
(b) Since one mole occupies 22400 cm?, the number of molecules

60 m®

=ﬁx6.023x1023=1.61x1027.
(22.4%107% m?)

I 01 IR Wl 1.29 litre of a perfect gas weighs 2.7 X 107> kg at 18°C and 1 atm

pressure. Compute its rms speed. Use 1 atm = 10° Nm~2 and R = 8.31 Jmol™' K™\

’ 3kT |
Solution: We know thatv, = B _ % . Therefore, to determine v,,., we must
m

know M. To do so, we recall the equation of state of a perfect gas:

pV=URT
_pv
k="t

and

_m_ mRT _(2.7x107 kg)x(8.31 Jmol'K™")x(18+273)K
u o pv (10° Nm2)x(1.29x10% x107% m3)

M

TP_01.indd 44 @ 5/2/2012 5:06:39 PM




Ideal Gases: Elementary Kinetic Theory and Maxwellian Distribution 1.45

M =0.05061 kg mol™!

/ 3% (8.31 Jmol 'K )% (291K
Vims = 3RT = ( ) ( ) =378.6 ms‘l.
M 0.05061 kg mol™!

(a) Two ideal monatomic gases at temperatures T, and T, are mixed
so that there is no loss of energy. If the masses and the number of molecules of the two
gases are m,, m, and n,, n,, respectively, calculate the temperature of the mixture.

(b) Solve the above problem if the gases are polyatomic and the degrees of freedom of
the molecules of the first and second gas respectively are f; and f,.

Hence,

Solution: (a) K.E. of the first gas E; = %"1 kT,

and K.E. of the second gas E, = %nz ks T,

Total K.E. of the molecules of the gases before mixing
E +E, =%kB T, +n,T,)
Let the temperature of the mixture be T after attaining equilibrium. Then, we can write

K.E. of the first gas = %nl kT = E/ (say)
and K.E. of the second gas = %nz kg T = E; (say)

Total K.E. = E/ +EJ = %kB (n, +n,)T

As there has been no loss of energy, we have
3kg 3kg
T(nl + le)T =T(anl +n2T2)

or
nT +n,T.
= Ry

n, +n,

(b) For polyatomic gases, whose molecules have f; and f, degrees of freedom, the
expressions for E; and E, would be modified as

E, =f?lnlkBT1 , and E, =f72n2kBT2

kg
E +E, =7(fl”1T1 +4LnTh)

Again, after mixing, we can write

El'=f7'nlkBT, E] =Zn,kyT
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’ ’ kB T
El +E2 =T(Yl1f1 +n2f2 )
Hence, conservation of energy leads us to
kg T kg
T(nlfl tmfy) =7(f1anl thHmT),

or

T AT+ HnT,
nfi+n,f

Use the result of Example 1.17 to work out the temperatures of
mixture in the following cases:

(a) One gm mole of argon at 40°C is mixed with one gm mole of helium at 56°C.

(b) One gm mole of oxygen at 27°C is mixed with two gm mole of helium at 127°C.

Solution: (a) Since both gases are monatomic, we can write

nT +n,T
A S
n, +n,
Here, T, = (40 +273) K=313 K, T, = (56 +273) K=329 Kand n,=n, =1
=1><313+1><329K=313+329K=64_2
2 2 2
T=321 K=(321-273)°C=48°C

T K

(b) Since oxygen is diatomic and helium is monatomic, we have

T=f1”1T1 +hHhmT,
nfi+n,f,
Here,f,=5,f,=3,n,=1,n,=2,T,=27+273) K=300K, T, = (127 +273) K=400 K
1 2 1 2 1 2
T=5><1><300+3><2><400K
I1x5+2%3

_ 15001+12400K= 3?(1’01(:354.51(

=(354.5-273)°C=81.5°C.

1.1 ER 10 ¢ hydrogen is kept enclosed in a vessel at a temperature of 47°C.
Calculate the quantity of heat required to increase the rms speed of its molecules by three-
fold. Take R=8.31J mol™' K"

Solution: We know that

vrms o< \/F
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(vrms)2 — T_2
(vrms)l Tl
or
L,
T
T,
= —=9 or T, =9T
T
Since
T,=47°C=(47+273) K=320K,
it readily follows that

T,=9%x320K=2880 K

Since the gas is kept in a closed vessel, it absorbs heat at constant volume. Therefore, we
can write

Q=uCT, - T)) =uCy OT, - T)) =8uCyT,
8m
=—20C,T,
0="1¢,1,
where m is mass of the gas, and M is molecular weight. We can rewrite this expression as
=—Xx=—"—XT,
@="y 7 xh

=20%><R><T1

10g o
—20x——8 % (831 Jmol ' K~')x (320K)
2 g mol™!
=10x10x8.31x320]J

=2659201J

- 265%%1 = 63314 cal.

The measurement of v, of particles of mass 5.9 x 1077 kg
suspended in a liquid maintained at 27°C shows that they move with v, = 1.45 X
102 ms!. Calculate Avogadro’s number N, using the principle of equipartition of energy.
Given R =8.314 JK™' mol™".

Solution: Since the particles move in a liquid, they execute translational motion only.
Therefore, from Eq. (1.12), we can recall that
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_ 3R
2N,

- ; Ly 2 = KT
niermsorv,__ ., E=—m(V =—
rms 2 rms 2NA

3RT

= N,= >

m(vrms)

On substituting the given values, we get

_3x%(8.314 JK'mol™")x (300K)
A (5.9%10717 kg)x (1.45x1072)2 m?s2

_ 24.942 %300 J mol™!
(5.9%10717 kg)x2.10x107™* m?s2

_ 7482.6 kgm’s>mol '
12.39x107%" kgm?s72
=6.03 x 10 mol™

IDGUNICH BRI Calculate the value of v, for which the probability of a molecule
having x-velocity component falls to half of the maximum value.

Solution: The probability of a molecule having x-velocity component between v, + dv,
is given by

172 2

m mvx
v )dv, = exp| — dv
Fvodv, (27ckBT] p[ 2kBT] *

Obviously, the maximum value of f(v,) is

1/2
_ m
fma"(v")_(anBT]
Jmax (V)

Hence, for f(v,)= T, we can write
172 172 2
1 m _ m mvx
—_ = exp p—
2\ 2mkg T 2mkgT 2kg T

On simplification, we get
1 mv;
—_ = exp p—
2 2k T
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On taking natural logarithm of both sides, we get
my?

-In2=- .
2k T

IO EM Calculate the temperature at which (a) root mean square speed of

oxygen molecules exceeds their most probable speed by 150 ms™! and (b) the molecular

distribution function for oxygen will peak for 400 ms™'.

Solution: (a) We know that for a Maxwellian gas

3kgT
vrms = m
2kg T
and v, =
m

Hence,
3k, T 2k, T
v,ms—vp=150ms‘1=1/ B —1’ B
m m

On squaring both sides, we get

kT
22500 m?s2 =37(\/§—\/§)2

MU
m

Hence,

mx (22500 m?s72)

T =
ks (5-2+/6)
Since
a 32 kg

6.023%x1072¢

we get

e (32 kg) x 22500 (ms™! )?
6.023x10% x (1.38x10723 JK1)x (5-2+/6)
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_ 720 K
8.312%(0.101)
=858 K
. . . 2kg T
(b) The molecular function attains maximum value at v, = . Therefore, by
m

rearranging term, we can write

mvy (32 kg) X (400 ms™)?
2ky  2x6.023x10% x(1.38x107% JK™)
_512x10* x107

2x8.312
=308 K

T=

I Gl EM Nitrogen molecules obey Maxwellian distribution law and their

mean energy is 15.6 x 1072! J. Calculate their mean speed.

Solution: The mean speed of a Maxwellian gas v = . Therefore, to determine v,

mn
we must know kT To this end, we recall that nitrogen is a diatomic gas and its molecules

have five degrees of freedom. Hence, its mean energy = ng T= %kB T=156x10721]

so that ky T = 2x15.6x 1072 T =6.24x1072" J.

The mass o% nitrogen molecule m = 28 g
6.023x10%

_ [8x%(6.24x107%! J)x(6.023x10%) I
v= =5.85%x10° ms

(28 kg)x3.14

1.1/ B KBl Tn a nuclear fusion reactor, deuterium nuclei fuse if their average
energy is 0.72 MeV. Calculate the temperature required for nuclear fusion to occur.

Solution: The average Kinetic energy

3
e==k,T
2 B

= 7-2¢
3 kg

2., (0.72%x10° eV)x(1.6x107"° Jev!)

3 1.38x1072 JK!
=559%x10°K

That is, nuclear fusion can occur at a temperature of about 5.6 billion kelvin. Such
temperatures occur in the core of the Sun. Therefore, in producing energy by nuclear
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fusion, we have to reproduce conditions existing in the interior of the Sun. This anyway is
a challenging task. But now we are very close to achieving it using extremely sophisticated
technologies.

14 g of N, and 4 g of He are mixed in a thermally insulated container.
What will be the rms speeds of N, and He molecules after equilibrium is reached, if their
rms speeds before mixing were respectively 500 ms™! and 1500 ms™'? The molecular
weights of nitrogen and helium are respectively 28 and 4.

Solution: If we denote the degree of freedom of a gas molecule by f, then its average
energy is given by
f

e=—k,T
2 B

Let v, be the rms speed at temperature 7, then we can write

— 3k, T

or kBT=%mv

where m is mass of a molecule.

If the gas has n molecules, then its total energy will be

E=n£=£mn 2 =£Mv2
6 6

where M is total mass of n molecules.
Now, for nitrogen we have

=J3=]J;, Ssay, = g, V = ms~ =V, say, an = g.
5=f, My =14 e =500ms =y, dM, =28

v

Thus, the total energy before mixing is E, = %MN V12

For helium, we have
f=3=f, say, My, =4g, v, =1000ms"'=v,, and M,=4g.

Thus, the total energy of helium before mixing is E, = %Mm v}
The total energy of both the gases before mixing is
1
E, +E, =g(f1MN vl + My, v; )

Now let the rms velocities after mixing be v, and v,, for nitrogen and helium, respectively.
So the total energy after mixing is given by

1
g(flMN Vi +f, My, "%2)
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Using the principle of conservation of energy, we can write

é(flMN vi +f, My, v ) =%(flMNV121 +fo My, v3, )
or
(flMNvl2 +f, My, v; ) (flM Vi + o, My, sz)
On putting the values of various quantities, we get
5%(14 g)x (500ms™")* +3x (4 g)x (1000ms™")* =5x (14 g)x v +3x@ g)v3,
or 70vE +12v3, =29.5x10° m*s~>
or 35v121 +6v§2 =14.75x10° m?s72 @)

In the mixture, under equilibrium conditions, the molecules of both gases will be at the
same temperature, say 7. Therefore, we can write

1 2 _ 1 2
RT=§M1V11 =§M2"22
so that
2
Vi1 2 _4g 1

v =TV (ii)
From Egs. (i) and (ii), we get
35v4 +6x7vY =14.75x10° m?s7?

or 77v} =14.75%10° m?s~?
p2 = 1475 0106 m2g
77
v = 473510 ms =437.7 ms!
77

From Egq. (ii), it readily follows that
vy, =v/7v;, =1158.0 ms™!

V,,, fOT nitrogen and helium are respectively 437.7 ms™! and 1158.0 ms™!

Let us now sum up what you have learnt in this chapter.
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4 SuMMARY
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The pressure exerted by the molecules of a gas on the walls of a container is given

13
by p=—mnv- .
yp 3

The root mean square speed of a gas molecule is given by

[= /3RT PksT
Vims =V V2 = M N

At absolute zero temperature, gas molecules are devoid of all motion.

The law of equipartition of energy states that thermal energy is equally divided
amongst various active degrees of freedom of a molecule and its magnitude is kz77/2.

For a monatomic gas, the molar heat capacity at constant volume, molar heat

capacity at constant pressure and their ratio are given by C,, = %, C,= % and

Y= g =1.67 . For a diatomic gas, the corresponding values are C;, = %, C,= %

and y= 1.4. The ratio of molar heat capacities decreases with increasing atomicity
of gases and their ratios are independent of temperature.
The distribution of molecular speeds is given by Maxwell’s law:

2

% _[ my ]
] e \FRT) 32 gy
The root mean square speed, the average speed, and the most probable speed are

. . 3kgT _ 2.55ksT 2k T
respectively given by v, = ,V= and Vy=a— As may
m m m

benoted, v, _>V> v,

* “rms

dN,=4rN
kg T

The number of molecules of a Maxwellian gas with energies in the range E and
E + dE is given by

12 372
dNE=2N(£) L | exp| £ |dE
x) \k,T kT

The average energy of a molecule obeying Maxwell’s law is € = %k T .

The intensity of Doppler-broadened spectral line at half-width is given by

I, mb* f,?
—=2=exp
I, 2k;T

The half-width of Doppler-broadened spectral line is given by

fo

1\/2kBTln2 A [2RTIn2
m c '
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EXERCISES

Explain the following on the basis of kinetic theory of gases: (a) Thermal expansion,
(b) Evaporation and the subsequent cooling of the residual liquid and (c) lower
temperature in upper atmosphere though solar radiations incident directly raise its
kinetic temperature to about 1000 K.

Estimate the time that a nitrogen molecule moving at rms will take in travelling
across your lecture theatre of length 10 m. Assume that it does not undergo any
collision. (Ans: t=0.02 s)

A parallel beam of nitrogen molecules moving with velocity 400 ms™! impinges on
a wall at an angle of 30° to the normal. If n = 9 x 10?* m=, calculate the pressure
exerted by the beam on the wall assuming that the molecules suffer elastic collisions.

(Ans: p = 1 atm)
A gas composed of 10° carbon atoms has a Maxwellian velocity distribution at
T =300 K. Determine the number of atoms having velocities between (a) 100 ms™
and 101 ms™!, (b) 300 ms~! and 301 ms™!, and (c) 1500 ms~! and 1501 m~!. Express
your results up to two significant figures. (Ans: (a) 83; (b) 613; (c) 82)

Show that the root mean square value of the Cartesian v, of molecular velocity is

equal to / P/P , which defines velocity of sound.
Calculate the temperature at which the root mean square velocity of hydrogen
molecules will exceed their most probable velocity by 400 ms™'. (Ans: 384K)
Express Maxwell velocity distribution function in terms of u = v/v,,.

(Ans: dN = %uz exp(—u?)du)

n

Calculate the ratio of the velocity of sound in a gas to the rms velocity of its molecules
if the molecules are (i) monatomic and (ii) diatomic. (Ans: 0.75; 0.68)
At what temperature will the average speed of hydrogen molecules be the same as
that of nitrogen molecules at 308 K? Take molecular weight of nitrogen as 28 and
that of hydrogen as 2. (Ans: 22 K)
Starting from Eq. (1.71), calculate the Doppler broadening of hydrogen line having
wavelength 486.1 nm at T=400 K. Use k= 1.38 x 102 JK~! and mass of hydrogen
atom as 1.6725 x 10" kg. (Ans: 345.8 x 107> nm)
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2 MEAN FREE PATH AND
TRANSPORT PHENOMENA

8 Learning Objectives

In this chapter, you will learn how to

e define mean free path and derive an expression when all molecules move
with the same average speed;

e describe the law of free paths and explain how it is used to measure mean
free path;

e derive an expression for the coefficient of viscosity and discuss its
temperature/pressure dependence;

e obtain expressions for thermal conductivity and coefficient of self-diffusion

and relate these to the coefficient of viscosity and mean free path, which are
measurable quantities;

e explain the significance of Brownian motion and obtain expressions for
the mean square displacement on the basis of Einstein’s and Langevin’s
theories;

e discuss examples of Brownian motion in physics; and

e describe Perrin’s experiments and discuss their significance for kinetic
theory of gases.

2.1 INTRODUCTION

In the previous chapter, we considered a gas in a state of equilibrium and calculated
the pressure exerted by it on the walls of the container as well as the probability that
a molecule has velocity components in a particular range. We know that if a system is
not in the equilibrium state, it has inherent tendency to approach it. Therefore, a logical
question arises: How does a gaseous substance, initially in a non-equilibrium state, attain
equilibrium? Further, you have learnt that molecules of an ideal gas behave as point masses,
which move randomly and obey Maxwell’s velocity distribution law. We have also seen
that even at room temperature, the molecules of oxygen move with very large speeds;
V. =480 ms~!. If this were true, a small amount of gaseous mass released in a large room
from a vessel should spread throughout the room in no time. But this is not supported
by common observation; when we open the lid of a perfume bottle in one corner of the
room, the odour can be smelt at the other corner after a considerable time. This apparent
paradox raised a serious question mark on the kinetic theory of gases in its early stages of
development. In fact, prominent scientists were reluctant to accept the realities of the atoms
and molecules. The German physicist, Wilhelm Ostwald regarded the atoms as a merely
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hypothetical conception that afforded a very convenient picture of matter. Similarly, Ernst
Mach maintained that atoms and molecules must be treated as convenient fictions. However,
Clausius was convinced about the molecular nature and gave a simple explanation to the
question of time taken by the odour to spread in a room. He argued that gas molecules
have finite size and as they move, they collide with one another and increase the diffusion
time. (This amounts to modifying the basic assumption about the size of molecules.) It also
implies that a gaseous system attains equilibrium through molecular collisions. You may
now like to know: What is the average distance travelled by a molecule between successive
collisions? What is the mechanism of these collisions? How frequently do these collisions
occur. A careful consideration of these aspects leads us to the concept of mean free path.

In Sec. 2.2, we have obtained expressions for the mean free path under the assumption
that all molecules move with the same average speed. You will notice that this will help us
to get an insight into the basic physics of molecular collisions. (If we consider Maxwell’s
distribution law to calculate relative speeds, mathematical steps get quite involved.
However, those of you who are interested in rigorous analysis, see Appendix 2.) The
distribution of free paths and the experimental determination of mean free path are also
discussed in this section.

The non-equilibrium state of a gas can arise due to its mass motion in a particular
direction. Suppose that a gas moves with a flow velocity towards the right. In addition, if
its molecules experience velocity gradient in a direction normal to the direction of flow,
there is a net transport of momentum across an imaginary plane in the gas along the
direction of mass motion. This is characterised by the coefficient of viscosity. You will
note that in gases, unlike the case of liquids, random thermal motion associated with gas
molecules gives rise to the phenomenon of viscosity. (In liquids, frictional force between
successive layers causes viscosity.) In Sec. 2.3.1, you will learn to derive an expression
for the coefficient of viscosity in terms of mean free path and discuss its temperature as
well as pressure dependence.

When a gas endowed with mass motion experiences temperature gradient in a direction
perpendicular to the direction of flow, gas molecules lead to net transport of thermal energy
in the direction of flow. This gives rise to the phenomenon of thermal conduction, which
is characterised by thermal conductivity. You will learn to correlate it with the coefficient
of viscosity in Sec 2.3.2. When concentration gradient exists inside a gas normal to the
direction of flow, there is net transport of matter (mass) in the direction of preferential
motion. This is characterised by the coefficient of diffusion. You will learn to derive an
expression for the coefficient of diffusion in terms of mean free path and discuss its
temperature dependence in Sec. 2.3.3. These processes (viscosity, thermal conduction
and diffusion) are collectively referred to as transport phenomena, since we observe net
transfer of momentum, energy or matter.

In spite of visible success of kinetic theory model, there was no way to visualise it till
the observations of English botanist Robert Brown on small pollen grains suspended in an
aqueous solution. His experiments provided us a way to visualise the gaseous state. In fact,
Brownian movement is taken as the first direct evidence in favour of kinetic theory of gases
and the observations did put the theory on very firm foundations. In order to appreciate
its importance, we have given a phenomenological treatment of Brownian motion due to
Einstein and Langevin in Sec.2.4. In this section, we have also discussed a few interesting
examples of Brownian motion. This is followed by a discussion of Perrin’s experiments.
The random walk problem, which provides models for numerous applications in physics,
including Brownian motion, is discussed in Sec. 2.5.
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2.2 MEAN FREE PATH

You may recall that in deriving an expression for the pressure exerted by the molecules of an
ideal (perfect) gas, we regarded gas molecules as point masses (Assumption 2, Sec.1.2) and
ignored intermolecular collisions. This provided very satisfactory explanation of vertical
distribution of gases in our atmosphere. We have also seen that even at room temperature,
the root mean square speed of air molecules is about 480 ms™'. It means that a given mass
of a gas released in a large room from a vessel should spread throughout the room in no
time. This however does not happen in practise; when we open the lid of a perfume bottle
in one corner of the room, the smell reaches the other corner after a considerable time.

To explain the finite time taken by
a gaseous mass in an open container to
disperse, Clausius traced the discrepancy to
the assumption of ‘point” molecules, which
is equivalent to ignoring intermolecular
collisions. Clausius suggested that slow
diffusion of a gas is due to finite, though small,
size of gas molecules. He argued that when
a gas molecule moves in the body of the gas
under equilibrium conditions, it necessarily
collides with other molecules it encounters
in its path. As a result, its direction of motion
changes frequently. This results in a series of
zigzag paths as shown in Fig. 2.1. The path
covered by a molecule between successive
collisions is called a free path. Note that in
Fig. 2.1, AB, BC, CD, etc., are all free paths.

To visualise the concept of free path, suppose that you are participating in a rally,
which somehow turns unpleasant. The police resort to bursting tear gas shells to disperse
the mob. While running for cover to safety, you are bound to collide with other people.
In the course of your retreat, you are likely to change your direction quite frequently
and randomly. A trace of your steps will resemble the motion of a gas molecule within
the gas.

Let us examine Fig. 2.1 carefully. You will notice that free paths are of unequal length;
some are short while others are long. The average length of free paths is referred to as mean
free path. Thus, mean free path is the average distance travelled by a molecule between
two successive collisions. We denote it by the symbol A (pronounced as lambda). If 4,,
Ay, A, ... Ay denote the successive free paths traversed in time # and N is the total number
of collisions suffered in this period, we can write

M+, + 2+ + 4y
- N
Total distance travelled

Fig. 2.1 The trajectory of a molecule
moving in a gas: Molecular free
paths.

A

- Total number of collisions

If v is the average speed with which a molecule moves in the body of the gas, then we
can write
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A=— 2.1)

Under normal conditions, the mean free path is about 2 x 10”7 m, which is smaller than
the wavelength of visible light (4 x 107" m — 6 x 10”7 m) but greater than the average
intermolecular separation (3 x 10~ m).

t . . ..
If 1(= ﬁ) denotes the mean time between two successive collisions, we can also

write

v
.
Here P, = (17!) denotes the collision frequency, which is a measure of the average number of
collisions per second. You may now ask: How can we relate A to the microscopic properties
of a gas? To answer this question, we make an elementary calculation.

A=vr= (2.2)

2.2.1 Expression for Mean Free Path

Consider a gas consisting of a large number of molecules, each of mass m and diameter d,
which undergo random collisions. Mathematically speaking, we can say that the probability
that a molecule suffers a collision in a small interval of time df is independent of the history
of past collisions. As a simple analogy, we can consider the throwing of a dice. In this
case, the probability of getting a six does not depend on the preceding throw, where a six
may or may not have appeared.

Expression for P, We shall make this calculation in two simple situations: (i) When
only one molecule is in motion and (ii) When all molecules are moving with an average
velocity. We have referred to these as Zeroth and First order approximations, respectively.
You will realise that essential physics involved in this phenomenon can be understood well
through simple arguments.

Zeroth order approximation: Only one molecule in motion We assume that
only one molecule moves with speed v in a sea of other molecules, which are assumed to
be at rest, i.e., all molecules of the gas except one are frozen.” (It means that the relative
speed of one molecule with respect to any other molecule is v).You can easily visualise
that for a collision to take place, the centre-to-centre distance between the moving and a
stationary molecule should be equal to the diameter d of a gas molecule as shown in Fig.
2.2(a). Note that the centre-to-centre distance at the time of collision between a moving and
a stationary molecule will also be equal to d when the stationary molecules were shrunk
to geometrical points and the radius of the moving molecule is increased to d as shown
in Fig. 2.2(b). We can visualise this as if the moving molecule carries with it a circular
disc of radius d. Therefore, in time ¢, it can be thought of as sweeping out a cylinder of
cross sectional area 7zd” and length vt. This is illustrated in Fig. 2.2(c). (The quantity 7zd”
is also termed as the microscopic collision cross section and is usually denoted as o.)
During time ¢, it will collide with all other molecules whose centres lie within a cylinder
of volume vt 7d?.

If there are n number of molecules per unit volume, the number of molecules contained
in the cylinder of volume vt d” will be equal to vt td’n. Note that this number is also equal

* As such, this is a purely hypothetical situation. Nevertheless, it brings out the essential physical ideas.
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(a) (b) ~< vt >
©
Fig.2.2 (a) Collision of two molecules of radii r: Instantaneous representation,
(b) Equivalent representation of collision depicted in (a) where radius of the
moving molecule is increased to d = 2r and the stationary molecule is shrunk a
geometrical point and (c) Cylindrical volume swept out by a molecule of radius 2r
and moving with speed v in time t.

to the number of collisions made by the moving molecule in time ¢. Hence, the number of
collisions per second defines the collision frequency:

P =vmd*n=nov (2.3)

Substituting this result in Eq. (2.2), we get
a=r- L 1 2.4)
P nd2 n On

c

where o is microscopic collision cross section. It is expressed in m2. The quantity no is
called macroscopic collision cross section. Note that the unit of macroscopic collision
cross section ism™!, i.e., reciprocal length, not an area.

Equation (2.4) predicts that mean free path is inversely proportional to the macroscopic
collision cross section, i.e., number density and second power of diameter of the molecule.
It means that mean free path will be less for a denser and/or a heavier gas. This is in perfect
agreement with common observation and lends support to the basic tenets of kinetic theory.
You may now logically ask: What is the typical magnitude of mean free path in a gas at STP?
The answer to this question is contained in the following example. Go through it carefully.

ID GV A hydrogen molecule of radius 1.37 x 107'° m moves with speed

1840 ms™!. Calculate its (i) microscopic collision cross section, (ii) collision frequency
and (iii) mean free path. Take n =3 x 10® m™.

Solution:

(i) Since radius of a hydrogen molecule is 1.37 x 107'® m and number density is
n =3 x 10% m3, we can calculate the microscopic collision cross section using the
relation

o=nd*=4nx(1.37x107'%)? m? = 23.6 x1072° m?
(ii) To calculate collision frequency and mean free path, we use Egs. (2.3) and 2.4):
P, =nd*nv=nvo
=(3x10” m>)x (1.84 x 10* ms™) x (23.6 x 1072 m?)
=13x10"s7".
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1 1
nnd?  (3x10% m3)x(23.6x1072° m?)
Note that the number of collisions per second is of the order of 10'°, which is a very large
number. For this reason, the path of molecule is made up of so many kinks and zigzags

that it is almost impossible to follow its trajectory. Also note that A is large compared to
intermolecular distance, which is only a few angstroms (= 3 nm).

(i) A= =14%10" m =140 nm

Recall that using the ideal gas equation, we can express the pressure exerted by a gas in
terms of its temperature as

p=nkgT

On using this result to substitute for # in Eq. (2.4), the expression for mean free path takes
the form

kgT

A=——o (2.5)

op
This result is very interesting; it predicts that mean free path is directly proportional to
absolute temperature and inversely proportional to the pressure exerted by the gas on the
walls of the container. It means that A will increase as pressure decreases and/or temperature
increases. Now suppose we reduce pressure to a very small value using a vacuum pump.
According to Eq. (2.5), the mean free path can approach infinity. In actual practise, the
value of A can equal the dimensions of the container. This finds an interesting application
in producing well-directed molecular beams for research in nuclear reactors and particle
accelerators. For this reason, a proton is able to travel nearly 27 km in Hadron Collider
Experiment conducted at CERN to search Higgs bosons.
As such, the analysis based on zeroth approximation seems rather artificial in that it
does not account for the motion of all the molecules of a gas. Therefore, a slightly better
representation of the actual situation will be to assume that all molecules move with the
same velocity V. Let us now discover how this will modify Eq. (2.4).

First order approximation: All molecules in motion Refer to Fig. 2.3. It shows
the relative motion of two molecules moving with velocity v at an angle 8 with respect
to one another. Now the number of collisions will be determined by the magnitude of
relative velocity between these molecules. Let us denote the relative velocity between
these molecules as v,. Then, we have to replace v in Eq. (2.3) with v, and the expression
for collision frequency modifies to

P =nv.c (2.6)

0 = »A

Fig. 2.3 Relative velocity of molecule 1 moving along OA with respect to molecule 2
moving along OB.

By referring to Fig. 2.3, we note that 6 is the angle between OA and OB. Hence, we
can write the magnitude of relative velocity of molecule 1 with respect to molecule 2 as
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v, = (VP +(F)2 =2(¥)? (cosO)
=2V (1-cos )2 =2Vsin% 2.7
In writing the last step, we have used the trigonometric relation 1 — cos 26 = 2sin? 6.
On replacing 6 by 6/2, we can write sin? (g) =%(1 —cos ) so that (1 — cos 6)2 =
\/5 sin (2) .
2
Since all directions of velocity are equally probable, the mean relative velocity of any two

molecules is obtained by averaging v, as given by Eq. (2.7) over the solid angle, dQ/4r.
Since dQ =27z sin 8 d6, with 0 < 6 < &, we can write

- _ 1 17
v,=—|v,dQ=—]v, sin 0 dO
§ 4nj’ 2{’
On substituting for v, from Eq. (2.7), we get
2
v, = V_[sin 6 sin (ﬁ)de
o 2

If we now use the relation sin 24 = 2sin A cos A, we can rewrite the expression for v, as

2
v, =2V_[sin2 (g)cos(g)de
o 2 2
To evaluate this integral, we introduce a change of variable by defining x = sin(6/2) so

that cos(6/2) d6 = 2 dx. Note that the limits of integration change to 0 and 1. Then the
expression for v, takes a very compact form

1
@=4vjfdx=§v 2.8)
0

On substituting this value of average relative velocity in place of v, in Eq. (2.6), the
expression for collision frequency in first order approximation modifies to

g=§mv 2.9)

On comparing this expression with that given in Eq. (2.3), we note that the collision
frequency increases when motion of all the molecules is taken into consideration. This, of
course, is expected physically since a molecule is more likely to suffer collision when all
of them are in motion than in a collection of molecules at rest in their respective positions.
On combining this result with Eq. (2.2) with v = ¥, we find that the expression for mean
free path modifies to

kgT
__3 =0.75=0.75 st
4noc  no po

Ac (2.10)
It may be mentioned here that this result was obtained by Clausius. (That is why we have
put the subscript CI with A.) It shows that mean free path of the molecules in a gas decreases
when all molecules are moving.
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You will recall that in actual practise, we should have considered Maxwellian distribution
of velocities while computing the average relative velocity. However, the mathematical
calculations are quite involved and for the present purpose, it will be sufficient to quote the
result. (Those of you who are interested in these details may refer to Appendix B. However,
a compact alternative derivation is given in the box on page 2.10.):

1 1 kgT
Ay = =(0.707)— =(0.707)— (2.11)
no po

2no

Note that the ratio of mean free paths calculated on the basis of Maxwellian distribution
of velocities and Clausius assertion of uniform velocity is 0.94. It means that there is a
correction of about six per cent in the value of mean free path but the essential physics
does not change. It suggests that replacing the Maxwell’s distribution by a uniform velocity
model is a fairly good approximation. You will also note that for point molecules (d — 0)
collision cross section 0 — 0 and mean free path A — .

Now go through the following examples carefully to get a feel of the values involved in
real situations.

IR A gas is assumed to obey Maxwell’s law for distribution of velocities.
Calculate the (a) molecular diameter and (b) the number of collisions per unit distance if
mean free path at STP is 2.85 x 10”7 m. Take n =3 x 10 m™.

Solution: From Eq. (2.11), we can write

1 1

J2 wd*n

(a) To determine d, we rewrite the expression for mean free path as

_\/En).n

po L 1

On substituting the given values, we get

1 1 1 1
X

d? =——x X
J2 314 (285x107m) (3x10% m™?)

1

= =2.63%107% m?
(37.97 x10"¥m2)

sothatd=1.62x10""m=1.62A
Note that the order of magnitude of mean free path is 10° times that of molecular diameter.

(b) Since number of collisions per unit distance is reciprocal of the mean free path, we
can write

1 1

=—=— 1 -351x10°m™!
A 285x107"m

N
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“He gas is assumed to obey Maxwell’s law for distribution of
velocities. The molecular diameter of atoms of “He is 107'° m. One mole of the gas
occupies 20 litre at 20 K. Calculate the mean free path of the molecules, and the collision
frequency. Given R = 8.4 Jmol"'K™! and N, = 6 x 10% mol ..

Solution: From Eq.(2.11), we recall that

a=_L 1
J2 md*n
0 6x10% mol™ s 3
Here d=10"mand n= =3x10” m~. Hence,
20 %1073 m3 mol!
0.707

A= =75%x10" m
(3.14x10° m?)x 3x10¥ m™3)

The average speed of a molecule obeying Maxwellian distribution is given by

1/2
2.55x (8.4Jmol ' K1) x 20K
~_ [255RT _ ( )XQROK) 1 5 10% ms!
M 4x107% kg mol™!

Hence, collision frequency is

v 3.3x10%> ms™ e 1
P=—=——"—""——=44x10°s"
A 75x107m
The mean free time or average time between collisions is inverse of the collision frequency
and in this case, it will be equal to

1

=— =  =23x107"7s
4.4%x10% 57!

T

IB' G111 ]Vl The mean free path of the molecules of a gas at a pressure p and
temperature 7 is 3 X 107 m. Calculate the mean free path if (a) the temperature is doubled,
and (b) the pressure is doubled.

Solution: From Eq. (2.11), we know that
kyT
2rd? p

(a) When the temperature is doubled, we note that the mean free path will increase by a
factor of two. Hence,

A

— — —7
Apary=2A,ry=6x10"m

(b) When the pressure is doubled, the mean free path will be halved:

)”(p,T)

Aapry = =3%x107" m
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IB Gl 11 ]I The radius of argon atoms is 0.128 nm. Calculate their mean free
path at 25°C and one atmosphere pressure. Given kg = 1.38 x 10723 JK.

Solution: From Eq. (2.11), we recall that
kyT
J2rd? p

Here, d = 2 x 0.128 x 10° m = 0.256 x 10° m, T = 27°C = (273 + 27) K = 298 K,
kz=1.38x 102 JK™' and p = 1.013 x 10° Nm. On substituting these values in (i), we get

A

(1.38x1072 JK 1) x (298 K)
1.414x3.14 % (0.256 x 10 m)? x (1.013x 10° Nm?)

414 107197
T 0.2948N

=139%x107" m

Now you may like to solve the following problem.

124011/ WA Bl Calculate the mean free path of the molecules of a gas of diameter
0.2 nm. Redo the calculations for molecules of diameter 0.4 nm. Take n = 3 x 10%
molecules m~. How does it compare with intermolecular separation at STP?

Ans: 1.88x 107 m;4.69 x 10® m

W The mean free path of the molecules of a gas at 15°C is
6

28 x 10~° m. If the radius of the molecule is 1.88 A, calculate the pressure exerted by
the gas. Also calculate the number of collisions suffered by a molecule in traversing one
metre. Take kp=1.38 x 1072 JK .

Ans: 1.01x10° Nm™2, 16 x 10° m™"

ALTERNATIVE DERIVATION OF MAXWELL'S EXPRESSION FOR A

Let us consider two molecules of masses m, and m, and diameters d, and d,. When they
. . . Hiy My
collide, they can be considered as one body system having reduced mass u =

m; +m,
d, +d,

and the centre-to-centre distance d =

Let the number densities of these gases be n, and n,. We construct a cylinder of cross-

8k T
ur

sectional area 7rd? and length v = , which defines average speed characterising

Maxwellian molecules.
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0

S o]

< v

Fig. B.2.1

When one molecule of the first type moves, it will collide with all the molecules of
the second type contained in the cylinder. The total number of such collisions is given by

- 25 _ 2
Jio=mrd°v=n,nd

If all the molecules are identical, we can write d, =d,=d, m;=my=mand n, =n, =
n (say). Using these in the expression for f;,, which we redesignate as f, we get

8k, T
f=nrd® |2x—2— =J27nd*v
mmn

v__ ¥

o
I 2mnd®>v  J2znd?

Hence, A=

You now know that molecules undergo collisions very frequently. It means that
distribution of free paths will be spread over a wide range. It is therefore instructive to
calculate the distribution function for free paths. This forms the subject matter of the
following subsection.

2.2.2 Distribution of Free Path

Consider a large number of molecules at a certain instant. As they travel, they will collide
among themselves. We wish to estimate the number that have not made a collision at some
later time. Let the number of molecules surviving a collision in travelling a distance x be N.
If each molecule is allowed to travel a further distance dx, more collisions will occur. We
assume that the number of collisions is proportional to the number of molecules N and the
distance dx. That is, the number of molecules that undergo collisions will be proportional
to Ndx. Since the number of molecules that do not make any collision decreases with
increasing distance, we can write

dN=-P. Ndx (2.12)

where collision probability P, is the constant of proportionality.
We can rewrite this equation as

aN __ P.dx
N
We can readily integrate it to obtain
N=N,exp(-P.x) (2.13)

where N, is the number of molecules at x = 0.
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This result shows that the number of molecules surviving a collision decreases exponentially.
The probability that a gas molecule will cover a distance x without making any collision is

f(x)=Ni=exp(—ch) (2.14)

0
To evaluate the constant of proportionality P,, we note that, by definition, mean free path

is given by

]:de —]:PcNoxexp(—ch)dx

1=2 =0
NO NO

exp(~P.x)]"

ol

Note that the first term within the parentheses vanishes identically at both limits; due to
decaying exponential at the upper limit and the presence of x at the lower limit. However,
the second term vanishes at the upper limit due to decaying exponential but it is non-zero
at the lower limit; it has the value 1/P,:

=|-xexp(-P.x)—

=L
P

c
On using this result in Eq. (2.13), we obtain a compact form for the number of particles
surviving collisions in travelling a distance x:

N(x)=N, exp(—%) (2.15)

This equation is known as survival equation.

You will come across similar equations in other areas

of physics. For example, radioactive decay obeys the  n/v,
equation N(f) = N, exp(-At), where N(f) is the number
of atoms which survive disintegration for time ¢ and A is
disintegration constant. In optics, Biot’s law describing
the intensity of an incident beam after it has traversed
a distance x in a medium exhibits exponential decay.
Similarly, discharge of a capacitor in a R—C circuit is a
decaying exponential.

Figure 2.4 graphically depicts survival equation. We
have plotted N/N, as a function of x/A. Note that the
fraction of molecules with x= Ais e”! = 0.37.

If we take Maxwellian distribution of velocities into
account, the calculations become somewhat involved but
the form of the function remains unchanged. Therefore,
we just quote the result, which is due to Jeans:

f(x)=Ni=exp(—1.O4x/).) (2.16)
0
We now solve an example to reinforce our discussion in this section.

16

0.37

1 x/A
Fig.2.4 PlotofEq. (2.15):
The survival
equation.

.11 VA 1n a sample of 10% gas molecules, each molecule is moving with
the same speed. Calculate the fraction of molecules that will continue to travel undeflected
after traversing distances of A, 24, 54 and 10A.
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Solution: The values of f(x) are tabulated below for different distances traversed by the
gas molecules and you can readily verify these using Eq. (2.15). To illustrate, for x = 4,
we can write

f(x)=exp(-1)=0.3679

z 1 2 5 10
A
fx) 0.3679 0.1353 6.738 x 1073 4.540 x 107

You will note that after traversing a distance of A and 24, nearly 37% and 13.5% molecules
respectively survive collisions. However, after covering a distance of 104, almost all
molecules will have undergone a collision.

You may now like to answer a practise problem.

200 WA B The mean free path of the molecules of a gas is 2 x 10”7 m. Calculate
the probability that a molecule will travel 6 x 10" m without making a collision, if
temperature is doubled.

Ans: 0.223

In 1920, Max Born put the law of free paths to test when he suggested a method for
experimental determination of mean free path. Let us now learn about it.
2.2.3 Experimental Determination of Mean Free Path

A schematic diagram of the apparatus used by Born is depicted in Fig. 2.5a. It consists of
a quartz tube, which can be evacuated to a desired level. Silver is heated at the lower end
of the tube 7. On evaporation, the silver vapours pass through the narrow slit S and then

To Pressure
Gauge <— —> To Pump Py

S — P
To Knudsen
Manometer

W

P,
7

P

P P,

P, K

; (D
W ©

®)
(@

Fig. 2.5 (a) Schematic diagram of Born’s appartus used to measure mean free path and
(b) Arrangement of glass quadrants on brass discs.
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passes through a circular hole in each of the four brass discs P;, P,, P;, P,. Each disc has
a circular hole and carries a glass quadrant G (a glass plate in the shape of a quarter of
circle) such that the apex of each quadrant lies at the centre of the hole. These are separated
by 1 cm. The evaporated silver moves through these holes. Moreover, each quadrant is
oriented in such a way that it is displaced through 90° relative to the preceding one. This
arrangement is shown in Fig. 2.5b and ensures that each quadrant can receive only one-
fourth of the incident beam.

The pressure in the quartz tube can be varied to any desired value using a vacuum pump.
The discs are cooled by the cooling mixture and silver is deposited on the quadrants. The
relative amount of silver deposited on a given quadrant is determined by photometric
comparison.

Initially, the tube is completely evacuated. The mean free path will then be equal to
the length of the chamber. It is because silver vapours will have no air/gas molecule to
collide against. Let the density of the deposit on a quadrant under complete evacuation
condition be d,,. Next we introduce the gas and determine the density of deposit on the
same quadrant, after cleaning the initial deposition and replacing the brass disc back. Let
us denote the density of deposit by d, and mean free path by A. Then, using the law of
free paths, we can write

dy=dy exp(—x, /1) 2.17)

where x, is the distance of the quadrant from S.
Similarly, for the quadrant at a distance x, from S, we can write

d, =d,y exp(—x, /1) (2.18)

where d, and d, are the densities of the deposit.
On dividing Eq. (2.17) by (2.18), we get

On rearranging terms, we can write

_ (x, —x;)

o)
n R
d2 le

Using this equation, one can easily determine the value of mean free path. For the
arrangement used by Born, (x, —x,) = 1 cm. So once we know the density of the deposits,
we can easily determine mean free path at a given temperature and pressure. Born’s results
are tabulated below:

(2.19)

p (mm) A (cm) PA
5.8x107° 1.7 9.86 x 107
45x%1073 24 1.08 x 1073

Atmospheric pressure 1.3x1073 9.88 x 107

From the table, we note that the product pA is nearly constant. This is in conformity with
the prediction of kinetic theory of gases and supports the law of distribution of free paths.
So far we have assumed that the gaseous system is at uniform temperature and pressure.
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And in the equilibrium state, there is no preferential direction of motion of any kind. This
means that the rate of transfer of molecules across a given plane in the body of the gas
exactly matches the number of molecules moving in the opposite direction. However,
when the entire gas or a part of it moves as a whole in a particular direction, a gradient in
velocity, temperature or concentration may arise. Then thermal molecular motion leads
to what is commonly known as transport phenomena. We now discuss it in some detail.

2.3 TRANSPORT PHENOMENA

We now know that a gas molecule has a finite mass and is characterised by random thermal
motion. Therefore, it possesses momentum as well as kinetic energy. So, while moving
from one part of the container to another, it is a potential carrier of physical quantities such
as matter, energy or momentum. When a gas is in equilibrium, there is no nef transport of
these physical quantities. However, when a gas is endowed with macroscopic motion in a
particular direction, the following cases may occur singly or jointly:

1. Different parts of a gas move with different velocities This will give rise to relative
motion to different layers of the gas. As a result, the molecules crossing from faster moving
layers will transport greater momentum as compared to those originating from slower
moving layers. Therefore, across an imaginary plane, there will be a net transport of
momentum in the preferential direction of motion. This is characterised by the coefficient
of viscosity.

It is important to realise that viscosity in gases arises due to the random thermal motion
of molecules when it is endowed with macroscopic motion rather than a frictional force
between any two adjacent layers, as in the case of liquids.

2. Different parts of a gas are at different temperatures In this case, the molecules of
the gas will carry greater thermal energy from regions of higher temperature to regions of
lower temperature and tend to establish thermal equilibrium. This leads to the phenomenon
of thermal conduction and is characterised by thermal conductivity.

3. Different parts of a gas have different concentrations When molecules migrate
from regions of higher concentration to the regions of lower concentration, there is net
transport of matter (mass). This leads to the phenomenon of diffusion and is characterised
by the coefficient of diffusion.

We thus find that viscosity, conduction and diffusion are bulk properties of gases and
represent the transport of momentum, energy and mass, respectively. These are collectively
categorised under the title of transport phenomena. These processes are of vital importance
in physical sciences and find several important applications. We will now discuss these in
some detail on the basis of the simple molecular model.

2.3.1 Viscosity: Transport of Momentum

We know that the property by virtue of which a fluid opposes the relative motion between
the adjacent layers is known as viscosity. It is quantitatively expressed in terms of the
coefficient of viscosity, 17, which is defined as the tangential force per unit area when
a unit velocity gradient exists in a direction perpendicular to the direction of motion.
Mathematically, for small velocity gradient we can write

F=-nadt (2.20)

dy
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Here F denotes the viscous force acting on an area ¥
A and du/dy is the velocity gradient along the +ve b b
y-direction. The negative sign signifies that the 5 T
viscous force is directed against the velocity gradient.

Let us consider a gas enclosed between two planes X h
depicted as aa’ and bb’ in Fig. 2.6 and separated L—m———— -

through a distance 4. Suppose that the gas is endowed a ,

with mass motion so that the net flow is from left to E a

right and a positive velocity gradient exists along Fig. 2.6 Schematic representation
the y-axis, which is perpendicular to the direction

of flow. We consider a plane xx” located somewhere
between aa’ and bb’.

of planes signifying
velocity gradient in a gas.

Let the velocity of flow at xx” be u and the velocity gradient be Z—Z Because of thermal
motion, gas molecules continuously cross the plane xx” both from above and below it. Since
the velocity gradient is positive upwards, the gas molecules below xx” gain momentum
whereas those above it lose momentum. That is, there will be a net transfer of momentum
across the plane under consideration in the direction of mass motion. By Newton’s second
law of motion, we can correlate it to the coefficient of viscosity. Therefore, to derive an
expression for the net rate of tranfer of momentum, we need to know (i) the number of
molecules crossing the surface xx” and (ii) the average distance at which a molecule makes
its last collision before crossing this surface.

To facilitate these calculations, it is convenient to assume that each molecule acquires
a flow velocity in the direction of mass motion characteristic of the height at which it
made the last collision before crossing the surface xx’. So, the velocity of a molecule at a

distance & from this surface will be & j_u

Calculation of Number of Molecules To
calculate the number of molecules crossing the
surface xx’, we consider an element of volume dV at
a distance r from an element of area dA in the plane
xx" and in a direction making an angle 6 with the do
normal to the plane as shown in Fig. 2.7. 0

Let n be the number density of molecules. Then
the number of molecules in the volume element dV
will be n dV. If P, is the collision frequency, the X >X
total number of collisions occuring within dV in time dd
dr will be (1/2)P,n dV dr. Note that the factor (1/2) ~Fig- 2.7 Calculation of average
has been introduced so that each collision is counted number of molecules
only once; each collision involves two molecules. crossmg,an Imaginary
Since each collision results in two free paths, the plane xx'
total number of free paths generated in dV in time dt will be P .n dV dt. These free paths
start off in all 47 directions since all directions of molecular motion are equally probable.
Therefore, the fraction of free paths, and hence molecules, heading towards dA is given by

dr

An=92 p nav s
4
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where dQ is the solid angle subtended by dA at the volume element dV and is equal
dA cos @
to ————. The number of molecules that will reach dA without making any further

r2

collisions is obtained using the survival equation. Hence, we can write
dA cos @
AN = Anexp(—r/A)=P, ndth—2 exp (—r/)
4rr

In spherical polar co-ordinates, we can write dV = 27r? sin 6d6dr. We substitute this
expression in the above equation and obtain

AN=%PC ndAdtsin 0 cos 6 exp (—%)de dr 2.21)

To calculate the total number of molecules crossing dA in time d¢ from the half-space
above xx” and from all directions, we integrate this expression over r from 0 to o, and
over 0 from O to /2. This gives

oo /2
N=LPC ndA d[Jexp(—L)dr _[ sin@cosfd o
2 0 A 0

You can readily verify that integration over 6 gives (1/2) and integration over r yields A.
Hence,

N=2p ndadar
4

Since P, = v/A, we find that the number of molecules crossing the plane xx” from either
side per unit area per second is

N =
dA dr

n, = inv (2.22)

Calculation of Average Height The mathematical steps involved in the calculation of
average distance at which a molecule makes its last collision before crossing the imaginary
surface xx’ are somewhat involved. However, for mathematical ease, we first make a
simplifying assumption and work in what we will refer to as Zeroth approximation.

Zeroth Order Approximation We assume that the average distance from the surface
xx” at which a molecule makes its last collision before crossing it is equal to one mean free
path, A. The flow velocity of the gas molecules at this height from the surface xx” will be

u+ ).d—u , where u is flow velocity at the xx’. Therefore, the momentum transported by a

y
the direction of the flow carried across the surface xx” per unit area per unit time by all the

molecules crossing it in the downward direction from above after making their last collision
at an average distance of A from xx’ is equal to the product of the number of particles and
the momentum transported by each molecule. Hence, we can write

G+=Ln7m u+ﬂ.d—u
4 dy

y
molecule moving with this velocity will be m (u + lj—u] . And the total momentum in
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The total momentum carried across the surface xx” per unit area per unit time by the
molecules crossing it in the upward direction from below after making their last collision
at an average distance of A from xx’ is

G‘=Ln7m u—ﬂ.d—u
4 dy

The net transport of momentum across surface xx” from below in the direction of mass
motion per unit area per unit time, which is equal to the viscous force per unit area, is
given by

G=G -G*=—Lmny a3 (2.23)
2 dy
On comparing Egs. (2.20) and (2.23) we find that the coefficient of viscosity of a gas in
the zeroth approximation is given by

Nzero = %m nvi= %pm (2.24a)

On combining this result with Eq. (2.10), we can write

3m _
Npory =—V (2.24b)
Zero 80

Note that the coefficient of viscosity of a gas is directly proportional to the average speed
v and hence /T and inversely proportional to the second power of diameter. That is, the
coefficient of viscosity of a gas is independent of pressure and varies as square root of
its absolute temperature. This conclusion is in qualitative agreement with experimental
findings.

First Order Approximation Let us now obtain an exact expression for the average
distance at which a molecule makes its last collision before crossing the imaginary surface
xx’. As before, we consider a volume element dV located at distance r and angle 6 as shown
in Fig. 2.7. If y=r cos @is the height of the volume element dV above xx’, then the average
distance at which a molecule makes its last collision before crossing xx” is given by

(2.25)

where AN denotes the number of molecules surviving collisions and the integrals are
defined over the entire space above the plane xx’.
On substituting for AN from Eq. (2.21) in Eq. (2.25), we get

oo n/2
jr exp(—L) dr _[ sin 8 cos 0 d0
0 A 0

ry= /2

jexp(—L) dr _[ sin 6 cos 0 d6
0 A 0
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Note that
jrexp(—L)dr=—%’M|w+)._[e"”“dr=).2
0 A 0 0
and
/2 1 1
jsin900529d9=jx2dx=§. Hence, we can write
0 0
__(3)A 22
7" _<£2 2.26
YA 3 (220)

This result shows that, on an average, each molecule makes its last collision at two-third
of the mean free path above or below the surface xx” before crossing it, rather than one
mean free path. It means that the simple assumption made earlier was not so crude and
we should not expect any major changes in our conclusions.

Let us now use Eq. (2.26) to calculate momentum and see how Eq. (2.24a) is modified.

At a height (%)l above the plane xx’, the flow velocity of the gas molecules will be

u+ glj—u, where u is flow velocity at the plane xx’. The momentum transported by a
y

molecule moving with this velocity will be m (u + %l%) So, the total momentum in
y

the direction of the flow carried across the surface per unit area per unit time by all the
molecules crossing the surface xx” from above will be

G =Lnvm|usr 2294
4 3 dy
Similarly, the total momentum carried across the surface xx’ per unit area per unit time by
the molecules crossing it in the upward direction from below will be

G =Lnvmlu-2)9
4 3 dy
Hence, the net transport of momentum across xx” from below in the direction of mass motion
per unit area per unit time, which is equal to the viscous force per unit area, is given by
G=G -G'=—Lmny2 % 2.27)
3 dy
On comparing Egs. (2.20) and (2.27), we note that the coefficient of viscosity of a gas is
given by
1 _ 1 _ mv
=—mAVA==—pVAi=—o 2.28
Nr 3 3 p 4o (2.28)

On comparing Eqgs. (2.24a) and (2.28), you will note that e -2
nZero

in the first order approximation, the multiplication coefficient changes by 0.667.

On substituting the expression for A corresponding to Maxwellian distribution of velocities

in Eq. (2.28) from Eq. (2.11), we get

=0.67. It means that

1 mv

n — my
M3 02 0 3and?

(2.29)
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This result provides us a way to estimate a microscopic property such as molecular diameter
in terms of a macroscopic property such as viscosity 77, which is directly measureable. It
therefore afforded a remarkable opportunity for proponents of kinetic theory to put it on
a more sound pedastal.

Let us now discuss temperature and pressure dependence of the coefficient of viscosity.

Effect of Temperature and Pressure on Viscosity From Eq. (2.29), we note that
the viscosity of a gas is independent of number density (pressure) but directly proportional
to v and hence the square root of absolute temperature. Both these conclusions are well
supported by experiments. For instance, for pressures from a few mm of nercury up to
several atmosphere, Meyer showed that the coefficient of viscosity of a gas is independent
of pressure. However, at very low or high pressures, this relation is not valid. This is
essentially because at low pressures, the intermolecular collisions are rare and the mean free
path attains a constant value; comparable with the dimensions of the apparatus. However,
the number density will decrease gradually as pressure is lowered further. Consequently,
the coefficient of viscosity decreases as pressure decreases. This aspect was verified
experimentally by Crooks.

Warburg and von Babo showed that at very high pressures, the coefficient of viscosity
increases as pressure increases. This is due to the fact that at such high pressures, the mean
free path becomes comparable with the molecular diameter and the transport of momentum
takes place through a distance A4 + d cos 6 where 8 is the angle which the projection of the
freepath makes with the axis normal to the n,

direction of mass motion. 7001~ Ne
In Fig. 2.8, we have plotted experimental
values of viscosity of helium, argon and neon 600~
versus T2 As may be noted, the curves are

almost straight lines but suggest that viscosity 500
of a gas increses with temperature at a slightly

faster rate than that predicted by theory. The 400
departure from the value 0.5 implies
inadequacy of our assumption that gas 300
molecules behave as elastic hard spheres

devoid of intermolecular interactions. In fact, 2001

it provides us with an opportunity to get an 100 | ! l l Ly 712
insight into the nature of intermolecular 10 15 20 25 30 35
forces. We know that o is independent of T Fig. 2.8 Plot of measured values of 77as
only for rigid hard spheres. The long range a function of T'/? for helium,
attractive part of force increases the argon and neon.

scattering probability of a molecule. At
lower temperatures, the molecules have lower velocities and can easily be scattered. If we

denote the repulsive part of the potential by V (r) = A, it turns out that 7 o T" with
rs

n= L + L For rigid hard spheres, s = oo, so that n=0.5. From experimental observations

2 s-1
made on 7 at different temperatures, we can deduce the value of s. Some representative
values are given below:

Gas s
H, 11.3
He 14.6
Cl, 5.0

HC1 497
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You should now go through the following examples carefully. We have illustrated how
Eq. (2.29) can be used to estimate molecular diameter.

501171l The coefficient of viscosity of helium at 27°C is 2 x 10~ poise.
Calculate the diameter of a helium molecule using the given data: N, = 6 x 102 mol!,
kz=1.38 x 1072 JK! and atomic weight of helium is 4 g.

Solution: From Eq. (2.29), we recall that

oMV
3\2na?
By rearranging terms, we can write
a2 mv

342m

Here =2 x 107 poise, T= (273 + 27) K= 300 K

4g mol™!
m=—2% L 667x10% g=667x107 kg
6 x 10 mol™!
and
172 172
_ (255kT 2.55%(1.38x 107 JK~')x 300 K. N
V= = =1.26x10° ms~
m 6.67x107% kg

Hence, using the relation 1 poise = 10~ kg m™!s™!, we get
_(6.67x107% kg)x (1.26X10°ms™")

342 x3.14x (2% 107 kgm~'s™!)

d? =3.15%10"2 m?

d=177%x10""m

1M WA The coefficient of viscosity of oxygen at 15°C is 1964 poise.
Calculate the molecular diameter using the given data: R = 8.4 Jmol'K~! Molecular
weight of oxygen is 32 g.

Ans: 2.99 x 10% m

501171 B The molecules of a gas move with an average speed of 450 ms™.

If n=16.6 x 107° Nsm™2, p=125 kgm‘3 and n=2.7 x 10® m, calculate the mean free
path and diameter of the gas molecules.

Solution: We can rewrite Eq. (2.28) as

3 3
PYEL L

mnv  pv
On inserting the given numerical values, we get

3% (16.6 X107 Nsm ™
A= ( ) =8.85%x10%m
(1.25kgm™= x (450ms™)
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From Eq. (2.11), we recall that
-1
J2rnd?n

We can invert this relation to express d in terms of A:

A

172 1/2
(\/E,m,l] (1.414>< 3.14 % (2.7%x10%® m>)x (8.85x107% m)]
=342x10""m

Calculate the coefficient of viscosity of hydrogen gas at 27°C and
one atmosphere pressure. Take molecular weight of hydrogen as 2.016 u and diameter of
hydrogen molecule as 2.92 x 107" m. 1u= 1.66 x 102" kg. Assume that hydrogen obeys
Maxwellian velocity distribution.

Solution: From Eq. (2.29), we recall that
_ 1 mv_ mv
NMax = - - 2
342 0 32nd

Here m =2.016 x 1.66 x 10°2" kg, d = 2.92 x 107! m, and average velocity

_ |8kgT \/8><(1.38><10‘23 JK™1)x (300 K)
V= =

3.14 x (3.35x 1077 kg)

= ’ 33.12 103 ms!
10.51

=1.775%10°> ms™!

Hence, the coefficient of viscosity of hydrogen is

m

_(335x107 kg)x (1.775x10° ms™")
3%x1.414%3.14 X (2.92 x 10719 m)?

_595x107*

kgm™'s!' =524x107° Nm's?
113.6

You may now like to solve a few practise problem to assess your understanding.

124013/ WA Bl Hydrogen and nitrogen are maintained under identical conditions
of temperature and pressure. Calculate the ratio of their coefficients of viscosity if the
diameters of these molecules are 2.5 x 107/ m and 3.5 x 107! m.

Ans: 191
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120011 WAL Calculate the coefficient of viscosity of hydrogen at STP using the
following data: p= 8.96 x 102 kgm™; A= 1.69 x 107 m, and kz = 1.38 x 1072 JK ..

Ans: 243x10° kgm's™!

2.3.2 Thermal Conductivity: Transport of Energy

The thermal conductivity of a gas is treated in the same way as its viscosity. We therefore
again make reference to Fig. 2.6 and consider flow of thermal energy across the layers
of the gas lying between parallel surfaces aa’ and bb’. We assume that these are at rest
but at different temperatures. That is, there is a temperature gradient rather than velocity
gradient between different layers of the gas. Let us denote it as d7/dy. As before, we take
the temperature gradient as positive along positve y-axis and normal to the surface xx’. The
thermal energy flowing per unit area per second in the upward direction is characterised
in terms of thermal condctivity. It is usually denoted by the symbol K and we can write

dT
0=-K dy (2.30)
where d7/dy is temperature gradient and temperature of the gas at the imaginary surface
xx” within the gas is T. (You should not confuse the symbol for thermal conductivity with
the symbol used for kelvin, the unit of temperature.)
To obtain an expression for thermal conductivity, we need to know the energy transported
by the molecules across an imaginary surface/plane within the gas. As before, it requires
information of (i) the average number of molecules crossing this surface and (ii) the average
height at which a molecule makes its last collision before crossing it. For these, we can
use the results obtained in the preceding section. That is, we use first order approximation
and assume that each molecule crossing the given surface made its last collision at a
distance (2/3)A above and below it (Eq. (2.26)) and the energy carried by a molecule is
characteristic of that distance. f
The average energy of a gas molecule at temperature T is EkB T, where f denotes the

number of degrees of freedom. Hence, the energy of a molecule at a distance (2/3)A4 above
ar
dy

surface per unit area per second is nv /4, the energy transported by molecules moving from
above in the downward direction per unit area per second is given by

o' =Lmwli, [r+229L
4" 3" 1y

Similarly, the energy transported by molecules moving from below in the upward direction
per unit area per second is given by

1 _f 2 ,dT
Q =va5k8 (T——l—]

or below the surface xx” wll be %ks (T + %l ] If the number of particles crossing the

3 dy
Hence, the net rate of transport of energy in the upward direction per unit area will be
equal to Q and is obtained by noting that

0=0 -0"=-Lnivsk, &L @2.31)
6 dy
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On comparing Egs. (2.30) and (2.31), we obtain

o
K= %n?lkg = Tvnm (2.32)

where Cy, = %ks T is molar heat capacity.

We thus find that under normal conditions, thermal conductivity, like viscosity, is
independent of pressure. This is in good agreement with experimental results down to
very low pressures. However, at extremely low pressures, thermal conductivity tends to
decrease. From Eq. (2.32), we also note that thermal conductivity is directly proportional
to average molecular speed. Therefore, theory predicts that thermal conductivity is directly
proportional to half-power of temperature. However, in actual practise, K increases
somewhat more rapidly suggesting that intermolecular forces come into play and begin
to influence energy transport.

Relation between nand K When we closely examine the expressions for 77 and K,
we expect some connection between them. It is instructive to ascertain this relationship
as both these quantities are physically measureable. Therefore, we divide Eq. (2.32) by
Eq. (2.28) and obtain

K_Tk _JkNa R

n 2m 2 M 2M

where m = M and M is molecular weight of the substance.

A
From Sec. 1.3, we recall that molar heat capacity at constant volume is given by
f

CV = ER
Using this result, we can rewrite

K_S

n M
or kM =1 (2.33)

ncy

Equation (2.33) predicts that the ratio AM is constant, equal to one and same for all gases.

But experiments show that this ratio is greater than one. A more rigourous calculation due
to Chapman and Enskog showed that this ratio varies between 1.5 and 2.5 and is different
for different gases; decreasing with increasing atomicity. There can be several reasons
for this lack of agreement. But the most obvious reason seems to be non-inclusion of the
Maxwellian distribution of velocities while calculating the energy transported across the
imaginary plane in the body of the gas. Obviously, the faster molecules will cross the given

plane more frequently and result in increased energy transport, effecting an increase in the

value of the ratio % This also suggests that probably the hard sphere model of a molecule
nty

is not so very adequate. More sophisticated theories do account for this disagreement.

However, we will not consider these here.
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You should now go through the following example carefully:

IB G 1A Calculate the thermal conductivity of a gas using the following data:
p=1.6kgm>;v=480ms,A=8x 10 m,M=32, y = 1.4 and R=8.31 kJ kmol 'K..
Solution: From Eq. (2.32), we recall that

C C
K= _anl = —Vpr
3 3IM

Since y= 1.4, the gas is diatomic. So we can take C, = %R. Since R =8.31 kJ kmol 'K,

Cy=2.5x8.31kJ kmol 'K~ =20.8 x 10° J kmol'K"!, using the given values of various
quantities, we get
_ (1.6kg m™)x (480ms™')x (20.8x10° J kmol™' K™')x (8107 m)
3% (32 kg kmol™)
=13.31x107 Jm's'K™!

K

We will now like you to work out a few practise problems.

120N WA MM The coefficient of viscosity of helium is 18.6 x 107 Nsm™>,
M =4 kg kmol ! and Cy, = 12.5 x 10° Jkmol'K~!. Calculate the thermal conductivity of
helium at 0°C.

Ans: 5.8 x 1072 Jm s 'K!

12N WA The collision diameters of hydrogen, nitrogen and chlorine are
25 nm, 35 nm and 40 nm, respectively. Compare their thermal conductivities.

Ans: KH,): K(N,): K(Cl,)::15:2:1

1200/ WM The thermal conductivity of helium is 8.7 times the thermal
conductivity of argon under STP. Calculate the ratio of their diameters. Take
My, = 4 kg kmol™ and M(Ar) = 40 kg kmol™'

Ans: dy, :d, 1 1:1.78

ree

2.3.3 Diffusion: Transport of Matter

Consider two gases, say hydrogen and oxygen, contained in two different glass jars at
the same temperature and pressure. Let us invert the jar containing hydrogen over the
jar containing oxygen and remove the lids. As such, no large scale movement of these
gases will be visible. But after some time, the two gases get mixed with one another.
(Oxygen molecules will have moved against gravity!) This phenomenon as a result of
which each gas gradually permeates the other is known as diffusion. This phenomenon
has become possible due to random thermal motion and continues as long as inequalities
in concentration exist. (After infinite time, the concentration would be same everywhere
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in the body of the gas.) Molecules diffuse from regions of higher concentration towards
regions of lower concentration. Figure 2.9(a) schematically depicts the diffusion of like
molecules—self-diffusion. Diffusion of unlike molecules is shown in Fig. 2.9(b). Diffusion
is responsible for the smell of flowers/scent reaching us. This is also why while sitting in
your study, you can know as to what is being cooked in the kitchen.

f{'; ;“ Ay ’; .'-.Oo_; K

“ ‘\/f - ;I :\ i \ ] -.. o. o. ._. .- : .. .

b S e S L

! P 23~ ¥ IR “
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Fig. 2.9 (a) Self-diffusion across a barrier and (b) Diffusion of unlike molecules.

The intermixing of gases is described in terms of the diffusion coefficient, D. Let n be
the molecular concentration along a horizontal plane xx’. Suppose that there is positive
concentration gradient dn/dy in the vertical plane. Then the number of particles crossing
the given surface per unit area per unit time is given by

r=-p2 (2.34)

As before, the negative sign is included because gas molecules move from regions of
higher concentration to regions of lower concentration but we will calculate the number
of molecules crossing in the opposite direction.
When the intermixing gases are different, the calculation of the diffusion coefficient is quite
complicated because the rates of diffusion of two gases may not be the same. However, to
simplify this problem and still bring out the essential ideas, we consider the diffusion of
like molecules, i.e., self-diffusion. The diffusion of the isotopes of the same element (say
235 and 2**U) is an excellent example of self-diffusion.
Self-diffusion finds very important application in uranium enrichment required for nuclear
power generation. (The concentration of fissile isotope 2*>U in natural uranium is 0.71%.
For attaining criticality and generate power in a nuclear power plant, it is desirable to
increase its concentration to 2 — 3%, which is above the natural value. Then we say
that enriched uranium has been produced.) For this, we convert uranium into uranium
hexafluoride (UF,) gas and make it to diffuse through a porous barrier, which is a ceramic
material and consists of fine capillary pores. Since 23°U has slightly smaller mass than the
more abundant isotope 2*%U, it diffuses faster. As a result, the gas coming out of the barrier
is richer in 2**U content. Repetition of this process results in the desired level of enrichment.
To proceed with the calculation of diffusion coefficient D, as before, we assume that each
molecule makes its last collision before crossing the reference plane at an average distance
of (2/3)A. If concentration of gas molecules at the reference plane is n,, the number density
at (2/3)A above or below xx” will be

n*=n,t 2,40

3 dy
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As before, we assume that the number of particles crossing the surface per unit area per
second is nv/4. Hence, the number of molecules crossing the given surface per unit area
per unit time from below is

= lV ny — gld—n
4 3 dy
Similarly, the number of molecules transferred upward across the given surface per unit
area per unit time from above is

r=L1yn, +2292
4 3"y

Hence, the net number of molecules transferred upward across the given surface per unit

area per second is given by
r=-Llydn (2.35)
3 dy
On comparing Egs. (2.34) and (2.35), we get a compact expression for diffusion
coefficient:

D= %M (2.36)

For air at STP, A = 100 nm, and ¥ = 450 ms~'. Therefore, the diffusion coefficient for air
is of the order of 10 m? s~'. Equation (2.36) has some important implications. Since
Ao< (Tlp) and v o T2, Eq. (2.36) implies that diffusion coefficient will vary inversely with
pressure and directly with temperature as T*/2. It is observed that the predicted variation
with pressure is in agreement with the experimental results but the power of T lies between
1.75 and 2. The reason for the more rapid increase with temperature is attributed to the
presence of intermolecular forces in real gases. To be precise, it is due to the attractive
part of the intermolecular potential. Obviously, we do not get it as we have ignored these
in our discussion.

Relation between D and 1)  If we combine Egs. (2.28) and (2.36), we can write

Dp
n
. R _Dp.
From this result, we note that according to simple kinetic theory, the ratio — is constant

Nr
for all gases and equal to one. However, its observed value lies between 1.3 and 1.5. A

rigorous theoretical analysis by Chapman and Enskog led to a valuel.2 for hard spheres

1 (2.37)

and 1.543 when intermolecular potential was modelled as V (r) = is These findings
r
provided indirect evidence in support of kinetic theory and confidence to early workers.

However, they continued their search for direct experimental evidence, which came from
the work of a botanist Robert Brown. This coincidence puts faith in the integrated nature
of scientific investigations.

So far we have been discussing self-diffusion. But in actual practise, the diffusing
molecules are invariably dissimilar, which are hard to distinguish physically. Therefore,
we have to look out ways which facilitate us to identify them correctly and follow their
trajectories. In other words, molecules must be labelled or tagged somehow. One possible
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way forward is to induce radioactivity on the nuclei of some molecules and follow their
diffusion by a Geiger counter. However, the sizes of the radioactive and the non-radioactive
molecules may not be identical.

You should now go through the following examples carefully.

IO EM The coefficients of viscosity and diffusion for oxygen are

1.95x 107 Nsm~2 and 1.22 x 10> m? s!, respectively. If the average molecular speed is

440 ms™!, calculate the density and mean free path.
Solution: From Eq. (2.37), we can write
-1
p D
On substituting the given values, we get
~1.95%107° Nsm™

p= =16kgm™>
1.22 %107 m? s™!

We can rearrange Eq. (2.36) as

3%(1.22%x10° m?s™!
a=3D_3x( MY ) g32x10%m
v 440 ms™!

10111 F M Calculate the mass of nitrogen diffusing through an area 102 m? in
10's, if the concentration gradient is 1.26 kg m™, A= 10"" m and v = 480 ms™'.

Solution: The mass diffusing per unit time will be obtained by multiplying the expression
for T" with the mass of gas molecules. Hence, we can write
M= ——W.md—n =——vA—
3 dy 3 dy

On inserting the given data, we get

IMI=§(480 ms)x (1077m)x (1.26 kgm™)=2.02 10~ kgm=2s™"!

For diffusion of two different gases (labelled 1 and 2, having concentrations n, and n,,
average molecular speeds ¥, and ¥, and mean free paths A, and A,), the expression for
diffusion coefficient modifies to

(2.38)

A study of the variation of diffusion coefficient with the composition of a mixture is quite
interesting. We denote D as D, when n; << n, and as D,, when n, << n,. Note that D,,

will be proportional to J m, /m, and D, will be proportional to N m, /m,. So we can write

D m m

Di =—2 For hydrogen diffusing into CO,, 2 =2, Experimental investigations on this
21 My m
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problem show variations amongst the observed values as well as departures from theoretical
predictions. This brings out the limitations of elementary kinetic theory model, in spite of
its aesthetic appeal. A rigorous analysis, however, shows a fairly good agreement but this
discussion is beyond the scope of this book.

You should now go through the following example.

IO A EM Calculate the coefficient of viscosity, thermal conductivity and
diffusion coefficient for air. Given p = 1.29 kg m3,v=460ms ! and 1 =64 x 10° m.
Take molecular weight of air as 29 kg kmol™ and R = 8.31 kJ K~! kmol™".

Solution: We know that the coefficient of viscosity 7 is given by
n= %pm
On inserting the given values, we get
n= %x (1.29 kg kmol™ ) x (460 ms™") x (6.4 X 104 m)=1.26 X 10~> Ns m~2
Recall that the coefficient of thermal conductivity K is given by
K= %pVC(‘, A=nCy,

C
Here Cy, = ﬂv is specific heat capacity per unit mass, and M = 29 kg kmol™!. For a diatomic

gas, C, = %R - % x8.31kJ K~'kmol~' =20.775 x 10® JK~! kmol-!. Hence,

Ko (1.26 1073 Nsm~2) x (20.775x10% JK~! kmol™!)
29 kg kmol !

=9.07x107 Jm' s K.
The coefficient of diffusion D is given as

D =§\71 =%>< (460 ms™ ) x (6.4 x 1078 m)

=08x10%m?s'.

2.4 BROWNIAN MOTION

We now know that elementary kinetic theory successfully explains many observed
properties of gases. But the first experimental evidence for the existence of molecules and
their continuous chaotic motion was provided by Robert Brown. He observed the motion of
very small pollen grains suspended in water using a high power microscope. The suspended
particles were seen to move completely haphazardly and execute perpetual movement. This
irregular motion of the particles is termed Brownian motion. It is depicted in Fig. 2.10.
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Fig. 2.10 Brownian motion of a fine particle suspended in an aqueous solution.

The observed characteristics of Brownian motion are:

1. The motion is continuous, completely random and irregular.

2. No two particles execute the same motion.

3. Smaller particles execute faster and hence more noticeable motion.

4. The motion becomes more vigorous and lively when temperature is increased or a
less viscous liquid is taken. (It is perceptible in glycerine and very active in a gas.)

5. The movement is about the same in all directions.

6. The motion is independent of external influences.

The suspended particles can be likened to a fleet of buoys charting their course through
a turbulent sea of molecules. The course of a suspended particle is similar to the groggy
steps of a drunken man who starts walking from a lamp post on a city square.

The discovery of Brownian motion puzzled scientists for a long time. At first, it
was regarded as a property of organic matter. The first dynamical theory of Brownian
motion proposed that the particles were alive. It was argued that vitality is retained by the
molecules of a plant for long after its death. However experiments by Brown and others
proved conclusively that the motion is not due to any biological or chemical factor. In
fact, Brown made observations on a drop of water trapped in a chunk of igneous rock as
the rock cooled from its melt. By focusing a microscope on the drop, he saw scores of
tiny particles suspended in the drop executing a random dance. Thus, it was established
that small particles of inorganic matter suspended in both liquids and gases also executed
Brownian motion. Thereafter, it was attributed to (i) surface tension, (ii) non-homogeneity
in temperature, (iii) chemical or electrical action, etc, among others. However, none of these
explanations were found adequate. After a systematic study, Wiener and Guy proposed
that Brownian motion is perhaps due to the bombardment of suspended particles by the
molecules of the surrounding fluid. For bigger particles, the forces due to molecular impacts
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almost completely balance. However, for smaller particles, molecular impacts do not
exactly balance and the unbalanced force makes them move in a random manner.

Brownian motion provides a very useful picture of the gaseous state. One can suppose
that like Brownian particles, gas molecules are in random motion and frequently collide with
each other. In fact, Brownian motion is readily observed in gases because intermolecular
forces are negligibly small. In a sense, this phenomenon provides us a way of visualising a
microstate. It is for this reason that the work of a botanist gained fundamental importance
as a subject matter of importance in physics.

Brownian motion has been holding unending charm for mathematicians as well as for
physicists ever since its discovery. But it required the genius of Einstein to work out a
systematic mathematical theory of Brownian motion. His arguments were based on physical
processes that take place inside the medium, i.e., in terms of the collisions between fluid
molecules and the suspended particles. He argued that although each impact is very small,
the net result of a large number of random collisions gives rise to ‘drunken man’s walk’.
Einstein quantified this problem by relating the diffusion of particles to the properties
of the molecules responsible for the collisions. That is, Einstein related the molecular
theory of gases to the observed diffusion of particles. Einstein’s predictions were found
to be precisely correct by the beautiful experiments of Perrin. This also paved the way
for accurate determination of molecular masses. This work convinced everyone about the
reality of the molecular nature of matter and launched the subject to higher horizons. In
1908, Langevin rederived Einstein’s formula for mean square displacement by considering
the equation of motion of suspended particles. We will now discuss Einstein’s theory.

2.4.1 Einstein’s Theory

Einstein gave an exact description of Brownian motion in terms of the effects of random
collisions between the molecules of the liquid and the suspended particles. He argued that
although each impact is very small, the net result of a large number of random collisions—
nearly 10%' per second under normal conditions—gives rise to ‘drunken man’s walk’. To
quantify this problem, Einstein related the diffusion of particles to the properties of the
molecules responsible for the collisions. That is, he calculated the diffusion coefficient
from the erratic motion of particles arising from molecular bombardment.

We also know that molecules of the solute dissolved in a dilute solution exert pressure,
called osmotic pressure. (This is known as van’t Hoff’s law and states that the osmotic
pressure is numerically equal to the pressure which the dissolved substance would exert
if it were assumed to behave like a gas having the same volume and temperature as the
given solution.) If a concentration gradient exists between different parts of the solution,
suspended particles will diffuse under the osmotic pressure difference. This can also be
used to calculate the diffusion coefficient.

Einstein calculated the diffusion coefficient from the random motion of the suspended
particles as well as the osmotic pressure difference between different parts caused by
difference in concentration of suspended particles. He then equated these expressions
to calculate mean square displacement of a Brownian particle. We now give a simple
derivation of D based on random molecular motion.

Calculation of D from random molecular motion We know that random molecular
motion causes Brownian particles to diffuse and their motion is totally erratic. For
simplicity, we confine ourselves to one-dimensional Brownian motion and assume that,
on an average, each particle is displaced through a distance s in time 7. Within the medium,
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Take an open glass tube and cover its one end with a ‘semi-permeable membrane’,
which is permeable to water but not to sugar in solution. Fill this tube with a dilute
sugar solution and dip it into a beaker of pure water. You will observe that the solution
rises above the water level in the beaker. This means that the solution has a pressure
pgh higher than that of pure water at the same temperature. This pressure, exerted by
the sugar dissolved in solution, is called osmotic pressure. For dilute solutions, van’t
Hoff proved that

=nk,T

where n denotes the concentration of solution. So we can say that for dilute solutions,
the osmotic pressure is equal to the pressure which the solute would exert if it were
assumed to behave like an ideal gas having the volume and temperature of the solution.

Posmotic

let us imagine a cylinder of cross-sectional P R 0
area A and length s with its axis parallel to  dn / -_\—l_; /
the x-axis. Its end faces are denoted by P dx '9 ! '—,—_'_; \"}_’x
and Q in Fig. 2.11. kW,
Let the molecular concentration of !: s ;!

Brownian particles at P be n; and that at
Q be n, such that n; > n,. That is, along
the cylinder, there exists a molecular

Fig.2.11 Calculation of diffusion coefficient
for one-dimensional Brownian
motion.
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concentartion gradient %, where n is
mean concentration,. This makes the suspended particles to diffuse. Then the number of

particles crossing P to the right in time 7 is

-
F'=—:sA
2

Note that the factor (1/2) has been introduced because only half of the particles contained
in a cylinder of volume sA situated to the left of P will enter the cylinder PQ at P in this
time. Similarly, the number of particles entering Q and moving in the negative x-direction
in time ¢ is

F=—3sA
2

So the excess number of particles crossing the vertical plane R at the centre of the cylinder
in the positive x-direction in time 7 is given by

1"=1_"‘—1:‘=(nl —nz)%

Hence, the number of Brownian particles diffusing across R to the right per unit time is

r K
—=(n, —n,)—
AT (m 2)21
2
-5 dn (2.39)
27 dx
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. dn
since n, —n, =—s—.
dx

From the definition of diffusion coefficient, it readily follows from Eq. (2.39) that

s2

"2t

Calculation of D from osmotic pressure difference Let us now calculate D from
the osmotic pressure difference. Einstein argued that van’t Hoff’s law should hold for dilute
solutions as well as for dilute suspensions. Let the osmotic pressures exerted by Brownian
particles on the faces P and Q of the cylinder shown in Fig. 2.11 be p, and p,, respectively.
If we treat Brownian particles like the molecules of a gas, we can write

(2.40)

py=mkgT
and D, =nykpT
where & is Boltzmann constant and T is temperature of the solution. Since n, > n,, p, will
be greater than p, and the osmotic pressure difference (p, — p,) will give rise to a force
F=(p, —p,)A=(n —ny)kzTA
This force tends to push the molecules in the cylinder toward the right and is experienced

by all (nAs) particles contained therein. Hence, the magnitude of force experience by any
one of the Brownian particles is given by

(ny —ny)) kgTA  (ny —ny) kgT __kBTd_n

nAs n s n dx

f=

As a particle moves under the influence of this force, it will experience viscous drag. If
we assume that all Brownian particles are spherical and have a radius r, the viscous force
is given by the Stokes’ law (f= 6znrv). Hence, we can write

kgT dn

=6rnrv=————

f n P—
kgT dpn
or nw=———7—m-——_
6rnr dx

The product nv defines the number of particles moving to the right per second per unit area

and is, by definition, equal to — Dgx—n. It, therefore, readily follows that

kT
D= . (2.41)
6rnr

On comparing Egs. (2.40) and (2.41), we get
52 kg T

27 - 6rnnr

or
,  kgT RT 1
st = T=—""r T
3znr N, 3znnr

(2.42)

This result is known as Einstein’s equation for mean square displacement of a Brownian
particle. Probabilistically speaking, it is a fluctuation-dissipation relation where mean square
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displacement (fluctuation) is connected to a dissipative mechanism (phenomenologically
signified by 7).

It is instructive to note that Brownian mean square displacement is independent of the mass
of particles. Through a brilliant series of experiments, Perrin confirmed this prediction
by varying m through a factor of 15,000. We further note that diffusion of particles is
related to molecular motion. Moreover, since s2, 7, 7 and r are measureable quantities,
Eq. (2.42) provided a ready tool for the determination of Avogadro’s number. In fact, this
equation was verified by Perrin, and was found to be precisely correct. His experiments
established beyond doubt the existence of molecules and provided kinetic theory the general
acceptability. We shall return to these details in a later section.

ALTERNATIVE DERIVATION OF EINSTEIN’S EQUATION

FOR BROWNIAN MOTION
z A L1 P L2
X=X _y %o Xot+ X'

> X

Fig.B2.2 Reference plane and symmetrically situated planes of thickness dx.

Let P be a plane perpendicular to the x-axis at the position x = x,. We consider two
layers L, and L,, each of width dx and area A situated symmetrically with respect to P
at x, — x” and x, + x’ respectively. Suppose that the concentration at x, is n,. If average

.. . . . dn .
concentration is n and there exists a concentration gradient —, the concentrations at
dn , dn , ; ; :
L, and L, can be expressed as n,— — x" and n,+— x". Owing to Brownian motion,
’ 2 O dx 07 dx

the particles will undergo random motion. If the probability of finding a particle
between x = b and x = b + db in time Tis f(b)db, we can write

| fbydp =1
and arising out of symmetry, f(b) must be an even function. Thus f(b) = f(-b).
Let us now calculate the number of particles leaving L, and crossing P in time 7. This

is given by

r"=Adx (no—jx—”x') Tf(b)db (B.1)
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Similarly, the number of particles leaving L, and crossing P in time 7 is
=Adx’ (no +Ex ) j f(b)db (B.2)

From Egs. (B.1) and (B.2), we note that the total number of particles crossing P in
time 7 is given by

N=F‘—F+=Adx’{(n0+ax) | rydb - ( —ax)jf(b)db}

—x’ o
Since f(b) is symmetric, i.e. _[ f(b)db = _[ f(b)db, the expression for N can be
—oo x’

rewritten as
- T 2Adx'd—”x'°ff(b)db
o dx

=24 % [ rbyan j X dr’ = A d”fb2f<b)db=LAd_n,,_z
0 2 dx

bO

where b_2 = _[ b% f(b) db. Note that while interchanging the integration over b and x

we have changed the limits of x; now it runs from O to b instead of 0 to e. As such,
this is mathematically consistent since b runs from 0O to eo.
In terms of the diffusion coefficient and the concentration gradient, we note that

N =DA7t % so that we can write

pAr 9L 9n 2
dx 2 dx
b
so that D=— (B.3)
27

We know that in the presence of concentration gradient between different parts of the
solution, Brownian particles diffuse under the osmotic pressure difference. To calculate
the diffusion coefficient, we note that if Brownian particles can be treated like the
molecules of a gas, we can write

p=nkgT
so that
d
P _rin
dx dx

kT
This result shows that the x-component of force exerted on each particle is —— jx—n
n

Particles moving under the influence of this force experience viscous drag. For spherical

Brownian particles of radius r, this is given by Stoke’s law. Therefore, we can write
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kT dn
—— —=6nnrv B4
n dx (B-4)

where v is terminal velocity and 7 is coefficient of viscosity.
We further note that in unit time nv number of particles cross unit cross section in
the yz-plane. Therefore, we can write
nv=D dn
dx
On rearrangement, we get an expression for diffusion coefficient:
D=2 (B.5)
dn
dx

On substituting for dn/dx from Eq. (B.4) in (B.5), we get
v _ kgT

B 6mnr
6 .n
ry kT

D=n

RT

= ———- B.6
6nr N, B0
On comparing Egs. (B.3) and (B.6), we get

b_2 RT

=—7 B.7)
3nrnN,

which is analogous to Eq. (2.42).

You must have realised that in Einstein’s derivation, emphasis is on relating Brownian
motion to physical processes. A somewhat more elegant theory was given by Langevin.
We now discuss it.

2.4.2 Langevin’s Theory

Langevin argued that each Brownian particle suffers about 10?! collisions per second with
the molecules of the liquid and its velocity changes (in magnitude as well as direction)
about 107 times in one second. So it is not advisable to think in terms of individual
collisions. That is, it is impossible to trace the path of a particle and predict its exact
position at a given time. (Mathematically speaking, the trajectory of a particle is nowehere
a differentiable function.) Following LangeVin, we asume that the average force acting
on a suspended particle due to molecular bombardment is made up of a frictional and a
fluctuating component. The equation of motion of a free Brownian particle along any
arbitrarily chosen x-axis is

mi=F +F, (2.43)

where m is mass of the suspended particle, double dot over x denotes its second order
derivative with respect to time, F is the frictional force and F, is x-component of the
fluctuating force due to molecular bombardment. Phenomenologically, this equation
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combines the microscopic and the macroscopic viewpoints as signified by the frictional
force and the fluctuating force, respectively.

Since a suspended particle suffers, on an average, one collision in about 102! s with the
molecules of the liquid, the mean free path of the fluid molecules is small compared with
the size of the suspended particles. Therefore, the surrounding medium can be considered
as continuous. LangeVin further assumed that suspended particles are spherical in shape
and the frictional force is given by Stokes’ law":

F=-6mnrx=-Cx (2.44)

where C = 6znr; r being the radius of the suspended particle. On combining Eqgs. (2.43)
and (2.44), we can write

mi=-Cx+F, (2.45)

It is important to note here that the direction of motion of each suspended particle
changes at each collision. As a result, F, will be quite irregular in its value; as often positive
as negative. Therefore, if we follow the motion of suspended particles over a time ¢ >> 10?' s,
the expected displacement will be zero. This is because the probabilities of positive and
negative displacements are equal. To overcome this problem, we evaluate mean square
displacement and work with x? rather than x. It means that the equation of motion should
be written in terms of x. To do so, we multiply Eq. (2.45) throughout by x. This gives us

mxxX=-Cx x + xF, (2.46)
Proceeding further, we note that
d, .
—(x*)=2xx
dt( )
e, . .
and ——(x°)=2xX¥+2(x)
dr?

so that use of these relations in Eq. (2.46) leads to

2
%;T(xz y—m (%) = —% %(f) +xF, (2.47)

This equation is valid for each suspended particle. If we average over a large number of
particles, we get

(2.48)

The bar denotes the average over all particles.

Since both x and F, vary randomly, the term E in Eq. (2.48) will become zero. Further,
Brownian particles are in thermal equilibrium with fluid molecules and their mean kinetic
energy (associated with one degree of freedom) is kz7/2. That is,

m(x)? =kzT

" Note that in the case of rarefield gases, the mean free path of the molecules becomes large as compared
to the size of the suspended particles and the frictional force will be given by Doppler’s law.
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Using these results in Eq. (2.48), we obtain

2
md 2+£

d >
mad x 4 y=k,T
2ap T
2 2k, T
or 4 %)+ P (=22 (2.49)
2 dt m

where @ = C/m. Note that w has dimension of inverse time and signifies the frequency of
collisions.

To solve this equation, we assume that averaging over space and differentiation with respect
to time are commutative:

&, _d
— () =—(x
=g o)
and introduce a change of variable by defining
d o
—x =u 2.50
i (2.50)
Then Eq. (2.49) takes the form
. 2ks T
u+owu= (2.51)

This is a first order inhomogeneous differential equation. Its most general solution is”

2k T
u=

+ Aexp (—wt) (2.52)

Since  is very large (m being small), the exponential term decays very rapidly and may
be safely neglected. Then, Eq. (2.52) takes a very compact form:

(2.53)

" This consists of the particular integral and complementary function. The particular integral is obtained
by noting that

m
—+w
dt

1 (ZkBT] 1 2k, T 2k, T
- = =
dt

d m mo C
+o
2ky T
On the other hand, the complementary function is obtained by equating the RHS of Eq. (2.51) equal to
zero. The resulting equation can readily be solved to get

u=Aexp(—aot)
where A is a constant of integration.
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The desired result is

X2 —x2 =A(xY)= el (2.54)
On substituting for C, we get
— kT
A(x)y=—2"¢ (2.55)
3rmnr

This result is same as in Eq. (2.42). Note that A(x?) is in no sense the actual
displacement of Brownian particles. It is the mean of the squares of the projections of
actual displacements on the x-axis. That is, if we take a snapshot of the suspesion at t
=0 and ¢ = 7, we should measure the component of displacement along any arbitrarily
chosen direction, say x-axis and determine §(x?) for each particle. Then we should add all
values of 8(x%) and divide by the number of particles to obtain A (x?). In his experiments,
Perrin worked with 100 different particles of known size. And, if we closely re-examine
Fig. 2.10, we note that the motion is so complex that an experimentalist may find it quite
inconvenient to work with such a large number of particles. Therefore, motion of one
particle is followed for N succesive intervals of time (when N is a large number), the
motion is almost equivalent to the motion of N particles during a single time interval.
(This corresponds to the assumption that differentiation and averaging are commutative.)

Perrin used Eq. (2.55) to measure Avogadro’s number*, N, and established beyond doubt
the existence of molecules as well as intermolecular collisions. In a way, these studies put
kinetic theory on a sound basis.

2.4.3 Examples of Brownian Motion

We have just now seen that colloidal suspensions in a fluid exhibit Brownian motion. We
come across many other intersting examples of Brownian motion. These include
sedimentation, diffusion of pollutants in our atmosphere or smoke particles in air, motion
of a galavanometer mirror and Johnson noise in amplifiers (electrical appliances). These
are discussed below.

Sedimentation Insedimentation, the distribution 7
of particles is determined by the influence of gravity
and diffusion. Whereas gravity tends to make
them settle down, diffusion caused by molecular p+.Ap Az
bombardment tends to homogenise them. (The i
same is true of pollutants in our atmosphere.) To p
calculate the number of particles at a given height,
we consider a layer of particles bound by surfaces T
B and A at heights z and z + Az, respectively. Let p Fig.2.12 A shallow box of depth
be the pressure on the lower face and p + Ap be the
pressure at the upper face, as shown in Fig. 2.12. area A. The pressure
Let us consider the equilibrium of unit area of on the upper and lower
the layer. If p and g denote the density of particles faces are p + Ap and p,
and acceleration due to gravity, respectively, then for respectively.
equilibrium we must have

Az and cross sectional

*He was awarded the Nobel Prize in 1926 for this work.
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Ap=—gpAz (2.56)

The negative sign signifies that pressure decreases as height increases.
If m is the mass of a single particle and n is number density, then p = mn and Eq. (2.56)
takes the form
mgN
Ap=—mngAz=———Az
Vv

If we assume that Brownian particles obey gas laws, we can replace V by uRT/p. Further,

on replacing Ap and Az by dp and dz, respectively, the above equation can be rewritten as

dp __meN
P URT
This can readily be integrated to obtain
mgN
P =Py cXp (——# RT Z] (2.57)

where p=p,atz=0.

Since pressure is directly proportional to number density ( p= lmnv_z), we can rewrite
Eq. (2.57) as 3

U RT

In a colloidal suspension, the suspended particles are buoyed up by the liquid, say of
density p’. Then, their effective mass m,¢ will be given by

n(z)=n, exp (—M z] (2.58)

4 ’
Mege =Tn(p_p )

where r is radius of the suspended particles.
Using this expression in Eq. (2.58) we get

3
: ar T8N
n(z)—noexp[ 3 PP )#RT

Z (2.59)

This equation tells us that if p = p’, the effective gravitational field is greatly reduced
and there will be an appreciable variation in particle concentration with height. However,
if p’ is small, the sedimentation due to gravity will be so rapid that all suspended particles
reach the bottom of the container quickly and lie in a thin layer. The observed brownish
skyline of cosmopolitan cities and sedimentation of hydrocarbons are vivid examples of
these predictions.

Since N_ N, , we can readily rewrite Eq. (2.59) as
3RT N
N, = In| — (2.60)
4nr (p—p)ez n
This result shows that we can study the variation of number density with height for a fine

suspension and conveniently determine Avogadro’s number. Perrin worked with emulsions
of gamboge and mastic and obtained a value of 6 x 10?® molecules per kilo-mole. (This
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value is virtually identical to the value obtained by other sophisticated methods.) This
suggests that fine particles in thermal equilibrium behave like gas molecules.

IB Gl 1A EM Tn his experiment on water suspension of gamboge at 20°C, Perrin

observed an average of 49 particles per cm? in a layer at one level and 14 particles

per cm? in a layer 60 microns higher (1 micron = 10~ m). If the density of gamboge is

1.194 g cm™ and radius of each particle is 0.212 micron, calculate Avogadro’s number.
Solution: From Eq. (2.60), we recall that
3RT N
Ny=—7———In|—
4rr’(p-pHegz
On substituting the values of various quantities, we get

3x(8.31mol 'K )><(293K)ln(£)
N 14

AT 4x3.14%(0.212x107°m)> x ((1.194—1)x10> kgm ) x(9.8ms2) X (60x10~°m)

3x8.31x293x1.25

 4x3.14%(0.212)° X 0.194 x 9.8 X 60
=6.7x10% mol™!

x 102! mol ™!

Galvanometer Mirror In your physics laboratory, you may have noted that a delicately
suspended galvanometer mirror undergoes small random oscillations which are due to its
thermal energy. The net result is that the galvanometer reading fluctuates, i.e., the system
shows an unsteady zero position. This provides us another example of Brownian motion
in physics.

The Brownian fluctuations of the galvanometer mirror are expressed in terms of the
root mean square angular deflection, 6, . To calculate this, we note that the mirror has a

rms*

single degree of oscillation about its axis so that the thermal energy associated with mean
square angular deflection 0% is kgTR2,ie.,

— kT
leog2 B2
2 2
ke T
so that 6,.= ~ (2.61)

where C is torsional rigidity of the galvanometer suspension. This implies that smaller the
value of C, larger will be 8,,,.. That is, fluctuations of zero point will be more in a more
sensitive galvanometer.

For a fine quartz fibre, C = 10" Nm rad™! so that at 300 K, the amount by which a
galvanometer reading will fluctuate as a result of thermal motion is given by

8, =2x10"rad

If the lamp and scale arrangement is at a distance of 1 m from the galvanometer mirror,
then a fluctuation of 2 x 10~ rad corresponds to an rms fluctuation of the light spot of 4 x
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10 m (0.4 mm). This is depicted in Fig. 2.13. Note that 6

these fluctuations do not depend on the presence of air

surrounding the mirror. In fact, the gas molecules may

also contribute to the oscillation but these also contribute

to damping so that the net result is unchanged. The

mirror behaves like a big molecule with a single mode of Nk
torsional oscillation. In a perfect vacuum, the oscillations

can be considered as arising from random absorptionand  Fig.2.13 Brownian motion
radiation of electromagnetic energy associated with the of a galvanometer
temperature 7. mirror.

Suppose that the temperature and pressure of air are

reduced below normal. Can we eliminate random fluctuations in 6 completely? Think
about it and read the following example carefully.

15501171 I 1n his experiment, Kapler found that 82 = 4.178 x 1076 rad?. If the
suspended system has torsion constant 9.428 x 1071 Nm rad~' and T = 287.1 K, calculate
the Boltzmann constant.

Solution: From Eq. (2.61), we can write
ce*
T
On substituting the value of various quantities, we get
‘- (9.428 10716 Nm rad™')x (4.178 x 1076 rad?)
B 287.1K
=1.4x10"% JK™!

kp

Note that radian is dimensionless.

Johnson Noise The conduction electrons in a metal may be regarded as a gas with
random velocities. One expects that these may give rise to fluctuating voltage across a
resistor. This indeed was observed by Johnson and is known as Johnson noise or electrical
noise. The rms potential fluctuation across a resistor of resistance R in thermal equilibrium
at temperature T is given by
Vrms =[4 RkBT (f2 - fi )]1/2 (262)
where (f, —f;) is the frequency bandwidth over which the measurements are made. Equation
(2.62) shows that there is a limit to useful amplification. If the original signal is too feeble
compared to the random electrical noise, reception will not improve with amplification.
Similarly, in the thermionic emission of current /. there is a fluctuation in the emitted

current, which is given by
—i2 [, 12
] |
S

where e is electron charge and ¢ is the time constant of the measuring system. This effect
has indeed been used to determine the value of e and the result agrees with other methods
to within one per cent.
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In the preceding sections, we have discussed theoretical explanations and examples of
Brownian motion in physics. One of the most fundamental constants whose determination
was undertaken in very elaborate experiments by Perrin was Avogadro’s number, which
denotes the number of atoms/molecules in one mole of the substance. We will therefore
now discuss Perrin’s experiments on colloidal suspensions for determination of Avogadro’s
number. As such, this work signifies a great triumph of molecular theory.

2.4.4 Perrin’s Experiment: Determination of
Avogadro’s Number

To determine Avogadro’s number, we have to measure x2, the mean square displacement
of a Brownian particle. Perrin observed the motion of a single gamboge grain suspended
in water at intervals of thirty seconds with the help of a microscope using the camera
Lucida. To locate the particles, the microscope had in its field of view a series of mutually
perpendicular lines as shown on a graph paper in Fig. 2.14, having 16 divisions being equal
to 5 1073 cm. The projections of the successive displacements along the x-axis give a set of
values of x, which were used to calculate x2. You may now like to ask: How could Perrin
make such wonderful observations with a simple arrangement? Perrin derived his argument
from the fact that v,,,, =2 x 102 ms™! at 300 K for a grain of gamboges of radius 2 x 10~
m and mass about 3 x 10~'7 kg (which is 10° times the mass of the H,0 molecule). This
combination of slow speeds and large size was harnessed by Perrin to observe the motion
of suspended particles. It justifies the popular belief that Nature likes logic and simplicity!
And most natural laws have been unfolded using very simple arguments. Our own Sir. C.V.
Raman explained the blue colour of ocean using a fundamental logic to discard Rayleigh’s
explanation that the colour of the ocean was just a reflection of the colour of the sky. He
conjectured that the colour of ocean had genesis in the scattering of solar light by water
molecules and proved it using a very modest apparatus.

/
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Fig.2.14 Calculation of x_2 for a Brownian particle.
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Refer to Fig. 2.14. Note that the straight line segments shown here are in no way a
representation of the actual path of the particle. The particle is hit millions of times in a
second, and hence, its trajectory has a jagged and irregular structure. For example, if we
magnify the part AB of the trajectory say 100 times, it will appear as shown in Fig. 2.15.

L1 5.4

1 5

8 J\(\ Han

o

|

Fig.2.15 The path AB after magnification.

Working with the colloidal suspensions of gum mastic and gum gamboge, Perrin measured
all the quantities appearing on the RHS of Eq. (2.60) and obtained the value of Avogadro’s
number as 6.85 x 10% molecules kmol™'. (Subsequently, Westgren obtained the value
6.05 x 10% molecules kmol™!, which differs from the presently accepted value by just
1%.) From his measured value of Avogadro’s number, Perrin estimated the mass of a
molecule. For example, one kmol of nitrogen gas has a mass of 14 kg. Hence, mass of a
nitrogen molecule

14 kg

* 6.85x10%
Perrin is, therefore credited to be the first person to have weighed the atom with kinetic
theory as the tool.

My =2.04x107% kg

2.5 RANDOM WALK PROBLEM

In physics, we encounter many situations where a system is developing in time or space
through individual discrete steps. If each step is random in direction, independent of the
preceding or succeeding ones, the study of the net motion is referred to as the random walk
problem. A simple random walk problem can be realised if we perform the experiment
of coin tossing. A coin is tossed at regular intervals, say 7. We move a step to the right if
it heads and to the left if it tails. Then our position x(¢) at time ¢t = N7 will depend on the
sequence of heads and tails. Note that in this case both time and space parameters are
discrete. The net motion of a drunk person, who begins to stroll from a single light post,
but is so intoxicated that each step may be in any random direction and a range of different
lengths may be visualised as another common example of random walk (Fig. 2.16).
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Random walks provide models for numerous applications such as (i) Brownian motion,
(ii) turbulence in fluids, (iii) neutron diffusion, (iv) motion of electrons through a metal
and of a hole in a semiconductor, (v) motion of defects in crystals, among others. It is
therefore important to gain a good understanding of this problem. However, note that since
motion in more than one dimension can be broken up into its individual components, it is
sufficient to consider random walk in only one dimension.

0‘ W \/\/\ > Time

Fig.2.16 Schematics of one-dimensional random walk. The position of the person is
marked after each step.

Displacement

2.5.1 Random Walk in One Dimension

A particle performing a random walk on a one-dimensional lattice moves to an adjoining
position at every step. Let the probability of moving to the right be p (a constant) and to the
left be g such that p + g= 1. When p = g = 1/2, the random walk is said to be symmetric.
This corresponds to the motion of a free particle. When p > 1/2, there is shift to the right
and vice versa, the walk is asymmetric. This happens in case a force is acting on a particle.
If p and q are constant and successive steps are independent, the random walk is termed
Bernoullian. The random walk where the movement of a particle depends on the direction
of the preceding step is known as correlated random walk. When there is no limit to the
extent to which a particle can move, we say that the walk is unrestricted. Otherwise, the
walk is restricted to within barriers. When the probability of movement depends on the
position of the particle, the random walk is said to be biased. When both the state and time
parameters become continuous, the random walk is called diffusion.

Consider an assembly of particles moving randomly. The basic questions to be answered
in this problem are:

1. After each particle has taken N steps, what will be their relative positions vis-a-vis
the starting point?

2. How spread out will they be? That is, what will be the standard deviation of their
positions relative to their average position?

For simplicity, we consider the motion of a free particle along a line, say x-axis. At the
end of each successive interval 7, it may change its direction of motion or not but the two
alternatives are equally likely, i.e., it has a probability (1/2) of moving in either direction
and distributed at random. We are interested in determining the probability W(m, N) that
the particle is at the point m after N steps, if it started from the origin. If the particle makes
ng jumps to the right and n; jumps to the left, then ngy + n;, = N and ny — n; = m so that

N+m
ng = 3
and
N-m
n = T (263)
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The number of sequences which contain n positive jumps and n; negative jumps is given
by the binomial coefficient and is equal to N!/ng!n,!" The probability of each specified
sequence is (1/2)". Therefore,
N!
ng'ln !

W(m,N)= (1/2)N

_ N any (2.64)

%(N+m)!%(N—m)!

For large N, we can use Stirling’s formula to simplify this expression:
In n!=(n +l) In n—n+lln 2r
2 2
On substituting this in Eq. (2.64) and simplifying the resultant expression, we get

1nW(m,N)=(N+%)lnN—Nln2—%ln27t

—l(N+m+1)1n(ﬂ(1+ﬁ)]—l(N—m+1)x1n(ﬁ(1—ﬂ)] (2.65)
2 2UTN)) 2 20N

For m << N, we can write
In (1iﬁ)=iﬁ—lm—i

where we have retained terms of order up to N2 and neglected smaller terms. Using this
expansion in Eq. (2.65), we get

lnW(m,N)=(N+%)lnN—Nln2—%ln27t

2
L N+m+D) | InN-m2+ B
2 N 2nN2

2
—l(N—m+1)(1nN—1n2—ﬂ— m +]
2 N 2N?2

This may be simplified to obtain a compact form:
2 2
nW(mN)=In2—~m2z-tmn-"_-Ly, (i)—m— (2.66)
2 2 2N 2 N/ 2N

On taking the antilog, we get the desired result:

2
W (m, N)= fﬁ exp (—?—N] 2.67)

" If we have some criterion for the behaviour of a single element of a system, and if p is the probability that
the criterion is satisfied and g is the probability that it is not satisfied, then for a system of N elements, the
probability of this system being in a state where n elements satisfy the criterion and the remaining (N —n)
elements do not satisfy it is given by

N! N
Py(n)=——p"qg™ "
w (1) N!(N_n)!p q
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From this we note that although W(m.N) is a discontinuous function, the terminal points
of a random walk form the outline of a smooth bell-shaped curve.

Now let us suppose that the length of each step r is very small and x = mr. One can
then approximate W(m.N) by a continuous probability density function W_(x, N) such that

W(m,N)=KW, (x,N) (2.68)

where K is constant of proportionality. As the probability of finding the random walker is
a certainty, K can be calculated by setting

[ W, (x,N)=1 (2.69)

—o0

This gives K = 2r, so that

VVC()C,N)=

(2.70)

1 x?
J2rne? 2Nr?
14NN WA/ Using Eq. (2.69) prove that K = 2r.

It is important to point out here that the constant K = 2r can also be chosen from the
physical consideration that in two consecutive non-zero values of W(m, N), m increases
by 2 so that x increases by 2r.

Equation (2.70) can be rewritten in a slightly different form by noting that if the
time taken in N jumps is # and v = 7' denotes the number of jumps per unit time, then
N=vt=t/7. This gives

W, (x,1)=

2
! exp (— X ] (2.71)
Jar Dt 4 Dt
where D = 1*/21 is known as diffusion coefficient.
Equation (2.71) gives the desired probability that the particle is at a distance x at time

t. It represents a Gaussian distribution curve.
The mean square displacement of the particle is defined as

x_2= _[ xZWC(x,t)dx

—oo

We now substitute for W_(x, f) from Eq. (2.71) to obtain
— o 2
=L | x* exp (—x—]dx
2/xDt “w 4Dt

-1 ]:x2exp(—i]dx
JrDt o 4Dt
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since the integrand is symmetric in x. Now, we introduce a new variable by defining
2

:T = ¢ so that xdx = 2Dtder and x*dx = 4(Dt)*?a'?dax. The expression for x_2 takes a
t

compact form:

— 4Dt %

x2 =—ja“2 exp(—a)da
Jr o
4Dt
=——T(3/2)
T
. Jr .
Since I'(3/2)= - we obtain
X2 =2Dt @.72)

Do you recognise this result? It is same as that obtained by Einstein for mean square
displacement by considering the molecular concentration gradient.

¢y ADDITIONAL EXAMPLES

IB G 1AL Calculate the mean time between collisions for a nitrogen molecule
in air at 27°C and a pressure of 1 atm. Take kp = 1.38 x 10> JK™' and dy, ~ 107" m.
Assume Maxwellian distribution of speeds.

Solution: We know that mean free path of gas molecules obeying Maxwellian distribution
is given by

do_ 1 1 kT
Jord*n 2md> P

On substituting the given values, we get

1 1 (1.38x1072 JK~1) x (300 K)
= X
J2 7 (10720 m?) (1.013x10° Nm™2)
=0.92x10° m

The average speed of a Maxwellian gas molecule is given by

- [255k,T
v=,|———
m

28
m=——>"——Kkg
6.023x10%

=4.65x1072% kg

The mass of nitrogen molecule
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Hence,

_ ]2.55%(1.38%x1072 JK')x (300 K)
V=
4.65x107% kg

=4/2.27%10° ms™!
=476 ms™!
Hence, mean time between collisions

e A 092x10°m
v 476 ms™!

=1.93%107°s

I GVl Calculate the mean free path of the molecules of a gas of diameter
0.2 nm in a closed chamber maintained at 10~ mm of Hg and 273 K. One gram molecule
of the gas occupies 22.4 litre at STP.

Solution: We know that at 0.76 m of Hg pressure and 273 K, the number of molecules
in 22.4 x 103 m® of a gas is 6.023 x 10%.

6.023%x10%

. No. of molecules per m> at 0.76 m pressure = ——
22.4x107 m?

and
6.023x10% x10° m

224%x102 m? x0.76 m

=0.354%10"" m~>

We know that d=2 x 107! m. Hence, if the gas obeys Maxwell's distribution law of speeds,
the expression for mean free path is given by

No. of molecules per m> at 10° mm pressure =

Qo1 1
J2rnd®n 442 1 (107 m2) x (0.354 x 101 m™3)
1
=——m
6.29x1073
=1.589x10? m
=159m

Note that the mean free path has a very large value, which may be greater than the size
of a typical chamber. This indicates the possibility of obtaining unhindered movement of
molecules in a chamber.

ID G MM Calculate the frequency of sound at which the wavelength of sound
waves becomes equal to the mean free path in oxygen at 273 K and 1 atm. Take diameter
of oxygen molecule as 3 x 107'% m and velocity of sound waves as 330 ms™_.

Solution: We know that the mean free path for a gas obeying Maxwell’s distribution
law is given by
1

A=t
J2rd*n
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At 273 K and 1 atm pressure,

6.023x10% »s 3
n=——""""" -2689%x10"m
224%x107 m?
Since d = 3 x 1071% m, the mean free path is
A= 1
1.414%3.1417 x (3x107'° m)? x 2.689 x 10 m~3
1
=——m
107.51x10°
=93x10%m

According to the given condition, this distance is equal to the wavelength of sound waves.
Therefore, the frequency corresponding to this wavelength is given by

v  330ms!
A 93x10%m
=3.5%x10°s7!

15011 Al Calculate the mean free path for the molecules of a gas at STP.
Assume that gas molecules behaves like spheres of radius 3 x 107 m.

Solution: We know that at STP 1 kmol of a substance occupies 22.4 m® and has
6.023 x 10% molecules. Hence,

PR S 1 o 224 m’
Jord®n 2 x3.1417x(6x107° m)3?  (6.02x10%

=24x10"%m

The viscosity of a gas at STP was measured to be 1.66 x 10~ Nm™
per unit velocity gradient. The average speed of the molecules is 450 ms™! and the density
of the gas is 1.25 kg m™. Calculate (a) mean free path of the gas, (b) collision frequency
and (c¢) molecular diameter of the gas molecules.

Solution:
(a) From Eq. (2.28), we recall that
n=Lpvi
3
= A=3n/pv @)

Here p=1.25kg m=, v =450 ms™! and n=1.66 x 1073 Nm™2s. Hence,
3% (1.66 x10~° Nm~2s)

(1.25kgm™>) x (450ms™")

_ 4.98x10° kgm's”!

5625 kgm™2s™!

=8.85x10%m

l:
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v 450ms™
(b) Frequency of collision = Y -508x10°s’!
8.85x10* m

(¢) We know that for a gas obeying Maxwellian distribution law

1 .
A= —\/Emtz . (i1)

= d? = ﬁ (iii)
Tn

To calculate n, we recall that 22.4 litre of every gas contains 6.023 x 10% molecules. Hence,

] . 6.023x10%
Number density (percm’) =———
22400
=0.269 x10%
= Number density (per m®) = 2.69 x 10%.

On substituting the given values in Eq. (iii), we get

1
V2 x3.1417x (2.69 x 105 m™) x (8.85x 10" m)
=9.456 x 102" m?

d* =

d=3.08%x10""m

15011 LM The molecular cross section is defined as 6 = £d?. For slow neutrons
in hydrogen, 6 = 80 x 1072 m?. Assume that neutrons obey Maxwell’s distribution law.
Calculate their mean free path at 7=273 K and p = 1 atm. Take kz = 1.38 x 10723 JK1.
Solution: We know that mean free path is given by

1 1 kg T

l: = =
J2ra*n J2no 2 po

On substituting the given values, we get

1 (138 %1072 JK')x (300 K)
= X
1414 (1.013x10° Nm~2) x (80 x 1072 m?)
4.18x1072!
= m
1.414x1.013x80x 10723
=3.65m

I 1WA LI The viscosity of oxygen at 16°C is 169 x 107 poise. Calculate the
diameter of gas molecules. Take N, = 6.023 x 10%*> mol™!, molecular weight of oxygen is
32 gmol ™! and kz = 1.38 x 1072 JKL.
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Solution: From Eq. (2.29), we recall that
mv
n=—r——
32 nd?
By rearranging terms, we can write
3 mv
3 \/5 n
Here 7= 169 x 107 poise = 169 x 107 kg m™'s™, and T= (273 + 16) K=289 K,

d2

32 gmol™!

m= =5313x1072 g=5313x1072% kg
6.023 x10% mol™

and

_ [255kT Jz.ss x (138 %1072 JK ') x (289 K)
V= =

m 5.313x107% kg

=«/191.4><103 ms™!

=437%10% ms™
Hence,

2o (5.313x107% kg)x (437ms™")
3x1.414x3.1417x (169 %1077 kgm~'s™")
=1.031x107° m?

d=321x10""m.

IB G 1WA TRl Calculate the coefficient of viscosity of hydrogen at STP. Given
p=890x102kgm>,A=2x10"mand ky = 1.38 x 1072 JK"".

Solution: From Eq. (2.28), we recall that
1 —
=—pvi
n 3 p
2.55ks T

m

Here p=8.90><10‘2 kgm>,1=2x10"mand v =

We know that
2 gmol™!

= — -=332x 1072 g=3.32x1072" kg
6.023 x 10°° mol™

m

Hence,

- 2.55%(1.38%x1072 JK™')x (273 K)
yv=
3.32x107% kg

=,/289><104 ms™!

=1700 ms™!

TP_02.indd 52 @ 5/2/2012 5:08:41 PM




TP_02.indd

Mean Free Path and Transport Phenomena 2.53

Hence,

n=%x(8.9x10‘2 kgm?)x (17x10% ms™ ) x (2 x 10~ m)

=1.01x10° kgm™'s”!

In a vacuum flask, the gap between two concentric glass cylinders
is 4 mm. Suppose that the pressure is lowed to p. Calculate the pressure at which thermal
conductivity between the walls of the flask drops below its value for p = 1 atm. At what
value of p will thermal conductivity be 1073 times the value at 1 atm? Take 1 atm = 10°
Nm2 and A = 100 nm.

Solution: From Eq. (2.32), we know that
C
K=—"niv
3
Also,

kg T
n=L and A=—0 L

ky T «/Ena_ﬁ po

When the pressure is reduced below the value at which the mean free path becomes

4 mm, the value of A will remain constant. Further since A o< 1 at constant 7, this will
occur when p is reduced below p

100x10~° m
4x103 m

x10° Pa=2.5Pa

Below this pressure, K will be universally proportional to pressure, so it will be reduced
to 1073 of its value at 1 atm when pressure is reduced to 2.5 x 10> Pa.

Let us now sum up what you have learnt in this chapter.

¢y SuMMARY

o The mean free path is the average distance travelled by a molecule between two
successive collisions. If we assume that all molecules have average speed v, the
expressions for A is given by

ag =075
no
where 7 is the molecular number density and ¢ is the collision cross section. For a
sphere of diameter d, o= d.

e For a sample of N, molecules, the number of molecules which travel a distance x

without making any collision is given by survival equation:

N = N, exp(-x/A)
e When a gas is endowed with mass motion, random molecular motion can lead to

transport of energy, momentum or mass, depending on the physical conditions, which
lead to the phenomena of thermal conduction, viscosity and diffusion, respectively.
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2.54 Thermal Physics

o The coefficient of viscosity for a gas having velocity gradient in a direction normal
to the direction of mass motion is given by

1 —
== A
n 3mnv

where m is the molecular mass and V is the average speed of a molecule.
At a given temperature, 7 is independent of pressure.
e The thermal conductivity, K is given by

K= gnVl kg
where f denotes the number of degrees of freedom.
e K and 7 are connected by the relation
KM _
nCy
o The coefficient of diffusion D is given by

v kyT
D=%l=0.376( B

(o) DA / m
e Brownian motion is perpetual, irregular motion of the particles immersed in fluid
caused by their continuous bombardment by the molecules of surrounding medium.

1

)3/2

e The mean square displacement of a Brownian particle in terms of the diffusion
coefficient D, is

x? =2Dt
o The Einstein’s relation for mean square displacement of a Brownian particle is
2= RT 1 z
N, 3znnr
o The variation of particle concentration with height, z, in sedimentation is given by

n=nyexp| ———=z

URT
e The probability of finding a particle at x = m after N steps in a random walk is
given by
N
!
W(m,N)= N! (1)
(N+m]'(N—m]‘ 2
2 2
For large N,
2 m?
W(m,N)=,|— exp| —
( ) N p( 2N }

o The probability that after N steps, the particle is between x and x + dx is given by

W (x,N)= 1 exp(— x2]
o J2no 202

with 6® = NP2,

TP_02.indd 54 @ 5/2/2012 5:08:41 PM




Mean Free Path and Transport Phenomena 2.55

2.2

23

24

2.5

2.6

2.7

2.8

2.9

2.10

TP_02.indd 55

EXERCISES

A billiard table measures 1.2 m X 2.4 m. The diameter of a billiard ball is 6 cm.
Estimate the mean free path for collisions between balls when there are only four
balls moving randomly on the table. (Ans: 3.8 m)

A one litre bulb at room temperature contains hydrogen gas at a pressure of
107 torr. At t = 0, a filament of area 0.2 cm? is suddenly heated to incandescence.
Under these conditions hydrogen molecules striking the filament are dissociated.
Neutral hydrogen atoms that are produced stick to the walls of the bulb on striking.
How long is the mean free path for hydrogen molecules at the initial pressure?
(Ans: A=2.3m)
Calculate the mean free path and collision frequency of air molecules under standard
conditions. Take radius of air molecules as 10~'° m, number density n = 105 m>3

and mean velocity v = 500 ms™". (Ans: A=5.63x 10" m;z=8.88x10%s7))
The diameter of the molecules of a gas is 3 x 107! m. Calculate the mean free path
at STP. Take kz=1.38 x 10°2 JK.. (Ans: 9.31 x 1078 m)

An ion of mass m and charge e is moving in a dilute gas of molecules with which
it collides. The mean time between collisions suffered by the ion is 7. Suppose that
a uniform electric field E is applied in the x-direction. Calculate the mean distance
X (in the direction of E) which the ion travels between collisions if it starts out with
zero x-component of velocity after each collision. (Ans: (eE/m)7%)

Obtain an expression for pressure exerted by gas molecules on the walls of the
container using the survival equation.

The mean free path of the molecules of a gas at 25°C is 2.63 x 107> m. If the radius
of the molecule is 2.56 x 107'% m, calculate the pressure of the gas.
(Ans: 134 Nm™)

Calculate the frequency of sound at which the wavelength of sound waves will
be equal to the mean free path of nitrogen molecules. Take diameter of nitrogen
molecules d = 0.3 x 10 m and number density # = 3 x 10 molecules m™.
(Ans: 1.33 x 10° Hz)
Assuming K/nCy, = 5/2 for translational modes and K/nCy, = 1 for other internal
-5 c,
, where y =—.
v
The thermal conductivity and specific heat capacity of a gas at 273 K are
24 x 1072 Jm™! s7! K™! and 20.9 kJ kmol™! K, respectively. Calculate the
diameter of gas molecules. Take mass of gas molecule as 5.31 x 1072 kg and
ky=1.38x 1072 JK .. (Ans: 3.04 x 107 m)

modes, show that for a polyatomic gas K/nC, =
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3 REAL GASES: van der WAALS’
EQUATION OF STATE

@ Learning Objectives

In this chapter, you will learn how to

e discuss experimental findings of Regnault, Andrews and Amagat for real
gases;

e establish van der Waals’ equation of state and explain how it helps to
understand the behaviour of a real gas at different temperatures;

e discuss limitations of van der Waals’ equation and how far these have been
overcome by other equations of state;

e obtain reduced equation of state and discuss the law of corresponding
states;

e describe Joule—=Thomson experiment and obtain an expression for Joule—
Thomson coefficient; and

e define inversion temperature and discuss its importance for liquefaction of
gases.

3.1 INTRODUCTION

In the preceding two chapters, we discussed the behaviour of ideal gases and studied
how it helped in the development of kinetic theory of gases in its formative stages.
The modifications such as finite size hinted at the possibility that a real gas may show
considerable deviation from the ideal equation of state for a perfect gas, pV = URT, even at
room temperature. As we now know, noble gases show marked deviation at high pressures
and low temperatures. To describe the behaviour of such gases, many equations have been
proposed. Some of these are purely empirical and a few phenomenological. van der Waals
derived an equation by making allowance for the finite size of gas molecules and for the
existence of intermolecular forces. Though van der Waals equation has been used with fair
degree of success to understand the behaviour of real gases with particular reference to
their liquefaction, subsequent experiments brought forth some of its inherent limitations.
These essentially arise because no account is made for repulsive forces between molecules.

In Sec 3.2, we have discussed results of various classical experiments conducted to
understand the behaviour of real gases. These hinted at the possibility of liquefaction
of gases and their use for production of low temperatures, leading to a new and fertile
field of study. In fact, it opened the gateway to some very exciting discoveries, which
helped improve our understanding of different states of matter. This is followed by the
discussion of Onnes empirical equation of state in Sec. 3.3. A detailed discussion of van
der Waals equation forms the subject matter of Sec. 3.4. You will learn that it explains
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almost all experimental results. The reduced equation of state and other equations of state
are considered in Sec. 3.5 and 3.6. The evidence for the existence of intermolecular forces
of attraction, assumed by van der Waals in arriving at his equation, proved elusive for quite
some time. And it needed the genius of Joule and Thomson, who devised an innovative
experiment to show that temperature of a gas drops when it is made to expand adiabatically
at constant pressure. This is known as porous-plug experiment and is discussed in Sec.
3.7 in detail.

3.2 DEVIATIONS FROM PERFECT GAS BEHAVIOUR

The equation of state for a perfect gas implies that at a given temperature, the product pV
will be constant. So if we plot pV as a function of p, the curve should be a straight line
parallel to the pressure axis. Similarly, if pressure variation is studied versus volume, the
curve, called an isotherm, will be part of a rectangular hyperbola. For a set of temperatures,
these isotherms should be parallel. But experimental results reveal to the contrary, some
of which are summarised below.

3.2.1 Regnault’s Experiments

Regnault carried out a series of classical experiments. He applied pressures up to about
30 atmospheres and temperature was varied in the range 0—100°C. His main results for
hydrogen, oxygen, nitrogen and carbon dioxide are depicted in Fig. 3.1, where we have
plotted pV versus p. We note that

1. When the pressure is in the range O — 1 atm, the curves are straight lines inclined to
the pressure axis (Fig. 3.1a). However, the product pV increases with pressure for
hydrogen and decreases in case of nitrogen, oxygen and CO,.

2. Athigh pressures, the product pV continues to rise with pressure for hydrogen but in
case of nitrogen, oxygen and CO,, it first decreases and then increases (Fig. 3.1b).

These observations point to the imperfect nature of real gases.

40- ]\]2 P
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—4.//'_/—«" 2 30
22 40 %‘\4.\ Ideal ga$ é
- — b £
g \'\l \o\]\?z =
g .\'\ 2 izo' Ideal Gas
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CO,
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p (atm) p(atm)
@ ()

Fig. 3.1 Variation of pV versus p for hydrogen, oxygen, nitrogen and carbon dioxide at
(a) low pressures (0-1 atm) and (b) high pressures (0-1000 atm). The dotted
horizontal line is for an ideal gas.
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3.2.2 Andrews’ Experiments on Carbon Dioxide

Andrews carried out very exhaustive experiments on the compressibility of gases while
attempting to liquefy them. These experiments threw considerable light on the actual
behaviour of gases. He investigated the behaviour of CO, in great detail and his results
are depicted in Fig. 3.2. The main conclusions were:

1. Above a temperature of about48°C, p, D
the behaviour of CO, resembles that K3
of a perfect gas.

2. As the temperature is lowered,
isotherms exhibit distortion which

=
gradually increases. This signifies E
deviation from perfect gas character. - / .

3. At31.4°C, akink is observed, which |'condensation 48°C
suggests that gas can be liquefied / c BN 3]-4:C
under compression. Above this 0 — %%?08
temperature, liquefaction cannot be = >
produced how hlgh the pressure may Flg. 3.2 Variation of pressure with volume
be. for CO, at different temperatures:

4. As temperature is lowered further, Andrews'’ curves.
say to 21.5°C, the kink spreads into a horizontal line, i.e., compression produces
liquefaction.

From A to B, CO, behaves as a gas. At point B, the liquefaction of the gas just
starts. The gas condenses at a constant pressure from B to C so that liquid and vapour
phases co-exist. At C, the gas is completely in the liquid phase. From C to D the slope
is very steep since a liquid is almost incompressible.

5. These changes proceed in the same direction at still lower temperatures and the
isotherm at 13.1°C is of the same general form as the one at 21.5°C, except that
vapour will co-exist over a larger range. As can be noted, the volume of the vapour at
the time condensation sets in, is greater than its volume at 21.5°C but the volume of the
liquid after condensation is smaller. Also, the gas can be liquefied at a comparatively
lower pressure.

The temperature at which it just becomes possible to liquefy a gas under compression is
known as the critical temperature. We denote it by T. At this temperature, the properties of
a liquid and its saturated vapour are identical. The pressure required to liquefy a gas at the
critical temperature is called the critical pressure and the corresponding volume (for one
mole of the gas) is called the critical volume. We denote these by p. and V_, respectively.
T., p. and V, are collectively known as critical constants. For some typical gases, values
of critical constants are given in Table 3.1.

Table 3.1 Observed values of critical constants

Tc pc Vc RTc

o ¢0) (atm) (e TAZ
He —268 2.25 15.4 3.13
H, — 240 12.8 23210 3.28
0, - 119 49.7 2.32 342
CO, 31.0 72.8 2.17 3.48
Ether 194 35.6 3.85 3.81
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From the preceding discussion, it is clear that Andrews’ experiments emphasise the
following two aspects:

1. A gas can be liquefied only if it is cooled up to or below its characteristic critical
temperature. (The observed upward rise in pV for hydrogen in Regnault’s experiments
depicted in Fig. 3.1 arises due to the fact that at ordinary temperature, the gas is much
above its critical temperature.)

2. There exists a continuity of liquid and gaseous states, i.e., they are two distinct stages
of a continuous physical phenomenon.

You can understand this by considering two isotherms defined by 7|, < T, < T, i.e.,
one isotherm above the critical isotherm and the other below the critical isotherm. For
p > p,, imagine points J and K on them as shown in Fig. 3.2. At J, the substance is a gas
(T >T,) and at K, it is entirely a liquid (T < T,). This means that if we gradually reduce
the temperature (at constant pressure), the substance passes from the gaseous to the liquid
state without any abrupt change in its characteristic properties.

3.2.3 Amagat’s Experiments

Amagat investigated the behaviour of several gases at various temperatures and up to very
high pressures (3000 atmosphere). This work lent support to the findings of Regnault and
Andrews. His results for CO, are shown in Fig. 3.3. Following are the main conclusions:

1. For T< T, isotherms have a straight line portion which is parallel to the pV-axis. That
is, below the critical temperature, volume decreases even though pressure remains
constant. This corresponds to the condensation of the gas (as in the horizontal part
in Fig. 3.2).

2. The curvature of the isotherms decreases as temperature increases. At the critical
temperature, the straight line part diminishes to a point.

3. Each isotherm has a minimum which gradually shifts away from the origin towards
the right as temperature increases. However, after a particular temperature, it begins
to shift towards the left. The locus of the minima, shown by the dashed curve, is
almost parabolic.

4. The parabola cuts the p = 0 axis at some higher temperature. This temperature is
called the Boyle temperature , Tg.

5. For T > Ty, the value of pV steadily increases.

pw//4

Fig. 3.3 pVisotherms for CO, obtained by Amagat.

*This nomenclature stems from the observation that at this temperature, all gases obey Boyle’s law up to
fairly high pressures.
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A proper explanation of these experimental results posed a challenge for theoretical
physicists. Numerous equations of state were proposed but none of them was found
suitable over the entire range of temperature and pressure. Kammerlingh Onnes proposed
an empirical, yet useful, equation and we will now discuss it in some detail.

3.3 ONNES’ EQUATION OF STATE

Onnes proposed an empirical equation of the form”

pV=A+Bp+Cp*+... (3.1)
where the constants A, B, C, ... are characteristic of a gas at a fixed temperature. (They
vary with temperature in a complex manner.) These constants are called virial coefficients.

Since Eq. (3.1) is expected to reproduce the equation for a perfect gas as p — 0, the
first virial coefficient will be equal to RT for one mole of the gas. That is,
A=RT 3.2)
The second virial coefficient is of special interest. It varies in a similar way for all gases.
At very low temperatures, it has a negative value. As temperature increases, it shows a
gradual rise through zero and becomes positive. At room temperature, B < 0 for oxygen,
nitrogen and carbon dioxide, whereas B > 0 for hydrogen and helium. For all gases, B =0
at the Boyle temperature. If one is not working at very high pressures, Eq. (3.1) implies
thatat T=Ty

pV=A
and
a(pV)
op

The constant C is always positive but very small.

In his studies, Onnes had to use twenty five constants for best representation of
experimental results. Later, Holborn and Otto investigated the behaviour of several gases
up to 100 atmospheres in the temperature range — 183°C to 400°C and found that it is
sufficient to retain only four virial coefficients.

It is important to mention here that the empirical equation of Onnes lacked physical
basis. To explain the observed temperature dependent behaviour of real gases, van der Waals
proposed another equation of state by modifying some of the assumptions of elementary
kinetic theory. This equation is known by his name. We will now discuss it in some detail.

B (3.3)

3.4 van der WAALS’ EQUATION OF STATE

In deriving van der Waals’ equation, some simplifying assumptions are made. We first
state these.

1. Gas molecules have finite size and cannot be regarded as point masses™".

*Another useful form of Eq. (3.1) is
pvearbi Lo (3.12)
Vo p2

**This was considered by Clausius for the first time when he introduced the concept of mean free path
(Chapter 2).
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2. Molecules attract one another with a weak force*, which depends only upon the
distance between them. (This implies that gas molecules have both kinetic and
potential energies. However, only nearest neighbour interactions are important.)

3. The number of collisions with the walls of the container are exactly the same for
point and finite size molecules.

4. The molecular density is small.

Some of these assumptions may not be justified under all conditions but we will discuss
that when the occasion arises.

Derivation

1. Correction for finite size Consider one mole of a gas enclosed in a container of
volume V. If this gas were composed of point masses, all this space would be available
to them for free motion. When molecular size is taken into account, the volume
available to a single molecule for free movement will be somewhat less than V. Let us
denote this reduction by b. (This is called the co-volume and depends on the nature of
the gas.) Therefore, van der Waals argued that the factor V occurring in the equation
for perfect gas should be replaced by (V — b). For one mole of the gas, we obtain™

p(V-b)=RT 3.4)

The magnitude of b is equal to four times the total molecular volume for one mole
of a van der Waals’ gas. There are several ways of arriving at this result but we will
give a relatively simple derivation.

Let us suppose that the radius of each molecule is r. At the instant of collision, the
centre-to-centre distance of the two colliding molecules will be d = 2r as shown in @
Fig. 3.4a. This implies that around any molecule, a spherical volume V, (= 47(2r)*/3)
will be denied to every other molecule. (This volume is called the sphere of exclusion
and is eight times the volume V,, (= 47/3)r° of a molecule, ie., V,=8V,.)

(b)
Fig.3.4 (a) Collision of two molecules of radii r, and (b) Intermolecular attraction
decreases with pressure : a physical picture.

Proceeding further, let us imagine filling the container with N molecules, one by
one. For that

the volume available to the first molecule = V

the volume available to the second molecule = V — (2-1)V;

the volume available to the third molecule = V- (3-1) V;

*This concept was proposed by Hirn in 1864.
**The equation is due to Clausius.
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and by induction
the volume available to the N molecule = V— (N — 1) V,

Hence, the average volume available to each molecule, obtained by taking arithmetic
mean is

M=

7Ll (i
V—NH(V (i-1)V,)

2 s i=1

For large N, one can neglect 1 in the second term on the right-hand side of the
above equation and obtain

=V-b (35a)
where we have putb =4 NV,,.

2. Correction for intermolecular attraction To account for intermolecular attractions,

we invoke Assumption 2. As will be noted from Fig. 3.4(b), a molecule in the interior
of the gas is, on an average, attracted equally in all directions so that there is no
resultant force on it. (It will, therefore, behave as if there were no intermolecular
interactions in the gas and the effective pressure is the same as that for an ideal gas.)
However, this is not true for a molecule in the outermost layer closest to the walls
of the container. Since the molecular distribution is only on one side, there will be a
net inward force. So whenever a molecule strikes the walls of the container, it has to
overcome this molecular attraction. In this process, some kinetic energy is lost and
molecular velocity decreases. Therefore, the momentum communicated to the wall
on impa<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>