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PREFACE

THE purpose of this book is to introduce the reader to the study of the
physical properties of crystalline solids. It is based on notes which I used
for lectures in the Physics Department of the University of British Colum-
bia, Canada, and in the Electrical Engineering Department of the Universi-
ty of Minnesota.

My aim has been to write an introductory text suitable for senior under-
graduate and beginning graduate courses on the solid state in physics,
engineering, chemistry, and metallurgy. Also, I have attempted to make
it suitable for self study by scientists in industrial laboratories interested in
the physical properties of solids. The widely varying background of the
anticipated groups of readers has affected the organization and presenta-
tion of the subject matter. The general level of presentation has been
kept elementary, with emphasis on the physical reasoning underlying the
interpretation of the physical properties of solids. I have made an effort,
however, to remain as rigorous and up-to-date as possible within the limits
imposed by the level of presentation. The first eight chapters deal with
subjects which, at least in an introductory text, can be discussed without
reference to the details of the electronic structure of solids. Prerequisite
for understanding this part of the book is an elementary knowledge of
statistical thermodynamics and of the quantized harmonic oscillator.
Chapters 9 through 20 deal with the electronic properties of solids and
require familiarity with the elements of wave mechanics, although in a
number of chapters no explicit use of wave mechanics is made. As a
consequence of the organization of the material outlined above, the degree
of difficulty tends to increase as one progresses through the book. This in
itself does not compel the reader to follow the order in which the various
subjects are discussed. In fact, the chapters are organized in groups which
could be taken up in any order suitable to serve the particular needs of the
instructor or reader.

To some extent, my own interest and taste have determined the choice of

v
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material; however, with the possible exception of Chapter 17, the material
is basic to a great variety of subjects in the field of solid state.

I am indebted to W. Opechowski for constructive criticism during the
preparation of Chapters 10 and 11, and to A. H. Morrish for his comments
on other parts of the manuscript. I also wish to acknowledge the coopera-
tion of numerous publishers who kindly permitted me to reproduce il-
lustrations. I am grateful to F. L. Vogel, W. G. Pfann, H. E. Corey, and
E. E. Thomas for a micrograph of a lineage boundary in germanium.
Finally, I wish to thank my wife for typing the manuscript and for her
encouragement.

A. J. Dekker



CONTENTS

1. The Crystalline State

1-1.
1-2.
1-3.
1-4.

1-5.
1-6.
1-7.
1-8.
1-9.
1-10.
1-11.
1-12.

The crystalline state of solids........................
Unit cells and Bravais lattices. .. ....................
Millerindices. .. ......cooiiiiiniiiiiiiin..
The diffraction of X-rays by a simple space-lattice ac-

cordingtovon Laue.............................
X-ray diffraction according to Bragg.................
The atomic scattering factor.........................
X-ray intensity and atomic configuration of the unit cell. .
Experimental methods of X-ray diffraction............
Diffraction of electrons by crystals. ..................
Diffraction of neutrons by crystals...................
Interatomic forces and the classification of solids.......
Anisotropy of the physical properties of single crystals. . .

2. The Specific Heat of Solids and Lattice Vibrations

2-1.

2-2.
2-3.
2-4.
2-5.
2-6.
2-7.
2-8.

2-9.

2-10.

2-11.

2-12.
2-13.

The specific heat at constant volume and at constant

PreSSUIC. . ... .. it ittt enanans
The various theories of the lattice specific heat.........
The breakdown of the classical theory................
Einstein’s theory of the specificheat..................
The vibrational modes of a.continuous medium........
The Debye approximation. .................coueun..
The Born cut-off procedure. .. ...... e
Elastic waves in an infinite one-dimensional array of

identical atoms. ......... ... ..o il
Vibrational modes of a finite one-dimensional lattice of

identical atomsS . .. ..ottt i i i i .

The equivalence of a vibrational mode and a harmonic
oscillator. ... eeeavans
The specific heat of a one-dimensional lattice of identical

The vibrational modes of a diatomic linear lattice......
Vibrational spectra and specific heat of three-dimensional
JatICES . v v vttt e e

[—

10
13
14
16
19
20
21
23
27

32

32
34
35
36
36
41
45

46

49

51

53
54

57



viii

CONTENTS

3. Some Properties of Metallic Lattices

3-1.
3-2.
3-3.

3-4.
3-5.
3-6.
3-7.
3-8.
3-9.

3-10.
3-11.

3-12.
3-13.
3-14.
3-15.
3-16.

The structure of metals.............................
Lattice defects and configurational entropy............
The number of vacancies and interstitials as function of

tEMPErature. .. oottt iie i ie e iie i
The formation of lattice defects in metals.............
Interstitial diffusioninmetals........................
Self-diffusioninmetals. .. ..........................
Chemical diffusion in metals; the Kirkendall effect.. ...
The elastic constants of metals.......................
Plastic deformation of metals........................
The interpretation of slip; dislocations...............
Motion of dislocations under influence of a uniform shear

stress; dislocation density.........................
Edge and screw dislocations. ........................
Stress fields around dislocations......................
Interaction between dislocations.....................
Estimates of dislocation densities.....................
The Frank-Read mechanism of dislocation multipli-

cation

l. Some Properties of Simple Alloys

4-1.
4-2.
4-3.
4-4.
4-5.
4-6.

Interstitial and substitutional solid solutions...........
Mutual solubility as function of temperature..........
The Hume-Rothery electron compounds..............
Superlattices. . . ... e
The long-distance order theory of Bragg and Williams. .
Short-distance order theories. ..........c............

5. Lattice Energy of Ionic Crystals

5-1.
5-2.
5-3.

5-4.
5-5.

5-6.
5-7.

Introductory remarks............ ...,
The fundamental assumptions of Born’s theory........
Calculation of the repulsive exponent from compressi-

bilitydata. ..ot
The repulsive exponent as function of electron configu-

2110 o
Calculated and experimental lattice energies...........
Stability of structures and ionic radii.................
Refinements of the Born theory......................



CONTENTS

6. Dielectric and Optical Properties of Insulators

Part A. Static Fields

6-1.  Macroscopic description of the static dielectric constant. .
6-2.  The static electronic and ionic polarizabilities of mole-

6-3.  Orientational polarization...........................
6-4.  The static dielectric constant of gases.................
6-5. The internal field according to Lorentz...............
6-6.  The static dielectric constant of solids................

Part B. Alternating Fields

6-7.  The complex dielectric constant and dielectric losses. . . ..
6-8.  Dielectric losses and relaxation time..................
6-9. The classical theory of electronic polarization and

optical absorption............ ... ... ... o

. Ionic Conductivity and Diffusion

7-1.  Lattice defects in ionic crystals........... S
7-2.  The hydration energy of ions........................
7-3.  The activation energy for the formation of defects in ionic

Crystals. ..o
7-4.  Example of self-diffusion in alkali halides.............
7-5. Interpretation of diffusion in alkali halides............
7-6.  lIonic conductivity in “pure’ alkali halides............
7-7.  lonic conductivity in alkali halides with added divalent

IMPUIILIES. . ot e et

. Ferroelectrics

- 8-1.  General properties of ferroelectric materials. ..........
8-2.  Classification and properties of representative ferro-

ClECtIICS. vttt
8-3.  The dipole theory of ferroelectricity. .................
8-4.  Objections against the dipole theory..................
8-5. Ionicdisplacements and the behavior of BaTiO;above the

Curie temperature. ..........c.coovviininniaeeann.
8-6. The theory of spontaneous polarization of BaTiO;. . ...
8-7. Thermodynamics of ferroelectric transitions..........
8-8.  Ferroelectricdomains. .. ........ ...,

133

133

154

160

160
164

166
168
171
175

178

184

184

186
192
195



X CONTENTS

9. Free Electron Theory of Metals 211
9-1.  Difficulties of the classical theory.................... 211
9-2. Thefreeelectronmodel............................. 212
9-3.  The Fermi-Dirac distribution........................ 213
9-4. The electronic specificheat. ......................... 216
9-5. Paramagnetism of free electrons. .................... 217
9-6. Thermionic emission from metals.................... 220
9-7.  The energy distribution of the emitted electrons........ 223
9-8.  Field-enhanced electron emission from metals......... 225
9-9.  Changes of work function due to adsorbed atoms...... 228
9-10. The contact potential between two metals............. 230
9-11. The photoelectric effect of metals.................... 232
10. The Band Theory of Solids 238
10-1. Introductory remarks..............cccievinineennn.. 238
10-2. The Bloch theorem.................oviiiiinnn.... 240
10-3. The Kronig-Penney model. ......................... 243

10-4. The motion of electrons in one dimension according to
the band theory......... ... . ... ... 247

10-5. The distinction between metals, insulators, and intrinsic
semiconductors . ........ . i 250
10-6. The concept of a “hole”............. ... ... .. .. ... 252
10-7. Motion of electrons in a three-dimensional lattice. .. ... 252
10-8. The tightly bound electron approximation............. 257
10-9. Application to a simple cubic lattice.................. 260

10-10. Brillouin zones; density of states; overlapping of energy
bands. . ..... ... .. e 263
10-11. The zone structure of metals. . ...................... 266
10-12. The density of states and soft X-ray emission spectra... 268

10-13. The Wigner-Seitz approximation and the cohesive energy
ofmetals. ......... ... 269
11. The Conductivity of Metals 275
11-1. Some features of the electrical conductivity of metals... 275

11-2. A simple model leading to a steady state; drift velocity
and relaxation time. .. ............ ... it 276
11-3.  The Boltzmann transport equation................... 278
11-4. The Sommerfeld theory of electrical conductivity....... 281
11-5. The mean free pathinmetals........................ 283
11-6. Qualitative discussion of the features of the resistivity.... 285

11-7. Thermal scattering described as electron-phonon col-

SIOMS . ettt it i e e 289



CONTENTS Xi

11-8. The electrical conductivity at low temperatures. . . ..... 292
11-9. The thermal conductivity of insulators................ 295
11-10. The thermal conductivity of metals................... 299
11-11. The Hall effectinmetals............................ 301
12. The Electron Distribution in Insulators and Semiconductors 305
12-1. The Fermi distribution. . ........................... 305
12-2. A simplified model of an insulator.:................. 306
12-3. Improved model for an insulator and intrinsic semi-
CoNdUCEOT. ..ottt e e e 308
12-4. Models for an impurity semiconductor................ 310
12-5. Thermionic emission from semiconductors............ 314
12-6. Electronic degeneracy in semiconductors.............. 316
13. Nonpolar Semiconductors 319
13-1. Introductory remarks...............cooiiiiiiiia.. 319
13-2. Some lattice properties of the elements of the fourth
4 0111 o 20 320
13-3. Conductivity and Hall effect in semiconductors with a
single type of charge carrier....................... 326
13-4. Mobility and Hall effect as determined by different
SCAttering PrOCESSES . . v vvvinn e iiniieeeennnnn 329
13-5. Comparison with experiment........................ 331
13-6. Constant-energy surfaces and effective mass in silicon and
J=35 3 14 04 FRTE o DA 334
13-7. The lifetime and diffusion of minority carriers. ........ 341
13-8. Intermetallic compounds............... ... ....o.... 344
14. Rectifiers and Transistors 348
14-1. Rectifying properties of a barrier layer between two
metals. . ... e 348
14-2. The Schottky theory of a metal-semiconductor contact... 349
14-3. Single-carrier theories of rectification................. 351
14-4. Surface states on semiconductors..................... 354
14-5. The two-carrier theory of rectification. ............... 356
14-6. The p-n junction rectifier............................ 357
14-7. Transistors. ... ..coueteneennenneniiineiiaenaannnns 361
15. Electronic Properties of Alkali Halides 366

15-1. Optical and thermal electronic excitation in ionic crystals. 366
15-2. The upper filled band and the conduction band in ionic
crystals. ... 369



xii

15-3.
15-4.
15-5.

15-6.
15-7.

15-8.
15-9.
15-10.
15-11.
15-12.
15-13.

CONTENTS

The ultraviolet spectrum of the alkali halides; excitons.. .
Illustration of electron-hole interaction in single ions. . . . .
Qualitative discussion of the influence of lattice defects on

the electroniclevels. . ........... ... .. ... ......
Nonstoichiometric crystals containing excess metal. . ...
The transformation of F centers into F’ centers and vice

Photoconductivity in crystals containing excess metal. . . .
The photoelectric effect in alkali halides...............
Coagulation of F centers and colloids.................
The Hall effect and electron mobility.................
Color centers resulting from excess halogen...........
Color centers produced by irradiation with X-rays.....

16. Luminescence

16-1.
16-2.
16-3.
16-4.
16-5.
16-6.

Decay mechanisms. ................coiiiiiiiaiin...
Thallium-activated alkali halides.....................
The sulfide phosphors. ................. .. ..o ...,
Electroluminescence. ................ccoviiinann. ..

17. Secondary Electron Emission

17-1.
17-2.
17-3.

17-4.
17-5.
17-6.
17-7.
17-8.
17-9.

17-10.

Secondary electrons.............coiiiii ...,
Experimental yield curves....................... ...,
Elementary theory of secondary emission; universal yield

CUTVES .« e ettt e e e e e ettt aeee e e eiaae e eeenns
Comparison of the elementary theory with experiment. .
Variation of the secondary yield with angle of incidence. .
Baroody’s theory of secondary emission for metals. . ...
Wave-mechanical theory of the production of second-

Interactions to be considered in the escape mechanism;
factors determining high and low yields.............
The temperature effect of the secondary yield in in-
SUlALOTS. ..ot
The possible influence of donor levels on the secondary
yield of insulators.................. ... .. ...,

18. Diamagnetism and Paramagnetism

18-1.
18-2.

Introductory remarks...........ccoiiuiiiiiinaas
The origin of permanent magnetic dipoles.............

371
37§

375
377

383
386
390
392
393
393
394

398

398
399
402
406
410
413

418

418
420

423
426
428
430
434
438
440

442



CONTENTS Xiii

18-3. Diamagnetism and the Larmor precession............. 451
18-4. The static paramagnetic susceptibility................. 454
18-5. Comparison of theory and experiment for paramagnetic
SAltS. .. 457
18-6. Nuclear paramagnetism...............c.ccoveunenn.n.. 458
18-7. The Hamiltonian for an electron in a magnetic field.... 459
18-8. The principle of adiabatic demagnetization............ 460
19. Ferromagnetism, Antiferromagnetism, and Ferrimagnetism 464
Ferromagnetism
19-1. Introductory remarks..................coviiiinn.... 464
19-2. The Weiss molecular field........................... 466
19-3. Comparison of the Weiss theory with experiment. . . ... 468
19-4. The interpretation of the Weiss field.................. 472
19-5. Qualitative remarks about domains.......... e 475
19-6. The anisotropy energy............coveeiuunnnnnnnn.. 478
19-7. The thickness and energy of the Bloch wall............ 480
19-8. Coercive force and hysteresis........................ 481
Antiferromagnetism
19-9. Introductory remarks.................ooiiiiiiiian.. 483
19-10. The two-sublattice model........................... 484
19-11. Superexchange interaction........................... 488
Ferrimagnetism
19-12. The structure of ferrites......................0 e 491
19-13. The saturation magnetization........................ 491
19-14. Elements of Néel’s theory. .........covovieeine.nn.. 493
20. Magnetic Relaxation and Resonance Phenomena 498

Paramagnetic Relaxation

20-1. Phenomenological description....................... 498
20-2. Relaxation mechanisms................. ... ooun.. 499
20-3. Spin-lattice relaxation. ............. ..o i, 501
20-4. Spin-spin relaxation............... ... 504

Nuclear Magnetic Resonance

20-5. Nuclear magnetic moments............ovvvvunneann.. 505

20-6. - Conditions required for resonance absorption.......... 506
20-7. The Bloch equations and the complex susceptibility. ... 508



xiv

CONTENTS

20-8. The influence of molecular motion on the relaxation

BMES. .ottt e 511

20-9. Some applications to solid state physics............... 513

20-10. Determination of nuclear magnetic moments.......... 516

Other Resonance and Relaxation Effects

20-11. Paramagnetic reSOnance. . . .......ouveeenennenennnnn 517

20-12. Ferromagnetic resonance and relaxation.............. 518
20-13. Frequency-dependence of the initial permeability in

ferrites. .. ... co... 519

APPENDIX 525

A. Thermodynamic conditions for equilibrium............ 525

B. Particle in a box, according to wave mechanics. ....... 526

C. Indistinguishable particles and the Pauli principle. ..... 527

D. Fermi statistiCs. ........oiitnininniinienneenn. 529

E. The Boltzmann relation............................. 531

INDEX 533



Chapter 1

THE CRYSTALLINE STATE

1-1. The crystalline state of solids

The elements and their chemical compounds generally occur in three
states of aggregation: the solid state, the liquid state, and the gaseous
state. In solids and liquids the distance between neighboring atoms is of the
order of a few Angstroms, i.e., they contain 102-10? atoms per cm3.
This may be compared with a density of about 2.7 x 10'® molecules per
cm?® in a gas at room temperature under one atmosphere, corresponding
to an average distance of approximately 30 A between molecules.

In crystalline solids the atoms are stacked in a regular manner, forming
a three-dimensional pattern which may be obtained by a three-dimensional

(a) (b)

Fig. 1-1. Schematic illustration of the difference between a
crystal (a) and a glass (b). [After W. H. Zachariasen, J. Am.
Chem. Soc., 54, 3841 (1932)]

repetition of a certain pattern unit; two-dimensional examples are given
in Fig. 1-1a and Fig. 1-3. When the periodicity of the pattern extends
throughout a certain piece of material, one speaks of a single crystal. In
polycrystalline materials the periodicity of structure is interrupted at
so-called grain boundaries; the size of the grains in which the structure
is periodic may vary from macroscopic dimensions to several Angstroms.
When the size of the grains or crystallites becomes comparable to the size
of the pattern unit, one can no longer speak of crystals, since the essential
feature of a crystal is its periodicity of structure; one then speaks of
1
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“‘amorphous” substances. For most solids the crystalline state is the
natural one since the energy of the ordered atomic arrangement is lower
than that of an irregular packing of atoms. However, when the atoms are
not given an opportunity to arrange themselves properly, by inhibiting
their mobility, amorphous material may be formed; an example is
amorphous carbon formed as a decomposition product at low temperatures.
Certain polymers are composed of very large and irregular molecules and
in such cases a crystalline packing is not easily obtained. In other cases,
the solid state may correspond to a supercooled liquid in which the
molecular arrangement of the liquid state is frozen in; because of rapid
cooling and a high viscosity of the liquid, crystals may not have had time
to grow and a glassy material results (see Fig. 1-1b). Upon annealing,
such glassy substances may crystallize (devitrify), as is well known to any
experimentalist who has worked with quartz. In this book we shall be
concerned essentially with solids which are generally regarded as crystalline.

Although one usually thinks of a solid as an arrangement of atoms in
which the atoms occupy fixed positions relative to each other, this is not
necessarily the case. Of course, in any crystal the atoms carry out a
vibrational motion about their equilibrium position; this topic will be
taken up in Chapter 2. However, in certain solids particular groups of
atoms may have rotational freedom to some extent. For example, in KCN,
which has the well-known NaCl structure (see Fig. 5-1), the CN~ ion is
rotating even at room temperature;' neither the carbon nor the nitrogen
atoms occupy fixed positions in the lattice, but are spread over a number
of possible positions. Similarly, long-chain molecules may rotate about
the longitudinal axis and disk-shaped ionic groups such as NO; may
rotate in the plane of the disk. The three-dimensional regularity is, how-
ever, maintained in such crystals. One might perhaps say that such crystals
are partly melted. At sufficiently low temperatures the rotations are
inhibited.

In another class of crystals, there is only two- or one-dimensional
regularity,? viz., in the “liquid crystals.” Such substances actually flow
and will rise in a capillary tube. Normal crystals exhibit flow only under
influence of external forces (see Chapter 3). A few hundred examples of
liquid crystals are known, most of them being organic compounds, such
as ammonium oleate C,;H3;;COONH,. They will not be discussed in this
volume.

Although we shall assume in the present chapter that the crystals under
consideration are ‘“‘perfect,” the reader will have ample opportunity in the

! See, for example, C. W. Bunn, Chemical Crystallography, Oxford, New York, 1946,
pp. 329-331.
*J. D. Bernal and W. A. Wooster, Ann. Repts. Chem. Soc., 28, 262 (1932); J. T.
Randall, The Diffraction of X-rays and Electrons by Amorphous Solids, Liquids and Gases,
Chapman and Hall. London, 1934; W. Voigt, Physik. Z., 17,76, 153 (1917).
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remainder of this book to realize that a large number of properties of
solids are determined by lattice imperfections such as impurities, vacant
lattice sites, atoms in positions where they ‘“‘should not be” according to
the crystal structure, etc. However, since we shall be mainly concerned

ul N

8t
W
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03} A

02

01

(b)

Fig. 1-2. The number of K atoms in metallic potassium is repre-

sented in (a) as function of the radial distance from a given K atom

(20°C); in (b) the fully drawn and dashed curves represent the

density of K atoms f(r)in the liquid at 70°C and 395°C, respectively.
[After Thomas and Gingrich, ref. 3]

in this chapter with crystal structures and their determination, such
defects may be neglected temporarily.

In liquids, the atoms or molecules are in continual motion, and a
crystalline structure is therefore absent. On the other hand, this should
not lead one to believe that the arrangement of atoms is completely
random. Even in liquids there is a certain amount of order, but it extends
over a relatively short distance. To illustrate the difference between the
“long-range order” in a crystal and the “short-range order” in a liquid,
let us consider potassium in the solid and liquid states. Potassium, like
the other alkali metals has the body-centered cubic structure (Fig. 1-4b),
the cube edge being 5.344 A at 20°C. Taking the nucleus of a given K
atom in the crystal as origin, suppose-we were to plot the number of nuclei
of other K atoms as function of the radial distance r from the central
atom. We would then obtain a number of vertical lines as in Fig. 1-2a at
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specific distances from the origin. For example, there are eight atoms at a

distance %a\/ 3, six atoms at a distance a, etc. In the liquid state the
situation is rather different. Suppose the origin of the coordinate system
is attached to a given K atom and moves with this atom. At a given
instant there will be a certain configuration of the other atoms, but the
configuration changes continually with time. Taking the time average of
these different configurations, one could then plot the average number of
nuclei as function of the distance from the central atom. Such information
may actually be obtained from X-ray diffraction experiments. Thus, in
Fig. 1-2b the fully drawn curve f(r) represents the density of K atoms per
A3 at 70°C as function of the radial distance from an arbitrary K atom in
the liquid;® the dashed line corresponds to 395°C. Note that the set of
discrete lines of Fig. 1-2a has been transformed into a continuous curve.
Also, only the first few “‘shells” of other atoms are distinguishable in the
70°C curve, whereas in the 395°C curve only the first two are somewhat
pronounced. For distances larger than ~10 A the curves show little or no
structure and the density becomes independent of r; for the crystal,
however, the discrete lines extend over the whole piece of material, at
least when it is a single crystal. It is of interest to remark that the integral
of 47r¥f(r) over the first peak determines the average number of nearest
neighbors of the central atom; for the alkali metals we find that this is
approximately equivalent to 8 nearest neighbors, as it is in the solid (only
there, it is exactly 8).

1-2. Unit cells and Bravais lattices

We shall now discuss somewhat further the periodicity of structure,
which is the fundamental feature of a crystal. Consider part of a two-
dimensional crystal, the atoms of
which are arranged in a pattern
as illustrated in Fig. 1-3. Each
cluster of atoms (in this case a dot
and two open circles) will be
referred to as a pattern-unit. It is
‘observed that when a parallelo-
gram such as ABCD is repeatedly
translated by the vectors @ and b,
corresponding respectively to 4B
and AD, the whole pattern may be .
obtained; thus ABCD is called a Fig. 1-3. Two;dlmens.lonal crystal and
“unit cell.” The choice of a unit various unit cells.
cell is by no means unique ; for example, EFGH or KLMN would serve the
purpose just as well and so would many others. All three unit cells

3 D. E. Thomas and N. S. Gingrich, Phys. Rev., 56, 415 (1938); for a review of this
topic, see N. S. Gingrich, Revs. Mod. Phys., 15, 90 (1943).
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mentioned contain one pattern-unit, since each of these units located at
a corner belongs to four neighboring parallelograms and each pattern
unit located at an edge belongs to two parallelograms. The areas of all
unit cells containing one pattern-unit are equal. It is usually convenient to
choose as a unit cell a parallelogram with the shortest possible sides.

In three dimensions, a similar procedure may be followed by stacking
parallelepipeds in a regular manner; a convenient unit cell then contains
again pattern-units only at the corners. In some cases, however, there

Fig. 1-4. The true (fully drawn) and compound (dashed) unit
cells of the f.c.c. (a) and b.c.c. (b) lattices.

are reasons, to be given below, for choosing a ‘“‘compound unit cell”
which contains more than one pattern-unit. Consider, for example, the
arrangement of atoms in a crystal of nickel, illustrated in Fig. 1-4a. The
true unit cell corresponds to the parallelepiped based on the translation
vectors @, b, ¢; it contains Ni atoms only at the corners, i.c., there is one
atom per unit cell. On the other hand, the lattice may also be divided
into a system of cubes with atoms at the corners and at the centers of the
cube faces. It is convenient to consider a cube of this kind as a new
“unit cell,” even though it contains four atoms and has a volume four
times as large as the ““true” unit cell. One refers to the face-centered cube
loosely as the ““unit cell,” although strictly speaking this is not correct
since it is a combination of four unit cells. The most important reason
for choosing the face-centered cube as a new unit cell is that the symmetry
properties of the atomic arrangement in nickel are the same as in crystals
which have a cube as the true unit cell. In fact, the essential symmetry
elements of a simple cube (atoms. only at the corners) are four threefold
axes running diagonally through the cube; whenever the cube is rotated
about any of these axes over 120° it is brought into a position indis-
tinguishable from the original position. The same symmetry is seen to be
possessed by the face-centered cube. Another reason for choosing the
compound unit cell is the fact that cubic axes provide a more convenient
reference system than those corresponding to a rhombohedron.

In a similar way, the structure of the alkali metals represented in Fig.
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1-4b is described as body-centered cubic (b.c.c.); in this case the compound
unit cell contains two atoms and is twice as large as the true unit cell
based on the vectors a, b, c. The b.c.c. structure also has the required
four threefold symmetry axes. The three cubic structures mentioned here
(simple, f.c.c., and b.c.c.) are the only possible cubic structures. For
example, a cube with atoms at the corners and at the centers of one or
two pairs of opposite faces would not have the four threefold symmetry
axes, and thus no cubic symmetry.

In order to describe the structure of crystals, Bravais in 1848 introduced
the concept of the space-lattice. A space-lattice is a mathematical concept
and is defined as an infinite number of points in space with the property
that the arrangement of points about a given point is identical with that
about any other point. For example, the intersections of the two dashed
sets of parallel lines in Fig. 1-3 represent a two-dimensional space-lattice.
The intersections of these lines are the lattice points. From symmetry
considerations of the type indicated above for the three possible cubic
structures, Bravais showed that there exist no more than fourteen space-
lattices in three dimensions. In order to specify the arrangement of points
in a space-lattice, one introduces a system of axes such as indicated in
Fig. 1-5. One distinguishes between seven systems of axes or crystal
systems, depending on certain specifi-
cations about the lengths of the axes
and the angles between them; the

z

seven crystal systems together with

l’ the essential symmetry elements are
given in Table 1-1. Although we shall

’}w y not discuss the symmetry properties
’ of crystals here, the elements occurr-

ing in the table may be defined. A

crystal is said to possess an n-fold

rotation axis when rotation over

Fig. 1-5. Crystal axes. (360/n) degrees brings the crystal into
self-coincidence. When a plane can

be drawn in the crystal, which contains the center of the crystal, such
that one half of the crystal is the reflection of the other half, the crystal
is said to have a plane of symmetry. A crystal possesses an inversion
center when for each point located at r relative to the center there exists
an identical point at —r. A rotation-inversion axis exists when the crystal
can be brought into self-coincidence by a combined rotation and inversion.
The fourteen Bravais lattices or space lattices are represented in Fig.
1-6. Certain unit cells contain only points at the corners; they are

* See, for example, A. Schoenflies, Theorie der Kristall Struktur, Borntriger,
Berlin (1923), or W. Voigt, Lehrbuch der Kristallphysik, Teubner, Leipzig and
Berlin, 1910.
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Fig. 1-6. The fourteen Bravais lattices: (1) triclinic, simple;

(2) monoclinic, simple; (3) monoclinic, base centered; (4) ortho-

rhombic; simple; (5) orthorhombic, base centéred; (6) ortho-

rhombic b.c.; (7) orthorhombic f.c.; (8) hexagonal; (9) rhombo-

hedral: (10) tetragonal, simple; (11) tetragonal, b.c.; (12) cubic,
simple; (13) b.c.c.; (14) f.c.c.
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Table 1-1. The Seven Crystal Systems and Their Essential Symmetry

System Essential symmetry Unit cell specification
Triclinic No planes, no axes a#b#c;, o ff#Ey#90°
Monoclinic¢ One 2-fold axis or one plane a#b#c;a=0=90°#y
Orthorhombic | Three mutually perpendicular a#b#c;a=f=y=90°

(rhombic) 2-fold axes, or two planes
intersecting in a 2-fold axis
Tetragonal One 4-fold axis or a 4-fold a=bxc;au=pf=y=090°
inversion axis
Cubic Four 3-fold axes a=b=c;oa=f=y=90°
Hexagonal One 6-fold axis Three equal coplanar axes a at
120°; fourth axis ¢ 1 to
these; ¢ # a.
Rhombohedral | One 3-fold axis a=b=c,a=08=y#90°
(trigonal)

referred to as “simple.” Others are compound unit cells and contain
points at the center of the body or at the centers of faces. One might
think at first sight that there are more space-lattices than the ones given
in Fig. 1-6. For example, in the tetragonal system one might suggest the
absence of a face-centered type. However, the reader may readily convince
himself that such a lattice would, upon choosing a different set of axes,
be identical with the body-centered tetragonal lattice of which the edges
are 1/V/2 times those of the original lattice. The reader may consider
other examples himself.

It must be kept in mind that the lattice points in a space-lattice do not,
in general, represent a single atom but a group of atoms. Consider, for
example, the diamond structure represented in Fig. 13-1; it may be
represented by an f.c.c. space lattice in which the lattice points are
associated with two atoms: one in the lattice point itself and another in
a point determined by a translation of }, }, 1. This leads to the typical
configuration in which any given atom is surrounded by four nearest
neighbors occupying the corners of a regular tetrahedron. A discussion of
the crystal structure of particular elements or compounds will be postponed
until the physical properties of such materials are being considered.

1-3. Miller indices

The lattice points forming a space-lattice may be thought of as
occupying various sets of parallel planes; some examples of dividing a
lattice into such sets of planes are given in Fig. 1-7. With reference to the
axes of the ““unit cell,” each set of planes has a particular orientation. In
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order to specify the orientation, one employs the so-called Miller indices;
these are defined as follows: Suppose a particular plane of a given set
has intercepts pa, gb, and rc with the crystal axes (Fig. 1-8). The Miller
indices of the set of planes are then given by three numbers 4, k, / such that

Lik:l=1lp:1qg:1r (1-1)

with the condition that A4, k, and / are the smallest integers satisfying (1-1),
i.e., h, k, and / have no common factor >>1. We shall adhere to the rather
general practice of using the notation (hk/) for a particular set of planes.
We emphasize once again that these indices refer not to a particular plane

(11)
X

Fig. 1-7. Various ways of dividing a Fig. 1-8. Illustrating a plane with inter-
square lattice in atomic planes; the cepts pa, gb, and rc; ON is the normal
Muiller indices are indicated. to the plane.

but to a set of parallel planes. One or more of the indices may be negative
when the corresponding intercepts are negative; they are represented in a
form such as this: (hkl), (hkl) etc. Miller indices for some planes are
given in Fig. 1-7.

When the indices are shown enclosed by braces, such as {hkl}, they
refer to planes which in the crystal are equivalent even though their Miller
indices may differ. For example, in a cubic lattice all cube faces are
equivalent; in order to specify this group of planes, one writes {100},
which includes the planes (100), (010), (001), (100), (010), (00T).

In order to specify a certain direction in a crystal, one employs three
indices u, v, w enclosed in square brackets [u, v, w]; the indices are
integers and have no common factor larger than unity. The direction
specified by this symbol is obtained as follows: Move from the origin
over a distance ua along the a-axis; vb along the b-axis and wc along the
c-axis. The vector connecting the origin with the point so obtained is
then the direction specified by the symbol [uvw]. Thus, in a cubic crystal
the direction of the x-axis is indicated by [100], the y-axis by [010], etc.
A full set of equivalent directions in a crystal is represented by a symbol
of the kind (uvw).

We may note here that the Miller indices of a set of planes are related
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to the direction cosines of the normal to these planes. Denoting the
angles between the normal ON in Fig. 1-8 and the crystal axes respectively
by «’, #” and y’, one obtains the relation

cosa’ :cosf’ :cosy = (1/pa) : (1/gb) : (1/rc)
= (h/a) : (k/b) : (I[c) (1-2)

Also, the distance between successive planes in a set (hk/) is determined
by the Miller indices. It is evident already from Fig. 1-7 that as the value
of one or more of the Miller indices is increased, the distance between the
planes is reduced. For a cubic lattice the reader may show that the distance
between successive planes is given by

a
yy = FIRET e (1-3)

Thus the distance between (100) planes is a, between (110) planes a/\/ 5,

between (111) pianes a/\/ 3, etc. For other crystal systems similar relations
may be obtained.?

1-4. The diffraction of X-rays by a simple space-lattice according to von
Laue

It is well known that when a beam of light passes through a screen
containing a regular pattern of holes, interference phenomena may be
observed if the distance between the holes is of the same order as the
wavelength of the light employed. The diffraction of X-rays by the atoms
in a solid is a completely analogous phenomenon, the wavelength of the
electromagnetic radiation in this case being of the order of interatomic
distances in solids, i.e., of the order of 1 A. The use of X-rays as a tool
for investigating the structure of crystals was first suggested by von Laue
in 1912 and was later further developed by W. H. and W. L. Bragg. The
principles of X-ray diffraction will now be discussed briefly.

When an electron is subjected to a monochromatic beam of X-rays,
the electric field vector of the radiation forces it to carry out vibrations of a
frequency equal to that of the incident beam. As a consequence of the
acceleration of the electron, it in turn will emit radiation of the same
wavelength in all directions. Thus, in an atom all electrons contribute to
the scattering of X-rays in this fashion. (Inelastic scattering will be taken
up in later chapters.)

A few remarks about the scattering by a single atom may be in order.
It is obvious that when the wavelength of the incident radiation is large
compared with the dimensions of an atom, the wavelets emitted by the

* See for example C. S. Barrett, Structure of Metals. 2d ed., McGraw-Hill, New York,
1952, p. 633.



Sec. 1-4] THE CRYSTALLINE STATE 11

electrons in the atom are nearly all in phase. However, X-rays used in
diffraction work have a wavelength of the same order of magnitude as
the atomic diameter (this is necessary to obtain a diffraction pattern).
Thus the wavelets emitted by the electrons in an atom are in general out
of phase. Consequently, these wavelets will partially cancel each other by
interference and the amplitude of the radiation scattered by an atom
containing Z electrons 1s less than that scattered by a free electron times
the number of electrons in the atom. We can, however, consider the
atom as a scattering center with an effective atomic scattering factor f
which is given by the ratio of the amplitude of the wave scattered by the

} Zero order

ﬁ Incident waves

Fig. 1-9. Reinforcement of scattered waves producing diffracted
beams of different orders.

atom and that of the wave scattered by a free electron (for the same
incident beam). This problem will be discussed further in Sec. 1-6.

In crystals we are concerned with the scattering by a large number of
atoms arranged according to a particular pattern. For simplicity, let us
consider a one-dimensional row of atoms with interatomic distance a.
Assuming the incident wave crests to be parallel to the row of atoms, we
obtain a picture such as Fig. 1-9. The envelope of the wavelets emitted
by the individual atoms forms new wave crests and we see that besides a
beam propagated in the same direction as the incident beam (zero-order)
there are a few diffracted beams of other direction (first-orcer, second-
order, etc.). Thus, even though the individual atoms scatter radiation in
all directions, there are only a few directions in which these wavelets
reinforce each other. The condition for such a diffracted beam to exist
may easily be found as follows: In Fig. 1-10, suppose that AB is a wave
crest of the incident beam, and CD is a wave crest of the diffracted beam.
Then, because a wave crest is an assembly of points of the same phase,
we must require that the path difference (4C — BD) shall equal an integer
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times the wavelength of the beam. Thus a diffracted beam is observed
only if

a(cos o« — cos ag) = ed, with e=20,1,2,3,... (1-4)

For given values of ay, a, 4, and e there is only one possible value for «.
We note that such a value exists only if at the same time cosa < 1.
Suppose then that to a certain value of e there corresponds a value a.
The direction of the diffracted beam then forms a cone of directions with
the row of atoms as axis, as indicated in Fig. 1-10. Thus a monochromatic

Fig. 1-10. For reinforcement AC—BD should be an integer

times the wavelength. The vectors s, and s are unit vectors in the

direction of the incident and diffracted beams. Because the atoms

emit spherical waves, the possible directions of s form a cone
about the array of atoms.

X-ray beam falling on a row of atoms gives rise to a family of cones
representing the directions of diffracted beams.

Equation (1-4) may also be written in vector notation; if s, and s
represent unit vectors, respectively, in the direction of the incident and
scattered beam (Fig. 1-10), and if a represents the translation from 4 to
D, we have

a-(s— sy =el (1-5)

For a two-dimensional space-lattice, two conditions of the type (1-5)
must be satisfied. Each of these conditions gives rise to a set of cones for
possible diffracted beams. Hence, if both must be satisfied, only those
directions for a diffracted beam are possible that belong to one cone of
the first group and to one of the second group. Thus the second condition
strongly limits the number of possible diffracted beams, viz., to directions
determined by intersecting lines of two direction cones.

Conditions become even more stringent for a three-dimensional lattice.
Consider, for example, a simple space-lattice with a unit cell defined by
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the primitive translations a, b, and c. Then, for diffraction to occur, the
following equations for the path differences must be satisfied :

a(cos x — cos ap) = a - (s — sp) = el
blcosf —cosfy) =b- (s —sg) =2 (1-6)
c(cosy — cosyy) = € (s — so) = gh

where e, f, and g are integers; o, o, 7o and «, f, y represent, respectively,
the angles between the incident and scattered beams and the axes a, b, c.
These are the von Laue equations. It must be noted that for a given value
of 4 and an arbitrary direction of incidence sy, it is in general not possible
to find a direction s which satisfies (1-6). In other words, for a mono-
chromatic X-ray beam falling on a crystal with an arbitrary direction of
incidence, in general no diffraction is observed. This may readily be
understood by remembering that for a two-dimensional lattice there
exist only specific directions for a diffracted beam and these directions
are in general not part of the direction cones determined by the third
condition required for the three-dimensional case. Thus only for particular
angles of incidence will diffraction be observed ; it is exactly this limitation
that makes X-ray diffraction a useful tool for investigating crystal
structures. This point will become more clear when we discuss the Bragg
formula below. Before doing this, it may be useful to rewrite (1-6) for
the case of a simple cubic lattice. Assuming a = b = ¢, we obtain from
(1-6) by squaring and adding

2a*(1 — cos & cos ag — €Os ff cos By — cos ¥ cos yo) = A%(e® + f2 4 g?)

Now, if ¢ represents the angle between the incident and scattered beams,
we may write

2(1 — cos ¢) = 4sin? ($/2) = (AYa?)(e® + 2+ gD (I-T)

In this form the von Laue equation is closely related to the Bragg formula.

1-5. X-ray diffraction according to Bragg

Bragg considered the problem of X-ray diffraction from a somewhat
different point of view. Although in itself it is not completely satisfactory
because it involves certain assumptions that are not immediately obvious,
it gives results identical with the Laue treatment and is therefore justified.
Bragg considers X-ray diffraction from a crystal as a problem of reflection
from atomic planes. In Fig. 1-11 consider a set of parallel atomic planes
of Miller indices (hkl), the distance between successive planes being d;,.
If we assume with Bragg that an X-ray beam is reflected by an atomic
plane according to Snell’s law (i.e., incident beam, reflected beam, and
normal in one plane, and angle of incidence equals angle of reflection)
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we see that rays 1 and 2 can reinforce each other in the reflected direction
only if their path difference is an integer times A. This is necessary because
wave crests are points of equal phase. Thus from the figure we find as
condition for reflection from the set of planes under consideration,

2d,;,sin = ni with n=0,1,2,3, ... (1-8)

The value of n indicates the order of reflection. This condition shows
immediately that for given values
of d,,;, and 4, and » having integer
values, only a particular angle 6
would produce such a refiection.
Thus we arrive at the same con-
clusion as above, viz., that a beam
of monochromatic X-rays incident

~ on a crystal with an arbitrary
Fig. 1-11. Beams reflected from successive ~ angle 0 is in general not reflected.
planes will reinforce each other if AB + BC  Also, because sinf <1 and d ~
equals an integer times the wavelength; [0-8 cm, we see that reflection can
this leads immediately to equation (1-8). be observed only for A of the order
of 1078 cm or less. It is for this reason that X-rays are used in these
experiments.

We shall now show that condition (1-8) as given by Bragg is equivalent
to (1-6) derived from the von Laue treatment. For simplicity let us
consider a simple cubic lattice, so that we must compare (1-7) and (1-8).
First of all it is evident from the definition of ¢ and from Fig. 1-11 that
¢/2 = 6. Furthermore, making use of expression (1-3) for the distance
between successive planes of Miller indices (hk/) in a cubic lattice, we may
write (1-8) as

B~
c J\

2asin 0 = An(h? + k* + 1P)12 (1-9)

Thus, identifying the integers e, f, and g, respectively, with nk, nk, and nl,
a diffracted beam defined in the von Laue treatment by the integers e, f, g
may be interpreted as the nth order reflection from a set of planes (hk/)
in the Bragg theory. The order of the reflection n is simply equal to the
largest common factor of the numbers e, £, g.

1-6. The atomic scattering factor

So far, we have considered only the condition for diffraction from
simple structures for which only the corner points of the unit cell are
occupied. It will be evident that the intensity of a beam diffracted by
an actual crystal will depend on the grouping of atoms in the unit cell and
on the scattering power of these atoms. Conversely, the intensity of a
diffracted beam should provide information about the configuration of
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atoms in the unit cell and therefore must be considered an important
quantity in X-ray diffraction work. In the present section we shall consider
the atomic scattering factor; in the next section the relationship between
the intensity of a diffracted beam and the atomic configuration in the
unit cell will be discussed.

In the beginning of Sec. 1-5 we mentioned that the atomic scattering
factor f; is defined as the ratio of the amplitude of an electromagnetic
wave scattered by an atom and that of a wave scattered by a free electron.
To calculate this factor for a given
wavelength 4 we refer to Fig. 1-12.

Let 4 be the center of the atom \N
and let us consider an incident

and a scattered beam making an

angle of 20 with each other. We t
may then choose the z-axis of a z e
polar coordinate system r, 9, ¢ 0 20

along AN, where AN isthenormal B a~J C.
to the “reflecting plane” BAC. If RN
the electronic charge distribution ~

of the atom is assumed to be Fig. 1-12. Calculation of the atomic
spherically symmetric, a function scattering factor. AN is the normal to

o(r) may be introduced represent- the reﬁecn.ng plane BAC. The vectors are
. he densi £ el all drawn in the plane of the paper, so that
m_g the density of electrons at a . azimuthal angle ¢ has not been indi-
distance r from the nucleus 4. Thus cated.

the number of electrons in a

volume element at r is equal to p(r)r? dr sind d9 d$. Consider now the
phase difference between the rays scattered by this element of charge and
the rays that would be scattered if the same charge were located in point 4.
From what has been said in the preceding section it follows that this phase
difference is determined only by z = r cos ¥, and in fact equal to

@ = (47z/2) sin O = (4=[A)r cos I sin O (1-10)

On the other hand, the absolute value of the amplitude of the scattered
wave is of course independent of the location of the charge and simply
proportional to the amount of charge. The ratio of the complex amplitude
of the wave scattered by the element under consideration and the amplitude
of the wave that would be scattered by the same charge in 4 is thus simply
e". The atomic scattering factor is therefore

fi= ‘ - [ o .(¢=0 €'7p(r)r? dr sind dd d¢

r=0.9
Substituting (1-10) for ¢, the integral becomes

sin kr
kr

fo= [T 4mrp0) dr with k= (@4n/A)sing  (1-11)
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We note that [ 4mr?p(r) dr is equal to the total number of electrons Z in
the atom. Hence the atomic scattering factor is equal to Z only for

12

10 \

N

0 2 4 6 8 10
sind
)
Fig. 1-13. Atomic scattering factor
for magnesium as function of (sin 6)/4,
where 4 is expressed in Angstroms.

6 =0, and < Z for all other angles
of scattering. From (1-11) it follows
that a calculation of f, requires a
knowledge of the charge distribution
in the atom. As an example, we give
in Fig. 1-13 the atomic scattering
factor for magnesium as a function
of (sin 6)/A. The charge distributions
on which such curves are based may
be obtained from a Hartree approxi-
mation or for atoms with a large
number of electrons (beyond rubid-
ium) from a statistical atomic model
developed by Thomas and by Fermi.é
In some cases, viz., for solids
with simple structures, the atomic
scattering factor may be determined
experimentally from intensity mea-

surements. The agreement with the theoretical curves is generally good.

1-7. X-ray intensity and atomic configuration of the unit cell

To illustrate the problem to be discussed here, let us consider a particu-
larly simple example. In Fig. 1-14 let us suppose, to begin with, that

only the corners of the cubic unit cell
are occupied by atoms. For such a
simple cubic lattice, (which, by the
way, does not occur in nature) the
first-order reflection from the set of
planes (001) would be observed for a
particular Bragg angle 6, determined
in accordance with (1-8) by

2dyg, sin @ = 2 asin 6 =

For this reflection, the path difference
between rays 1 and 2 is equal to
one wavelength. Suppose now, that
the unit cell contains also an atom

T~

j
+—
>
.
.
!
Y
'
rd

Fig. 1-14. lllustrating that the first-
order reflection from the planes {100}
is absent in a body-centered cubic
lattice. The path difference between
1 and 2 is A; between 1 and 3 itis 4/2.

at the center of the cube; we may then ask the question as to how this

¢ For values of the scattering factors of atoms and ions see R. W. James and G. W.
Brindley, Z. Krist. 78, 470, (1931); Internationale Tabellen zur Bestimmung von Kristall-

strukturen, Vol. 2, Borntriger, Berlin, 1935.
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will influence the intensity of the first-order reflection mentioned above.
Addition of an atom at the center of the unit cell is equivalent to inserting
planes halfway between the (001) planes; furthermore, the density of
atoms per unit area on these planes is exactly the same as that for the
(001) planes. Now, if the path difference between rays 1 and 2 is 4, the
path difference between 1 and 3 is 4/2. From this, it is evident that the
intensity of the first-order reflection from the (001) planes in a body-
centered cubic lattice is zero, at any rate if all atoms have the same
scattering factor. In other words, for an element crystalizing in a b.c.c.
Jattice, the first-order reflection from planes such as (001) will be absent.
Similar considerations may be held for other reflections and other atomic
configurations. This leads to a number of characteristic absences from
which it is possible to draw conclusions regarding the atomic configuration
in the unit cell. If the central atom is different from those at the corners,
the intensity of the reflection under consideration will not vanish com-
pletely, but will give rise to a relatively weak line. For the second-order
reflection, the path difference between 1 and 2 is 24, that between 1 and 3
is A; in that case, then, all rays will reinforce each other and this reflection
will be present in the b.c.c. structure.

The problem will now be discussed quantitatively. Let us consider
the intensity of an X-ray beam diffracted by a crystal with a unit cell of
primitive translations a, b, ¢. The conditions that must be satisfied for
the waves emitted by the atoms at the corners of this unit cell to be in
phase are given by (1-6); it will be assumed that these equations are
fulfilled. Furthermore, taking a particular corner atom as origin, let
the coordinates of the other atoms in the unit cell be represented by
vectors of the type

r, = u8 + v.b + wec (1-12)

In analogy with the von Laue equations (1-6) it then follows that the
phase difference between the beam scattered by atom k and the one
scattered by the atom at the origin is given by

b = 2|y (s — 50) (1-13)

where s, and s are unit vectors, respectively, in the direction of the incident
and scattered beam. Substituting (1-12) and making use of (1-6), we
obtain

@ = 2m(ue + v f + wig) (1-14)

It is convenient to introduce the structure factor F, defined in analogy
with the atomic scattering factor as follows: Fis the ratio of the amplitude
of the wave scattered by all atoms in a unit cell and that scattered by a
free electron for the same incident beam. In view of (1-13) the complex
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amplitude produced by atom k is f;e'"* where f, is the atomic scattering
factor for atom k. Thus the structure factor may be written

F= %_f:\'keiqk — %ﬁke‘:ni(u‘rw;uu'ly) (1_15)

where the summation extends over all atoms in the unit cell. In con-
nection with this summation we must emphasize that an atom at a corner
belongs to eight unit cells, so that
such an atom in the summation
counts for only . In other words,
all atoms at the corners together
produce only one term. We may
also look at this problem in this
fashion: if we add vectorially the
amplitudes of the waves scattered

Fig. 1-15. Showing the vectorial addition by the aioms in a unit cell, we
of the amplitudes of the waves scattered . . . .
by the different atoms in the unit cell ~Obtain a picture such as in Fig.
F is the resultant of the individual f;;’s. 1-15, where F is the resultant
amplitude. Each amplitude has
two components, f; cos ¢, and f, sin ¢, and the intensity, which is
proportional to the square of the amplitude, then becomes proportional to

F?2= (%fsk cos @)% + (%‘,fsk sin @;)? (1-16)

This expression is identical with |F|> — FF*, where F is given by (1-15)
and F* represents the complex conjugate of F. The values of the ¢,’s
are given by (1-14).

For the particular case that all atoms in the unit cell are the same,
all f;’s are equal and one may write

F:fs % e‘-’ﬂ'i(u;-e+ka+w;.~a) (1_17)

A simple example may illustrate the conclusions one may draw from the
above treatment. For a body-centered cubic lattice of similar atoms, the
summations extend over the values u, v, w = 0,0, 0and v, v, w =4, &, }
(all corner atoms together represent one atom). According to (1-14)
¢, = 0 and ¢, = (e 4 f 4+ g). Hence, for a body-centered cubic lattice
of similar atoms we have, according to (I-16),

|FI2 = f3{[1 4 cos m(e + f + ) + sin? n(e + [ + g)}

We conclude that if (¢ + f+ g) is odd, |F|* = 0 and the corresponding
reflection is absent. On the other hand, for (e + f + g) even, we have
|F|* = (2f))* and the reflection is present. We leave it as a problem to
show that in a face-centered cubic lattice all reflections will be missing
for which the numbers e, f, g are mixed odd and even, such as 100, 211, 324,
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etc. The results of such considerations for cubic lattices of similar atoms
are represented in Fig. 1-16 in the form in which they appear as lines in

1113 17 19 21— (e24+/2+4g2)
0 1 2 3456 8910:i12i14 16:18:20i22 24

Simple cubic

Body-centered cubic

Face-centered cubic

Diamond

Fig. 1-16. Powder patterns for different cubic crystals, illustrating

characteristic reflections and absences for each type. [By per-

mission from C. S. Barrett, Structure of Metals, McGraw-Hill
2d ed., 1952, p. 136]

a powder-method experiment. Because of the characteristic line pattern
produced by each of these structures, they are readily recognized.

1-8. Experimental methods of X-ray diffraction

Because of lack of space, it is not possible to discuss in any detail the
experimental techniques employed in X-ray diffraction work, but a few
remarks may be in order. There are essentially three methods which
may be employed, as may be seen from the Bragg formula (1-8). If one
uses monochromatic X-rays, equation (1-8) cannot be satisfied for an
arbitrary value of 6. This has led to the rotating-crystal method, whereby
reflection occurs for a discrete set of 0 values. This method can of course
be applied only if single crystals of reasonable size are available. If this is
not the case, one can employ monochromatic X-rays when the sample is
in powder form and held in a fixed position. The reason that a diffraction
pattern is observed is that there are always enéugh crystallites of the right
orientation available to satisfy the Bragg relation. By a proper analysis it
is possible to identify the indices (hkl) of a particular reflection, and this
enables one to calculate the interatomic parameters when the wavelength
of the employed radiation is known. The characteristic absences, dis-
cussed in the preceding section, allow one in many cases to determine
the atomic configuration of the unit cell at a glance. Finally, there is
the von Laue method, in which the sample (a single crystal) is held
stationary in a beam of white X-rays. Each set of planes then “‘chooses”
its own wavelength to satisfy the Bragg relation. This niethod is not so
useful for the determination of lattice parameters as the other two because
the wavelength of a particular reflection is unknown. On the other hand,
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it is used in the determination of crystal symmetry. For a review of the
experimental techniques we refer to the references quoted at the end of
this chapter.

1-9. Diffraction of electrons by crystals

From a theoretical study of the relation between geometrical optics
and classical mechanics, de Broglie in 1924 suggested that particles may
be described by waves. He predicted that the wavelength associated with
a particle of momentum p = mv is given by

A= hp (1-18)

where h is Planck’s constant. One of the most direct pieces of evidence
of the wave aspect of particles was provided by the electron diffraction
experiments of Davisson and Germer in 1927.7 They concluded that if
one associates a wavelength with the electrons given by (1-18), the dif-
fraction pattern obtained can be interpreted in exactly the same way as
the X-ray diffraction patterns. As long as the velocity of the electrons is
small compared with the velocity of light, the wavelength of the electrons
may be expressed in terms of the accelerating voltage V' as follows:

tm? =eV or A= h|(2meV)/? ~ (150/V)4/? (1-19)

where A is obtained in Angstroms if ¥ is expressed in volts. Note that
only 150 volts are required to produce electrons of a wavelength of 14,
in contrast with X-rays, which require approximately 12,000 volts for 1 A.
Although Davisson and Germer in their original experiments used
electrons of 30-600 ev, modern diffraction equipment employs usually
voltages of the order of 50 kilovolts, corresponding to 4~ 0.05A. In
such cases, a relativistic correction must be applied to (1-19); for 50 kev
electrons this correction lowers the wavelength by approximately
2.5 per cent.

The atomic scattering factor for electrons has been discussed by Born®
and a simplified treatment has been given by Mott.® In contrast with
X-rays, electrons are scattered by the nucleus as well as by the electrons
in the-atoms. For a spherical charge distribution one can show that the
scattering factor is given by

me® A2
E0) = 2n? Z=1 sin 6 (1-20)

Here f, is the scattering factor for X-rays, Z is the nuclear charge, and
0 is the Bragg angle. As for X-rays, the scattering factor for electrons

? C. Davisson and L. H. Germer, Phys. Rev., 30, 707 (1927).
8 M. Born, Z. Physik, 38, 803 (1926).
* N. F. Mott, Proc. Roy. Soc., 127A, 685 (1930).
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decreases with increasing values of 6. However, there is a considerable
difference between X-rays and electrons in that electrons are scattered
much more efficiently by atoms than are X-rays. In fact, atoms scatter
electrons more strongly by several powers of ten for the energies involved.
At normal incidence, an electron of about 50 kev has a penetration depth
for elastic scattering of only about 500 A, while for the small angles of
incidence used in reflection techniques this may be only about 50 A
measured perpendicular to the surface. It is evident, therefore, that electron
diffraction is particularly useful in investigating the structure of thin
surface layers such as oxide layers on metals. Such layers would not be
detected by X-ray diffraction because the patterns obtained are
characteristic for the bulk material. We may note that diffraction of
electrons by gases requires much shorter exposure times than does X-ray
diffraction, again as a result of the relatively high efficiency of scattering
of electrons by atoms.

1-10. Diffraction of neutrons by crystals

We have seen above that for X-rays of 1 A one requires energies of
the order of 104 ev, for electrons of 1 A about 102 ev. Now, the mass of a
neutron is about 2000 times as large as that of an electron, so that according
to the de Broglie relation (1-18) the wavelength associated with a neutron
is about 1/2000 that for an electron of the same velocity. Thus the energy
of a neutron required to give 1A is of the order of only 0.1 ev. Such
neutrons can be obtained from a chain-reacting pile, and diffraction from
crystals may be observed.!® Neutrons are scattered essentially by the
nuclei of the atoms, except when they are magnetic (see below). Now,
the radius of an atomic nucleus is of the order of 1073 c¢m, and as a
consequence, the atomic scattering factor is nearly independent of the
scattering angle, because 2> 10713 cm. Also, the scattering power does
not vary in a regular manner with the atomic number, so that light
elements such as hydrogen and carbon still produce relatively strong
scattering. The scattering of X-rays by light elements is in contrast, of
course, relatively weak. Thus the positions of such atoms in crystalline
solids may be determined from neutron diffraction experiments.!* Another
important aspect of neutron diffraction is the fact that scattering from
neighboring elements in the periodic system may differ appreciably.
For example, neutron diffraction allows one to detect with relative ease
ordered phases of an alloy such as FeCo, whereas their detection by
X-rays is difficult.

10 W. H. Zinn, Phys. Rev., 70, 102A. (1946); 71, 752 (1947); L. B. Borst, A. J.
Ulrich, C. L. Osborne, and B. Hasbrouck, Phys. Rev., 70, 108A (1946); 70, 557 (1946).,

11 C. G. Shull, E. O. Wollan, G. A. Morton, and W. L. Davidson, Phys. Rev., 73
830 (1948).
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A particularly important aspect of neutron diffraction is their use in
investigating the magnetic structure of solids. This is a result of the
interaction between the magnetic moment of the neutron and that of the
atoms concerned. In a paramagnetic substance, in which the magnetic
moments are randomly oriented in space, this leads to incoherent scat-
tering, resulting in a diffuse background. This background of magnetic
scattering is then superimposed on the lines produced by the nuclear
scattering mentioned above. In a ferromagnetic substance in which the
magnetic moments within a domain are lined up in parallel, this diffuse
background is absent. It occurred to Smart that neutron diffraction
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Fig. 1-17. Neutron diffraction patterns for MnO at room tempera-
ture and at 80°K. The magnetic unit cell is twice as large as the
chemical one. [After Shull and Smart, ref. 12]

might provide a direct means of detecting antiferromagnetism (see
Chapter 19).? In an antiferromagnetic solid, the magnetic moments of
particular pairs of atoms are aligned antiparallel and hence, from the
point of view of the neutron, such atoms would appear to be different.
In Fig. 1-17 we show a neutron diffraction pattern obtained for powdered
MnO at room temperature and at 80°K ; the Curie temperature is 122°K
and only below this temperature is MnO antiferromagnetic. The room

'* C. G. Shull and J. S. Smart, Phys. Rev., 76, 1256 (1949).
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temperature pattern shows coherent diffraction peaks as would be
expected from a lattice of the NaCl structure. The diffuse background of
magnetic scattering is also visible. The low-temperature pattern shows
the same peaks, but in addition strong magnetic reflections at positions
that one would not expect on the basis of the chemical structure of the
unit cell. If, however, one introduces a magnetic unit cell twice as large
as the chemical one, these reflections can be identified. Such a cell indeed
corresponds to an antiferromagnetic substance.

The diffraction of particles is, of course, not confined to electrons and
neutrons, but may also be observed for atoms and molecules, the corre-
sponding wavelength being given by the de Broglie relation. Diffraction
has been observed for example for H, He, H,, and other atoms.1?

1-11. Interatomic forces and the classification of solids

A few remarks of a qualitative nature may be made here about the
forces acting between atoms or molecules in solids. We shall not enter
into any detail since certain aspects of this topic will be treated in later
chapters.

From the very existence of solids one may draw two general con-
clusions: (1) there must act attractive forces between the atoms or
molecules in a solid which keep them together; (2) there must be repuisive
forces acting between the atoms as well, since large external pressures
are required to compress a solid to any appreciable extent. (Both con-
clusions also apply to liquids). In order to illustrate the importance of
both types of forces, let us consider the simplest system in this respect,
viz., a single pair of atoms 4 and B which form a stable chemical com-
pound. Without paying attention to the physical origin of the forces
between the two atoms, let us assume that the potential energy of atom B
due to the presence of atom A is given by an expiession of the type

E(r) = —ofr" 4 Blr™ (1-21)

where r is the distance between the nuclei of the two atoms; «, 5, m, and n
are constants characteristic for the 4B molecule. The zero of energy is
chosen such that for infinite separation £ = 0. The first term, which is
negative, corresponds to the energy associated with the forces of attraction,
the second (positive) term corresponds to the forces of repulsion. In
fact, the force between the two atoms as function of r is given by

no mp

7 (1-22)

S S

F(r) = —dE|dr = —

The energy and the force between two atoms A and B which form a

13 For a review see, for example, I. Estermann, Revs. Mod. Phys., 18, 300 (1946).
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chemical compound are represented in Fig. 1-18. The stable configuration
for the system corresponds to the minimum in the E(r) curve, which
occurs for a particular separation r = r,. The corresponding energy
E(r,) is negative ; thus the positive quantity D = — E(r,) is the dissociation
energy of the molecule, i.e., the energy required to separate the two atoms.
Dissociation may occur, for example, at high temperatures or as a result
of other processes in which the molecule can absorb sufficient energy.

_)l,j
—> Ny

Attractive Attractive

(a) (b)

Fig. 1-18. Schematic representation of the energy (a) and force
(b) between two atoms as function of their separation r. The
dashed curves are the sums of the attractive and repulsive curves.

The dissociation energies are of the order of one or a few electron volts.

Assuming that the energy curve exhibits a minimum, one may express
the equilibrium distance r, and the corresponding binding energy E(r,)
in terms of the constants «, f§, m, and n by making use of the condition

(dE[dr),_, =0, ie., ry="= (mln)(plo) (1-23)

According to (1-22) this condition is equivalent to the requirement that
the attractive and repulsive forces balance, i.e., F(ry) = 0. Substituting
from (1-23) into (1-21) one obtains for the energy in the equilibrium state

E(rg) = —afrg + plry = —(x/ro)(1 — n/m) (1-24)

Note that although the attractive and repulsive forces are equal in equi-
librium, the attractive and repulsive energies are not equal since n # m. In
fact, if m> n, the total binding energy is essentially determined by the
energy of attraction —a/rg.

As one may expect already by looking at Fig. 1-18, a minimum in the
energy curve is possible only if m > n; thus the formation of a chemical
bond requires that the repulsive forces be of shorter range than the
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attractive ones. This may be shown readily by employing the condition
that (d®E/dr?),_, > 0 if E(r) must have a minimum at r,. In fact, this
conditioh leads to

—n(n + Dafre*2 + m(m + VB[R 2 >0
which upon substitution of ry from (1-23) immediately gives
m>n (1-25)

Although the energy can in general not be represented accurately by a
power function of the type (1-21), the above treatment provides some
useful qualitative conclusions which may be extended to solids. An
application of this type of reasoning is given in Chapter 5 for ionic
crystals.

The forces acting between the atoms in solids are electrostatic in
nature; they are determined essentially by the way in which the outer
electrons of the composing atoms are distributed in space. The physical
properties of solids are determined to a large extent by the electron
distribution, and it is thus possible on an empirical basis to divide solids
into different groups corresponding to different types of electron distri-
butions. For a discussion of the nature of chemical binding we must
refer the reader to the literature.!* One may distinguish between the
following extreme types:

1. Tonic crystals (NaCl, KF)

2. Valence crystals (diamond, SiC)

3. Metals (Cu, Ag, Ma)

4. van der Waals crystals (argon, many organic crystals)

It should be said from the outset that many intermediate cases occur
and in general one must be somewhat careful in employing very specific
labels.

1. Jonic crystals. In ionic crystals one or more electrons of one type
of atoms are transferred to another, leading to the formation of positive
and negative ions; for example, NaCl may be considered as to be built
up of Nat and CI- ions. The cohesive energy of these crystals is to a
large extent determined by the Coulomb interaction between the hetero-
polar ions, as discussed in Chapter 5. At elevated temperatures they
exhibit ionic conductivity. Associated with the existence of positive and
negative ions is a strong optical absorption coefficient in the infrared.
lonic crystals may be cleaved readily.

2. Valence crystals. In valence crystals neighboring atoms share their
valence electrons under the formation of strong homopolar or covalent

14°L. Pauling, Nature of the Chemical Bond, 2d ed., Cornell University Press, Ithaca,
1945; J. A. A. Ketelaar, Chemical Constitution, Elsevier, New York, 1953.
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bonds. Some further remarks may be found in Sec. 13-1. Valence crystals
are very hard (diamond, carborundum), are difficult to cleave, and have a
poor electrical and thermal conductivity.

3. Metals. In metallic crystals the outer electrons of the atoms have
a high degree of mobility, to which these materials owe their high electrical
and thermal conductivity. In a simplified way one may say that the
cohesive encigy of metals is provided essentially by the Coulomb inter-
action between the positive ions and the negative ‘‘smeared out” charge
of the conduction electrons. The cohesive energy of metals will be
discussed briefly in Sec. 10-13.

4. van der Waals crystals. The atoms of the rare gases such as argon
have little or no tendency to give up electrons or share them with others.
In the liquid and solid state the forces of attraction are the so-called
dispersion forces,'® which arise in the following way: The combination of
the moving negative electrons and the nucleus of an atom may be con-
sidered a system of fluctuating dipoles. The interaction between these
dipoles associated with neighboring atoms then gives rise to a relatively
weak binding (see Sec. 5-6). In organic crystals the cohesive energy is
provided by dispersion forces as well as by the interaction between
permanent dipoles (see Sec. 6-1) of neighboring molecules; the totality
of such forces is referred to as van der Waals forces. Associated with
the relative weakness of these forces are low boiling and melting
points.

Between the extreme groups mentioned above, there are many inter-
mediate cases. An interesting intermediate group of solids are the semi-
conductors. Semiconducting elements such as Ge and Si are intermediate
between valence crystals and metals. The bonds are essentially.-homopolar
and at absolute zero the elements are insulators, as diamond. However,
the electrons forming the bonds between neighboring atoms are much
less strongly bound than in diamond; thus already at room temperature
these elements exhibit a certain amount of electrical conductivity, which
increases as the temperature is raised. These elements are further dis-
cussed in Chapter 13. Tonic crystals may also become semiconducting
by introducing impurities, or when the composition deviates from that
represented by the chemical formula (“nonstoichiometric” compounds).
These are discussed in Chapter 15.

A classification of solids given by Seitz!® is represented in Fig. 1-19
(with some slight modifications); examples of intermediate cases are
indicated. The upper row refers to elements, the lower one to solids

1> For an elementary discussion, see, for example, M. Born, Atomic Physics, Sth ed.,
Hafner, New York, 1951.

18 F. Seitz, The Modern Theory of Solids, McGraw-Hill, New York, 1940, p. 75.
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containing more than one type of atom; the two groups meet in the van
der Waals crystals (argon as an element and CH, as a compound would
be examples). Between the true alloys and ionic crystals there is a group
of intermetallic compounds for which the composing metallic components
have different tendencies for giving up electrons (Mg;Sb,).

Monoatomic Ge, Si Valence
metals — crystals
(Ag, Cu) Bi (diamond) S
P
Se
Si0g van der Waals
. crystals
SiC ( A, CH4)
FeS
TiOg
Alloys Ionic crystals
(NiCu) Mg3Sb2 (NaCl)

Fig. 1-19. Classification of solids, indicating intermediate cases.

1-12. Anisotropy of the physical properties of single crystals

The physical properties of single crystals in general depend on the
direction along which they are measured relative to the crystal axes;
this phenomenon is called anisotropy. Some examples are the following:
crystals do not grow in the form of spheres, but in polyhedra; certain
types of atomic planes dissolve more readily than others; the coefficient
of thermal expansion of Zn is 6.39 X 10~ along the hexagonal axis and
1.41 3> 1073 per degree C perpendicular to it; the specific resistivities of
Zn parallel to the hexagonal axis and perpendicular to it are, respectively,
py = 6.06 X 107 and p, = 5.83 % 108 ohm/cm. The reason for the
anisotropy of the physical properties of crystals must be sought in the
regular stacking of atoms. Thus as one passes through a crystalline
arrangement of atoms or molecules along a given direction, one meets
atoms or groups of atoms at different intervals and from different angles
than one would along another direction. Single moleculgs are also aniso-
tropic; however, in normal liquids or gases the orientation of the molecules
is random and the physical properties become independent of the direction
along which they are measured (isotropic) as long as a large number of
molecules is involved or when a time average is taken for a single molecule.
Polycrystalline materials with a completely random distribution of the
grain orientation are also isotropic.



28 THE CRYSTALLINE STATE [Chap. 1

As an example of anisotropy in a single crystal let us consider the
electrical conductivity in which an electric field E gives rise to a current I.
In general, the current vector will not have the same direction as the
electric vector. Thus, assuming a linear relationship between cause and
effect, we may write for the current components relative to an arbitrarily
chosen Cartesian coordinate system

Iz = az:cEa: + GIIIEV + 0':rzEz
I,=o0,E, +o0,FE, + 0y.E, (1-26)
IZ = O'ZIEI + GZVE” + O'ZZEZ

where the quantities o, are components of the ‘“‘conductivity tensor.”
It has been shown by Onsager that the tensor is symmetric, i.e., 0,;, = 03;.17
Making use of this symmetry property and multiplying the expressions
(1-26) respectively by E,, E,, and E,, one obtains upon adding

IzEx + IuEy + IzEz = UMEE + O'sz + azzEzz + ZG:WE:::EV
+ 26,,E,E, + 20,,E,E, (1-27)

The right-hand side represents a quadratic surface; by choosing our
coordinates along the principal axes of this surface, the mixed terms
disappear and one obtains in the new coordinate system

I.=0.E,; I,=0,E,; I,=03E, (1-28)

where o3, 0,, and o, are the principal conductivities. Thus. the electrical
properties of any crystal, whatever low symmetry it may possess, may be
characterized by three conductivities oy, 0,5, 05 or by three specific resis-
tivities p,, py, p3. Note that I and E have the same direction only when the
applied field falls along any one of the three principal axes of the crystal.

In cubic crystals the three quantities are equal and the specific resis-
tivity does not vary with direction. In hexagonal, rhombohedral (trigonal),
and tetragonal crystals the resistivity depends only on the angle ¢ between
the direction in which p is measured and the hexagonal, trigonal, or
tetragonal axis, since in those crystals two of the three quantities p;, py, ps
are equal. One finds

p(#) = p, sin® ¢ + p, cos? ¢ (1-29)

where | and | refer to directions perpendicular and parallel to the axis.
The effect referred to above may be called a “vector-vector” effect

" L. Onsager, Phys. Rev., 37, 405 (1931); 38, 2265 (1931); for the so-called
“‘reciprocity relations” derived by Onsager on the basis of the principle of microscopic
reversibility, see also C. Zwikker, Physical Properties of Solid Materials, Interscience,
New York, 1954, Chap. 5; see also Chap. 4 for anisotropy.
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since an electric current (vector) is produced by an applied electric field
(vector). The relations obtained may also be applied to other vector-
vector effects such as thermal conductivity, where a thermal current vector
is evoked by a thermal gradient; or diffusion under influence of a con-
centration gradient.

When one considers scalar-tensor effects, similar relationships are
obtained. For example, the deformation (tensor) of a solid resulting from
a change in temperature (scalar) may be characterized by three principal
expansion coefficients «;, a,, and o« Here again, in cubic crystals
a, = ay = oz and such crystals are isotropic in this respect. The angular
dependence of « for hexagonal, trigonal, and tetragonal crystals is given
by an expression corresponding to (1-29).

Other effects such as vector-tensor effects and tensor-tensor effects
may be treated along similar general lines. An example of a vector-tensor
effect is piezoelectricity,!® in which an electric field (vector) gives rise to a
deformation (tensor).!® The elastic deformation under influence of a
stress tensor is an example of a tensor-tensor effect.’® These effects may
require many more constants than appeared in the relatively simple case
of a vector-vector effect outlined above.
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PROBLEMS

1-1. For the packing of spheres of radius R in a simple cubic, a
body-centered cubic and a face-centered cubic lattice show that the cube
edge and the fraction of the volume occupied by the spheres are given by

simple cubic: a=2R; f= n/6
b.cc.: a=4R/V3; f=(=V3)8
f.c.c.: a=4R/V2; f= (wV23/6

Calculate the density ratios for the three lattices.

1-2. Explain why in Fig. 1-6, the following structures are not included :
the base-centered tetragonal, the face-centered tetragonal, and the face-
centered rhombohedral.

1-3. For a b.cc. lattice built up of spherical atoms of radius R,
calculate the number of atoms per cm? on the planes {100}, {110}and {111}.
Do the same for a f.c.c. and a simple cubic lattice.

1-4. Explain that the diamond structure may be considered as made
up of two interpenetrating f.c.c. lattices. Given that the cube edge for
diamond is 3.56 A, calculate the distance between nearest neighbors and
show that there are 1.77 X 10% atoms per cm® From this, calculate
the density of diamond and compare the result with the observed density.
Do the same for germanium (cube edge = 5.62 A).

1-5. For a cubic lattice show that the distance between successive
planes of Miller indices (A, k, /) is given by formula 1-3.

1-6. Explain qualitatively, and if possible quantitatively, why the
X-ray diffraction lines observed from small crystallites become broadened ;
base the discussion on a one-dimensional finite array of atoms.

1-7. On the basis of the discussion of Sec. 1-7, verify the characteristic
powder patterns represented in Fig. 1-16.

1-8. Discuss in some detail how the lattice constant of a cubic crystal
may be obtained from a powder pattern. If possible, carry out the
calculations for an actual film.

1-9. Suppose the interaction energy between two atoms is given by an
expression of the type (1-21). Given that n = 2, m = 10, and that the
two atoms form a stable molecule with an internuclear distance of 3 A
and a dissociation energy of 4 ev, calculate « and f. Also calculate the
force required to break the molecule and the critical distance between the
nuclei for which this occurs. Furthermore, calculate the force required
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to reduce the internuclear distance by 10 per cent relative to the equilibrium
distance.

1-10. Consider a crystal which, in equilibrium, occupies a volume Vj;
let the total energy of interaction between the atoms in the crystal be E,,.
Assuming that the energy of interaction between the atoms may be
described by an expression of the type (1-21), show that the compressibility
is given by | E,|(mn/[9V).

1-11. Discuss methods for growing single crystals (see, for example,
H. E. Buckley, Crystal Growth, Wiley, New York, 1951).

1-12. Discuss some physical effects which are due to anisotropy (see,
for example, C. Zwikker, Physical Properties of Solid Materials, Interscience,
New York, 1954, Chapter 4).



Chapter 2

THE SPECIFIC HEAT OF SOLIDS AND
LATTICE VIBRATIONS

2-1. The specific heat at constant volume and at constant pressure

According to the first law of thermodynamics, the amount of heat dQ
added to a system must be equal to the increase in energy dE of the system
plus the amount of work done by the system. In case the work done by
the system is of a mechanical nature only, one may thus write

dQ = dE + p dV @-1)

Now, E is, except for an arbitrary constant, determined uniquely by the
temperature and volume of the system. Hence

oE oFE
ey

and (2-1) may be rewritten in the form

0= (5) ar+ | (5 ) +p|av @2)

The specific heat in general is defined by dQ/dT, and unless stated other-
wise, will be assumed to refer to 1 gram molecule of the solid. However,
unless one specifies in which way the increase in temperature takes place,
the specific heat is undetermined; in particular one must specify the
corresponding change in volume, as is evident from (2-2). Thus there
exist an infinite number of specific heats, but in general one is interested
in only two: the specific heat at constant volume Cj, and the specific heat
at constant pressure C,. According to (2-2), the former is given by

- () (),

Theoretically speaking, this is the most interesting quantity, as it is
obtained immediately from the energy of the system ; most of the following
discussions will therefore refer to Cj. From the experimental point of
view, however, it is much more convenient to measure the specific heat of

32



Sec. 2-1] SPECIFIC HEAT AND LATTICE VIBRATIONS 33

a solid at constant pressure than at constant volume. As shown in text-
books on thermodynamics, the second law leads to the following relation-
ship between C, and Cj,:!

ov\? 817)
C,— Cp=—T (57),, (W . -4)

This may be rewritten in terms of the volume expansion coefficient «j
and the compressibility K, defined by

ay = (I/V)@V]T), and K= —(/V)@V[ep)y @5

Expression (2-4) then takes the form

8|
C,— Cp=ajTVIK  (2-6) ; C
Thus Cj, may be calculated from g ok Cy
C,measurementsifat the same time 3
ap and K are known at the < 5F
temperature of interest. Since both § ns
ay and K are positive quantities, 8
C,—Cp=0. S 8r
By way of illustration, we have T ol
given in Fig. 2-1 C, and Cj as
functions of temperature for cop- 1
per; note that at low temperatures R | |
their difference becomes very small 0 400 800 1200

and that both go to zero at T = 0. > T fabeolute)

It is essentially the temperature _. -
variation of the specific heat at Fig. 2-1. The temperature variation of
P C, and Cj for copper. [By permission

constant volume which will be from M. W. Zemansky, Hear and Thermo-
discussed in the present chapter. dynamics, 2d ed., McGraw-Hill, New York,

It may be noted that if no direct 1943, p. 237
compressibility data are available for the temperature range of interest,
one frequently employs the relationship

C, = Cy(1 + yo,T) with y = apV/KCp 2-7)

The quantity y is called the Griineisen constant and is practically
independent of temperature.? Thus by calculating y at some arbitrary
temperature from available data, one may obtain an approximation for
Cp at other temperatures from a knowledge of the coefficient ¢f volume
expansion.

! See, for example;, M. W. Zemansky, Heat and Thermodynamics, 2d ed., McGraw-
Hill, New York, 1943, p. 227.

® E. Griineisen, Handbuch der Physik, 10, 1-59 (1926); see also J. C. Slater, Phys.
Rev., 57, 744 (1940). )
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From the atomic point of view one may distinguish between various
contributions to the specific heat of solids. In the first place, there is the
contribution resulting from the atomic vibrations in the crystal; an
increase in temperature is associated with a more vigorous motion of the
atoms, which requires an input of energy. Second, in metals and in
semiconductors there is an additional contribution to the specific heat
from the electronic system. Usually this contribution is small relative to
that of the lattice vibrations, as explained in Chapter 9. As the temperature

is raised from absolute zero, the

10F specific heat increases rather

r rapidly from zero and finally levels

8r off to a nearly constant value. For

C, 6} elements, the value at high temper-
T . atures is about 6 cal mole™?
4r degree=!. This is known as the law

oL of Dulong and Petit. Anomalies in
the specific heat curves are observed

USRS NP EPE N G in the ferromagnetic metals; for

0 l200 400 600 800 1000 12

example, innickel,iron, and cobalt,
—>T

a peak is observed in the vicinity
Fig. 222. C, in cal mole™* degree™* for of the ferromagnetic Curie tem-
nickel as function of the absolute perature (see Fig. 2-2). The height

temperature. of the peak is of the same
order of magnitude as the normal specific heat. The peak is associated
with the transition from the ferromagnetic (ordered) to the paramagnetic
(disordered) state. Similar peaks occur in the specific heat curves of alloys
which exhibit order-disorder transitions, and in ferroelectric materials.
These anomalies are discussed in the relevant chapters; in the present
chapter the discussion is confined to the specific heat associated with
atomic vibrations.

2-2. The various theories of the lattice specific heat

In Sec. 2-10 it will be shown that the vibrational energy of a linear
chain of N atoms may be expressed as the energy of N harmonic oscillators.
Extending the arguments employed there to the three-dimensional case,
one is led to the conclusion that:

The vibrational energy of a crystal containing N atoms is
equivalent with the energy of a system of 3N harmonic oscillators.

This feature is common to all theories of the specific heat and the
distinction between the various theories is based on their differences in
the proposed frequency spectrum of the oscillators. The central problem
in the theory of the specific heat is therefore the calculation of the
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wavelengths and frequencies of the possible modes of vibration of the
crystal under consideration. The different approaches to this problem
will be outlined below.

With regard to the harmonic oscillator representation referred to
above, the following qualitative remarks may provide some clarification.
Suppose it were possible to fix the position of all the nuclei in a crystal
such that they are all in their equilibrium position. If one of the nuclei
were now displaced over a distance small compared with the shortest
interatomic distances, and then set free again, the displaced atom would
carry out harmonic vibrations about its equilibrium position, and its
energy of vibration would be the same as that of three one-dimensional
harmonic oscillators, one for each direction of motion. Applying the
same reasoning to the other atoms in the crystal, one arrives at a system
of 3N harmonic oscillators representing the vibrations of the crystal as a
whole.

2-3. The breakdown of the classical theory

The energy of a harmonic oscillator of natural angular frequency w
may be written
€ = p¥[2m + mw?q?[2 (2-8)

where the first term on the right represents the kinetic energy (p s the
momentum) and the second term represents the potential energy (g is the
deflection from the equilibrium position). It is well known that the average
energy of a harmonic oscillator according to classical statistical mechanics
is given by

(e) = fo“’ e <IFT de/f:’ e~ T de — kT (2-9)

where T is the absolute temperature and k is Boltzmann’s constant. It is
important to note that the frequency does not enter in this result. In
other words, the vibratiorfal energy of a crystal of N atoms is classically
always equal to

E = 3NkT (2-10)

independent of the assumed frequency distribution of the oscillators used
in the model. Now, as long as the volume of the solid is kept constant,
(2-10) is the only temperature-dependent contribution to the total energy
of the system. Thus, for a solid containing one type of atoms and putting
N equal to the number of Avogadro, one obtains for the specific heat
per gram atom,

Cy = 3Nk = 3R = 5.96 cal degree~! mole™* (2-11)

where R is the gas constant. Similarly, if the solid consists of N atoms A
and N atoms B, the specific heat per mole would be 6R, etc. The result
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obtained is in quantitative agreement with experiment (if sources of the
specific heat other than lattice vibrations are subtracted) at high tempera-
tures only. In other words, it does not explain the decrease of the specific
heat at low temperatures, as observed for all solids. This discrepancy is
essentially removed when quantum theory is used, as will be seen below.
It may be noted that the classical theory led to similar difficulties in the
specific heat of molecules.

2-4. Einstein’s theory of the specific heat

A great step forward toward an understanding of the specific heat
curves at low temperatures was made by Einstein in 1906.3 Although the
physical model employed by Einstein was oversimplified, his results
definitely indicated that quantum theory contained the answer to the
difficulty encountered in the classical theory. He assumed that a solid
element, containing N atoms, could be represented by 3N harmonic
oscillators of the same frequency ». This model implies that the atoms
vibrate independently of each other, their frequencies being the same
because of their assumed identical surroundings. For the average energy
of an oscillator Einstein made use of a result obtained by Planck in 1900,
in connection with the theory of black-body radiation. According to
Planck, a harmonic oscillator does not have a continuous energy spectrum,
as assumed in the classical theory, but can accept only energy values equal
to an integer times kv, where A is Planck’s constant. The possible energy
levels of an oscillator may thus be represented by*

e,=nhv n=0,1,23, .. (2-12)

By replacing the integrals appearing in (2-9) by summations, one thus
obtains for the average energy the expression

(€) = T niwe="IT| 5 g=nhiT @)

n

To evaluate this expression, first consider the denominator
S= ¥ e mhRT _ (1 — e~WiTy1
n=0

Differentiating with respect to 1/kT, one obtains
0SS ppemenr — _ MM
o(1/kT) n=0 (1 — e~ WkTy2
It is observed that the expression in the center is identical with the

* A. Einstein, Ann. Physik, 22, 180, 800 (1906); 34, 170 (1911).
* See any Introduction to Modern Physics.
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numerator in (2-13). Substitution into (2-13) thus leads to the well-known
Planck formula for the average energy of an oscillator at a temperature T':

hv
(e) = T ] (2-14)

1.0
We emphasize that in contrast 2
with (2-9), this expression contains g 5
the frequency of the oscillator. The A '
temperature dependence of (e) is
illustrated in Fig. 2-3, showing 0o s 3
(e)/kT as function of hv/kT. Note —> hy/kT

that at high temperatures (¢) = k7, Fig. 2-3. The average energy in units of

in agreement with the classical kT of a harmonic oscillator of frequency »
theory. However, at low temper- as a function of hv/kT, according to Planck.

atures, (¢) decreases exponentially
to zero. In the Einstein model, the vibrational energy of a solid element
containing N atoms is thus equal to

h
The specific heat at constant volume is therefore per mole
0 hv\2  eMIT
= = — ) —— 2-16
G =z E=3R (kT) (e"FT— 1) (-16)

Before discussing this result, it may be remarked that according to
quantummechanics, the possible energy levels of a harmonic oscillator
are given by

=m+HPv n=012, .. (2-17)

rather than by (2-12).5 This has the effect of shifting all energy levels by
the constant amount of Av/2, and instead of (2-14), one obtains

hy hy

1

The first term is called the zero-point energy of the oscillator because
(€) = hv[2 for T = 0. Thus, according to quantum mechanics, the atoms
have vibrational energy even at absolute zero. The expression for the
specific heat is not altered by this result, because Cy, is determined by the
derivative of (e) with respect to T.

With regard to (2-16) it is observed that for kT > hv, this expression
reduces in first approximation to the classical result (2- 11). At low
temperatures, however, the specific heat decreases. To discuss this

5 For a proof see any introduction to wave mechanics.
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behavior, it is convenient to introduce the Einstein temperature 0g,
defined by

hy = kb (2-19)
Expression (2-16) may then be written in the form
Cp (BF)2 =T (OE)
— == 5= =Fg | = 2-20
3R T) (T =12 “F\T (2-20)

where Fy is called the Einstein function; it determines the ratio of the

]
1.0 Debye
/ hstein
0 P Eins
& @
s /
K 6
4 /
2 /(
0 2 4 6 8 1.0 1.2 1.4 1.6 1.8 20
—> T/8

Fig. 2-4. The Debye and Einstein functions as function of 77/6.

specific heat at a temperature 7" and the classical (high-temperature) value
3R. The Einstein function is represented in Fig. 2-4, together with the
Debye function, which will be discussed in Sec. 2-6. We see that the curve
obtained has the same appearance as the observed specific heat curves.
On the other hand, the Einstein curve deviates from the experimentally
observed ones in the region of low temperatures. Experimentally, it is
found that for most solids the lattice specific heat at very low temperatures
(liquid helium) is proportional to 73. However, for T'<< 0, equation
(2-20) leads to a specific heat proportional to exp (—0z/T). In other
words, the Einstein function falls off more rapidly at low temperatures
than it should. The reason for this discrepancy must be sought in the
oversimplified model employed by Einstein.. In fact, we shall see in the
next sections that rather than a single frequency », the vibrational spectrum
of a solid covers a wide range of frequencies. This, in turn, is a result of
the fact that the atomic vibrations in a crystal are strongly coupled and
cannot be considered independent. On the other hand, because of its
simplicity, the Einstein model is frequently used in problems in which
lattice vibrations play a role.
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2-5. The vibrational modes of a continuous medium

In the preceding section it was pointed out that the discrepancy
between the Einstein theory and experimentai results in the low temperature
region was a consequence of the oversimplified model employed by
Einstein. In 1912, Debye tackled the problem from a different point of
view and, as we shall see, with great success.® Debye realized that it is
possible to propagate waves through sclids covering a wavelength region
extending from low frequencies (sound waves) up to short waves (infrared
absorption). The, essential difference between the Debye model and the
Einstein model is that Debye considers the vibrational modes of a crystal
as a whole, whereas Einstein’s starting point was to-consider the vibration
of a single atom, assuming the atomic vibrations to be independent of
each other.

In the present section, we shall deal with the vibrational modes of a
continuous medium, because the results are basic to the ‘“‘continuum
theories” of the specific heat. Let us first consider for simplicity the
vibrational modes of a one-dimensional continuous string of length L.
Suppose u(x,t) represents the deflection of the string at the point x at the
instant 7. The waves may then be described by the one-dimensional wave
equation

o%u 1 cu

ox2 ¢ o

(2-21)

where ¢, is the velocity of propagation of the waves. If it is assumed that
the end points of the string are fixed, the solutions of (2-21) are those
corresponding to standing waves:

u(x,t) = A sin (nmx/L) cos 2mv,t (2-22)

where n is a positive integer >1. The wavelengths and frequencies of the
possible vibrations represented by (2-22) are given by

A,=2L[ln and »,=c/d,=cn/2L (2-23)

The frequency spectrum is discrete, one frequency corresponding to each
integer value n. Note that for the one-dimensional string the frequency
spectrum corresponds to an infinite number of equidistant lines, as
illustrated in Fig. 2-5a. The number of possible modes of vibration in-a
frequency interval dv is, on the average, equal to

dn = (2L[c,) dv (2-24)
In the three-dimensional case, the wave equation reads

2 2 2 2
o2u 0 l.é_u (2:25)

ext ' oy 02 ¢ o2

P. Debye, Ann. Physik, 39, 789 (1912).
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Assuming a continuous medium in the shape of a cube of edge L and
assuming the faces of the cube to be fixed, the possible standing wave
solutions are, in analogy with (2-22),

u(x,y,z,t) = A sin (ngmx/L) sin (n,my/L) sin (n,7z[L) cos 2zvt  (2-26)

where now ‘nx, n,, and n, ate positive integers >>1. Substituting this
solution into the differential equation (2-25), one obtains the following
expression for the possible modes of vibration:

(L2 + n + n?) = dn®¥c: = 4n?[22 (2-27)

Thus the possible wavelengths and frequencies are determined by three
integers in this case. Let us now ask the question: What is the number

Z(v) Zly)

t f

(a) (b)

Fig. 2-5. (a) Frequency spectrum for a finite continuous string,
according to (2-24). (b) Frequency spectrum for a three-dimen-
sional continuum, according to (2-30).

of possible modes of vibrations Z(») dv in the frequency interval between
v and » 4 dv? To answer this, consider a network of points, each point
being determined by three Cartesian positive integer coordinates n,, n,,
and n,. Writing

R* =ni+ n + n? =4L»c; (2-28)

it is evident that the number of points in a shell between R and R 4 dR
is equal to”

}4mR? dR (2-29)

7 Each point occupies on the average a unit volume in the integer space.
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Now, each point corresponds to a set of three integers n,, n,, n,, and each
set of integers determines, according to (2-26), a possible mode of
vibration; hence (2-29) immediately gives the number of possible modes
of vibration in a given range. Expressing R in terms of » in (2-29) one
thus finds

Z(v) dv = (4= V/ci? dv (2-30)

where V is the volume of the solid. For a perfect continuum, the possible
frequencies vary between 0 and oc, the number of such possible vibrations
increasing with the square of the frequency (see Fig. 2-5b). This situation
holds, for example, in the case of electromagnetic waves in a box of
volume V. Expression (2-30) is therefore basic in the theory of black-body
radiation.

In the case of elastic waves, we may distinguish between transverse and
longitudinal waves. In general, the velocities of propagation, say ¢, and
¢,, respectively, will not be equal. To set up an expression for Z(») dv in
this case one should keep in mind that for each frequency or wavelength
there are two transverse modes and one longitudinal mode.® Thus,
instead -of (2-30) one obtains
ZWdv = 4nV (E; + i,) v2 dy (2-31)
o
How this expression has been used in the theory of the specific heat of
solids will be discussed in the following two sections.

2-6. The Debye approximation

One may wonder what the discussion of the preceding section could
have to do with the specific heat of crystals, which are by no means
continuous but are built up of atoms, i.e., of discrete “‘mass points.”
The reason is the following: Consider an elastic wave propagated in a
crystal of volume V. As long as the wavelength of the wave is large
compared with the interatomic distances, the crystal “looks like” a
continuum from the point of view of the wave. The essential assumption
of Debye is now that this continuum model may be employed for all
possible vibrational modes of the crystal. Furthermore, the fact that the
crystal actually consists of atoms is taken into account by limiting the
total number of vibrational modes to 3N (see Sec. 2-2), N being the total
number of atoms. In other words, the frequency spectrum corresponding
to a perfect continuum is cut off so as to comply with a total of 3N modes
(see Fig. 2-6a). The Debye cut-off procedure leads to a maximum

® [n the longitudinal modes, the deflection is along the direction of propagation;
in the transverse modes the deflection is perpendicular to the direction of propagation,
which gives two independent components.
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frequency v, (the Debye frequency) common to the transverse and
longitudinal modes; it is defined by

" 2 l )
| DZ(v)dv:47rV(—§+—)(l v dv = 3N (2-32)
Jo C.t c’, K
or . |
. 9N (2 1 )'
== + = 2-33
Yn ey c.: + C'; ( )

where Z(») as given by (2-31) has been used. It should be noted that this
procedure assumes that the velocities ¢, and ¢, are independent of the

Zy) Z(v)

! f

|
|
|
|
|
|
L

.—__.___

vp —>v v vy —v

(a) (b)

Fig. 2-6. The Debye cut-off takes place at the Debye frequency

v,, common to the transverse and longitudinal modes (a). In

Born’s procedure, the cut-off takes place at a common minimum

wavelength, corresponding to the maximum frequencies », and »,

for the transverse and longitudinal modes respectively (b). Note
that ¢, < c,.

wavelength, as in the continuum. It will be seen in Sec. 2-9 that this is not
correct for actual crystals. The order of magnitude of v;, may be obtained
by taking N/V =~ 102 per cm® and using for the velocity of sound
~10% cm sec™!. This gives »;, ~ 10" per second. This corresponds to a
minimum wavelength of the order of one Angstrom, indicating that the
continuum theory may be at fault, especially in the high-frequency region.

Associating with each vibrational mode a harmonic oscillator of the
same frequency, one finds from (2-31) and Planck’s formula (2-14) for
the vibrational energy, of the crystal,

x3 dx

) kT (2-34)

hy
E = '. Z(V) m‘,l-,——-— dv = 9N (hv
. I7% et

where x = hv[kT and x,, = hv;[kT. Here, as in the Einstein theory, it is
convenient to introduce a characteristic temperature ; thus one defines the

Debye temperature as
6, = hvplk (2-35)
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The upper limit of integration is then equal to x,, = 0p/T. It is observed
that for high temperatures (T > 6,,), x is small compared with unity for
the whole range of integration. In that case, the denominator of the
integrand in (2-34) may be replaced in first approximation by x. This
yields for the specific heat,

C, = CE[¢T=3Nk for T >0,

a result identical with the classical theory.
In the case of very lcw temperatures, such that 7 << 6, the upper
limit of integration in (2-34).may be replaced by infinity. Now,®

) x3 dx 1 774
J"e’-—l_6‘?iﬁzﬁ
so that
E=3m'NKT(T/fp)  for T<<0, (2-36)

Thus the energy of vibration is proportional to T* at low temperatures
(for the theory of black-body radiation, which may be treated in a
completely analogous way, this is the case at any temperature, because
there the upper limit to the frequency does not exist). The specific heat
at low temperatures according to Debye is thus given by

Cyp = 2niNk(T|0,)*  for T<L0, (2-37)

This is the famous Debye T2 law, which should hold for T < 6,/10. The
general expression for the specific heat as function of temperagure may
be obtained by differentiating (2-34) with respect to 7. For 1 mole of
substance one obtains in this way

' (9,,/1' e*xt

Cy—3R-3 (—T—')‘;

91))
61}, Jo m dx = 3RFD (7 (2‘38)

where Fj, is the Debye function. It has been represented in Fig. 2-4
together with the Einstein function. The reason that the Debye curve lies
above the Einstein curve is a result of the fact that in the Debye model,
the low-frequency modes are taken. into account; at low temperatures
these have a higher average energy and temperature derivative than the
relatively high-frequency Einstein oscillators, as is evident from the
Planck formula (2-14).

To illustrate the agreement between the Debye theory and experi-
mentally observed specific heat cueves, we reproduce in Fig. 2-7 measure-
ments on silver fitted to a Debye curve. From such curves it is possible

$ E. T. Whittaker and G. N. Watson, Modern Andlysis, 4th ed., Cambridge, London,
1935, p. 265.
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to- calculate the Debye temperature of the solid involved. Some typical
examples are given in Table 2-1.

6| cal/mole deg

5k

1 1 ] ] 1 1 1 L 1
0 40 80 120 160 200 240 280 320 360
—T
Fig. 2-7. Comparison of the Debye specific heat curve and
observed values (dots) for silver; the ordinate is in cal mole~!
degree™*.

Table 2-1. Debye Temperature in Degrees Absolute for a Number of Solids

Solid 0, Solid 0, Solid 0,
Na 150 Fe 420 C (diam.) 1860
K 100 Co 385 NaCl 281
Cu 315 Ni 375 KCl 230
Ag 215 Al 390 KBr 177
Au 170 Ge 290 AgCl 183
Be 1000 Sn 260 AgBr 144
Mg 290 Pb 88 CaF, 474
Zn 250 Pt 225
Cd 172

Notwithstanding the great success of the Debye approximation,
accurate measurements in the low-temperature region show deviations
from the theoretical predictions. According to the Debye theory, the
T3 law should hold in the temperature region T" < 0.10,,. That this is not
always the case may be seen from some examples given in Table 2-2,
reproduced from Blackman’s paper.1?

The 6, values given in the table are calculated from (2-37) and should
be constant if the 73 law was satisfied. Similar deviations have been
found in other materials. There seems little doubt that these deviations

19 M. Blackman, Repts. Progr. Phys., 8, 11 (1941).
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Table 2-2. Deviatiops from the T° Law

NaCl KCl Li
T 0, 10°GT® T 6, 10:C,/T® T 0, 10C,/T?
20 288 0.388 14 213 0.960 30 356 0.101
15 297 0.356 8 222 0832 20 340 0.118
10 308 0.334 4 236 0.708 15 328 0.131
3227 0.798

are a result of the deficiencies of the continuum approximation, a conclusion
which is supported by the work of Blackman and Kellermann,' the
results of which will be briefly discussed in Sec. 2-13. According to
Blackman one may expect the 72 law to hold for the temperature region

%103

P g
= o
T

—> Cy,/T (joules /half mole deg 2)
=
(=]
=

1 -
0 5 10 15 20
— T2

Fig. 2-8. Comparison of the T*law and observed values for KCI.
[After P. H. Keesom and N. Pearlman, ref. 12]

T < 0,/50, i.e., at considerably lower temperatures than predicted by the
Debye approximation. The T3 law is illustrated in Fig. 2-8 for KCl,
representing results obtained by Keesom and Pearlman.!?

2-7. The Born cut-off procedure

A modification of the Debye theory was introduced by Born, who
proposed a different cut-off procedure. In the preceding section it was

1LE. W. Kellermann, Phil. Trans., A238, 513 (1940); Proc. Roy. Soc., A178, 17

(1941).
12 p_H. Keesom and N. Pearlman, Phys. Rev.; 91, 1354 (1953).
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noted that in the Debye theory, the maximum frequency v, was common
to both the longitudinal and the transverse modes. Born proposed to
cut off the spectrum in such a manner that the longitudinal and transverse
modes have a common minimum wavelength. This, as will become
evident from the discussion in the following sections, is actually more
sound theoretically speaking and in line with the theory of lattice vibrations
developed by Born and von Karman.!® Thus if one takes the common
minimum wavelength-equal to

j'min = (4 l/[3N)'/3 (2-39)

one obtains two Debye frequencies, one for the longitudinal modes and
one for the transverse modes, viz.,

v, = c3N/AxV)'A and v, = c(3N/4nV )13 (2-40)

That this procedure leaves the total number of vibrational modes equal
to 3N follows immediately from (2-31) and (2-40), because

vy 2 " l
4V (JO vt l; 2 dv) =3N

The frequency distribution according to-this cut-off procedure is represented
in Fig. 2-6b and may be compared with that used by Debye. We leave it
up to the reader to show that Born’s modification leads to the following
expression for the specific heat:

Cy = RIFp(6,/T) + 2F;(0,/T)] (2-41)

This expression should be compared with (2-38); 6, and 6, are the Debye
temperatures corresponding to the longitudinal and transverse modes.
Apart from the different cut-off procedure, the model is open to the same
objections as the Debye theory.

2-8. Elastic waves in an infinite one-dimensional array of identical atoms

The weakest point in the model employed in the Debye theory is the
assumption that the continuum representation of a _crystal holds for all
possible elastic waves. In fact, we have seen that the minimum wavelength
is of the same order of magnitude as the interatomic distances and we
may thus expect that a more rigorous treatment might give different
results, especially in the high-frequency region. In the present and the
following sections we shall therefore discuss the principles of finding the
possible modes of vibration of atomic lattices. The original work is due

* M. Born, Atomtheorie*des festen Zustandes, Leipzig (1923); M. Born and Th. von
Karman, Phys. Z., 13, 297 (1912); 14, 15 (1913).
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to Born and von Karman!® and to Blackman.!® To begin with, consider
an array of equidistant mass points as represented in Fig. 2-9; the particles
all have a mass m, and for the
moment the array will be con-

. nl n ntl o Sidered infinitely long: It‘ will be

—a—+ o ! o : assumed that there exists interac-
(o] . .

TPy i tion only between nearest neigh-

bors and that Hooke’s law is
obeyed.’ In equilibrium let the
distance between neighboring
particles be a; the deflections

Fig. 2-9. Linear chain of identical mass
points. * The black dots represent the
equilibrium positions, the open circles the

displaced particles. from the equilibrium position will
be denoted by x, x;, X5, ..., X,_1,
X,» X,.1, ... . .The equation of motion of particle n is then

’”“:n == _f(xn - xn-l) _j.(xn - xn-l—l) :f(xn—l + Xp+1 — 2xn) (2'42)

where f is the force constant describing the nearest neighbor interaction.
Wt may try to solve this equation by a running wave of the type

x (t) — e~iw(t—na/c,) — e—i(wt—qrm) (2_43)
n

where ¢, is the velocity of propagation of the wave, ¢ = w/c = 27/ is
the wave vector and na the equilibrium position of particle n relative to
the origin. Substituting this solution into the differential equation (2-42),
one obtains after dividing through by x,,

mo? = —f(e~ "™ + € — 2) = 4fsin? (qa/2) (2-44)

or

0 = W, Sin (qaf2) with o2, = 4f/m

We have thus obtained an expression for the frequency of the waves in
terms of the wave vector g, i.e., in terms of the wavelength. To each
wave vector g corresponds a frequency ,. The relationship has been
represented in Fig 2-10, curve a. It is important to note that for a con-
tinuous string, the frequency » would be equal to gc /2, i.e., v would be
proportional to the wave vector g as illustrated by curve 4 in Fig. 2-10.
We are thus led to the conclusion that a continuous string and an array
of mass points give identical results only if ga << 1, i.e., when the wave-.
length is large compared with the interatomic distance. This we’ had
expected. The difference between a continuous string and an array of
mass points may also be expressed in this way: the velocity of propagation
in a continuous string is independent of the wavelength, whereas in an
array of mass points the velocity of propagation becomes smaller as the

' For a more general treatment, see L. Brillouin, Wave Propagation in Periodic
Structures, Dover, New York, 1953.
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wavelength decreases. It is evident that this result must have a bearing
on the theory of the specific heat, because in the continuum models it
was assumed that ¢, is a constant.

\ /
/
\ob by
\
\ /
4
\
\ /
/
\ | w
a \ mnx// a
\
-27/a -m/a 0 r/a 27 [a —>q
— 2nd } 1st +— 2nd —

Fig. 2-10. Frequency of elastic waves in a mono-atomic linear

lattice as function of the wave vector g. The dashed lines corre-

spond to a continuous .string. The first and second Brillouin
zones are indicated.

Another important result which follows from the above discussion
may be obtained by comparing the solution (2:43) with another in which
g has been replaced by

Gm =4q + 2mmja with m = +1, £2, ... (2-45)

First of all, it follows from (2-44) that the frequencies corresponding to
the modes ¢ and g¢,, are identical. From this, and from the fact that
exp (2mim) = 1, it then follows that the solutions (2-43) with ¢ and g¢,,
are identical. In other words, the state of vibration of the array of mass
points corresponding to a wave vector g is the same as that for any of
the wave vectors ¢ + 2mm/a. In order to obtain a unique relationship
between the state of vibration of the lattice and the wave vector g, the
latter must be confined to a range of values 2w/a. Usually one chooses
the range such that

—nla < q < mla (2-46)

The positive ¢ values correspond to waves propagated in one direction,
the negative g values represent waves going in the opposite direction (see
2-43). It also follows from the above discussion that the frequency is a
periodic function of g, as illustrated in Fig. 2-10. The region of ¢ values
defined by (2-46) is referred to as the first Brillouin zone: The second
zone consists of two intervals of half a period each, one on each side of
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the first zone as indicated in Fig. 2-10. Higher-order zones are defined in
a similar manner.

It is interesting to note that according to (2-44) there exists a maximum
frequency »,,, which can be propagated through the chain, viz.,

r\ 1/2
Yimax = _1" (1) (2-47)

T \m

The chain may thus be considered a low-pass filter which transmits only
in the frequency range between zero and »,,,.. In contrast with this, the
continuous string has no frequency limit. The maximum frequency of the
chain of atoms occurs when the wave vector is equal to =/a, i.e., for a
wavelength 4,;, = 2a. Now a~ 10-8cm and the velocity of sound in
solids is of the order of 105-10° cm sec™!; this gives v, ~ 103 sec71.

max —

2-9. Vibrational modes of a finite one-dimensional lattice of identical atoms

In the preceding section the discussion referred to an infinite lattice;
in the present section we shall see how the boundary conditions required
for a finite lattice lead in a natural manner to an enumeration of the
possible modes of vibration. The boundary conditions may be introduced
in either of two ways, which will now be discussed :

1. Boundary conditions leading to standing waves. Consider an array
of (N + 1) similar atoms, numbered from zero to N. Suppose the two
end atoms are fixed, so that (N — 1) atoms are mobile. The general
solution of the equation of motion (2-42) for a single wavelength may be
written as the sum of two running waves, one propagating to the right,
the other to the left:

X,,(t) — (Aleiqnu+iﬁ, -+ Aze—-iq»a+iﬂg)e—iwl (2-48)
Here A, and A, are amplitudes, and f,, §, are phase angles. The boundary

conditions are
xo(t) =0 and x,(t)=0 forall¢

The first of these, when substituted in (2-48), requires 4, = —A4, and
Py = fB.. Since the phase angles are equal, we shall choose 8, = f8, = 0.
Taking the real part of the remaining solution, one obtains

x,(t) = 24, sin gna sin vt (2-49)

which represents a standing wave. These solutions lead to the same
relationship between o and ¢ as the running wave solutions, viz., to
(2-44). Furthermore, ¢ is now limited to positive values ranging from
0 to m/a. The second boundary condition imposed on (2-49) selects a
discrete set of ¢ values, viz., those which satisfy the condition

singNa=0 or q = (w/Na)j (2-50)
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where j is an integer. Note that j = 0 must be excluded, since this corre-
sponds to ¢ = 0, i.e., all particles are at rest. The maximum value of ¢,
viz., m/a gives j,.. = N; however, this value must be excluded for the
same reason as j = 0. We thus conclude that

j=1,2,3...,(N—1) (2-51)

In other words, there are just as many modes of vibration (g-values) as
there are mobile atoms.

To each value of g there corresponds a value of the frequency o,.
Hence the frequency spectrum consists of (N — 1) discrete lines. For
macroscopic chain lengths the spacing of the lines is so close that we may
speak of a quasi-continuaus spectrum.

2. Another way of introducing the boundary conditions has been
proposed by Born and von Karman, they are called cyclic or periodic
boundary conditions and they are very convenient in the running-wave
representation of the vibrational modes. Suppose for a moment we had
a circularly, shaped chain of atoms, the interatomic separation being a.
Let the length of the chain be L = Na, where the number of atoms
N> 1. If the atoms are numbered 1,2, 3,..., N going around the
circle, the boundary condition that applies here is

xn(t) = xn+N(t) (2'52)

because the subscripts n and n 4 N refer to the same particle. Applying
this to the running wave (2-43), this condition may be written

et = 1t N or g = (2m/Na)g = (2n/L)g (2-53)

where g is an integer. Now, in accordance with (2-46), ¢ is confined to
the region between —=/a and =/a. In other words, the possible values
for g are

g=1,£2, 43, .., N2 (2-54)

(the value g = 0 gives ¢ = 0, corresponding to all particles at rest; this
value must therefore be omitted). The total number of different g values
(or g values) is thus equal to N. We are thus led to the same conelusion
as arrived at under (1), viz., that the number of possible vibrational
modes of a chain of atoms is equal to the number of atoms which are
free to move. In the rumming-wave picture, however, ¢ can accept positive
as well as negative values; in the standing-wave representation g is always
positive. Here again, the frequency spectrum forms a discrete set of lines.
The number of possible modes in a wave vector interval dg in the case of
the running wave representation is, according to (2-53) equal to

dg = (L[2m) dgq (2-55)
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In the standing wave representation the corresponding number is,
according to (2-50),
dj = (L|m) dg (2-56)

In (2-55), ¢ ranges from —m/a to m/a, in (2-56), from O to =/a. This
accounts for the difference of a factor 2 in the two expressions, the total
number of vibrational modes being the same for the two representations.
Actually, one is, of course, not particularly interested in circular
chains of atoms. However, aslongas N> 1, one-can employ the boundary
condition (2-52) also in the case of a linear chain. Imagine, for example,
an infinite one-dimensional lattice divided into macroscopic sections of
length L = Na. From the physical point of view, each section should
have the same properties as a circular chain of length L, because as long
as N> 1, each atom would “see” the same atomic configuration, the
interaction between the atoms being confined to very small distances.

2-10. The equivalence of a vibrational mode and a harmonic oscillator

In Sec. 2-2 it was pointed out that the central problem of the specific
heat of solids is the determination of the possible modes of vibration of
the lattice under consideration. Once the answer to this question has
been obtained, the vibrational energy of the solid is calculated on the
assumption that the energy corresponding to a particular mode is the
sarhe as that of a harmonic oscillator of the same frequency. In the present
section we shall show for the simple one-dimensional lattice of identical
atoms that this identification is justified. For a general treatment of the
three-dimensional case we refer to the literature.!®

It is well known that the energy of a harmonic oscillator of mass M
and angular frequency w may be written

E = p*2M + Mw?7?[2

where y is the deflection and p = M dy/dt is the momentum. In terms of
y alone, we may write

E = M(dy|dt? + Mw??2 (2-57)

We shall now show that the energy associated with a vibrational mode

can indeed be written in the form (2-57). Let us consider a mode corre-

sponding to a standing wave sin gna cos wt. The kinetic energy of the

particles in the lattice resulting from this vibrational mode is equal to
dx,

2
Eyin = 3m 2, (7;) = $mw? sin® wt  sin®qgna (2-58)

' M. Born and M. Goppert-Mayer, Handbuch der Physik, Vol. 24/2; see also F.
Seitz, Modern Theory of Solids, McGraw-Hill, New York, 1940, p. 125.
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where m is the mass per atom and the summation extends over all particles
in the chain. The potential energy of the system due to the vibrational
mode ¢ is a function of all coordinates x,; let it be denoted by
V(Xgs X1 -+- » Xns --.). The force exerted on particle n is then, in accordance
with (2-42),

oV d*x,,

T, ae

= f(Xp1 + Xp1 — 2%,) (2-59)

from this one may arrive at the following expression for the potential

energy
V(Xgy X15 <o s Xy ---) = 3 f % (2x2 — XpXpiq — XpXny)  (2-60)

(Note that each of the mixed terms appears twice in the summation,
providing agreement between the last two equations; this may readily
be verified by writing out the sum explicitly.) Substituting the standing
wave solution inte (2-60), one obtains after some manipulation,

V = 2f sin® (qa/2) cos® vt X sin® gna (2-61)

Making use of the relation between w and g as given by (2-44), one may

write
V = }mw? cos? wt ¥ sin® gna (2-62)
n

The total vibrational energy resulting from mode ¢ is obtained by adding
(2-58) and (2-62), leading to

E = ymw?S with S =3 sin®qna (2-63)

Note that this expression is independent of time. Suppose now we
identify (2-62) with the potential energy of a harmonic oscillator, i.e.,
with the last term in (2-57). This requires evidently

y = (mS|M)/2 cos wt (2-64)

If the vibrational mode were indeed equivalent with a harmonic oscillator,
the kinetic energy should be, according to (2-57) and (2-64),

Eyin = $M(dy/dt)?* = 3maw?S sin’® wt

This expression is identical with (2-58), which proves the sought equi-
valence. The average energy associated with a particular mode of
vibration of angular frequency w, is thus given by Planck’s formula
(2-14), i.e.,
ho,
(€ = T —7 (2-65)
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The number of quanta n, associated with the vibrational mode of wave
vector g at a temperature T is

n, = (&) [hn, = (T — 1)~! (2-66)

The quanta are commonly referred to as phonons of frequency w,, in
analogy with photons in the case of electromagnetic radiation. The
concept of a phonon is convenient in the discussion of interaction of
electrons with lattice vibrations in the theory of electrical conductivity.
A phonon, like a photon, has particle aspects in the sense that one can
associate with it a certain energy hv, = hw, as well as a momentum
p = hv,/c,, where ¢, is the velocity of propagation of the vibrational mode.
Thus the “collision” between a phonon and an electron may be treated
as a collision between two particles for which the conservation laws of
energy and momentum hold.

2-11. The specific heat of a one-dimensional lattice of identical atoms

From the results obtained in the preceding sections it is a simple
matter to derive an expression for the specific heat of a one-dimensional
lattice of identical atoms. In the standing-wave representation the number
of modes in the wave vector interval dg is, according to (2-56), equal to
L dg/m where L is the length of the chain. The wave vector is confined
between 0 and 7/a. The vibrational energy of the lattice at a temperature T
is thus given by

L
7

E- "n/a ho,

o oxp (k) —1% (2-67)

where the summation over the possible wave vectors defined by (2-50)
has been approximated by an integral. Employing the relation between
w, and g as given by (2-44), one may replace dg by

2dw 2dw

dq
Y e — - 2-68
Ao " T aw €08 (qa]2) | @l — w2 (2-68)
Hence
2L (omx Ao do
E N — max 2-69
ma -(0 [exp (Ao [kT) — 1][w, — ]2 (2-69)

The specific heat as function of temperature may be obtained by dif-
ferentiating with respect to 7. The result is represented by the lower
curve in Fig. 2-11 for a critical temperature § = hwp,,,/k = 200°K. It is
of interest to compare this result with the continuum theory corresponding
to the Debye approximation in one dimension. According to (2-24) the
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number of vibrational modes in the range dw of a continuous string of

length L is equal to L do[wc,, where the velocity of propagation c, is a

constant. Applying this model to a

2,0} cal/mole deg string of atoms by a suitable cut-off

of the frequency spectrum, one
obtains for the vibrational energy

15r a E— L [’w;n.x hw dow
" me )0 exp (ho/kT) — 1
Cv (2-70)

T 1.0

T

The upper limit w_,, in this case is
determined by the fact that the num-
ber of modes is equal to the number
of particles N in the string, i.e.,

1l e 1 1 1 1 (L/‘n.c") J‘:;n‘x dw = N

1
0 20 40 60 80 100 120 140 or (2_71)
— T (K)

wx’nax = Nwc,/L

Fig. 2-11. Curve a represents the

specific heat versus T for a monoatomic Note that this limit is different from
linear lattice according to (2-69); curve  that appearingin (2-69). The specific
b fefzfs t:; the lge;:ye ‘};‘2307?"’ reII)reslf:ttl; heat calculated on the basis of (2-70)
::I:lies 0‘= ;gng' r[(j:tl‘ter M.)iala:kman, is given .by the up.p.er curve in Fig.
Proc. Roy. Soc., London, A148, 365 2-11 again for a critical temperature

(1935)] 0 = ko, /k = 200°K.
2-12. The vibrational modes of a diatomic linear lattice

Consider a diatomic lattice in one dimension as illustrated in Fig. 2-12;
the distance between nearest neighbors will be denoted by a. The particles
are numbered in such a way that
the even numbers have a mass M, o . 23 2"."'1
the odd ones m. In analogy with M m M m
(2-42) we now have the following ¢
equations of motion, assuming  Fig.2-12. A linear chain of equidistant

.
(o]

nearest neighbor interaction only: masspoints M and m.
Mjé2n =f(x2n—1 + Xony1 — 2x2n)
Mgy iy = f(Xon + Xgnis — 2X2041) (2-72)
We try to solve these equations by running waves of the type
Xop = Ae—i(@t-2nqa) and Xonsy = Be—ilot-(2n+1)qal (2_73)

where ¢ is the wave vector of a particular mode of vibration; 4 and B
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are the amplitudes corresponding to particles of mass M and m, respec-
tively. Substitution of the solution into (2-72) yields the following two
equations:

(Mw? — 2f)A + 2Bf cosga =0

(mw? — 2f)B 4 2Af cosqa = 0 (2-74)

This system has nonvanishing solutions for 4 and B only if the determinant
of the coefficients of 4 and B vanishes, i.e.,

(Mw? —2f) 2fcosqa
i 2fcosga (mo* — 2f)

This gives for the square of the frequency the following two possibilities :

(1 1 1 1\% 4sin® qa]l/z
o = (; + H) +f [(;1 + 74) = M (2-76)

=0 (2-75)

Since o should te positive, each value
of »? leads to a single value for o.
Thus in contrast to the monoatomic
lattice, there are now two angular LT~ 2f/m12
frequencies v, and w_ corresponding
to a single value of the wave vector g. - (2f/ M)1/2
In a plot of @ versus g (Fig. 2-13) this
leads to two ‘branches”; the one
corresponding to w_ is called. the B 0 /%
acoustical branch, the one associated

. . . —>q
with w, is the optical branch. These
two branches will now be discussed on Fig. 2-13. The optical (upper
the assumption that M > m. For curve) and acoustical (lower

curve) branches corresponding to

q = 0 we obtain ! €es !
a diatomic linear lattice.

1 1)]12
o, = [Zf (— + M)] and o_=0 for ¢g=0 (2-77)
m

From the form of (2-76) it is observed that here, as in the monatomic case,
the frequency is a periodic function of the wave vector. The first zone
thus limits the values of ¢ to the range between —=/2a and +/2a as
shown in Fig. 2-13. For ¢ = +=/2a, the two angular frequencies are
evidently

w, = 2flm? and o_= Qf/M)}* for q=4n[2a (2-78)
The complete curves for w, and w_ versus ¢ are illustrated in Fig. 2-13.

The larger the mass ratio M/m, the wider the frequency gap between the
two branches. The existence of a “forbidden” frequency (or energy)
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region will also be encountered in the electron theory of solids. Note
also that the optical band becomes narrower with increasing M/m ratio.
It is of interest to investigate the physical difference between the two
branches. This may be done by calculating the ratio of the amplitudes
A and B in the two cases. Let us first consider the situation for ¢ =0,
i.e., for infinite wavelength. From (2-77) and (2-74) it follows that

for the acoustical branch: A=B
for ¢g=0 (2-79)
for the optical branch: —MA =mB

In other words, in the acoustical branch all
| particles move in the same direction. In the
I optical branch, on the other hand, the two
: types of particles move in opposite directions
I in such a manner that the center of gravity
: in each cell remains at rest. For other values
| of g the ratio A/B may be calculated from
:
/
i

A/B

(2-76) and (2-74). The results are shown in
-7/2a 0 ™ /2% Fig. 2-14. It is observed that at the edge of
-/| the zone, i.e., for ¢ = +-/2a, the following
AN conclusion can be drawn: in the acoustical
-m/M . .
branch the light particles of mass m are all
at rest (B = 0), whereas in the optical branch
Fig. 2-14. The amplitude the heavy particles of mass M are at rest
ratio A/B as function of the (4 = 0). For a more detailed discussion we
wave vector g for the acousti-  refer to Brillouin, op. cit., Sec. 15.
cal branch (upper curve) and A few remarks may be made here in
the optical branch (lower X X . .
curve). A corresponds to M, connection with the absorption of electro-
Bto mand M > m. magnetic radiation by ionic crystals. It is well
known that these crystals absorb strongly in
the infrared region of the spectrum, corresponding to a frequency
v~ 101 sec! and a wavelength A~ 3 X 10~% cm. Evidently the wave
vector of these waves is of the order ¢ = 27/A ~ 10® cm™. Now the
limit of the zone of the. lattice vibrations corresponds to =/2a ~ 108
cm~. In other words, in the ® versus ¢ plot, these vibrations are
practically those corresponding to the maximum of the upper branch.
The infrared absorption frequency should thus be approximately given by

1 1\
Woptical =~ [2_[ (; + 'M):I

in accordance with (2-77). It is for this reason that the upper branch is
called the optical branch. The infrarsd absorption thus corresponds to a
vibration of the positive ion lattice relative to the negative ion lattice such
that the center of gravity in each cell remains at rest.

[

—>q
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2-13. Vibrational spectra and specific heat of three-dimensional lattices

The calculations of the vibrational modes of a one-dimensional lattice
may be extended to two and three dimensions. For the general theory
we refer to the literature, and it may suffice here to mention somie of the
results obtained.’® The vibrational spectrum of a two-dimensional lattice
was first calculated by Blackman, who also computed the spectrum for a

140
0p 130F
T 120 -
110 1 ! 1 1 [ B L
10 20 30 40 5 60 70 80
— T (’K)

Fig. 2-15. The Debye temperature as function of T for a simple
cubic lattice. [After Blackman, ref. 17]

simple cubic lattice.!” From these results he was able to calculate the
specific heat in the manner outlined for the one-dimensional case in
Sec. 2-11. In the low temperature region the specific heat thus obtained
may be equated to the Debye formula (2-37) and the Debye temperature
65, can be computed for different temperatures. The results obtained by

Z(w) op 320%
1 oo
280._
f \ L ) 20 Ly
0 12 24 36 48 60 0 20 40 60 80 100
— wX10-13 — T (°K)
(a) (b)

Fig. 2-16. The vibrational spectrum of NaCl is given in (a). The
circles in (b) represent 6 p calculated on the basis of (a); the curve in
(b) is obtained from -experiment. [After Kellerman, ref. 18]

Blackman for the simple cubic lattice are represented in Fig. 2-15. It is
observed that 0 is by no means constant, indicating the possibility of
appreciable deviations from the Debye theory in actual crystals.

16 See i. Born and M. Goppert-Mayer, op. cit.; F. Seitz, op. cit.; L. Brillouin,
op. cit.

17 M. Blackman, Proc. Roy. Soc. (London), A148, 384 (1935); A159, 416 (1937);
Proc. Cambridge Phil. Soc., 33, 94 (1937).
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An investigation of NaCl has been made by Kellermann,'® using ionic
and repulsive forces between the particles. Figure 2-16a gives the vibra-
tional spectrum of NaCl obtained by Kellermann, and the difference with
a continuum spectrum as used in the Debye theory is obvious. The
Debye temperature 65, as function of T calculated by Kellermann is
given by the circles in Fig. 2-16b. It is observed that the theory is in
remarkably good agreement with the curve obtained experimentally.
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PROBLEMS

2-1. (a) Give a derivation of expression (2-4) for the difference
between C, and Cy,.. (b) Calculate C, — Cj, per mole of sodium at room
temperature if at this temperature the compressibility of sodium is
12.3 X 10722cm?dyne~! and the linear coefficient of expansion is
6.22 X 107%; compare the result with C, — C;,, for a monatomic gas.
Also calculate the Griineisen constant for Na.

2-2. The possible energy levels of a rigid rotator according to quantum
mechanics are given by E, = (h%/2J)n(n + 1) where J is the moment of
inertia and n =0, 1,2, ... . For the molecules H, and Cl, calculate the
energy difference between the ground state and the first excited state for
rotation about an axis perpendicular to the line joining the nuclei.
(Answers. Resp., 14.7 X 10~3 and 0.06 X 10-3ev.) Also estimate the
value of E; — E, for rotation about the line joining the nuclei and show

18 E. W. Kellermann, Phil. Trans., A238, 513 (1940); Proc. Roy. Soc.(London), A178,
17 (1941).
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that this rotation does not in general contribute to the rotational specific
heat. At which temperatures for H, and Cl, do quantum effects enter in
the rotational specific heat? If it is given that the number of possible
states corresponding to an energy level E, for a rotator is equal to
2n(n + 1), show on the basis of statistical mechanics that the rotational
specific heat for a molecule such as Cl, at room temperature is R cal per
mole. (Hint: According to statistical mechanics the average energy at T
is given by

(E) = [S E,Z, exp (—E,[KT)[S Z, exp (—E,/KT)]

where Z, is the number of possible states associated with E,. For the
problem under consideration one can replace the summations by
integrals.)

2-3. Discuss in some detail the specific heat of a diatomic molecule
(including translation, rotation, and vibration). What is the value of
C,/Cy- in various temperature regions?

2-4, Consider an array of N similar atoms, the separation between
nearest neighbors being a. Discuss the specific heat of the system on the
basis of the Debye approximation and show that at low temperatures the
specific heat is proportional to 7.

2-5. Discuss the specific heat of a two-dimensional square lattice
with a nearest neighbor separation a on the basis of the Debye approxi-

mation. Show that at low temperatures the specific heat is proportional
to T2

2-6. Consider a cavity filled with black-body radiation in equilibrium
with a temperature bath 7. As is well known, the energy of radiation per
unit volume u is a function only of T also, the radiation pressure
p = u/3. In a p-V diagram, carry out a Carnot cycle with this “gas”:
first expand isothermally from ¥; to V,, then expand adiabatically such
that the temperature drops slightly from 7T — AT finally, return to the
starting point by isothermal and adiabatic compression. By making use
of a well-known theorem about the efficiency of transforming heat into
work, show that the energy density u is proportional to T%. Explain why
the specific heat of the radiation gas is always proportional to 73, whereas
for a solid in the Debye approximation this is true only at low temperatures.

2-7. Discuss in some detail the analogy between the mechanical
properties of an array of equidistant similar atoms and a low-pass electric
filter. (See, for example, Brillouin, op. cit.)

2-8. Discuss the specific heat of a solid on the basis of the cut-off
procedure suggested by Born (Sec. 2-7) and show that one arrives at an
expression of the type (2-41).



Chapter 3

SOME PROPERTIES OF METALLIC LATTICES

3-1. The structure of metals

Most metals crystallize in one of the following three structures:
the body-centered cubic lattice (b.c.c.) in which each atom is surrounded
by eight nearest neighbors, the face-centered cubic lattice (f.c.c.) in which
a given atom has twelve nearest neighbors, and the hexagonal close
packed lattice (h.c.p.), also with a coordination number of twelve.

~ From the dimensions of the elementary cell, as obtained from X-ray
diffraction or otherwise, one may define a radius for the atoms on the
assumption that they are spherical in shape; the radius so defined is then
given by half the distance between nearest neighbors. That this procedure
has a physical meaning follows from the fact that for those metals which
crystallize in more than one structure, each structure- being stable over
a certain range of temperatures, the radii so obtained are very nearly the
same. Table 3-1 gives the distances of closest approach (twice the atomic

Table 3-1. Structure and Distance of Closest Approach (at 20°C) for Metals
which Crystallize in Any of the Three Simple Metallic Structures. The
asterisks indicate the normal form.

Body-centered Face-centered . Hexagonal
cubic cubic close packed
Metal d(A) Metal d(A) Metal  d(A)
Li 3.039 Cu 2.556 o Be* 2.225
Na 3.715 Ag 2.888 Mg 3.196
K 4.627 Au 2.884 Zn 2.6€4
\% 2.632 Al 2.862 Cd 2.979
Ta 2.860 Th 3.60 o TI* 3.407
Cr 2.498 Pb 3.499 o Ti* 2.89
Mo 2.725 y Fe (extra-
polated) 2.525 o Zr* 3.17
« W* '2.739 B Co 2.511 Hf 3.15
« Fe* 2.481 Ni 2.491 o Co*  2.506
§ Fe (1425 C)  2.54 f Rh* 2.689 Ru 2.649
Pd 2.750 Os 2.675
Ir 2.714
Pt 2.775

60
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radii) for metals which crystallize in one of the three structures mentioned
above.!

The b.c.c. and f.c.c. lattices have been represented in Fig. 1-4. The
h.c.p. structure represented in Fig. 3-1 is closely related to the f.c.c.
structure, as may be illustrated with reference to Fig. 3-2.- Let the dots in
Fig. 3-2 represent a layer of spheres in close packing. On top of this we
place another layer, represented by the crosses. The atoms of a third
layer may now be placed on top of the second one in either of two ways:
(1) they can be placed in positions corresponding to the open circles in
Fig. 3-2, or (2) they can be placed in positions identical in projection with

/
-C\

® First layer
x Second layer
e or o Third layer

1 i i
]
] ! o o o o
: Al . X x x x x
’J&' -

Fig. 3-1. The hexagonal close Fig. 3-2. Illustrating the relation-
packed structure. ship between the h.cp. (@x@x
etc.) and the f.c.c. (@ xO®x0O,
etc.) structures.

those of layer 1 (dots). Thus the two possible arrangements may be
represented symbolically by the sequences 1,2,1,2,...and 1, 2, 3, 1,
2, 3,.... The former corresponds to the h.c.p. structure; the latter is
equivalent to the f.c.c. structure as may readily be seen by identifying
the layers of Fig. 3-2 with atomic planes perpendicular to a body diagonal
inthe f.c.c. structure. Hence, both the h.c.p. andf.c.c. structures correspond
to a close packing of spheres; the b.c.c. structure does not. The fraction
of volume occupied by spheres in closest packing is 2'/%/6) = 0.74, as
shown in Problem 1-1. The density ratio for a f.c.c. (or h.c.p.) lattice and
a b.c.c. lattice built up of spheres of the same radii is 1.09 (see Problem 1-1)

The reason for a particular metal to crystallize in a particular structure
must be sought in the fact that the free energy £ — TS of the system for
this structure is lower than that for any other structure.> The same remark

! For a complete list of lattice parameters, see, for example, C. S. Barrett, Structure
ofMelaIs, 2d ed., McGraw-Hill, New York, 1952, p. 646.
2 For the thermodynamic conditions for equilibrium, see Appendix A.
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may be made with reference to those metals which have different structures
in different temperature regions (allotropy). This phenomenon is exhibited
especially by the three- and four-valent metals and by the transition
metals.3 For example, « Fe (b.c.c.) is stable up to 910°C; between 910°C
and 1400°C the stable structure is v Fe (f.c.c.); between 1400°C and the
melting point (1530°C) the structure is again b.c.c. (0 Fe). Here again, the
transformation from one structure to another is dictated by the requirement
of minimum free energy. This does not mean that such transformations
take place as soon as the existing structure becomes unstable. In fact, a
transformation of structure involves a rearrangement of atoms, and such a
process may take a long time. The reason is that even though the free
energy after the transformation is lower than in the initial state, the two
states are usually separated by an energy barrier or activation energy
(see Sec. 3-5). Thermodynamics specifies only the equilibrium condition
but does not give any information about the velocity of the reaction or
processes involved in establishing equilibrium. From the atomic point of
view, the stability of crystal structures is a problem of cohesive energy,
involving the interaction between the atoms. A brief discussion of the
cohesive energy of metals is presented in Sec. 10-13 based on the electron
theory of metals.

3-2. Lattice defects and configurational entropy

According to thermodynamics, the equilibrium of a solid (under low
external pressure) at a temperature T is determined by the minimum value
of the free energy F = E — TS (see Appendix A). We shall see below that
this condition leads necessarily to the existence of a certain amount of
disorder in the lattice at all temperatures 7 > 0°K. We emphasize from
the beginning that the lattice disorder or lattice defects discussed in this
section do not include accidental faults in the crystal resulting from non-
ideal growing conditions; the defects under consideration are present
as a result of the thermodynamic equilibrium conditions. Frenkel* was the
first to recognize that lattice defects play an important role in a number
of physical properties of solids, and Schottky?® has contributed a great deal
by expanding these ideas. The simplest examples of lattice disorder are
vacant lattice sites and interstitial atoms (see Fig. 3-3); the latter are

® Elements with incompletely filled inner electron shells are called transition elements.
For example, Fe, Ni, and Co have an incompletely filled 3d shell, while the 4s shell
is occupied; these metals thus belong to the transition metals. For the notation of s, p,
d,f.g. ... electrons, see textbooks on atomic theory; see also Sec. 18-2.

*J. Frenkel, Z. Physik, 35, 652 (1926); also J. Frenkel, Kinetic Theory of Liquids,
Oxford, New York, 1946, an extremely clear book, which, notwithstanding its title,
contains a great deal of information about solids.

* See, for example, C. Wagner and W. Schottky, Z. physik. Chem., B11 163 (1931);
W. Schottky, Z. physik. Chem., B29, 353 (1935).
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atoms occupying positions in the lattice which in the perfect lattice would
be unoccupied. In discussions of this kind it is necessary to point out the
distinction between what we shall refer to
as thermal and configurational (or mixing)
entropy; these quantities will be denoted, , . . . .
respectively, by Sy, and Si. The thermal ol
entropy Sy, is determined by the number &’] e o o e
of different ways W, in which the
total vibrational energy of the crystal e e o o o o
may be distributed over the possible
vibrational modes; according to the well- ; s .

) : X an interstitial atom (I) in
known Boltzmann relation (see Appendix , two-dimensional square
E), lattice.

St = k log Wy, (3-1)

Fig. 3-3. A vacancy (V) and

For example, in the Einstein model of-a solid (see Sec. 2-4), W, stands
for the number of different ways in which the energy of vibration may be
distributed over the 3N harmonic oscillators representing the solid
consisting of N atoms. When » is the Einstein frequency, and hv < kT, we
have, according to Problem 3-3,

S, = 3NK[1 + log (kT/hv)] (3-2)

The configurational entropy of a crystal has nothing to do with the
distribution of energy; it is determined solely by the number of different
ways W, in which the atoms may be arranged over the available number of
lattice sites. Consider for example a lattice containing N, atoms of type
A and N, atoms of type B and assume that the lattice sites are all equivalent
in the sense that a given lattice site may be occupied by A or B. It is left
to the reader to show in Problem 3-2 that

N, + N)!
W= Wa + ) (3-3)
N, N,!
represents the number of different arrangements of N, A atoms and N,
B atoms over a total of (N, + N,) lattice points. The configurational
entropy associated with W is again given by the Boltzmann relation,

Vo + Nb)!]

S = klog ch:klog[ NN
a* b*

(34)

¢ For an elementary treatment of statistical thermodynamics and a number of
applications to solid state physics, see R. W. Gurney, Introduction *o Statistical
Mechanics, McGraw-Hill, New York, 1949; also M. Born, Atomic Physics, Sth ed..
Hafner, New York, 1951.
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For a perfect crystal containing identical atoms and in the absence of any
lattice defects, W =1 and S = 0 because there is only one possible
arrangement of the atoms. The total entropy occurring in the usual
thermodynamic formulas is equal to the sum of the thermal and
configurational entropies, i.e.,

S = Sth + Scf (3'5)

The results obtained above may be used to explain qualitatively the
reason for the existence of lattice defects at any temperature 7 > 0.
Suppose, for example, that in a perfect metallic crystal we produce a
certain number of vacant lattice sites by transferring atoms from the
interior of the crystal to the surface. This will require a certain amount of

energy, i.e., E increases. Consequently F

E increases and this by itself is thus unfavor-

able in the thermodynamic sense. On the

other hand, the creation of the vacancies

increases the disorder in the crystal and

N thus increases the configurational entropy

Seeo—- from zero to a certain value determined
by the number of vacancies n produced.
In fact, according to (3-4) the con-
figurational entropy associated with the
possible arrangements of N atoms and n

Fig. 3-4. Schematic representa- vacancies over a total of (N -~ n) lattice
tion of the energy and the con- sites is

- TS

figurational entropy term as |
function of the fraction of vacant S.e=klo [M] (3-6)
lattice sites n/N. The minimum N!n!

of the free energy F determines
the equilibrium value of n/N. Now, because the entropy enters in the
free energy expression in the form—TS,
an increase in entropy reduces F and is thus favorable thermo-
dynamically. As a result of the above described competition between
energy on the one hand and entropy on the other, the stable configuration
is one in which a certain fraction of the lattice sites is unoccupied. A
schematic representation of F as function of the fraction n/N has been
given in Fig. 3-4.; it has been assumed for simplicity that the thermal
entropy is independent of n/N. The equilibrium corresponds to the
minimum value of F at the temperature 7. Any further increase in the
disorder of the lattice would require an energy larger than the associated
reduction due to the increase in entropy. Similar arguments may be
applied to other types of lattice defects. In the next section we shall
discuss the number of lattice defects as function of temperature
quantitatively.
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3-3. The number of vacancies and interstitials as function of temperature

Consider a perfect lattice containing N similar atoms at a temperature
T; the free energy of this (unstable) crystal will be denoted by F e rect(T)-
Suppose we create n vacant lattice sites; let the energy required to create
one vacancy be ¢,. We shall assume that ¢, is independent of n, which is
justified as long as n <€ N; also, we assume that no two vacancies are
nearest neighbors of each other. The energy of the imperfect crystal is
then increased by né, relative to that of the perfect crystal. Also there
is associated with the imperfect crystal a configurational entropy S,
given by (3-6). Furthermore, let us assume that the thermal entropy
increases per vacancy by an amount AS,;; the physical reason for this
change will be discussed below. We may then write for the free energy of
the imperfect crystal
(N+n!
“Nin!
In order to find the equilibrium value of #, we make use of the fact that in
equilibrium (2F/cn), = 0. Employing Stirling’s formula in the form
log x! ~ x log x for x> 1, we find from (3-7),

nf(N + n) ~ n|N == e~Swke=¢/kT (3-8)

F(n’ T) = Fperf‘ect(T) + n¢v - nTASth - leOg (,’7)

Thus, apart from a constant determined by AS,,, the probability for a
given lattice site to be unoccupied is given by a Boltzmann factor containing
the energy of formation of a vacancy ¢,. We shall see in Sec. 3-4 that for
metals ¢, is of the order of one electron volt. The type of disorder discussed
above is usually called Schottky disorder; vacancies are frequently
referred to as Schottky defects.

So far, our treatment has been essentially a thermodynamic one. In
order to get an insight into the physical meaning of the thermal entropy
change AS,, per vacancy, we shall consider a simple Einstein model of a
solid. The thermal entropy of the perfect crystal is then equivalent to
the thermal entropy of a system of 3N harmonic oscillators with the
Einstein frequency » and is given by (3-2) as long as k7> hv.

In the imperfect crystal, the atoms neighboring a vacancy will have a
vibrational frequency smaller than » because the restoring forces are
reduced, particularly along the direction of the line joining the atom and the
vacancy. In order to simplify the discussion, we shall assume that in the
imperfect crystal each atom neighboring a vacancy is, in the Einstein
model, equivalent to- 3 harmonic oscillators of a frequency »" < ». Thus
when x is the number of atoms surrounding a vacancy, the Einstein model
as used here leads to

3nx oscillators of frequency »’

(3N — 3nx) oscillators of frequency »
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The thermal entropy of the imperfect crystal is then, in analogy with (3-2)
Su, = 3nxk [l + log (kT/hv")] + (B3N — 3nx)k [1 4 log (kT|hv)] (3-9)

Subtracting (3-2) from (3-9) and dividing the result by », one finds for the
increase in thermal entropy per produced vacancy,

AS,,, = 3xk log (v/»") (3-10)

Although the model employed here is a simple one, it clearly demonstrates
the fact that AS,, is a consequence of the change in the frequency spectrum
of the lattice vibrations. For this model, substitution of (3-10) into, (3-8)
leads to

n|N = (v[y')* e~ 44T @3-11)

Because » > »’, we see that the change in thermal entropy favors the
formation of vacancies, because the pre-exponential factor is >1. This
factor may be large because 3x is a rather large number (24 for b.c.c. and
36 for f.c.c.).

A remark may be made here about the temperature dependence of ¢,.
It is evident that as T increases, the lattice expands, the binding forces
are reduced, and thus ¢, decreases with temperature. In first approxi-
mation one may write a linear relationship between ¢, and 7, i.e.,

by = byo (1 — aT) (3-12)

where « is a temperature coefficient and ¢,, the energy of formation
of a vacancy at T=0. In the literature? one frequently encounters the
following argument in connection with expressions of the type (3-8) or
(3-11): when one substitutes (3-12) into (3-8), one obtains

n/N — eAS!h/ke'x‘#ro/ke_¢¢0/kT

and one argues that if it were possible 1o measure n/N, a plot of log (n/N)
versus 1/kT would give ¢,, rather than ¢,; furthermore, it is argued that
the pre-exponential factor is multiplied by exp [«,o/k]. These arguments
are, however, incorrect since they neglect the temperature variation of AS
accompanying the change in ¢,.% In fact, for zero pressure we have

d(AS)/dT = (1/T) dp,|dT

and measurements of n/N as function of T actually measure ¢,. (See also
Sec. 7-1.)

* See, for example, N. F. Mott and R. W. Gurney, Electronic Processes in lonic
Crystals, Oxford, New York, 1946, p. 30; W. Jost, Diffusion in Solids, Liquids, Gases,
Academic Press, New York, 1952, p. 116.

8 This has been pointed out by C. Zener in W. Shockley (ed.), Imperfections in Nearly
Perfect Crystals, Wiley, New York, 1952, p. 296. Similar objections in connection with
the theory of diffusion in ionic crystals have teen raised by Y. Haven and J. H. van
Santen, Philips Research Repts., T, 474 (1952).
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Other types of lattice defects may be treated in a similar way as
vacancies. Consider, for example, Frenkel defects, which are formed when
atoms which initially occupy a normal lattice position migrate into
interstitial lattice positions. A Frenkel defect thus consists of two com-
ponents: a vacancy plus an interstitial atom. We leave it up to the reader
to show in Problem 3-7 that the number of Frenkel defects in equilibrium
at a temperature T is given by

n = (NN)V2 e¥Sm2kg=¢s kT for n &N (3-13)

where N is the number of atoms, N, is the number of possible interstitial
positions, ASy, is the change in thermal entropy per Frenkel defect, and
¢ is the energy of formation of a Frenkel defect. The factors 2 appear in
the exponentials because a Frenkel defect has two components. In chemical
language the formation of a Frenkel defect may be written in the form of
an equilibrium reaction:

occupied lattice site \

-+ unoccupied interstitial site| %5 vacancy + interstitial (3-14)

From this, readers familiar with the law of mass action will readily
recognize that n should be proportional to (NN;)Y? and that the
exponentials in (3-13) are correct.

3-4. The formation of lattice defects in metals

There are a large number of different types of lattice disorder in
metals. However, usually only a few of these will predominate, viz., those
for which the energy of formation is smallest; this is evident from the
results obtained in the preceding section. A few words may be said here
about the processes and the energy involved in the creation of simple lattice
defects such as vacancies and interstitials. A vacant lattice site may be
formed, for example, by a process such as indicated in Fig. 3-5a. Suppose
an atom such as B jumps into position A on the surface; the vacant site it
leaves behind may then become occupied by an atom such as C when the
latter jumps into the vacancy. Successive jumps of this kind thus lead to
the diffusion of a vacant lattice site from the surface into the interior of the
crystal. The external surface is not necessarily the only source of supply of
vacancies ; internal cracks, pores, and dislocations (see Sec. 3-12) serve a
similar purpose in this respect. The sources mentioned may also act as
sinks for the disposal of vacancies; for example, when the temperature of a
crystal is lowered and the density of vacancies must be reduced.

The energy of formation of a vacancy by a process of the kind described
above is determined essentially by the energy expended during the first
few jumps. Once the vacancy is separated from the sources vy serveal
lattice distances, the energy of the crystal becomes essentially independent
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of the lattice site ““occupied™ by the vacancy (at least as long as it does not
become a nearest neighbor of another vacancy or lattice defect). This is
represented schematically in Fig. 3-5b. It should be kept in mind, however,
that although the energy before and after a jump may be the same, a
certain ‘“‘activation energy” is always required to make the jump. In other
words, two possible neighboring lattice sites for a vacancy are separated by
a barrier, as indicated by ¢; in Fig. 3-5b. It is for this reason that the

o o A \ Energy
1

[ ] L ] [ ] .B [
o
[ ° D.\/. C .
(3
L] [ E‘ [ ] L[]
——> Position
L[] L] [ ] L] L]
(a) (b)

Fig. 3-5. Sequence of jumps producing a vacancy which migrates

into the interior of the crystal (a). In (b) the potential energy of the

‘vacancy is shown schematically as it diffuses in; the limiting value

. is the energy of formation, ¢; is the jump activation energy of the
vacancy.

establishment of thermal equilibrium may require a long time, especially
at low temperatures where the mobility of the vacancies, or rather of the
atoms neighboring a vacancy, bscomes small. It is thus possible, by
quenching a crystal from a relatively high to a low temperature, to *“freeze
in” a high-temperature configuration of the atoms.

A Frenkel defect may arise as a result of the migration of a “normal”
atom into a nearby interstitial position. When the interstitial does not
fall back into the vacancy so produced, either the interstitial or the vacancy,
or both, may migrate further away from the point of creation and ultimately
one is left with a free interstitial and a free vacancy. Thus there are
various degrees of dissociation before the two components of the Frenkel
defect are free from each others’ influence. The schematic representation
of Fig. 3-5b is therefore also valid for the formation of a Frenkel defect.

A theoretical calculation of the energy ¢, required to create a vacancy is
quite complicated. This may be appreciated from the following arguments:
Consider a macroscopic piece of metal containing N atoms. Suppose that
it requires a total energy E to separate all atoms from each other. When
¢, is the average energy required to take an atom from the surface of the
metal to infinity, then ¢, = E/N; ¢,is the sublimation energy. For copper,
for example, €, = 3.52 ev. Consider now an atom in the interior of the
crystal; let the potential energy of this atom due to the presence of all other
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atoms in the crystal be —e;. The total dissociation energy of the crystal E
is then equal to Ne,/2, the factor 2 arising from the fact that the interaction
energy between any two atoms should be counted only once; thus,
€; = 2¢,, which means that an atom at the surface is, on the average,
bound half as strongly as an atom in the interior. The physical meaning
of €; may also be expressed in this way: it represents the energy required
to remove an interior atom to infinity if the position and the charge distri-
bution of the other atoms remain unchanged. The energy required to form a
vacancy, i.e., the energy required to transfer an atom from the interior to
the surface, may then be written in the form

¢1} =€ T € T €= € — €, (3‘15)

where ¢, is the energy gained as a result of the rearrangement of the
electrons and atoms after the vacancy is formed. Huntington and Seitz
have calculated ¢, for copper and find ¢, = 1.4ev.® This is in good
agreement with an experimental value of 1.39 ev derived by Overhauser
from annealing experiments of copper samples bombarded with 12 Mev
deuterons.’® With the value of €, = 3.52 ev quoted above, it follows from
(3-15) that €, = 1.7 ev. Note that the rearrangement of the atoms and
electrons around the vacancy contributes an energy term of the same order
as ¢, itself; if €, were zero, ¢, would be equal to the sublimation energy.

In connection with the fact that establishment of thermal equilibrium
of vacancies requires the migration of vacant lattice sites, we may mention
that the activation energy for jumping (¢; in Fig. 3-5b) of a single vacancy
in copper is approximately 0.68 ev according to Overhauser.??

Vacancies may also occur in pairs, i.e., in the form of two neighboring
vacant lattice sites. According to an estimate by Bartlett and Dienes it
requires an energy between 0.23 and 0.59 ev to dissociate a pair of vacancies
in copper; the actual value is probably closer to 0.59 ev than to the lower
limit.2! A pair of vacancies probably has a much higher mobility in the
lattice than a single vacancy, since one expects smaller repulsive interactions
for a pair. Experimental evidence for the presence of pairs of vacancies
in copper has been obtained by studying the annealing out of lattice
imperfections produced by cold working and high-energy particle bombard-
ment. It turns out that at rather low temperatures, the annealing proceeds
at a much faster rate than can be explained by the diffusion of single
vacancies. Larger aggregates of vacancies may also be present.

® H. B. Huntington and F. Seitz, Phys. Rev., 61, 315 (1942); 76, 1728 (1949); H. B.
Huntington, Phys. Rev., 61, 325 (1942).

10 A. W. Overhauser, Phys. Rev., 90, 393 (1953).

1 J. H. Bartlett and G. J. Dienes, Phys. Rev., 89, 848 (1953). For further information
about vacancies in metals and alloys, see F. Seitz, Acta Cryst., 3, 335 (1950); C. Zener,
Acta Cryst., 3, 346 (1950); J. Bardecen, Phys. Rer., 76, 1403 (1949); R. Smoluchowski
and H. Burgess, Phys. Rev., 76, 309 (1949); H. R. Paneth, Phys. Rev., 80, 708 (1950).
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3-5. Interstitial diffusion in metals

The simplest mathematical formulation of the diffusion of atomis in
solids is based on the assumption that the net flow of atoms is proportional
to the gradient of the concentration, i.e.,

I=—Dgradn (3-16)

where I'is the flux of atoms in cm~2 sec™), n is the number of atoms per cm3,
and D is the diffusion coefficient. In general, D is itself a function of the
concentration n.12 Expression (3-16) is known as Fick’s first law; the
minus sign indicates that the current flows from regions of high concen-
tration to regions of low concentration. Applying the continuity equation,
one obtains Fick’s second law:

cnlct = —-div I = div (D grad n) = DV?n (3-17)

where the last equality is correct only if D is independent of the spatial
coordinates, which implies in general that D is also independent of n.

We should mention that (3-16) may be generalized in a number of
ways. For example, D is a scalar quantity only in cubic crystals or in an
isotropic medium; in general, D is a tensor. A discussion of the properties
of this tensor has been given by Onsager (see Sec. 1-12).13 Also, the actual
driving force of the diffusion process is not the concentration gradient but
the gradient of the chemical potential. For a discussion of these and other
generalizations we refer the reader to a review by le Claire.

From measurements of diffusion coefficients at various temperatures
it has been found that the temperature dependence of D is well described by
the formula

D(T) = Dy~ <*T (3-18)

where D, is a constant and € is the activation energy of diffusion. An
analysis of the experimental data by Dienes indicates that D is mainly
determined by the quantity ¢/T,,, where T,, is the melting point of the
solid; in fact, he concludes that D, is proportional to exp (¢/T,).> A
theoretical interpretation of this proportionality has been proposed by
Zener.16

12 See for example D. E. Thomas and C. E. Birchenall, J. Merals, August 1952,
p. 867.

3 L. Onsager, Ann. N.Y. Acad. Sci., 46, 241 (1945).

".A. D. le Claire, Progress in Metal Physics, Interscience, New York, Vol. | (1949),
Vol. 5 (1954).

> G. J. Dienes, J. Appl. Phys., 21, 1189 (1950).

18 C. Zener in W. Shockley (ed.), Imperfections in Nearly Perfect Crystals, Wiley,
New York, p. 299.
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From the atomic point of view, the simplest type of diffusion in solids is
the diffusion of interstitial atoms. The reason is that in this case there
exists no doubt as to the actual atomic mechanism involved; the inter-
stitial atoms presumably jump from one interstitial position to aneighboring
one. The diffusion of hydrogen, oxygen, nitrogen, and carbon in iron and
other metals are examples of this mechanism. In order to discuss this
type of diffusion from an atomic point of view, consider a set of parallel
atomic planes of interplanar distance 2. We shall assume that there exists
a concentration gradient of the diffusing particles along the x-axis which is
perpendicular to the atomic planes. Anatom in an interstitial position may
jump in the positive x-direction (forward) in the negative x-direction
(backward) or it may jump in a direction perpendicular to the x-axis.
We shall denote the probability for a given interstitial atom to make any
jump per second by p. Actually, the probability for a jump depends on the
probability that the neighboring interstitial site will be empty. We shall
assume, however, that the fraction of interstitial positions which is
occupied is <1, so that p may be considered independent of the concen-
tration of interstitials.” The probability for a jump per second in the
forward direction will be denoted by fp; furthermore, we shall assume that
the probabilities for a forward and backward jump are equal. The diffusion
problem is then reduced to a simple random-walk problem.

Denoting the number of diffusing particles per cm® on the plane
located at x at the instant ¢ by n(x) we have

n(x + ) = n(x) + (0n[ox)A + 3(?n[ox®)A% + . ..
n(x — A) = n(x) — (0n/0x)A + %} (®1/0x)A%2 + ...

(3-19)

Thus, when we consider the situation at the instant ¢ + d¢ where 6t << 1/p,
the increase dn of the number of particles on the plane located at x is
given by the number of particles jumping from (x — 4) into x, plus the
number of particles jumping from (x + 4) into x, minus the number of
particles jumping away from plane x. Since we have assumed 6t < 1/p, itis
not necessary to consider other planes besides the three employed. Hence

0%n on 0%n
— T e R T e 3.
on(x) = fp ot PR A2 or ey JPA P (3-20)

It is observed that this result is identical with the “‘macroscopic” equation
(3-17) with
D =fpi? (3-21)

Since f is determined solely by the geometry of the lattice and since 4 is
nearly independent of T, the temperature dependence of the diffusion

17 This assumption is equivalent to the assumption of a diffusion constant inde-
pendent of concentration in the “‘macroscopic” theory.



72 SOME PROPERTIES OF METALLIC LATTICES [Chap. 3

coefficient must enter via the jump probability p. The simplest model that
can be set up to determine the temperature dependence of p is to consider a
particle moving in a fixed potential energy curve of the type illustrated in
Fig. 3-6. Let the potential minimum A correspond to the interstitial
position in which the particle finds
itself, and let B correspond to a
neighboring interstitial position. The
barrier of height e; is a result of the
fact that as the particle moves from one
interstitial position to another it is
squeezed between the atoms con-
Fig. 3-6. The energy barrier be- stituting the host lattice. Assuming
tween two interstitial positions. the potential to be parabolic, the atom
will vibrate as a harmonic oscillator.
The frequency of vibration »;, may be considered as the number of
attempts per second made by the particle to cross the barrier. However,
any attempt can succeed only if the energy of the particle is >>¢,. As
shown in Problem 3-6, the fraction of time spent by the particle in energy
states ¢, is simply given by exp (—e¢,/kT). Hence, for the probability of a
jump from A to B we find per second,

pi = ve kT (3.22)

When the jumping problem is considered more rigorously than has been
done above, one obtains a formula of the same form!8 as (3-22), but ¢, is
then replaced by a free energy AF, = ¢; — TAS,, i.e.,

pi = v, Silkg—elkT (3-23)

where AS; is the entropy difference between the state in which the particle
is halfway between 4 and B, -and the state in which the particle is in A.
Since an interstitial atom may jump into more than one neighboring
position, p is obtained by summation of (3-23) over all p; From (3-21) and
(3-23) we thus obtain

D =[5 v,eASilke—elkT )2 (3-29)
Let us now apply the results obtained above to a specific case. In Fig. 3-7
we have represented the diffusion coefficient of carbon in « iron (b.c.c.)

as function of temperature according to Wert.’® Note that equation (3-18)
is satisfied for D-values covering 14 cycles of 10, with

€ =0874ev and D, = 0.020 cm?sec! (3-25)

The interstitial positions in a b.c.c. lattice are indicated in Fig. 3-8;
they correspond to the centers of the faces and edges of the elementary cube.

*® For details, see C. Wert and C. Zener, Phys. Rev., 76, 1169 (1949); C. Wert, Phys.
Rer .19, 601 (1950).
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It is observed that only from two-thirds of these positions is it possible to
jump forward or backward; from positions in which this is possible, the
relative probability for a forward jump is }. Hence, in this case

Temp °C
P % s g sems
-9 /
-6

/
d
Ny

38 3.0 2.2 14 6 0
103/T

— 10108 D (cmz sec-l)

Fig. 3-7. The diffusion coefficient of carbon in « iron (b.c.c.).
[After C. Wert, Phys. Rev., 79, 601 (1950)]

f =% X } = %. Since the four possible jumps from any interstitial position
are equivalent, we obtain from (3-24) with A = a/2, where ais the cube edge,

D = a®p[24 = (a%v[6)e>SIke—€ilkT (3-26)
P

Comparison of (3-18) and (3-26) shows that for interstitial diffusion of
the type under consideration, the activation energy for diffusion is identical
with the activation energy for the atomic jumps. The value of exp (AS/k)
may be estimated as follows: for « iron a = 2.86 A; putting » ~ k6/h
where 6 = 420°K is the Debye temperature of iron, one obtains » ~ 103
secl, From the known value D, = 0.020 cm? sec™! one then obtains
exp (AS/k) ~ 1.
We may mention here that Zener has derived the following approximate
relationship :1°
AS =~ f(e/T.) (3-27)

19 C. Zener, J. Appl. Phys., 22, 372 (1951).
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where T, is the melting point, e, is the activation energy employed above,
and f is a constant which for most metals lies between 0.25 and 0.45.
According to (3-27) and (3-26), D, should depend exponentially on

(e;/T,), in agreement with the empirical

2 relationship obtained by Dienes.®  Also,
AN for « iron Zener finds f = 0.43, leading
’ X P to exp (AS/k) ~ 12 as compared with the
DN & L value of 7 estimated above.
| v
R | L
le 7 A\ 3-6. Self-diffusion in metals
| \
/O-_——A?_ When a thin layer of copper con-
° \ .« . . . . .
JJ Y \ taining the radioactive isotope Cu® is
N -

deposited on the surface of a “‘normal”
piece of copper, it is observed that the
Fig. 3-8. Interstitial positions radioactive isotopes gradually migrate into
(dots) in a b.cc. lattice; these the interior of the specimen. This type of
sites aro localcd at the centers of diffusion is referred to as self-diffusion,
the faces and the edges of the X . |
cube. since the electronic structures of the various

isotopes of a given element are identical

and since it is the electronic structure which essentially determines the rate
of migration. The above-mentioned experiment indicates that there is a
continuous reshuffling of the copper atoms in the lattice. In other words,
one may associate a finite lifetime with the occupation of a given lattice site
by a particular atom. The coefficient of self-diffusion in metals depends
exponentially on the temperature in accordance with equation (3-18).
For example, for the self-diffusion of copper one finds (3-18) satisfied with°

D = 0.20 cm? sec}, e=205ev (Cu)

Similarly, for the self-diffusion coefficient of sodium it has been found
that?!

Dy =0.242 cm?sec™?!, €=0454ev (Na)

Several mechanisms have been proposed for the self-diffusion process:
(1) the vacancy mechanism, (2) the direct interchange between neighboring
atoms, (3) interstitial diffusion. In a particular case, the mechanism
requiring the smallest activation energy will dominate; it is therefore well
possible that in different types of metals different diffusion mechanisms
occur.

20 A. Kuper, H. Letaw, L. Slifkin, E. Sonder, and C. T. Tomizuka, Phys. Rev., 96,
1224 (1954); according to a private communication of Dr. Slifkin, the numerical values
in the original paper were in error; the correct ones have been given above.

21 N. H. Nachtrieb, E. Catalano, and J. A. Weil, J. Chem. Phys., 20, 1185 (1952);
see also 20, 1189 (195?) for a discussion of the pressure dependence of the self-diffusion
coefficient of Na.
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In the vacancy mechanism it is assumed that the self-diffusion is
essentially determined by the diffusion of vacancies. Thus it is assumed
that a given atom can jump to a neighboring site only when the latter is
vacant. It is evident that the self-diffusion coefficient in this case will be
proportional to the fraction of lattice sites which is vacant and to the jump
probability for a vacancy per second. For a metal in thermal equilibrium,
the probability for a given site to be vacant is given by (3-8).

n/N — eAS,,/ke—¢vlkT

where AS, refers to the thermal entropy change associated with the
creation of a vacancy. The probability for a jump of a vacancy to a
nearest neighbor site is given by a formula of the form (3-23). Hence the
self-diffusion coefficient for the vacancy mechanism may be written as
(compare 3-26):

D — w.aze(AS,,+AS,~)/ke—(¢v+e,-)/kT (3-28)

where the subscripts j refer to jumps; y is a numerical factor determined
by the geometry of the lattice. Note that the

activation energy for diffusion is in this case
given by the sum of the energy of formation
of a vacancy and the jump activation energy,
i.e., |

c=do+ e om | < P

We may recall that Overhauser!® found for
copper ¢, = 1.39 ev and ¢; = 0.68 ev, the
sum of which is 2.07 ev. This is in good
agreement with the experimental value of e
quoted above. Huntington and Seitz® calcu- Fig.3-9. Illustrating the two-
lated the activation energy for the direct inter- ring (direct interchange be-
change (see Fig. 3-9) between two neighboring  tween two atoms) and the four-
atoms in copper and found a value four times  ring diffusion mechanisms.
larger than the observed value. These authors

also found that the energy required to transfer a surface atom to an in-
terstitial position requires an energy of nearly 13 ev. It thus seems that
the interstitial and direct exchange mechanism are very unlikely in Cu;
the vacancy mechanism is evidently operating in this case. Nachtrieb®
et al. believe that the vacancy mechanism is also responsible for the self-
diffusion in sodium.

We should mention that besides the two-ring direct interchange referred
to above, there are other possibilities of direct interchange involving more
than two atoms. In Fig. 3-9, for example, we have indicated a four-ring
mechanism investigated by Zener.?? Zener has shown that the activation

22 C. Zener, Acta Cryst., 3, 346 (1950).
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energy associated with the four-ring mechanism in copper requires only 40
per cent of that associated with the simple interchange of two neighbors.
He concludes from his analysis that the ring mechanism might operate in
b.c.c. metals and that the vacancy mechanism dominates in thef.c.c. metals,
such as copper.

3-7. Chemical diffusion in metals; the Kirkendall effect

The diffusion of foreign atoms in a lattice is usually referred to as
chemical or impurity diffusion. An example of this type of diffusion has
already been discussed in Sec. 3-5, in which the impurities were assumed
to move interstitially. Presently we shall be concerned with the diffusion
of impurities which occupy normal lattice sites, i.e., the impurities have
simply replaced a certain number of atoms of the host lattice. For the
discussion of this type of diffusion it is convenient to distinguish between
very low and high impurity concentrations.

Very low solute concentration. This is the simplest case since the
interaction between the impurity atoms may be neglected ; furthermore,
complications arising from lattice defects associated with high-impurity
densities are avoided (see below). In order to illustrate the type of problems
encountered in this case, consider a certain metal 4 which is known to have
a self-diffusion governed by the vacancy mechanism. Suppose a very small
fraction of A4 atoms is replaced by B atoms and let us inquire about the
diffusion coefficient Dy, of the B atoms in the A lattice. When PBo
represents the probability for a B atom to have a vacant lattice site as a
nearest neighbor and py; represents the probability per second for a B
atom neighboring a vacancy to jump into the vacancy, then Dy, will be
proportional to the product pz,pp;. In a similar notation, the coefficient of
self-diffusion D 4, of the 4 lattice is proportional to Pa.P4;- Hence

DpalD gy = (Ppolpa)Prilp.as) (3-30)
Itis of interest to point out that if the vacancies were distributed atrandom,
PBo = Pavs When py, 5 pp, the vacancies evidently have a preference for
A or B neighbors.
Experimentally one finds that in general the activation energies and the
D, values associated with Dy, and D,, may differ appreciably. This
indicates that p,, # pg, and (or) that p,; # pp. A very accurate and
systematic study in this respect has in recent years been carried out by
Slifkin, Tomizuka, et al® They measured, besides the self-diffusion of
23 For Sb in Ag, see E. Sonder, L. Slifkin, and C. T. Tomizuka, Phys. Rev., 93, 970
(1954); for Cd, In, and Sn in Ag, see C. T. Tomizuka and L. Slifkin, Phys. Rev., 96, 610
(1954); for self-diffusion of Ag, see L. Slifkin, D. Lazarus, and C. T. Tomizuka, J. Appl.

Phys., 23,1032 (1952); R. E. Hoffman and D. Turnbull, J. Appl. Phys., 22, 634 (1951);
E. S. Wadja, Acta Metallurgica, 2, 184 (1954).
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silver, the diffusion in silver of elements following it in the periodic table,
viz., Cd, In, Sn, and Sb. Since radioactive tracer techniques were employed,
the concentration of the diffusing impurities could be kept very low
(107%-10-°). The activation energies and the D, values are given below.

Ag Cd In Sn Sb
€ 45.50 41.70 40.63 ‘ 39.30 38.32 kcal/mole
D, 0.724 0.454 0416 | 0.255 0.179 cm?/sec

It is interesting to note that both € and D, vary in a systematic manner
as the number of extra valence electrons relative to silver increases from
one (Cd) to four (Sb). A theory of impurity diffusion for low concen-
trations in which the excess nuclear charge and excess number of valence
electrons of the impurity atoms relative to the host atoms play an essential
role has been developed by Lazarus.?* The results mentioned above have
been discussed in the light of Lazarus’ and Zener’s® theories by Tomizuka
and Slifkin.

High solute concentrations. The analysis and interpretation of chemical
diffusion data for high concentrations of the diffusing impurities is much
more complicated than for very low concentrations. First of all, the
diffusion coefficient is itself a function of concentration, which makes the
analysis more difficult; methods of analysis and a compilation of diffusion
data may be found in Jost, op. cit. Furthermore, the high concentration
gradients induce large gradients of the lattice parameters, and consequently,
imperfections which may act as short-circuiting paths for the diffusion.
Itis suspected that in many of the chemical diffusion data nonhomogeneous
diffusion of this kind, or along grain boundaries, is involved. For an
extensive analysis of this subject we refer the reader to Nowick.2¢

The Kirkendall effect. Aninteresting effect associated with the diffusion
of zinc and copper-in brass (CuZn) was discovered by Kirkendall?”. He
observed a mass flow relative to the initial interface of a copper-brass
diffusion couple which indicated that the zinc diffuses out of the brass more
rapidly than copper diffuses in. Confirmation of this observation was
obtained from an experiment by Smigelskas and Kirkendall in which inert
wires (markers) were embedded at the two interfaces of a Cu-brass-Cu

2 D. Lazarus, Phys. Rev., 93, 373 (1954).

% C. Zener, J. Appl. Phys., 22, 372 (1951).

2 A.'S. Nowick, J. Appl. Phys., 22, 1185 (1951).

27 E. O. Kirkendall, Trans. AIME, 147, 104 (1942).
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system.28 They found that as the diffusion progressed, the markers moved
towards each other. The fact that the displacement of the markers was
proportional to the square root of the time indicated strongly that the
marker movements were related to the diffusion process itself.2® The
Kirkendall effect has since been found in many other systems; for example,
da Silva and Mehl have observed the effect in Cu-Zn, Cu-Sn, Cu-Ni, Cu-Au,
Ag-Au 3¢

Assuming that the markers are fixed relative to the system of lattice
sites, and assuming that the diffusion is governed by a vacancy mechanism,
a mass flow of atoms in a given direction must be compensated by a flow of
vacancies in the opposite direction. Thus in the copper-brass system, the
net flow of atoms out of the brass is balanced by a flow of vacancies from
the copper into the brass. For an excellent treatment of the theory of the
Kirkendall effect, the reader is referred to a paper by Bardeen and Herring
in W. Shockley (ed.), Imperfections in Nearly Perfect Crystals, Wiley,
New York, 1952. Dislocations play an essential role in the atomic theory
of the effect as sources and sinks for vacancies (see Sec. 3-12).

3-8. The elastic constants of metals

For further reference and as an introduction to the following sections
of this chapter we may review very briefly some of the fundamental
principles of elastic stress-strain relations in crystals.3 Let us first consider
an isotropic elastic medium under uniform stress along an arbitrarily
chosen x-direction. Let x’ represent the distance of a given atom in the
material under stress relative to a fixed plane perpendicular to the x-axis.
When x represents the distance of the same atom in the unstressed material,
the strain ¢, is defined by

€, = (x' — x)/x (3-31)

Thus e, is a dimensionless quantity which may be positive or negative
depending on whether the stress is tensional or compressional. For small
values of the strain, Hooke’s law is satisfied, i.e., the strain e, is then
proportional to the stress along the x-direction o, (a force per unit area)

€ = GI/E (3'32)

*8 A. D. Smigelskas and E. O. Kirkendall, Trans. AIME, 171, 130 (1947).

** For a simple random-walk diffusion, the mean square displacement of the
particles is given by (x*) = 2Dt, so that the root mean square displacement is propor-
tional to 1'/2. See, for example, Jost, op. cit., pp. 25 ff.

30 da Silva, Atomic Flow in Diffusion Phenomena, Thesis, Carnegie Institute of
Technology, 1951.

31 See for a detailed treatment, A. E. H. Love, A Treatise on the Mathematical Theory

of Elasticity, Dover, New York, 1944; or S. Timoshenko, Theory of Elasticity, McGraw-
Hill, New York, 1934.



Sec. 3-8] SOME PROPERTIES OF METALLIC LATTICES 79

The proportionality factor E is called Young’s modulus. When o, repre-
sents a tensile stress, there will be a contraction of the material perpen-
dicular to the x-axis such that

€, =€, = —ve, = —VO,[E (3-33)
where v is called the Poisson ratio.

Besides the compressional and tensile strains mentioned above, there
are shear strains, as illustrated in Fig. 3-10; shear strains are represented
by the symbol y. Consider two parallel planes separated by a distance d
and let the planes be displaced relative Ax
to each other in some direction parallel —

to the planes by the amount Ax; the shear f T

strain is then defined by
d

y = Ax[d = tan « (3-34) (<

For small shear strain y is approximately
equal to the angle «. The shear strain is
produced by a shear stress 7, which is a  Fig. 3-10. The shear stress 7
force per cm?; for small strains Hooke’s produces a displacement Ax of

. the upper plane as indicated;
law may be apphed and the shear strain is defined as

y =7/G (3-35) v = Ax/d = tan a.

where G is called the elastic shear modulus. It can be shown that, for
isotropic bodies, the three quantities E, », and G satisfy the relation

G=ER2Wv+1) (3-36)

Isotropic bodies therefore are characterized by two independent elastic
constants. Crystals, on the other hand, require more than two elastic
constants, the number increasing with decreasing symmetry. Cubic
crystals (b.c.c., f.c.c.), for example, require 3 elastic constants, hexagonal
crystals require 5, and materials without symmetry elements require 21.
In discussing the stress-strain relations in crystals it is convenient to
start by considering the forces acting on a small cube dx dy dz which forms
part of a strained crystal. The force exerted on the cube by the surround-
ing material may be represented by thre¢ components on each of the six
faces of the cube. However, when the cube is in equilibrium, the forces on
opposite faces must be equal in magnitude and of opposite sign. Thus the
stress condition of the cube may be described by nine couples. Three such
couples have been indicated in Fig. 3-11, viz., those for which the forces
are parallel to the x-axis. One of these corresponds to a compressional or
tensile stress o,, (force per cm?); the other two are the shearing stresses
7., and 7,, which respectively tend to rotate the cube about the y- and
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z-direction. Extending this reasoning to the forces parallel to the y- and
z-axis one thus ends up with the stress tensor

Ozx Tay Tez
Tyx Oyy Tyz
Tzz T 2y al z

However, the reader will readily convince himself that if rotation is absent,
y

Txy

Oxx <

2z

Fig. 3-11. Illustrating the three cauples of forces acting along the
x-direction; o, is a tensile stress, 7,, and ,, are shear stresses;
7oy Tepresents a force acting along the x-axis in a plane perpendicular
to the y-axis, etc. Similar forces act along the y- and z-directions.

the tensor must be symmetrical, i.e., 7,, = 7, etc. The stress condition
may thus be specified by six independent stresses,

T 3-37)

Ozzs Oyys Ozzs Tyzs Taws Ty

As a result of the stresses, the crystal is strained, i.e., an atom which in the
unstrained crystal occupied the position x, y, z will in the strained crystal
occupy the position x’, y’, z’. When the distortion is homogeneous, the
displacements are proportional to x, y, z and we have in analogy with
(3-31) the more general expressions

X' — X = €X + Yuuy + Vau?
)” =Y =YXt €Y + V.2 (3-38)
2 —z= VaX T V) + €%

where the €’s and ’s refer to normal strains and shearing strains, respee-
tively. The strain tensor is again symmetrical if rotation is absent and the



Sec. 3-81 SOME PROPERTIES OF METALLIC LATTICES 81
strain condition of the cube may be specified by the six strain components

€ vw €20 Yy Vaes Vay (3'39)

oA €

When Hooke’s law is satisfied the strain and stress components (3-39) and
(3-37) are linearly related. Thus in analogy with (3-32) we have, for
example,

Opp = C11€2z T C1264y T C13€:: + CraVys + C15Vee + Cr6¥ay (3-40)

There are six such equations, and hence 36 moduli of elasticity or elastic
stiffness constants c,;.32 The relations, which are the inverse of type (3-40),
express the strains in terms of the stresses; for example,

€20 = 511000 + S120yy + 5130, + S147yz + 515720 + S1672y (3-41)

The six equations of this type define 36 constants s,; which are called the
elastic constants. It can be shown that the matrices c;; and s,; are sym-
metrical; hence a material without symmetry elements has 21 independent
elastic constants or moduli. Due to the symmetry of crystals, several of
these may vanish. In cubic crystals, as mentioned above already, there are
three independent elastic moduli which are usually chosen as c,,, ¢, and
¢44- Some representative values for cubic metals are given in Table 3-2.
The atomic theory of elasticity is based on the forces acting between the
atoms; we refer the reader to the books quoted at the end of this chapter
for a discussion of this subject.

Table 3-2. Elastic Moduli for Some Cubic Metals
in 10" dyne/cm?

Metal Structure [t Cys €44
Al f.c.c. 1.08 0.62 0.28
Cu f.c.c. 1.70 1.23 0.75
Pb f.c.c. 0.48 0.41 0.14
K b.c.c. 0.046 0.037 0.026
Fe b.c.c. 2.37 1.41 1.16

3-9. Plastic deformation of metals

When a crystal is deformed elastically under influence of applied
stresses, it returns to its original state upon removal of the stresses,
However, if the applied stresses are sufficiently large, a certain amount of
deformation remains after removal of the stresses: the crystal has been

32 Other names for these quantities are in use.
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plastically deformed. We shall see below that the atomic interpretation of
plastic flow of crystals requires the introduction of a new type of lattice
defects, viz., dislocations. The remainder of this chapter will be devoted
to a discussion of the most essential properties of such defects; the
approach to the problem given here follows rather closely the exposition
found in Cottrell’s book Dislocations and Plastic Flow in Crystals cited at
the end of this chapter. To begin with, a few pzrtinent experimental facts
concerning the plastic flow of single crystals will be reviewed.

In many crystals plastic flow results from the sliding of one part of a
crystal relative to another. In Fig. 3-12 we have illustrated schematically
how such a process may lead to an increase in the length of a crystal

under influence of tension. The

sliding process is referred to as slip;

the planc and direction in which

—pull the siip cocurs define, respectively,

the slip plans and the slip direction.

This type of mechanism evidently

Fig. 3-12. Illustrating the slip process deforms the outer surface of the

d‘ue to a tensile stress. The d.ashed line crystal and leads to so-called slip

shows the original cross section of the 4. 4¢ o indicated in Fig. 3-12. The
material; note the increase in length . ) . N

resulting from the slip. amount of slip associated with a slip

band may be several thousand Ang-

stroms. From what has been said so far, one can draw an important

conclusion: plastic deformation is inhomogeneous in the sense that

only a relatively small number of atoms actually take part in the slip

process, viz., only those atoms which form layers on either side of a slip

plane. Elastic deformation, on the other hand, affects all atoms in a

crystal. This difference between plastic and elastic deformation indicates

that the atomic interpretation of plastic flow must be based on an entirely

different model than that of elastic deformatior. In fact, the elastic

properties of solids can be understood quite well in terms of interatomic

forces acting in a perfect lattice; plastic deformation, however, cannot be

discussed properly on the basis of a perfect lattice, i.e., it cannot be dis-

cussed by simply extending the theory of elasticity to the case of large

stresses and strains. It will be shown below that if plastic flow were to

occur in a perfectly periodic lattice, much larger shear stresses would be

required than those for which plastic flow is observed.

Besides being characterized by inhomogeneity, plastic flow is also
anisotropic. Slip usually takes place preferentially in planes of high atomic
density, e.g. along {111} planes in a f.c.c. lattice. Also, the direction of slip
commonly coincides with a direction along which the number of atoms per
unit length is high.

We shall now mention another important result obtained from experi-
ment, viz., the existence of a critical resolved shear stress 7,. In Fig. 3-13

Slip direction

Pull <
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consider a cylindrical crystal of cross section A under influence of a tensile
force F. Let the normal to the active slip plane make an angle « with F,
and let the angle between the slip

direction and F be . The resolved F

shear stress, i.e., the force acting per

unit area of the slip plane in the slip A

direction, is then given by < /

7= (F[A)cosacosf (3-42)
since the area of the slip plane is — Slip plane
Alcos a. Similarly, the tensile stress
per unit area normal to the slip
plane is

o = (F|A) cos®a (3-43)

Suppose now that for given values F
of « and B the force F'is gradually N~ Fie 313. Geometry of slip plane, slip
creased from zero. Even for relatively direction, and tensile force F.

small stresses a certain amount of

plastic flow occurs, but the rate of flow is small and one speaks of creep.
It turns out, however, that the rate of flow increases very rapidly whenever
the resolved shear stress = reaches a critical value 7,. At the same time, the
results indicate that the tensile stress normal to the slip plane is of little or
no influence on the mechanism of slip. For pure crystals, the critical shear
stress lies in the range between 108-107 dynes per cm®. In general, 7,
decreases with increasing temperature. Also, 7, increases as a result of
alloying or cold working.

3-10. The interpretation of slip; dislocations

One of the central facts which a theory of slip must explain is that in a
pure crystal certain atomic planes start gliding across each other under
influence of a shear stress of the order of 108-107 dynes per cm?. We shall
first show that the theoretical critical shear stress based on a perfect lattice
is much larger than the observed values for pure crystals. For this purpose,
we resort to a simplified model suggested by Frenkel.®® With reference to
Fig. 3-14a, consider a cross section through two neighboring atomic planes
separated by a distance d. Without external forces, let the fully drawn
circles represent the equilibrium positions of the atoms. Suppose now
that a shear stress 7 is applied, and that as a result, all atoms in the upper
plane are displaced by an amount x relative to their original position.

33 J Frenkel, Z. Physik, 37, 572 (1926).
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Interchanging the role of dependent and independent variables, we may
also say that for a displacement x, a shear stress 7(x) is required. Suppose
now that we want to plot = as a function of x. First we note that as a result
of the periodic nature of the system, = will vanish for x = 0, a/2, a, etc.,
where a is the distance between neighboring atoms within the planes (see

X
- -_— T

(a) (b)

Fig. 3-14. Under influence of the shear stress = the upper plane of
atoms in (a) is displaced over a distance x (dashed circles). The
periodic behaviour of r, according to Frenkel, is indicated in (b).

Fig. 3-14b). Oversimplifying the problem, we shall assume with Frenkel
that this periodic function is given by

7(x) = 7, sin 27x/a) (3-44)

The “amplitude” 7, is evidently the critical shear stress in this model and
it is this quantity that we wish to estimate. This may be done by realizing
that for x < a the usual theory of elasticity should apply; under these
circumstances

(x) =~ Qnxlayr, for x<a

On the other hand, the elastic strain, in accordance with (3-34) and (3-35)
is given by
y=xld=1|G (3-45)

where G is the shear modulus. From the last two equations it follows that
in this model

7, ~ (G2m)(a|d) ~ G2 (3-46)

where the last approximation is justified because @ ~ d. Since G ~ 10
dynes per cm? (see c,, in Table 3-2), one obtains in this model a theoretical
shear stress 7, ~ 10'° dynes per cm?, which is several orders of magnitude
larger than the observed ones. Although it must be admitted that Frenkel’s
model is open to objections, more refined calculations confirm the con-
clusion that it is impossible to obtain agreement between theory and
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experiment on the basis of a model where atomic planes glide past each
other in the manner assumed above (see also Problem 3-12). In Fig. 3-14
it was assumed that the atoms of the upper atomic plane move simul-
taneously relative to the lower plane; this assumption is tied up with the
assumption of a perfect lattice and here we are at the root of the difficulty.

In an attempt to remove this difficulty, let us assume that the crystal
contains an imperfection of such a nature that the slip process is governed,
not by the simultaneous motion of the atoms of one plane relative to
another, but by the consecutive motion of these atoms. Before specifying
this model further, it may be useful to remind the reader of the fact that a
worm moves forward by displacing its segments one after the other rather
than by a simultaneous displacement of all the segments. The atomic
model for the progression of slip, based on the dislocation model, is
analogous to a wormlike motion.

The dislocation model for slip may be introduced with reference to the
crystal of Fig. 3-15a; let the plane PQR be a slip plane. This plane has
been redrawn in Fig. 3-15b. In the slip plane consider an arbitrary closed
curve ABC; the region inside this curve is hatched in Fig. 3-15b. Suppose
now that in some way or other the material located over the hatched area
in the upper half of the crystal is displaced by an amount b relative to
the lower half of the crystal; at the same time, the material in the upper
half lying over the area outside ABC is left undisplaced. In this manner we
have obtained a situation in which only a fraction of the upper half of the
crystal has slipped relative to the lower half. The ratio f of the area ABC
and the total area of the slip plane will be referred to as the fraction of
slip that has occurred in this plane. Thus, if in some way or other the
area ABC could be made to grow, f would increase and for /=1 the
whole upper half of the crystal would be displaced by an amount b
relative to the lower half. For f <C 1, the average displacement of the upper
half relative to the lower half is fb.

The line ABC introduced above marks the boundary in the slip plane
between slipped and unslipped material; this line is called a dislocation
line. The vector b which defines the magnitude and direction of the slip
is called the Burgers vector.3* Since the atoms always seek positions of
minimum energy, it will be evident that b must connect two atomic
equilibrium positions, i.e., the possible vectors b are determined by the
crystal structure. When the displacement equals one lattice spacing, the
dislocation is said to have unit strength. From calculations of the strain
energy associated with dislocations, Frank has shown that dislocations of
strength larger than unity are in general unstable; they dissociate into
dislocations of unit strength.3

So far, we have only given a definition of a dislocation. In order to see

3 J. M. Burgers, Proc. Koninkl. Ned. Akad. Wetenschap., 42, 293, 378 (1939).
% F. C. Frank, Physica, 15, 131 (1949).
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how this model may account for a number of observations on plastic flow,
various questions must be raised; for example:

1. Assuming that a slip plane
such as POR in Fig. 3-15 contains

1
I
R . . ..
f T C a dislocation as indicated, one should
H S L1 AR A be able to show that under influence
pl 4 B of a shear stress, applied in the
=1 .
L’ P @ proper direction to the crystal, the
od dislocation tends to grow; under
(a) (b) these circumstances the slipped region

Fig. 315, Schematic representation of would increase in size and slip would
a ring dislocation ABC in a slip plane proceed. Moreover, the calculated
POR. Slip has occurred only across the ~ ctitical shear stress should agree
hatched area. quantitatively with the observed

values.

2. We have seen above that slip in a single slip plane may correspond
to displacements of the order of 1000 A: on the other hand, once a dis-
location such as ABC in Fig. 3-15 has swept through the whole slip plane,
the slip produced is only 5 ~ 2 A, and moreover, the dislocation has then
disappeared. It will thus be necessary to account for large numbers of
dislocations taking part in the slip process and for sources which supply
such dislocations.

3. Are other physical properties, besides plastic flow, determined to at
least a measurable degree by the presence of dislocations so that indepen-
dent information regarding the properties of dislocations can be obtained ?

Some of these questions will be discussed below; of course, many
more can be asked.

3-11. Motion of dislocations under influence of a uniform shear stress;
dislocation density

With reference to Fig. 3-15, suppose a uniform shear stress 7 is applied
to the crystal along the direction of the Burgers vector. Mott and Nabarro
have shown that this leads to a force on the dislocation line such that the
slipped area tends to grow.® Consider an element ds of the dislocation
line; suppose this element is displaced outwardly (Fig. 3-15b) by an
amount d/ along a direction perpendicular to ds. The area swept out by
the line element is then ds dl. According to what has been said in the pre-
ceding section, this corresponds to an avetage displacement of the uppet
part of the crystal relative to the lower part by an amount ds d/ b/ A, where
A is the area of the slip plane. The work done by the shear stress is equal

% N. F. Mott and F. R. N. Nabarro, “Report on Strength of Solids,” Phys. Soc.
(London). 1948, p- I
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to the total shear force 74 times the average shear displacement, i.e., equal
to 7b ds dl = dW. This corresponds to a force —dW/dl acting on the
element ds in the direction of the normal. Hence the force per unit length
is equal to

F=7b (3-47)

Thus the applied shear stress produces a force per unit length everywhere
along the dislocation line equal to 76 and perpendicular to the line element.
If the force is large enough to make the dislocation line move in the direc-
tion of F, the slipped area in Fig. 3-15 will grow and slip will occur under
influence of the shear stress.

On very general grounds one can show that the critical shear stress for
slip should be very small for the dislocation model. In order to see this,
let us consider the regions near the dislocation line somewhat more
closely. Because of the nature of interatomic forces, the boundary
between the slipped and unslipped regions is not sharp, but rather vague,
extending over several atomic distances. The atoms near the dislocation
line of Fig. 3-15, at the inside, have nearly completed the slip process;
those near the dislocation line on the outside are just beginning to slip. As
a result of the periodic nature of the potential for the atoms, those at the
outside of the dislocation line and close to it tend to push the dislocation
line inward, since this would allow them to occupy their initial equilibrium
positions. On the other hand, the atoms inside the dislocation line and
situated close to it tend to push the line outward, since this would make it
possible for them to occupy their new equilibrium positions associated
with completed slip. Far away on either side of the dislocation line, the
atoms occupy normal lattice positions and are not affected by the dis-
location. Thus to a first approximation, the forces on the dislocation line
balance and it should start moving under the smallest of shear forces.
It thus looks as if this model is too successful in explaining the relatively
low observed critical shear stress; however, when one goes to a second
approximation, one finds that the critical shear stress calculated for this
model is not zero, but in fact of the same order of magnitude as observed
values.”

Density of dislocations. [t was mentioned above that a single dislocation
line sweeping across a slip plane gives rise to a displacement of the order of
a few Angstroms; thus any appreciable plastic deformation must be the
result of a large number of dislocations sweeping across many slip planes.
It will be evident that the rate of plastic flow will be determined by the rate
at which dislocation lines sweep through the slip planes, i.e., the rate of
flow may be expected to be proportional to the total length of all active
dislocation lines and the average velocity with which the elements of these
lines move. One has therefore introduced the concept of “dislocation

37 See Cottrell, op. cit., p. 62.
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density,” p = S/V, where S is the total length of the dislocation lines and V'
is the volume of the crystal. Note that p has the dimension length~2.
More specifically, one arrives at this concept by the following reasoning:
Consider an element ds of a dislocation line such as ABC in Fig. 3-15.
Let v be the velocity of the element along the direction of the normal to ds
in the slip plane. When H is the height of the crystal and A is the area of
the slip plane, the increase in strain per second due to the motion of the
element ds is equal to

dyldt = vds bJAH (3-48)

Considering the rate of flow resulting from all dislocations in planes
parallel to the plane PQR in Fig. 3-15, we have to sum expression (3-48) in
a suitable fashion, i.e., we must replace ds by the total length S of all these
dislocations and v by some average velocity (v). Hence

dy|dt = (v) Sb|V = pb(v) (3-49)

where p is the dislocation density. Methods to determine the dislocation
density in crystals will be mentioned in Sec. 3-15.

3-12. Edge and screw dislocations

The elements of a ring dislocation such as ABC in Fig. 3-15 may be
considered as composed of two basic types of dislocations: edge disloca-
tions and screw dislocations. A pure edge or Taylor-Orowan dislocation
is defined as a dislocation for which the Burgers vector b is everywhere
perpendicular to the dislocation line.3® A screw or Burgers dislocation is
defined as a dislocation for which the Burgers vector b is everywhere
parallel to the dislocation line. Thus in Fig. 3-15b the vertical elements are
of the edge type, the horizontal elements are of the screw type; the
remainder is mixed edge and screw. We shall now consider the physical
structure of these basic dislocations.

Edge dislocations. The simplest edge dislocation is one for which the
dislocation line is straight. Its formation may be vizualized in terms of a
slip process with reference to Fig. 3-16a. Suppose the block of material is
cut across the area ABEF so that across this area the upper and lower
parts are disconnected. .

The upper half is then pushed sideways such that the line 4B’ which
initially coincided with 4B is shifted by an amount b as indicated. If in
this position the two halves were glued together, we would have produced
an edge dislocation. The upper half of the block will clearly be under

% G. I. Taylor, Proc. Roy. Soc., A145, 362 (1934); E. Orowan, Z. Physik, 89, 605,
614, 634 (1934).
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compression, the lower half under tension. A square network of lines
drawn on the front face BCD before the operation, would, after the
operation, look as indicated in Fig. 3-16b. This strain pattern suggests
immediately an alternative method by which an edge dislocation may be
produced. Consider the intersections of the network of lines of Fig. 3-16b
as representing rows of atoms perpendicular to the plane of the paper.
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Fig. 3-16. In (a), EF represents an edge dislocation line; (b) gives
the strain pattern. [After A. H. Cottrell, Dislocations and Plastic
Flow in Crystals, Oxford, New York, 1953, p. 22]

The edge dislocation may then be obtained by cutting the block along the
plane EFGH, and putting the half plane of atoms initially above AB,
inside the cut. This gives rise to the “‘extra” half plane of atoms corre-
sponding to HE in Fig. 3-16b, which is typical of an edge dislocation.
Note that if the extra half plane HE were displaced to the right, slip would
progress, and when HE has finally reached the right-hand side of the
block, the upper half of the block has completed slip by the amount b.
The slip process resulting from a
moving edge dislocation has been
illustrated in Fig. 3-17. Edge dis-
locations for which the extra half [....:
plane lies above the slip plane are
called .positive. If th.e extra half Fig. 3-17. Motion of a positive edge
plane lies below the slip plane, one gjsjocation to the right, leading to slip.
speaks of a negative edge dislocation. [After Taylor]
We leave it to the reader to show
for himself that the slip process of Fig. 3-17 resulting from a positive
edge dislocation moving to the right can also be achieved by motion of a
negative edge dislocation of the same strength to the left.

The definition of an edge dislocation does not necessarily imply that
the dislocation line is straight. In fact, any curved line will do as long as it

-----
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is perpendicular to the Burgers vector b. Thus by inserting in a block of
material an extra half plane with an irregular boundary, we can produce
what is known as an irregular edge dislocation. An edge dislocation may
therefore contain jogs as indicated in Fig. 3-18. If
an atom such as Q diffuses into the lattice, interstitial
atoms may be produced or vacancies annihilated at
the expense of the extra half plane. Similarly, if an
—T_:_"_‘ atom occupying a normal lattice position were to move
Q into the position directly on the left of Q, the extra
Fig. 3-18. Extra half plane wou}d grow and a vacancy Would be pro-
half-plane of atoms duced or an interstitial annihilated in the lattice
which jogs at Q. itself. Thus edge dislocations may act as sources or
sinks for vacancies and interstitials.3® The reader
will realize that these properties are directly associated with the extra
half plane which characterizes an edge dislocation. Interstitials or
vacancies may also be generated as a by-product of the recombination
of a positive and a negative edge dislocation. Consider, for example, the
case where the slip plane of a positive edge dislocation is parallel to that
of a negative edge dislocation, the former lying two interatomic distances
above the latter. When these dislocations meet, one arrives at a situation
represented in Fig. 3-19 in which a row of vacancies is left after recombina-
tion; similarly, if the half planes overlap, one or more rows of interstitials
become available.

The presence of an extra half plane
of atoms in an edge dislocation restricts
the motion of an edge dislocation mainly
to the slip plane. The reason is that-any ~} }J{ { }Slip planes
motion perpendicular to the slip plane ~[~ 7/~ 77\ T\7 T
requires either a growth or a reduction of
the half plane. Thus the easy direction of
motion of an edge dislocation is in the
slip plane since the number of atoms in Fig. 3-19. Indicating the forma-
the extra half plane is conserved in this tion of a row of vacancies (repre-
case. Any motion of an edge dislocation sented by square) upon recom-

. . . bination of a positive and a
perpendicular to the slip plane is termed

. . . negative edge dislocation; the
nonconservative because it involves either  yisjocation lines are perpen-

rejecting or accepting ‘‘extra” atoms. dicular to the plane of the paper.
Nonconservative motion is, of course, not

excluded, but its occurrence depends on whether the diffusion of atoms
is rapid enough to sustain it.

Screw dislocations. In Fig. 3-20 we have represented the atomic
configuration in the vicinity of a screw dislocation piercing the surface of a

3 See, for example, F. Seitz, Advances in Physics, 1, 43 (1952).
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simple cubic lattice. This configuration may be obtained by cutting the
block across the area BFHM and then pushing the upper part backward in
the direction of the Burgers vector b, as indicated. The dislocation line
BM is parallel to b; note that a screw dislocation line is necessarily
straight, in contrast with an edge dislocation line. As one moves around
the disiocation line along a circuit such as AKLCDE, one advances in the
direction of BM by an amount equal to b for every turn; hence the term
“screw’” dislocation. Since no extra
half plane is involved in a screw dis-
location, one cannot speak in this
case of nonconservative motion. Thus
the motion of a screw dislocation is
less restricted than that for an edge;
the screw dislocation can in fact move
along any cylindrical surface with the
Burgers vector as its axis. If in Fig. Fig. 3-20. Schematic representation
3-20 the dislocation line moves to the ©f @ screw dislocation in a simple
left, Slip proceeds; thus screw dis- cubic ‘lattlce; the dislocation line
. . X . BM is parallel to the Burgers
locations, like edge dislocations, can vector b.
produce plastic flow.

An interesting feature of screw dislocations in connection with crystals
grown from vapors or solutions may be mentioned here.?° In these cases
the crystal growth is a result of supersaturation and of the conditions on the
surface of the growing crystals. In order for the atoms deposited on the
surface to be firmly bound, the surface must contain steps, since at the
corners of these steps they can be bound by two or more atoms. Suppose
now that a crystal without dislocations has such steps on its faces.
Gradually these steps become filled up and ultimately the surface becomes
flat and unsuitable for further growth. However, if the crystal has a screw
dislocation, such as in Fig. 3-20, continuous growth becomes possible,
since as new material is deposited at the step, the step simply rotates but
never disappears. Experimental evidence strongly supports these
considerations.

3-13. Stress fields around dislocations

Many of the properties of dislocations are determined by the stress
fields they produce in the surrounding material. Calculations of the stress
fields are usually carried out on the assumption that the medium is isotropic
and characterized by a shear modulus G and a Poisson ratio ». We shall
not give the details of such calculations here, but only mention the results

40'W. K. Burton, N. Cabrera, and F. C. Frank, Nature, 163, 398 (1949); see also,
on crystal growth, Discussions Faraday Soc., 5 (1949); L. J. Griffin, Phil. Mag., 41, 196
(1950).
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for edge and screw dislocations.4! In Fig 3-21 consider the cross section of
a cylindrical piece of material; the axis of the cylinder will be taken as the
z-axis of a Cartesian coordinate system. Suppose we produce a cut in the
plane y = 0, which extends between the axis and the outer surface as
indicated. We now let the material above the cut slip to the left by an
amount b, leading to the configuration
y indicated by the dotted line. We have
then produced a positive edge dislocation
along the z-axis with a Burgers vector
along the x-axis; the plane y = 0 is the
slip plane. In terms of the coordinates r
and 0, the stress field of the dislocation
line may then be shown to be given by the
following tensile and shear stresses:

Gb
Gy = Ogp = — ————sin f 3-50
T 00 27_”(1 - ’V) ( )
Fig. 3-21. An edge dislocation Gb
along the z-axis in a cylindrical piece 9 = Tgp = ———— COS 0 (3-51)
of material. ! 2ar(1 —v)

Here positive values of o refer to tension, negative values of o refer to
compression; o,, is a radical compression or tension, while og is a
compression or tension acting in a plane perpendicular to r. The shear
stress 7,4 acts in a radial direction. It is observed that the stresses vary as
1/r. In the region above the slip plane o,, is negative, corresponding to a
compression, in agreement with our previous qualitative discussion;
below the slip plane o,, corresponds to a tensile stress. It must be
emphasized that the stresses become infinite for r = 0 and therefore a small
cylindrical region of radius r, around the dislocation must be excluded. In
an actual crystal this difficulty does not arise, since the material consists of
atoms; on the other hand, the stresses in the immediate vicinity of an
actual dislocation will also be large, and Hooke’s law is probably not
valid in that region. For example, for r = b the strains are of the order of
$7(1 — ») =~ 25 per cent.

On the basis of these results, let us now estimate the energy of formation
of an edge dislocation of unit length. The final shear stress in the plane of
the cut is given by (3-51) with 6 = 0. For a cut extending over unit
length along the z-direction, the energy required to form the dislocation
is evidently equal to the integral over the cut surface of half the product of

41 For further details and references, see A. H. Cottrell, Dislocations and Plastic Flow
in Crystals, Oxford, New York, 1953; W. T. Read, Dislocations in Crystals, McGraw-
Hill, New York, 1953.
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stress and strain, i.e., equal to

1(r_ Gb® P <L
2J)r 20r(1 —v) 4m(l — )

log (R]rg) (3-52)

where R is the radius of the piece of material. Note that as R becomes
infinite the energy of formation goes to infinity. By way of an estimate, let
us take R=1cm, ry=10"7cm, G =5 X 10" dynes cm~2%, b = 2.5 X
10-8 cm, and » = §. One then obtains an energy of 6 X 10~* erg cm,
which corresponds to approximately 10 ev per atom along the dislocation
line.

The configurational entropy of an edge dislocation is very small indeed ;
in fact, according to Problem 3-14, the configurational entropy per atom
along the dislocation line for the dimensions assumed above contributes to
the free energy a term of the order of 10-® k7. This result, combined with
the energy of formation estimated above, leads to the important con-
clusion that the density of dislocations in thermal equilibrium with a
crystal essentially vanishes. In this respect dislocations behave altogether
differently from *‘atomic” lattice defects such as vacancies and interstitials.
The configurational entropy associated with the latter is so large that the
density of such defects in thermal equilibrium may be appreciable. The
essential reason for this difference is the fact that a dislocation is a ““line”
defect rather than a collection of independent “‘point” defects; since
the dislocated atoms must keep in line with each other, the number of
possible configurations is strongly limited. The reason why relatively high
dislocation densities are preserved in a crystal will be explained in Sec. 3-14.

For a screw dislocation along the z-axis in a cylindrical piece of material,
the stress field is completely given by a shear stress:

T,0 = To, = Gb[27r (3-53)

The absence of tensile and compressional stresses in this case is associated
with the absence of an extra half plane of atoms. Note that the stresses do
not contain 0, i.e., the stress field is cylindrically symmetric as one might
have expected. The energy of formation of a screw dislocation is approxi-
mately two-thirds that of an edge dislocation of the same length in the
same material, as shown in Problem 3-15.

3-14. Interaction between dislocations

Since any dislocation is surrounded by a stress field, the energy required
to form a dislocation in a piece of material which contains already another
dislocation will be different from that required to form the dislocation in
the absence of the other. In other words, there will be an energy of
interaction between two dislocations; the gradient of the interaction



94 SOME PROPERTIES OF METALLIC LATTICES [Chap. 3

energy determines the force between them. This can most easily be
demonstrated for two parallel screw dislocations; in this case the stress
fields have cylindrical symmetry and one expects the force between them
to depend only on their distance apart, i e., the force should be a central
force. To illustrate this, suppose a piece of material contains a screw
dislocation along the z-axis (Fig. 3-22) and let us produce a second screw
dislocation parallel to the first one, at a
distance r. As before, we produce a cut
extending from A4 to B in Fig. 3-22 and
displace the material on one side of the cut
relative to that on the other side over a dis-
tance b along the z-direction. Since at the
moment we are interested only in the in-
teraction energy of the two dislocations, we
shall calculate only the work required to pro-
Fig. 322. Referring to the duce tl}e second.dislocation in so far as this
calculation of the interaction WOrk is determined by the presence of the
energy of two screw dis- first dislocation. Thus, if E; represents the in-

locations running along the teraction energy per unit length of dislocation,
z-axis; one is located at the we may write
origin, the other in 4. [After

Cottrell, op. cit., p. 50] E = ‘.:”(Gb/Zfrr)b dr (3-54)

where Gb/2nr is the shear stress produced along the z-direction in the cut by
the dislocation at the origin. The force between the two dislocations is
then

F(r) = —dE,[dr = Gb*|2nr (3-55)

Note that the force varies as 1/r. For dislocations of opposite sign the
force is attractive; for equal signs the force-is repulsive.

Similar considerations may be held for the interaction between edge
dislocations. In this case the force has a radial as well as a tangential
component. Thus for two-edge dislocations of equal sign, along the z-axis
and with a Burgers vector along the x-axis, one obtains*?

Gb* Gb® .
F, = Py p— e F, = 2—————”(1 o sin 20 (3-56)
where 0 is the angle between r and the x-axis (see Fig. 3-23). Here again,
the radial force is repulsive or attractive depending on whether the
dislocations have equal or unequal signs. In the latter case the signs of
both F, and F, must be reversed in (3-56). We have mentioned earlier that
the motion of an edge dislocation is mainly confined to the slip plane
(conservative motion). For this reason, the force component along the

42 See Cottrell, op. cit., p. 47.
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x=direction is the most important; for two-edge dislocation of the same
sign this component may be obtained from the relation (see Fig. 3-23)

F, = F,cos 0 — Fysin (3-57)
Substituting F, and F, from (3-56), one finds readily

_ Ghx(x* — )?)

27 2m(1 — )t (3-58)

It is observed that this component vanishes for x =0 and for x = y.
Furthermore, when x > y, or <2 45°, two
parallel edge dislocations of the same sign y
répel each other in the direction of the slip
plane; for x <<y, or 0 > 45°, they attract
each other along the x-axis. The stable
configuration for the two dislocations
occurs when they lie vertically above each
other. This conclusion is also true when
a large number of edge dislocations of the
same sign are involved. In fact, such an
array of dislocations has been suggested
by Burgers as a model for a grain bound- Fig. 3-23. Radial and tangential
ary between two crystallites of different components of the force exerted
- - a3 by an edge dislocation at the
orientation.

. . . . origin on an edge dislocation at
Dislocations also interact with a free 4 ~ Both dislocations lie along
surface. In fact, any dislocation will be the z-axis and have a Burgers
attracted by a free surface, since a motion vector along the x-axis. The
towards the surface would reduce the strain ~ calculation in this case involves a
energy. According to Koehler the force of cut along AB.
attraction is approximately given by an
image force, i.e., approximately equal to the force of attraction produced
by a dislocation of opposite sign located at the image position of the first
one relative to the surface.4

While on the subject of stress fields around dislocations, we may
mention that impurities are in general attracted by edge dislocations. If
the impurity atoms are “larger” than those of the host lattice, they will
tend to move toward the region of tension, since in this way the tension will
be somewhat released in this region. On the other hand, if the impurity
atoms are ‘‘smaller” than the host atoms, they tend to be deposited in the
region of compression.

In the preceding section we mentioned that dislocations are not in
thermal equilibrium with the lattice and the question was raised as to why

43 J. M. Burgers, Proc. Koninkl. Ned. Akad. Wetenschap., 42,293 (1939); Proc. Phys.

Soc. (London), 52, 23 (1940). For experimental evidence, see next section.
#J.S. Koehler, Phys. Rev., 60; 397 (1941).
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it is not possible to remove almost all dislocations in a solid by annealing.
The reason for this is the following: The density of dislocations in a solid
is determined essentially by its history, i.e., by conditions under which the
crystal was grown, cold working, etc. Certain parts of the dislocations may
be mobile; for other parts the motion may be hindered or completely
inhibited by interaction with impurities or other dislocations. Consider, for
example, a point at which three dislocation lines meet. In general, such a
point is essentially immobile, since it involves nonconservative motion of
one or two of the dislocations involved. Ultimately, therefore, the dis-
locations probably arrange themselves in a sort of three-dimensional
network or superstructure in the solid.#> Although such a situation is not
thermodynamically stable, it may be very stable in the mechanical sense
for reasons just explained. We shall return to this point in the
discussion of mosaic structures in Sec. 3-15.

3-15. Estimates of dislocation densities

In this section we shall discuss briefly some methods by which the
density of dislocations in solids may be estimated.

1. Plastically bent crystals. Plastic bending of crystals takes place in a
manner similar to the bending of a deck of playing cards. As illustrated in
Fig. 3-24a, this process can be understood in terms of a slip process of thin
layers of the crystal, the slip direction at one end being opposite to that
at the other end. Since the bent state is stable, it seems reasonable to

(a) (b)

Fig. 3-24. Plastically bent crystal (a) and the corresponding
dislocation model (b). [After Cottrell, op. cit., p. 29]

assume that the crystal in this state contains a number of edge dislocations
in a pattern such as the one illustrated in Fig. 3-24b. In order to calculate
the density of dislocations required to bend a certain specimen to a certain
radius of curvature, consider a single glide packet. When L is the length of
the outer arc and ¢ is the thickness of the packet, the length of the inner arc
is evidenly L(1 — ¢/R) where R is the radius of curvature. Suppose now
that the packet contains n positive edge dislocations; we must then have
nb = tL|R, where b is the absolute value of the Burgers vector. Since the
density of dislocations in this case is simply given by the number of

* F. C. Frank, Report of Pittsburgh Conference on Plastic Deformation of Crystals,
1950, p. 100.
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dislocation lines piercing through a unit area of the plane of the paper,
we obtain

p = n[Lt = 1/Rb (3-59)
For example, to bend a crystal to a radius of 3 cm one requires, with
b ~ 3 X 1078 cm, a dislocation density p ~ 107 cm™2.

2. Estimates from X-ray diffraction measurements. In Chapter 1 we
discussed the conditions for X-ray diffraction from crystals and found that
reflection occurs only if the Bragg condition is fulfilled. Now, if a crystal
had perfect periodicity, the angular spread about the Bragg angle should be
not more than about 5 seconds. However, most crystals show an angular
spread of the order of several minutes. In order to explain discrepancies of
this kind, Darwin?® and Ewald*’ introduced, many years ago, the notior of
a mosaic crystal, i.e., they assumed that an actual crystal is made up of a
number of small blocks which themselves are perfect but which are slightly
misoriented relative to each other. It is presently believed that this mosaic
structure may be the result of the three-dimensional network of dis-
locations mentioned in the preceding section. Assuming that this is the
case,® an estimate of the dislocation density in terms of the observed total
angular spread 6 of the X-ray pattern may be made in the following manner :
Suppose the surface area of the crystal involved in the X-ray measurements
has a side L. Let the density of dislocations in the crystal be p, so that p
dislocation lines pierce through a unit area of the surface of the crystal.
Let us now define the edge 4 of each block in the mosaic structure in such a
way that A2 = 1/p, i.e., we associate one block with each dislocation line
coming out of the surface. The average angular misfit between blocks is
then « = b/A radians; these misfits may be positive or negative. Thus as
we pass across the crystal over a distance L, we pass L/ blocks, and the
probable angle of misfit between the first and the last block is a (L/A)!/2.
Identifying this angle with the total observed spread of 0 radians, we find

0 = a(L/A)\2 or 0= bLV2p4 (3-60)

For a typical case of a pure crystal let us take L =0.1cm, 6 = 1072
radian, and b = 3 X 108 cm. We then obtain p ~ 108 cm~2. Note that in
this case A ~ 10~% cm, in agreement with other estimates.

3.In heavily cold-worked metals the density of dislocations is
sufficiently high to produce an increase of a few per cent in the <’cc*rical
resistivity. According to calculations by Dexter, densities of diz'~rations
of the order of 10" cm~2 are required to explain measurements »<e on
cold-worked * copper.#®  Similar estimates have been obtained from

¢ C. G. Darwin, Phil. Mag., 27, 325, 675 (1914).

47 P. P. Ewald, Ann. Physik, 54, 519, 577 (1917).

48 R. D. Heidenreich and W. Shockley, “Report on Strength of Solids,”” Phys. Soc.
(London), 1948, p. 57.

4 D. L. Dexter, Phys. Rev., 86, 770 (1952).



98 SOME PROPERTIES OF METALLIC LATTICES [Chap. 3

measurements of other physical properties, such as the magnetic
saturation of cold-worked ferromagnetic materials.5°

4. In the preceding section we mentioned that Burgers suggested that the
boundary between two crystals differing in orientation by a small rotation
a may consist of a set of edge dislocations as indicated in Fig. 3-25. If D

Fig. 3-25. Burgers disloca-
tion model of a symmetrical
grain boundary.

is the average distance between the dis-
locations, the angle should presumably be
equal to « = b/D, where b is the magnitude
of the Burgers vector. This model has been
verified for germanium single crystals in the
following manner:® A germanium crystal
was grown from a seeded melt along the (100)
direction. Grain boundaries were then re-
vealed by etching with an acid. When the
boundaries were examined under high mag-
nification, they were found to consist of
regularly spaced conical pits, as shown in
the micrograph of Fig. 3-26. It is believed

that each etch pit corresponds to a single dislocation piercing through the
surface. Because of the strain in the vicinity of a dislocation line, the

1o

&

Fig. 3-26. Optical micrograph of lineage boundary in germanium
single crystal, viewed in face transverse to growth direction.
Lighting oblique. [Reproduced with permission from F. L. Vogel,
W. G. Pfann, H. E. Corey, and E. E. Thomas, Phys. Rev., 90, 489

(1953)]

>® W. F. Brown, Phys. Rev., 60, 139 (1941).
L F. L. Vogel, W. G. Pfann, H. E. Corey, and E. E. Thomas, Phys. Rev., 90, 489

(1953).
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material . around it presumably dissolves preferentially. The distance
between the pits may be obtained by counting, and the angle « may
be determined from X-ray diffraction experiments. For three specimens,
the calculated distance between dislocations and the observed distance
between etch pits are given below.

a (seconds) D qye. (cm) D . (cm)

17.5 £ 2.5 4.7 - 0.7) x 10—¢ (5.3 +0.3) x 10~*
65.0 -~ 2.5 (1.3 +£0.1) x 10* (1.3 £0.1) x 10—*
85.0 - 2.5 (0.97 +0.2) < 10—* 0.99 + 0.2) x 10~*

It is observed that the agreement is remarkably good. One might probably
conclude that the etch pit method is presently the most direct method for
determining the dislocation density.

3-16. The Frank-Read mechanism of dislocation multiplication

We have mentioned before that the amount of slip occurring in a slip
plane requires a large number of dislocation lines sweeping across it in
succession. One possible mechanism by which dislocations may multiply
has been suggested by Frank and Read;® this mechanism is illustrated
schematically in Fig. 3-27 with the slip plane coinciding with the plane of
the paper. Suppose the line 4B is
part of the three-dimensional dis-
location network in a crystal and
that points 4 and B themselves are
immobile. Under influence of a suit-
ably applied shear stress the line will
be deformed successively to the stages
1,2, 3, 4, and 5. The latter stage
results when finally the two points P
and Q meet; when this happens the
bent structure breaks up into a new
straight part AB and a ring dis-
location. In this manner, the line 4B  Fig. 3-27. Illustrating the Frank-Read
may produce an unlimited amount mechanism of dislocation multiplication.
of slip. It can be shown that the stress
required for this process is of the order of Gb/L, where L is the length of
the line. For further details concerning this subject we refer the reader
to the literature.

52 F. C. Frank and W. T. Read, Phvs. Ret., 79, 722 (1950).
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PROBLEMS

3-1. When N is an integer > 1, one may approximate the expression
log(N)=logl+log2+ ..+ logN
by an integral. From this, prove Stirling’s formula log (N!) =~ N log N.

3-2. Suppose one has N boxes and n balls, where both N and n are
>>1; the balls are all of the same color and indistinguishable.

(a) If there is no restriction on the total number of balls in any given
box, show that the number of ways in which the balls can be distributed
over the boxes is equal to (N + n)!/N'n!

(b) Suppose each box can contain either one ball or no ball; with this
restriction, show that the number of ways in which the balls can be distri-
buted over the boxes is equal to N!/(N — n)!n!

3-3. Consider a system of N one-dimensional harmonic oscillators, all
of the same frequency ». According to Sec. 2-4 the vibrational energy of
this system for a temperature T >> hv/k is approximately equal to NkT =
nhv, where n is the total number of vibrational quanta associated with
the N oscillators. Making use of the answer of Problem 3-2a, show that
the thermal entropy of the system is equal to

Sy~ Nk [1 + log (kT/hv)] for hv < kT

This proves expression (3-2). Also find an expression for S, for
temperatures which are not high compared with Av/k. Furthermore,
derive an expression for the free energy F of the system for both temperature
ranges.

3-4. Consider a system of N one-dimensional harmonic oscillators in
contact with a temperature bath T'; all oscillators have the same frequency
v. Assume that in equilibrium the oscillators have a total of n vibrational
quanta hv; consider n for the moment as a variable and find an expression
for the free energy F. From the equilibrium condition (0F/0on)y = 0,
derive Planck’s formula for the average energy of an oscillator at a
temperature 7. (Note: In the preceding problem one makes explicit use of
Planck’s formula, in contrast with the present problem.)

3-5. Estimate the number of vacancies per atom in thermal equilibrium
for a crystal at 7 = 300° and T = 600°, assuming that the energy required
to form a vacancy is 1 ev.

3-6. Show that for a quantized as well as for a classical harmonic
oscillator the average fraction of time spent in energy states € is given
by exp (—e/kT).

3.7. Show that the number of Frenkel defects in a solid element in
thermal equilibrium at a temperature T is given by expression (3-13).
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3-8. Consider a low-temperature modification 4 and a high-tempera-
ture modification B of a certain element. In order to discuss the equilibrium
between these modifications, assume for simplicity that the lattice vibrations
may be represented by Einstein models of frequencies v, and »,. Suppose
that the binding energies per atom in the two modifications are given by
—e, and —e,. Explain why €, > ¢,. Set up an expression for the free
energy per atom in each of the modifications. Then write an expression for
the change in the free energy AF if one atom is transferred at constant T
from A to B. Inequilibrium, AF = 0. Show that there is only one tempera-
ture for which the two modifications are in equilibrium, viz., T,
(e, — €,)/[k log (v,/v,). What can one conclude about the ratio »,/v,, and
explain why the answer is reasonable.

(l_»_.

3-9. Consider a b.c.c. lattice built up of atoms which may be assumed
to be hard spheres of radius R. Calculate the maximum radius of a hard
spherical atom that would fit in an interstitial position. Do the same for a
f.c.c. lattice (in this case there are two types of interstitial positions!).
How many interstitial positions are there in both types of lattices per normal
lattice site?

3-10. Consider a particle restricted to motion in one dimension.
Suppose the particle undergoes consecutive displacements with equal
probability to the left or to the right, the absolute magnitude of the
displacements being A. Show that the mean square displacement for N
steps is equal to NA%. Also show that the probability for the particle to be
found at a distance nA relative to the origin, after N steps, is given by
I)N N!

2/ IN + n)2]/[(N — n)/2)!
From this, show that for N> 1 the probability to find the particle after a
time interval ¢ at a distance x relative to the origin is given by

P(n,A) = (

172
P(x,t) ~ (zzt-) exp (—x%r/2%)
™

where 7 is the time required for a single step.

3-11. An infinite medium contains at ¢t = 0 a quantity Q of a diffusing
substance per cm? concentrated in the plane x = 0. Show that the concen-
tration c(x,?) is given by

, Q
c(x,t) = W exp (—x?%/4Dt)
From this and the results obtained in the previous problem, show that the
diffusion coefficient in terms of the random walk problem is given by
D = 7?[2r. Also show that the mean square displacement for a time ¢
is given by (2Dt)'/2,
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3-12. Express the theoretical shear strength of a perfect lattice in
terms of the shear modulus G on the assumption that slip will start when
the shear strain is 10 per cent, compare the result with that obtained in
Sec. 3-10 on the basis of Frenkel’s model.

3-13. Show that the elastic strain energy in a crystal under the stress at
which slip begins is of the order of 10% ergs cm™3. Assuming that the strain
energy were converted into heat, what would be the rise in temperature of
the material?

3-14. Consider a solid in the form of a cube of 1 cm? containing a
dislocation line perpendicular to one of the faces. Show that the configura-
tional entropy is ~107¢ k per atom along the dislocation line, For the
importance of this result see Sec. 3-13.

3-15. Show that the energy of formation for a screw dislocation per
unit length is equal to (Gb%4m) log (R/ry) where the symbols used are
those of Sec. 3-13. For a Poisson ratio » ~ 1, this is about two-thirds
that of an edge dislocation (see 3-52).

3-16. Show that the force between two positive edge dislocations is
given by expression (3-56); follow the same procedure as that employed in
the text to calculate the force between two screw dislocations. Make use of
the cut indicated in Fig. 3-23.



Chapter 4

SOME PROPERTIES OF SIMPLE ALLOYS

4-1. Interstitial and substitutional solid solutions

When an element B is dissolved in a metal A and the B atoms occupy
interstitial positions in the A lattice, one speaks of an interstitial solid
solution. An example of this type is austenite, which is an interstitial
alloy of carbon in y iron (f.c.c.). Since the interstitial positions provide
room only for relatively small atoms, interstitial solid solutions are likely
to be formed with the elements H, B, C, N, and O; the approximate
radii of these atoms are, respectively, 0.5, 1.0, 0.8, 0.7, and 0.6 A.

When a metal A is alloyed with a metal B and the B atoms occupy
positions which are normally occupied by A atoms, a substitutional solid
solution is formed. It is only with these alloys that we shall concern
ourselves. Substitutional solid solutions of two metals may occur only
over limited ranges of composition, the structure varying from one range
to another. A solid solution at either end of a binary phase diagram is
called a terminal solid solution; the other ranges of solid solutions are
referred to as intermediate solid solutions.!

Certain binary systems, such as the Cu-Ni and Au-Ag systems, exhibit
a continuum of solid solutions for all compositions without change in
structure. This requires first of all that both metals have the same structure ;
furthermore, the radii of the two types of atoms must be approximately
the same (within about 15 per cent). Gold and silver, for example, both
have an f.c.c. structure with lattice constants of, respectively, 4.0783 A
and 4.0856 A (at room temperature). Besides these geometrical factors,
other factors such as valence, chemical properties, etc. enter into the
conditions for solubility. That geometrical factors and the number of
valence electrons do not alone determine the formation and properties of
an alloy may be illustrated by the observation that the lattice constant in
the Au-Ag system exhibits a minimum, as shown in Fig. 4-1. The straight
line which is dotted in the figure represents what is known as Vegard’s
law; negative as well as positive deviations from Vegard’s law are
observed in alloys.

When like atoms attract each other more strongly than unlike ones,

! For a discussion of phase diagrams, see, for example, G. Tamman, The States of

Aggregation, Van Nostrand, New York, 1925; or J. S. Marsh, Principles of Phase
Diagrams, McGraw-Hill, New York, 1935.

104
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one may expect a low solubility, at least at relatively low temperatures,
since there will be a tendency for a second phase to precipitate out. In
the opposite case, with a dominant

attraction between unlike atoms, A 4080} ald)

atoms will tend to have B atoms as
nearest neighbors; in that case ordered 4.076
structures or superlattices may occur

(see Sec. 4-4). 4.072

4.068

4-2. Mutual solubility as function of
temperature

4064 1 044
0 20 40 60 80 100

In a simplified model of a metal or —> Atomic per cent Ag
alloy one may describe the cohesi.ve Fig. 41. The lattice constant (A)
energy in terms of the sum of the in-  for the gold-silver system as function
teractions between pairs of neighboring of composition; the dashed line
atoms. On the basis of this model we represents Vegard’s law. [After
shall consider the solubility of a metal Barrett, Structure  of Metals,
A in a metal B as function of tem- TcCraw-Hill, 2d ed., p. 222, 1952)
perature.? Suppose that from a piece
of metal A and from a piece of metal B we remove, respectively, an
interior A and B atom; then we put the A atom in the vacancy of the
B lattice and the B atom in the vacancy of the A lattice. The work required
for this process, assuming the two metals have identical structures, may
be written

2(paa + $up — 2¢AB) =z¢ 4-1)

Here ¢, ,, #u1, and ¢, represent, respectively, the dissociation energy of
an AA, BB, and AB pair of nearest neighbors; z is the coordination
number, i.e., the number of nearest neighbors of a given atom. Whether
or not the two metals will have a wide or narrow solubility range depends
on the quantity ¢ defined by (4-1). When ¢ > 0, like atoms attract each
other more strongly than unlike atoms, and hence we expect a limited
solubility. On the other hand, when ¢ < 0, there is a preferential attraction
between unlike atoms, and the solubility may cover the whole range of
compositions, as in the Ag-Au system.

We shall consider the case ¢ > 0 (limited solubility), inquiring about
the variation of the solubility with temperature. Suppose an alloy of the
substitutional type contains N, A atoms and N, B atoms. For convenience
we shall introduce the atomic concentrations ¢ = N /N and 1 — ¢ = N,/N,
where N = N, + N,. We shall now express the free energy F = E — TS
of the alloy in terms of ¢; in order to find the equilibrium concentraticn

2 See also A. H. Cottrell, Theoretical and Structural Metallurgy, Arnold, London,
1953.
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at the temperature 7 we may then make use of the thermodynamic
condition (¢F/dc)p = 0. We may write

F= Ebinding + Evibr - TSth - TScf (4'2)

The terms here are, respectively, the binding energy of the alloy relative
to the system of infinitely separated atoms, the vibrational energy of the
lattice, the thermal entropy term, and the configurational entropy term.

The binding energy of the alloy may be found from the following
arguments, assuming nearest neighbor interaction only: The total number
of pairs of nearest neighbors is Nz/2 (the factor } arises since otherwise
each pair is counted twice). If we assume a completely random distribution
of A and B atoms over the lattice (which is probably never exact in
practice), the probability for a pair chosen at random to be

of the AA type is c?
of the BB type is (1 — ¢)?
of the AB type is 2¢(1 — ¢)
The factor 2 in the last case enters because we count AB as well as BA
pairs; the sum of the probabilities equals unity, as it ought to. Employing
the dissociation energies introduced above, we may write
E, = —iNz[*ps + (1 — )Pbpp + 2¢(1 — )4l
or, in terms of ¢ defined by (4-1)

E, = —Nzleyy + (1 — O)ppp — (1 — )] (4-3)

The minus sign arises from the fact that the mutual potential energy of
two atoms equals minus the dissociation energy. In order to simplify
matters we shall assume that the thermal entropy is independent of ¢, i.e.,
we assume that when an A atom is substituted for a B atom, the vibrational
spectrum of the lattice does not change; this assumption does not impair
the general conclusions.

The configurational entropy is determined by the number of different
ways in which N, atoms of kind A and N, atoms of type B may be distributed
over N, + N, lattice sites (vacancies are neglected). Hence, according to
the Boltzmann relation,

N!
—TScf—: ——leOg—A—/-"I—V——’
a**'h*

Applying Stirling’s formula log N! ~ Nlog N and expressing the result
in terms of ¢, we obtain

—TS, = NkT[clogc+ (1 —c)log (1 — )] (4-4)
Substituting (4-3) and (4-4) into (4-2) and applying (9F/dc); = 0, one
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arrives at the following result for the equilibrium concentration ¢ of the
A atoms:

KTiog (5 ) = beldbas — don — 91 =200 &9)

For given values of ¢, ¢ , 4, and ¢ g, this equation can be solved numerically
for c. If we consider the special case ¢,, = ¢z We obtain

c/(1 — ¢) = exp [—z¢(1 — 2¢)/2kT] (4-6)
which for small concentrations reduces to the simple Boltzmann expression
¢ = exp (—z¢$/2kT), ¢kl 47

In Fig. 4-2 we have plotted 2kT/z¢ as function of c. The region above the
curve corresponds to a homogeneous solid solution; the region below the
curve corresponds to temperatures that are Homogeneous solution
too low to give a true solid solution. The 5
symmetry of the curve is, of course, due to
our assumption ¢,, = dgy. In practical
cases, a great part of the solubility curve
may lie above the melting point so that
in the phase diagram only those parts will
enter that are close to either of the pure
metals. When the reader takes a look
at phase diagrams of binary alloys he L
will readily recognize the occurrence 0 5 10
of the Adomelike. shapes sirr}ilar to that Fig. 42. The :gllcxbility curve
of Fig. 4-2. To give a numerical example, for a binary alloy, according to
suppose that the maximum solubility of equation (4-6).

a certain metal in another is 1 per cent

at 300°C. In that case, kT ~ 0.05 ev and from (4-7) one finds
z¢p =~ 0.46 ev. Treatment similar to that given here for substitutional alloys
may be given for interstitial ones.

—> 2kT/2¢

Phase mixture

4-3. The Hume-Rothery electron compounds

When zinc is added to copper (f.c.c.) up to atomic concentrations of
approximately 35 per cent, a solid solution is obtained with an f.c.c.
structure in which copper atoms are replaced by zinc atoms; this phase is
called the « phase. For higher zinc concentrations there is a 8 phase with
a b.c.c. structure which is stable over a narrow concentration range in
the vicinity of 50 per cent Zn ; ay phase with a complicated cubic structure
containing 52 atoms per unit cell which is stable in the vicinity of 70 per
cent Zn; and an e phase (h.c.p.) in the neighborhood of 80 per cent Zn.
These regions are separated by regions corresponding to a mixture of the
two neighboring phases. If one writes the approximate concentrations for
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which the phases of narrow composition range occur in terms of a chemical
formula, one obtains:

B phase (b.c.c.) CuZn
y phase (complex cubic) CuzZng
€ phase (h.c.p.) CuZn,

Similar sequences of phases with the same structures are found in many
alloys, but the compositions at which they occur may be quite different
from those given for the brass system above. It is obvious that the alloy
compositions corresponding to the various phases cannot be explained in
terms of the usual chemical valence rules. It was pointed out by Hume-
Rothery, however, that the electron to atom ratio. is approximately the
same for a given phase of different alloys.® A few examples are given in
Table 4-1 to illustrate this.

Table 4-1. Compositions and Electron-to-Atom Ratio for Structurally Analogous Phases

Electron-atom ratio 3:2 Electron-atom ratio 21:13 | Electron-atom ratio 7:4
p structure (b.c.c.) y structure (compl. cub.) € structure (h.c.p.)
CuZn CusZn,g CuZng,

CuBe Cu,Al, CuCd,

Cu,Al Cu;Cdg Cu;Ge
Cu;Sn Au;Cdg AgZn,

AgCd AgsCds AgsSn
AgMg Cu;,Sis AuZn,

Since the phases have a certain range of compositions over which they
are stable, the chemical formulas and the electron-to-atom ratios given in
the table are approximate. However, there is a striking regularity when
these “‘compounds” are considered from this point of view. For the alloys
given in the table the electron-to-atom ratios are calculated on the basis of
the normal number of valence electrons associated with the atoms involved.
In order to fit alloys containing transition metals such as Fe, Co, Ni into
this scheme, one must assume that these atoms contribute zero valence
electrons. For example, FeAl has the f structure corresponding to an
electron-to-atom ratio 3 : 2.

An interpretation of the change in structure associated with an increase
in the electron-to-atom ratio has been given by Jones in terms of the band
theory of metals.? Essentially, the picture is the following: In the
expression for the total energy of an alloy there occurs a term associated

* W. Hume-Rothery, J. Inst. Metals, 35, 295, 307 (1926); see also by the same author
Atomic Theory for Students of Metallurgy, Institute of Metals, London, 1946.

1 H. Jones, Proc. Roy. Soc. (London), A144, 225 (1934); A147, 396 (1934). See also

N. F. Mott and H. Jones, Theory of the Properties of Metals and Alloys, Oxford, New
York, 1936; and C. Zener, Phys. Rev., 71, 846 (1947); also references in footnote 3.
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with the kinetic energy of the conduction electrons; since this is a positive
term, it is unfavorable for the cohesive energy. As one increases the
electron-to-atom ratio it may be advantageous for the lattice to change
its structure if this permits a reduction of the total energy of the system.
We may give here the results obtained by Jones from calculations of the
band structure for the electron-to-atom ratios for which a new phase
should appear in the alloys.

Phase............cooiviinienann... B Y e
Hume-Rotheryratio................ 1.5 1.615 1.75
Jonmes ratio................. ...l 1.480 1.538 r7

The agreement between theory and experiment is quite good in view of
the approximate nature of the calculations.

4-4. Superlattices

In the discussion of lattice defects in metals in the preceding chapter
we saw that the number of defects increases with increasing temperature.
Thus the crystals are in a state of higher order at lower temperature. We
shall now discuss briefly another type of order, viz., that occurring in
many alloys. Although in some of our previous discussions we assumed
that the various types of atoms in a solid solution are distributed at

QO Au atoms
® Cu atoms

(b)

Fig. 4-3. Ordered structures of CuZn (f brass) (a), and of AuCu;, (b).

random over the available lattice sites, there is a great deal of experimental
evidence which shows that this is frequently not the case. For example,
the structure of § brass (CuZn) at low temperatures approaches an ordered
structure in which corner points of a cubic unit cell are occupied by Zn
atoms and the center by Cu atoms (see Fig. 4-3a). Thus, in the completely
ordered state, brass may be vizualized as two interpenetrating simple
cubic lattices of Cu and Zn. As the temperature is raised the degree of
order decreases, as will be further discussed below; at a critical tempera-
ture T, the degree of order drops rapidly. Another example of an ordered
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structure or superlattice is given in Fig. 4-3b for AuCu;; the corners of
the cubic cell are occupied by Au atoms, the centers of the faces by Cu
atoms. This distribution is in agreement with the ratio of the numbers of
Cu and Au atoms given by the formula AuCuy;. The same structure has
been observed for PtCug, FeNigy, and MnNi;.

Part of the experimental evidence for the existence of ordered structures
in alloys is provided by the abservation of “‘extra™ X-ray diffraction lines
which gradually disappear as the temperature is increased.” The reason for
the extra lines lies in the fact that in the ordered structures, certain planes
of atoms may have a different scattering power than parallel planes

275
.250
225
,200

175

—> Sp. heat in cal/gram ‘C

.150

125 " 1 S [ A 1
440 460 480 500°C

Fig. 4-4. The specific heat of f brass (CuZn) as function of
temperature. [After Sykes and Wilkinson, ref. 6]

containing different atoms; in the random distribution these differences
in scattering power do not occur. Further experimental evidence is derived
from anomalous peaks observed in the specific heat of these alloys; an
example is presented in Fig. 4-4.% The integral of the “‘extra” specific heat
over the temperature corresponds to the total energy required to go from
a completely ordered to a random distribution. Note the sharp drop
which defines a critical temperature. The electrical resistivity of these
alloys also drops quite sharply at T, as one goes from high to low tempera-
tures.” Since the resistivity decreases as the periodicity of the potential
seen by the electrons becomes more perfect, this again indicates a transition
from a disordered to an ordered state (see Chapter 11).

In attempting to introduce a quantity which describes the degree of
order associated with a given distribution of atoms in an alloy, one may

5 See, for example, C. Sykes and H. Evans, J. Inst. Metals, 58, 255 (1936) for powder
diffraction patterns of AuCus.

¢ C. Sykes and H. Wilkinson, J. Inst. Metals, 61, 223 (1937).

7 See, for example, N. S. Kurnakow and N. W. Ageew, J. Inst. Metals, 46, 481 (1931).
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take different points of view. In one of these one is concerned about
the degree of long-distance order; in another one is interested in the
degree of short-distance order. These two viewpoints will be discussed
briefly below.

4-5. The long-distance order theory of Bragg and Williams8

We shall consider an alloy of the simple composition AB which in the
completely ordered structure may be represented by two interpenetrating
lattices of A and B atoms. If these lattices run through the whole crystal
without discontinuities, one may define the sites corresponding to one
lattice as « sites and those of the other lattice as f sites. In the completely
ordered structure all « sites are occupied by A atoms, and all g sites by
B atoms. In an incompletely ordered alloy one may then define right
(A on «, B on ) and wrong atoms (A on 8, B on «). When R and W
represent, respectively, the number of right and wrong atoms, the long-
distance order parameter is defined by

& = (R — W)|N = 2R — N)|N (4-8)

where N = R 4+ W is the total number of atoms. When R = N there is
complete order and¥ = 1. When W = N, % = —1; this situation also
describes a state of complete order, since by interchanging the « and g
sites, this case becomes physically identical with R = N. Complete dis-
order exists when R = N/2, corresponding t0.# = 0; therefore only the
range between 0 and 1 for the order parameter is of physical interest.

Let us now investigate on the basis of a simple model how % should
vary with temperature. First of all it will be evident that disorder in the
alloy may be produced only by interchanging the positions of a right A
and a right B atom; thus, if in a certain alloy there are R right atoms in
all, R/2 of these occur on the « sites and an equal number occur on f sites.
Since the alloy at absolute zero tends to be completely ordered, the energy
required to produce disorder must be positive. Now suppose that the
alloy in thermal equilibrium contains R right atoms and W wrong atoms.
If in this state we were to interchange the positions of a right A and a
right B atom, the change in W would be AW = —AR = 2. Since in
thermal equilibrium the change AF in the free energy associated with AW
must vanish (AW < W), one can readily find the equilibrium values for
R and W in the following manner: Suppose that the energy required to
produce a pair of wrong atoms in the state R,W is ¢(R,W). The con-
figurational entropy associated with the state R, W is

S = k(Nlog N — Rlog R — Wlog W) (4-9)

® W. L. Bragg and E. J. Williams, Proc. Roy. Soc. (London), A145, 699 (1934).
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Thus the change AS, associated with AW is

AS,;= —k(ARlog R + AW log W) = 2k log (R/W)  (4-10)
Neglecting thermal entropy changes for simplicity, we may write

AF = 0 = $(R,W) — 2kT log (R| W)

or R|/W = exp [$(R,W)[2kT] 4-11)

Let us now inquire about the nature of the function ¢(R,W). Consider
a given right A atom; the probability for an arbitrarily chosen nearest
neighbor of this atom to be a B atom (right) is R/N; the probability that
a nearest neighbor atomis an A atom is W/N. The potential energy of the
A atom in the field of its nearest neighbors is then

—2(¢rpR/N + ¢AA W|N)

where we use the same symbols as in Sec. 4-2. Similarly, the potential
energy of a right B atom in the field of its nearest neighbors is

—2(¢apRIN + $ppW/N)

We leave it as Problem 4-6 for the reader to show that this model of
nearest neighbor interactions leads, for the energy required to interchange
the positions of the right A and B atoms, to the expression

SR, W) = $o(R — W)IN = $oF ¢4-12)

where ¢y = z(2¢,5 — 14 — Pup) is a positive quantity since the dissocia-
tion energy ¢,y for an unlike pair is larger than that for a pair of similar
atoms. The physical meaning of ¢, is that it represents the energy required
to produce 2 wrong atoms in the completely ordered lattice (& = 1). It
is observed that according to (4-12) the energy required to produce 2
wrong atoms decreases as the amount of order decreases. Qualitatively,
this can readily be understood ; for example, if two atoms in the completely
disordered state (# = 0) are interchanged, the energy is, on the average,
zero because in the long-distance theory the distribution of A and B atoms
around a given A or B atom is then random. Actually the simple linear
relationship (4-12) between ¢(R,W) and & was introduced by Bragg and
Williams as an assumption; we see that this assumption is equivalent to
the model employed above in which the interaction between the atoms is
simplified to nearest neighbor interactions with constant ¢,,, ¢,p, and
¢pi values.

When (4-11) and (4-12) are substituted into (4-8) we obtain the
following implicit equation for the long-distance order parameter.

& = tanh ($,%/4kT) (4-13)
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This equation may be solved graphically by introducing the variable

x = ¢S [4kT or & = 4kTx|d, 4-14)
where . must satisfy the equation & = tanh x as well as (4-14). The
function tanh x is represented in Fig. 4-5. The #(x) curves corresponding

T,<T,

[

—_— X

Fig. 4-5. Graphical solution of equation (4-13) as explained in text.

to (4-14) produce a set of straight lines, of slope equal to 4kT/d,, i.e.,
proportional to T. The intersection of the tanh x curve with one of the
straight lines then gives the value of & for the corresponding temperature.
Since the slope of the tanh x curve for very small values of x is equal to
unity, there exists a critical tem-
perature T, above which” = 0, viz.,

T, = ¢o/4k (4-15)

Thus in this theory the order dis-
appears altogether at 7,. The tem-
perature dependence of & according
to the Bragg-Williams theory is given
in Fig. 4-6. Note the rapid drop in the
vicinity of T,. The reason for this
lies in the fact that once a certain
amount of disorder is present, it
becqmes casier for the t?lermal Fig. 4-6. The long distance order
motions to produce more disorder parameter as function of temperature,
(see 4-12). One therefore speaks of according to the Bragg-Williams theory.
a cooperative phenomenon. Other

cooperative phenomena are ferromagnetism and ferroelectricity; it is
instructive to compare the theoretical treatment of those phenomena
with the order-disorder treatment given above.

— kT/8,
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For f brass, T, ~ 740°K, so that according to (4-15) the quantity ¢,
is approximately 0.25 ev in this case.

A few words may be said here about the *“‘extra” specific heat associated
with the order-disorder transition. The energy required to increase R by
dR is, according to the definition of ¢, equal to —¢,FdR/2. Making use
of (4-8) one may thus write

dE = —(Ngo/4)F dSF (4-16)

The specific heat per atom associated with the order-disorder transfor-
mation if thus given by

Ac, = (1/N)dE[dT) = —($oF |4)(dS[dT) (4-17)

This function has been plotted in

15k Beu/k Fig. 4-7; we see that the theoretical
T curve drops to zero at T,, whereas

10F the experimental curves show tails
extending to higher temperatures (see

Sr Fig. 4-4). Apart from this, the two
curves have the same general shape.

0 1 When one calculates the area under

— T/T, the extra specific heat curve, one

Fig. 4-7. The specific heat associated obtains from (4-17),
with the order-disorder transition, [ ®c,dT = kT,[2 (4-18)
according to Bragg and Williams. J0
in fair agreement with experiment.

4-6. Short-distance order theories

The essential difference between the long-distance and short-distance
theories of order may be illustrated with reference to Fig. 4-8. From the
long-distance order point of view, this lattice would be highly disordered
and yet we observe that nearly all atoms have unlike atoms as nearest
neighbors. In other words, if one were to employ the relative number of
unlike nearest neighbors as a criterion for order, the lattice of Fig. 4-8
has a high degree of order. Theories based on this concept have been
worked out by many investigators.® Short-range order may be defined in
terms of the number of right pairs (AB) and the number of wrong pairs
(AA, BB). Thus consider an A atom and let the probability for a
given nearest neighbor to be a B atom be (1 + ¢)/2 and to be an A atom

® H. A. Bethe, Proc. Roy. Soc. (London), A150, 552 (1935); E. J. Williams, Proc.
Roy. Soc. (London), A152, 231 (1935); R. Peierls, Proc. Roy. Soc. (London), A154, 207
(1936); J. G. Kirkwood, J. Chem. Phys., 6, 70 (1938); C. N. Yang, J. Chem. Phys., 13,
66(1949); Y. Y. Li,J. Chem. Phys., 17, 447 (1949); H. A. Kramers and G. H. Wannier,
Phys. Rev., 60, 252, 263 (1941); L. Onsager, Phys. Rev., 65, 117 (1944); F Zernicke
Physica, 71, 565 (1940).
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(I — 0)/2; o is then the short-distance order parameter. For complete
order, ¢ = 1, for a random distribution of atoms, ¢ = 0. Suppose that
the dissociation energies ¢ , | and ¢, are equal, and, of course, smaller
than ¢ ;5. In that case we should have, according to the Boltzmann
distribution,

(I 4 0)[(1 — 0) = exp (b — ba)/KT] = exp ($/kT)  (4-19)

Thus if ¢ were a constant independent of the degree of order, o would
decrease slowly te zero at high temperatures and there would be no
critical temperature. In Bethe's theory ¢ is calculated in terms of the
long-range order which exists in the crystal; since ¢ decreases with
decreasing long-range order, o decreases more rapidly to zero in the

[e] Q o . . .
. [ ® o o

o] (o] (] . . .
. . ® o] 8]

o] o] o] . . .
" A; © B; ® AorB

Fig. 4-8. [lllustrating the difference Fig. 49. The temperature dependence

between long distance and short distance
order; from the former point of view
the lattice is very disordered, from the

of the long-range and short-range order
parameters for an AB; super-lattice.
[According to Bethe, ref. 9]

latter point of view it is well ordered.

vicinity of the critical point than for constant ¢. As an example we give
in Fig. 4-9 the long-range and short-range order parameters % and o for
a superlattice of the AB; structure. For the details of short-distance order
theory we refer the reader to the literature. We may mention here an
approximate theory developed by Cowley in which the order parameter is
expressed in terms of the coefficients of the Fourier series, which determines
the intensity of X-ray scattering.!® This makes a direct comparison
between theory and experiment possible; the agreement is very good.
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PROBLEMS

4-1. Write an essay on the phase diagrams of binary alloys, showing
that you are familiar with the meaning of such diagrams. (See, for
example, J. S. Marsh, Principles of Phase Diagrams, McGraw-Hill, New
York, 1935).

4-2. For the Bragg-Williams theory of long range order show that
—(d &/dT) for T = T, is infinite.

4-3. For the Bragg-Williams theory show that the specific heat
associated with the order-disorder transition is given by ¢ = —(¢o/8)
(d &2/dT) per atom. Also show that for =T, the order-disorder specific
heat is equal to 3k/2 per atom.

4-4. Discuss the theory of Bethe for order-disorder and compare the
results with those of the Bragg-Wiltiams theory, in particular with reference
to the value of the critical temperature and the specific heat versus
temperature curve. (See H. A. Bethe, Proc. Roy. Soc. (London), A150,
552 (1935), or N. F. Mott and H. Jones, Theory of Metals and Alloys,
Oxford, New Ycrk, 1936).

4-5. Discuss the work of Cowley on the order-disorder problem (see
footnote 10).

4-6. Consider an alloy AB with R right atoms and W wrong atoms in
the sense of the Bragg-Williams theory. Assuming only nearest neighbor
interaction, show that the energy required to produce two more wrong
atoms is given by ¢ = (R — W)/(R + W), where ¢, corresponds to ¢
for W = 0. This proves equation (4-12).



Chapter 5
LATTICE ENERGY OF IONIC CRYSTALS

5-1. Introductory remarks

One of the fundamental problems in the theory of solids is the
calculation of the binding energy of a crystal. This evidently requires a
knowledge of the forces acting between the composing particles. The
simplest group of crystals to deal with in this respect are the ionic crystals,
for which calculations of the cohesive energy were made in 1910 by Born!
and Madelung.? The basic assumption in the theory of the cohesive
energy of ionic crystals is that the solid may be considered as a system of
positive and negative ions. This is a good example of the simplification
of a problem resulting from considering certain groups of elementary
particles as units, the calculations being carried out for these units rather
than for the elementary particles themselves. For example, in sodium
chloride it is assumed that these units are the Na* ion, with an electron
configuration 1s2, 252, 2p% and the CI- ion, with an electron configuration
152, 252, 2p8, 352, 3pS. In the theory one works with these ions as “‘charged
particles,” forgetting to a large extent about their internal constitution.
The influence of the latter may then be introduced in the form of refinements
of the theory.

We shall begin with a discussion of perfect crystals, assuming that all
ions occupy the proper lattice points. However, perfect crystals do not
exist, and even if a crystal is “‘perfectly grown” and chemically pure there
are always a (relatively small) number of lattice defects present, as discussed
in Chapter 3. The changes in lattice energy resulting from a few simple
types of lattice defects will be discussed in Chapter 7.

5-2. The fundamental assumptions of Born’s theory

Born’s theory of the lattice energy is based on the assumption that
the crystals under corsideration are built up of positive and negative ions.
If we assume that the charge distribution in these ions is spherically
symmetric, the force between two such ions depends only on their-distance
apart and is independent of direction. As an example, consider a lattice
of the NaCl structure, represented in Fig. 5-1. We shall denote the

! See, for example, M. Born, Atomtheorie des festen Zustandes, Teubner, Leipzig,

1923; also, Handbuch der Physik, Vol. 24/2, Springer, Berlin, 1933.
* E. Madelung, Physik. Z., 11, 898 (1910).

117
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shortest interionic distance by r and consider this quantity a variable for
the moment. A given sodium ion is surrounded by 6 CI~ ions at a distance
r, 12 Na* ions at a distance V2, 8 CI- ions at a distance rV3, ete. The
Coulomb energy of this ion in the field of all other ions is therefore

e'(é 12+8_i+_21_)
Vi V2 V3 V& vs
where e is the charge per ion. Note that because Coulomb forces decrease
relatively slowly with distance, it is not sufficient to consider only a few
shells of ions around the central ion.

Evidently, the cocfficient of e%/r is a pure number, determined only
by the crystal structure. Series of this type have been calculated

by Madelung,® Ewald,' and Evjen.® For the
NaCl structure the result is

e, = —Ae?lr with A=1.747558... (5-2)

The constant A is called the Madelung
constant. For other erystal structures composed
of positive and negative ions of the same
valency, the Madelung constants are®

o= (5-1)

r

Cesium chloride A = 1.762670
NaCl Zincblende (Zn8) A = 1.6381
Waurtzite (ZnS) A = 1.641

Fig. 51. The sodium ] )
chloride structure. Note that e in (5-2) represents in general the

electronic charge times the valence of the ions
under consideration. The minus sign in (5-2) indicates that the
average influence of all other ions on the one under consideratien
is of an attractive nature. To prevent the lattice from collapsing, there
must also be repulsive forees between the ions. These repulsive forces
become noticeable when the electron shells of neighboring ions begin to
overlap, and they increase strongly in this region with decreasing values
of r. These forces, as other overlap forces, can best be discussed on the
basis of wave mechanics, because they are of a nonclassical nature. Born
in his carly work made the simple assumption that the repulsive energy
between two ions as function of their separation could be expressed by a
power law of the type B’/r", where B’ and n are as yet undetermined
constants characteristic of the ions in the solid under censideration.”

¥ E. Madelung, Physik. Z., 19, 524 (1918).
¢ P. P. Ewald, Ann. Physik, 64, 253 (1921).
*H. M. Evjen, Phys. Rev., 39, 675 (1932).
4 J. Sheeman, Chem. Revs., 11, 93 (1932); for other structures centainiag ions of

different valency, see, for example, F. Seitz, Modern Theory of Solids, McGraw-Hill,
New York, 1946, p. 78.

? See also Sec. 1-11.



Sec. 5-2] LATTICE ENERGQY OF IONIC CRYSTALS 119

Focusing our attention agaih on one particular ion, we may thus write
for the repulsive energy of this ion due to the presence of all other ions,

€rep = BII" (5-3)

where B is related to B’ by a numerical factor. In view of the fact that
repulsive forces depend so strongly on the distance between the particles,
the repulsive energy (5-3) is mainly determined by the nearest neighbors
of the central ion. The total energy of one ion due to the presence of all
others is then obtained by adding (5-2) and (5-3):

€ = —Ae¥r + Br (5-4)

Assuming that the two types of forces just discussed are the only ones
we have to take into account and neglecting surface effects, we thus find
for the total binding energy of a crystal containing N positive and N
negative ions,

E(r) = N( —Ae; + r—f) = Ne(r) (5-5)

We multiplied by N rather than by
2N because otherwise the energy
between each pair of ions in the
crystal would have been counted
twice. The two contributions to E(r)
are represented schematically in Fig.
5-2. If we consider the crystal at
absolute zero, the equilibrium con-
ditions require E to be a minimum,
which will be the case for the equi-

Fig. 5-2. Schematic representation of

- — a.. whe ]
librium valuelrl o .h re d‘.’“ P the energy of attraction (a) and of
resents the smallest interionic distance repulsion (b) as function of the lattice

in the crystal at 7 == 0. For this parameter. The resultant (c) exhibits a
minimum minimum for a lattice constant ay,

corresponding to equilibrium.
(dE{dr) ,_o,= 0 (5-6)

From the last two expressions one thus obtains the following relation
between the two unknown parameters B and n:

B = (Ae®|n)al ! (5-7)

Substitution into (5-5) yiclds for the lattice energy £,

2
a, n
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where €, = e(a,). The interionic distance can be obtained from X-ray
diffraction data; the charge per ion is also known, and thus the lattice
energy can be calculated if the repulsive exponent n is known. How
information regarding » may be obtained is discussed in the next two
sections.

5-3. Calculation of the repulsive exponent from compressibility data

Born obtained the unknown repulsive exponent n from measurements
of the compressibility of the crystals as follows: The compressibility K,
at absolute zero is given by

1KoV = (d*E[dV?), - Vo (5-9)
where V, is the volume of the crystal corresponding to an interionic

distance a,; V' corresponds to the variable r. The relation between
volume and interionic distance must of course be of the form

V = cNP (5-10)

where ¢ is a constant determined only by the type of lattice. For NaCl,
for example, c = 2. Hence
dE 1 dE d*E 1 d (1 dE)
dV ~ 3cNr? dr and dv:~ 9c¢3N2? dr\r* dr (5-11)

From (5-5) we thus obtain

1 (dzE) 1 [~4Ae2 n(n + 3)B] (5-12)
KocNa}~ \dv:a, 9c:Ne: |l aj agtt ’
Substituting B from (5-7), we find
n =1+ 9cay!/K,e’A (5-13)

from which the parameter n can be calculated if K, is known. Some
experimental values for alkali halides according to Slater, and obtained
by extrapolation of compressibility measurements to T = 0, are given
below.®

LiF n=2>59 NaCl n=09.1
LiCl n = 8.0 NaBr n=295
LiBr n= 8.1

We note that there is a marked variation from one crystal to another.
However, even an appreciable error in # leads to a relatively small error
in the lattice energy, which is proportional to (1 — 1/n). If we change n
by unity, E;, changes by only 1 or 2 per cent. According to (5-8) and in
view of the relatively large values of n, most of the lattice energy is due to

8J. C. Slater, Phys. Rev., 23, 488 (1924).
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the Coulomb interaction, and the repulsion contributes only a relatively
small fraction. On the other hand, the repulsive and attractive forces
acting on any one ion just balance for r == a, and thus are equal in
magnitude.

5-4. The repulsive exponent as function of electron configuration

It will be obvious that the repulsive forces acting between two ions
will depend on the distribution of the electronic charges in the ions and
especially on the number of electrcns in the outer shells. For example,
we would expect n to be larger for NaCl than for LiCl, because the Na*
ion has eight outer electrons, the Li* ion has only two. From an approxi-
mate treatment of the interaction between closed-shell electronic con-
figurations, Pauling arrived at the following values of » as a function of
the occupation of electronic shells.®

Table 5-1. Repulsive Exponent as Function of Electron Configuration

Electron configuration

lon type

K L M N o n
He 2 s s e e 5
Ne 2 8 o el 7
Ar (Cu) 2 8 8(18) ... ... 9
Kr (Ag) 2 8 18 8(18)  ...... 10
Xe (Au) 2 8 18 18 8(18) 12

This table should be used by taking the average value of n for the two
ion types occurring in the crystal. For NaCl, for example, one takes the
average of 7 and 9; for NaF the average of 7 and 7, etc. Note that this
table is in qualitative agreement with the experimental values of Slater
referred to above.

5-5. Calculated and experimental lattice energies

The lattice energy €, may now be calculated from (5-8) by substituting
the proper values for the charge of the ions, the interatomic distance and
the Born exponent n. Values for ¢, so obtained are given in Table 5-2
for alkali halides and the alkaline earths oxides. The charge per ion in
the latter group is assumed to be 2e; it is not quite certain that these

® L. Pauling, Proc. Roy. Soc. (London), 114, 181 (1927); J. Am. Chem. Soc., 49, 765
(1927); Z. Krist., 67, 377 (1928).
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oxides can be considered jonic compounds. It may be remarked that
CsCl, CsBr, and Csl crystallize in the cesium chloride structure (see
Fig. 5-3), whereas all other compounds in the table have the NaCl structure.
The expansion of the lattice, entering through the interionic distance 4,
can usually be neglected ; the coefficient of expansion of ionic crystals at

room temperature is of the order of 10~* per degree.

Table 5-2. Lattice Energies for Alkali Halides and Alkaline Earth Oxides.
The calculated values are based on (5-8). The experimental values are

obtained in a manner to be described below.

Compound A a, in ” €, inev €, inev
ngstroms calc. exp.
LiF 2.07 6.0 10.s ...
NaF 231 7.0 93 | ...
KF 2.66 8.0 T
RbF 2.82 8.5 79 0 L
CsF 3.00 9.5 75 | L.
LiCl 2.57 7.0 8.4 8.6
NaCl 2.81 8.0 8.0 7.9
KCl 3.14 9.0 7.1 7.1
RbClI 3.27 9.5 6.9 7.0
CsCli 3.56 10.5 6.5 6.7
LiBr 2.74 7.5 7.9 8.2
NaBr 2.97 8.5 1.5 1.5
KBr 3.29 9.5 6.8 6.8
RbBr 3.42 10.0 6.6 6.6
CsBr 371 11.0 6.2 6.4
Lit 3.03 8.5 7.4 7.8
Nal 3.23 9.5 7.0 7.2
K1 353 10.5 6.5 6.6
Rbl 3.66 11.0 6.2 6.5
Csl 3.95 12.0 5.9 6.3
MgO 2.10 7.0 410 | ...
CaO 2.40 8.0 65 | ...
SrO 2.57 8.5 45 | ...
BaO 2.75 9.5 325 e

An experimental check on the calculated values of the lattice energies
may be obtained from what is known as a Born-Haber cyele. Consider,
for example, 1 gram atom of solid sodium reacting with } gram molecule
of Cl, gas. As a result of the reaction, solid NaCl is formed and a certain
amount of heat Q (the “heat of formation™) is given off. The change in
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energy due to such a reaction may be calculated by considering the
following steps
Nagig + Sna Navapor
Nayapor + Ina — Na* + electron
éC12+ %sz - Cl
Cl + electron — Cl- + Eg
(Na* + CI")gaq — NaClggq + €,

Nagiiq + $Cly + Sna + Ina + 4Dy, > NaClgig + Ei + €,

The quantities introduced all refer to the formation of one ion pair of
solid NaCl. Here Sy, represents the sublimation energy of sodium per
atom. Sublimation energies in general can be determined experimentally

n ~4-7 o
A [ B
7 v P, TO T T

\ ) | [,
: \\// | |/9
| ke ——}-0

’ I 71
[ I (o]
D// \ | L '
0= — — - e - e SR o o’

,/’ \ﬁ /( ] 5
-7 ‘\ /,‘ ;
CsCl ZnS

Fig. 5-3. The CsCl and the ZnS (sphalerite or zincblende) struc-

tures. The open circles in the ZnS structure are located at points

obtained by displacements of 1/4 along three cube edges of the

corresponding corner point. For one of the open circles we have

indicated how it is surrounded by four black dots occupying the

corner points of a regular tetrahedron, with the open circle at the
center.

by direct caloric measurements or from measurements of the vapor
pressure as function of temperature. The ionization energy Iy, represents
the energy required to take away the outer electron of the sodium atom,
and can be obtained experimentally either from optical measurements or
by bombardment of atoms with electrons and measuring the minimum
energy of the latter required to produce ions. The dissociation energy
D¢, required to separate the two Cl atoms in a Cl, molecule can be
obtained by determining the dissociation constant as function of tempera-
ture. The electron affinity E, is the energy gained by combining an
electron and a Cl-atom. Electron affinities can be determined by measuring
the ionization energy of the negative ions, or by measuring the density of
halide ions in alkali halide vapor.}® Now, we also know that

Nag,q + 3Cl, > NaCly,;q + ¢

' J. E. Mayer, Z. Physik, 61, 798 (1930); L. Helmholz and J. E. Mayer, J. Chem.
Phys., 1, 245 (1934); P. P. Sutton and J. E. Mayer, J. Chem. Phys., 2, 146 (1934); 3, 20
(1935); J. E. Mayer and M. McC. Maltbie, Z. Phys., 75, 748 (1932).
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where g refers again to the heat of formation per ‘“molecule” NaCl formed.
Subtracting this equation from the one obtained above, we find for the
lattice energy per ion pair,

€Lexp. = Sxa T Ina + D0y, — Ec + ¢ (5-14)
For NaCl, all quantities on the right-hand side are known from experiments
and thus we are able to give an experimental value for ¢; which may be
compared with the one calculated with the Born theory. For NaCl we
find, for example, from (5-14),

€Lexp.= 1.1 +514+12—-38443=79ev

whereas Born’s theory yields 8.0 ev. The experimental values obtained in
this way are listed in Table 5-2, and we see that theory and experiment
agree within a few per cent, indicating that the relatively simple approach
is essentially correct.

For the fluorides and oxides, the electron affinities are not known
from experiment, and they are usually calculated by replacing €y o, by
€7 cate. 1N (5-14). We note that for oxygen the electron affinity is negative,
i.e., it requires energy to add 2 electrons to the atom. This is not surprising,
because after the first electron has been added, we have a negative O~ ion
and we would expect addition of a second electron to require appreciable
energy. An experimental determination of the affinity of a neutral oxygen
atom for the first electron added gave 2.2 ev according to Lozier.”! Now
the total electron affinity for the addition of 2 electrons is —7.3 ev when
calculated from the lattice energy of oxides in the manner indicated above.
Thus addition of the second electron requires about 9.5 ev. The usually
accepted values of the electron affinities are given in Table 5-3 together
with the dissociation energies of the diatomic molecules (in electron volts).

Table 5-3. Electron Affinities and Dissociation Energies

Electron affinity Dissociation energy
F 4.25ev 2.75ev
Cl 4.0 2.50
Br 3.8 2.01
1 3.45 1.58
o -13 1.52
S -3.5 2.75
Se —4.2 2.50

5-6. Stability of structures and ionic radii

Tonic compounds of the composition A*B~ occur in the sodium
chloride structure, the cesium chloride structure, and the zincblende

11 W. W. Lozier, Phys. Rev., 46, 268 (1934).
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structure (ZnS). The latter two are represented in Fig. 5-3. In the CsCl
structure each ion is surrounded by 8 nearest neighbors of opposite sign ;
in NaCl by 6, and in zincblende by 4. One may thus ask why a certain
compound crystallizes in a particular structure.

The answer must obviously be sought in the fact that the energy should
be a minimum, and the problem is thus reduced to explaining why for a
given compound its natural structure has a lower energy than any other
structure. We shall see that some insight into this problem may be
obtained from considerations of the size of the ions.

For metals one defines the atomic radius as half the distance between
nearest neighbors, although it is recognized that the meaning of the size
of an atom is necessarily vague. For ionic crystals one could try a similar
approach, but onc is immediately faced with the difficulty that these
compounds consist of at least 2 types of ions, so that the lattice constant
provides information only about the sum of two radii. A little considera-
tion of the interionic distances as given in the preceding section shows
that to a fair approximation ionic radii are additive quantities. For
example, if one calculates the difference (rg+ — ry,+) from the values
given in Table 5-2 for the halides of these metals, one finds from the
fluorides,

P+ — Pxat = gy — Ay, = 0.35 Angstrom

and from the chlorides, bromides, and iodides in the same manner 0.33 A,
0.32A, and 0.30 A, respectively. We see that the difference is roughly
constant and that it has meaning to associate a rather definite radius
with each ion. It is also obvious that a table of ionic radii can be obtained
only if the radius of one ion is known. Goldschmidt in 1927 has tabulated
ionic radii based on a radius of the F~ ion of 1.33 A, a value which he
decided upon on the basis of work by Wasastjerna on the relation between
polarizability and ion size.!? Pauling, in the same year, independently
published ionic radii based on theoretical calculations of the radii of some
ions.’? The two sets are not equal, which is not surprising because of the
inaccuracies involved. One commonly refers to the Goldschmidt and the
Pauling radius of a given ion. In Table 5-4 the Goldschmidt radii (G) do
not refer to the original set but include many recent X-ray diffraction
data, especially those of Zachariasen.!® Contrary to the tables by Gold-
schmidt, the radius for O%* is 1.45A rather than 1.35 A. The radii
according to Pauling are also given in Table 5-4.

Returning now to the question of stability, we would expect at first
sight that the CsCl structure should always be more stable than the other

12V, M. Goldschmidt, Chem. Berichte, 60, 1263 (1927); L. Pauling, J. Am. Chem.
Soc., 49, 765 (1927).

13 W. H. Zachariasen, Acta Crystall., 1, 265 (1948); Phys. Rev., 73, 1104 (1948);

Chem. Phys., 16, 254 (1948).
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structures, because it has the highest coordination number. Now, although
it is true that a high coordination number will lead to strong binding and
thus high stability, there is another requirement to be fulfilled, viz., that
ions of opposite sign should be separated by as small a distance as possible.
In other words, positive and negative ions should “‘touch,” because any
increase in their separation would give a higher energy (less binding)
according to equation (5-8). It is at this point that a consideration of the
relative radii of the ions can provide at least a guiding principle. To
illustrate this. let us consider an ionic crystal of the type A*B~ with ioni¢
radii r, and r,, where we assume r, < ry. Suppose we build a CsCl
structure with these ions, assuming that positive and negative ions touch
each other. The cube edge, corresponding to the separation of ions of
equal sign, is then
a= @V +ry)

Table 54. Goldschmidt (G) and Pauling (P) lonic Radii in A

lon G P fon G P fon G P
H 1.54 2.08 Be®* 030 031 B+ 0.2 0.20
F 1.33 1.36 Mg!t  0.65 0.65 Al 045 0.50
Ci 1.81 1.81 Ca** 094 099 Sc** 0.68 0.81
Br 1.96 1.95 Srt 1.10 1.13 Y3+ 0.90 0.93
1 2.19 2.16 Ba®* 1.29  1.35 La’* 1.04 115
Zn** 0.69 0.74 Ga** 060 062
o* 1.45 1.40 Cd** 092 097 In%* 0.81 0.81
S:- 1.90 1.84 Hg** 0.93 1.10 TI*+ 0.91 0.95
Se? 2.02 1.98 Pb*+ 1.17 1.21
Te® 2.22 2.21 Fe'* 03y ......
Mnt* 080 080 Cr*+ 055 ......
Li* 0.68 0.60 Fet* 076 0.7%
Na* 0:98 0.95 Co** 070 0.72 Ct+ 0.1 0.13
K* 1.33 1.33 Nit+ 0.68 0.69 Sit+ 0.38 041
Rb* 1.48 1.48 Cut* 092 ...... Tit+ 0.60 0.68
Cs* 1.67 1.69 Zrt 0.77 0.80
Cu* 0.95 0.96 Ce** 0.87 1.01
Ag* 113 1.26 Ge'* 054 053
Au® L. 1.37 Sn** 0.71 0.71
TI* 1.51 1.44 Pb** 081 084

Suppose the ion of radius r, is the lon in the center of the cube. If we
now increase the radius r, gradually, leaving r, constant, we reach a value
of ry such that further increase makes it impossible for the central ion to
touch the ones at the corners. This critical value is clearly reached when

a=2r,=@2/VIr,+ry) or ry=13,
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Thus r, > 1.37r; would lead to an increase in the distance between
positive and negative ions and consequently to an increase in energy.
The competition between coordination number on the one hand and
separation between positive and negative ions on the other will thus set
in as soon as the ratio of the radii becomes larger than 1.37 and a more
favorable structure may result, viz., the NaCl structure. The stability
limits of the latter may be investigated in the same way. In this case the
critical ratio of the radii is determined by

2ry=1(n + r)V2 or r,=244r

Again, if the ratio becomes larger than 2.44, positive and negative ions
eannot touch each other, leading to an increase of the energy and conse-
quently to the formation of the more stable zincblende structure (Fig.
5-3). For this structure, positive and negative ions cannot touch each
other if ry > 4.55r,. The stability limits as derived from the above
simplified billiard ball model for the ions are therefore

cesium chloride ......... 1 << rpfr, < 1.37
sodium chloride......... 1.37 < ryfr, < 2.44
zincblende ............... 244 < ryfr, <2 455

It must be emphasized that these results can be looked upon only as a
rough rule. In general, however, one may say that the CsCl structure is
found in those compounds for which the ionic radii are nearly equal,
whereas the zincblende structure occurs only when the ratio of the radii is
about two or more. This may be illustrated by a few examples in Table 5-5.

Table 6-5. Ratio of Negative and Positive Ion Radii for Salts with the
Cesium Chloride and Zinchlerde Structure

Cesium chloride i Zincblende ol
structure structure )

CsCl 1.1 ZnS 2.1
CsBr 1.2 ZnSe 23

Csl 1.3 BeS 5.1
TICI 1.2 BeSe 5.6
TiBr 1.3 CuCl 1.9

T 1.5 CuBr 20

Cul 23

A detailed discussion of the stability of the cesium chloride and sodium
chloride structures has been given by May.! It is finally of interest
to note that structure transformations have been observed under

1 A. May, Phys. Rev., 52, 339 (1937).
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high pressures. A review, of this subject may be found in a book by
Bridgman.!s

5-7. Refinements of the Born theory

The development of wave mechanics provided a better understanding
of the chemical bond and interatomic forces in general. As a result,
several refinements of the Born theory have been made, in particular by
Born and Mayer and their collaborators.® The essential refinements were
the following:

1. Quantum mechanical calculations of the forces between ions
indicate that a simple power law for the repulsive forces (5-3) cannot be
rigorous. One therefore replaced this law by an exponential one of the

form
€rep (1) = ce™7l* (5-15)

where ¢ and p are constants.

2. One added an attractive term to the lattice energy corresponding
to the van der Waals forces which act between ions or atoms with a rare
gas electron configuration.

3. One took into account the ‘“zero-point energy” of the crystal.

We shall not go through the calculation of the lattice energy which
includes the modifications just mentioned, because the method is in
principle the same as the one followed above. Also, the differences in
the results obtained are slight. However, a few remarks about the modi-
fications themselves, in particular about those mentioned under (2) and
(3) may be in order.

The van der Waals forces are responsible for the cohesion in the
liquid and solid states of rare gases as well as for most organic crystals.
These forces have been treated by London!? and Margenau®® on a quantum
mechanical basis. An approximate expression for the interaction energy
of two atoms or ions with filled shell electron configuration is

() = — = L2 (5-16)

where I, and I, refer to the ionization energies of the particles involved
and a«;, a, refer to the polarizabilities. The nature of these forces is
essentially a quantum effect, although the fact that they vary with the
sixth power of the distance may easily be shown from classical
considerations.

1> P. W. Bridgman, Physics of High Pressure; 2d ed., Macmillan, New York, 1950.

* M. Born and J. E. Mayer, Z. Physik, 75, 1 (1932); J. E. Mayer, J. Chem. Phys., 1,
270 (1933); J. E. Mayer and M. G. Mayer, Phys. Rev., 43, 605 (1933).

1" F. London, Z. Physik, 63, 245 (1930).
18 H. Margenau, Phys. Rev., 38, 747 (1931); Revs. Mod. Phys., 11, 1 (1939).
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A homogeneous electric field E induces in an atom a dipole (see
Sec. 6-2):
u=gqx =aF (5-17)

where ¢ and x are, respectively, the effective charge and displacement;
« is the polarizability of the atom. The energy of the atom in the field is
then

T E o
€= — fo gEdx = — |, £ dE — —}oE? (5-18)

For a field strength varying with time, one would have for the average

energy,
e = —(af2)(E?) (5-19)

Now, suppose the atom is under influence of another atom at a distance r.
The latter may be considered a system of oscillating dipoles formed by
the nucleus and the electrons. The electric field strength of a dipole
varies as r~3 and hence, according to (5-18), the energy of one atom in
the field of another may be written

€ = —constant/r® (5-20)

The mutual energy of two atoms would then be given by the sum of two
terms of the type (5-20). From the classical point of view, therefore, these
forces are a consequence of the dipole-dipole interaction between the
atoms.

Actually, the energy corresponding to (5-16) is only part of the van
der Waals energy and there is an infinite series of rapidly converging
terms. The next one corresponds to dipole-quadrupole interaction and
varies as r~8.

For the alkali halides, the attractive energy corresponding to (5-16) is
of the order of a few per cent of the total lattice energy. For the silver
halides it is appreciably more; e.g., for AgBr it is about 14 per cent.
This is a consequence of the relatively high polarizability of the silver ion.
We should note that the van der Waals energy sometimes plays an
important role in the discussion of the stability of different lattice
structures.!?

The zero-point energy of the crystal is also a consequence of quantum
mechanics. The possible energy levels of a harmonic oscillator are given
by

= (n+ Phv (5-21)

where 7 is an integer and » is the frequency. Thus, even at absolute zero
an oscillator has a zero point energy of hv/2. Now, in the Debye theory

19 J. E. Mayer, J. Chem. Phys., 1, 270 (1933); 1, 327 (1933); J. E. Mayer and R. B.
Levy, J. Chem. Phys., 1, 647 (1933).
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of the specific heat of solids, a crystal is represented formally by a system
of harmonic oscillators with a frequency spectrum given by (see Sec. 2-6)

2 1
F()dv = 4nV (? + 23)112 dv (5-22)
1 1

where V' is the volume of the crystal and c, and ¢, are, respectively, the
velocities of propagation of transverse and of longitudinal elastic waves.
Making use of the definition of the Debye frequency v;, one may write

F(v) dv = ON/[v3,)v? dv (5-23)

where N stands for the total number of atoms or ions in the crystal.
Hence, at absolute zero, the contribution of the zero-point energy is

}[;” FO)w dv = ENhvy, (5-24)

Per ion pair this corresponds to 9hvp,/4. With a Debye frequency of the
order of 1012-10'3 sec! this gives about 0.1 ev. As a correction to the
lattice energy the zero point energy thus contributes about 1 per cent.
Note that this correction reduces the values given in Table 5-2, whereas
the van der Waals correction raises them. In general, the van der Waals
correction is more important for heavy elements (large polarizabilities),
and the zero-point energy for light elements (high Debye frequency). As
an example, we give here the various contributions to the lattice energy
for the two extreme cases LiF and CsI (all energies in ev).

LiF Csl
Coulomb............... —12.4 —6.4
Repulsive............... + 1.9 +0.63
Dipole-dipole ......... - 0.17 —0.48
Dipole-quadrupole... — 0.03 —0.04
Zero-point.............. + 0.17 +0.3
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PROBLEMS

5-1, Show that the Madelung constant for a one-dimensional array of
ions of alternating sign with a distance a between successive ions is equal
to 2 log 2.

5-2. Calculate the compressibilities at absolute zero from (5-13) for
LiF and BaO, assuming the values of » given in Table 5-1.

5-3. A molecule of the vapor of an alkali halide is presumably built
up of a positive and a negative ion. Assuming the quantities B’ and # in
the repulsive energy to be the same as in the solid state, show that

&le,=rAr, and (rJr)y = 6/4

where €, and e, represent, respectively, the binding energy per molecule
in the gaseous and solid state; r, and r, are the equilibrium distances in
the gasecous and solid state. Show further that for this model ¢, is
approximately two-thirds of «,.

5-4. Set up the simple Born theory in a more general fashion than is
done in the text, so as to include cases of ions of different valency, such
as CaF,, Fe,0;,, etc.

5-5. Discuss the experimental methods by which the quantities on the
right-hand side of equation (5-14) may be determined.

5-6. Derive the expression for the lattice energy, replacing the power
law describing the repulsive energy by an exponential law of the type
(5-15). Calculate the constants ¢ and p occurring in that expression for KBr.

5-7. Verify the values for the dipole-dipole contribution and for the
zero-point energy to the total lattice energy for LiF and Csl, given on
page 130.

5-8. Show that the polarizability of a metal spherc of radius R is
equal to R3,

5-9. Consider two ions of charges +e and —e. Assume that one of
them has a polarizability « and that the other has zero polarizability.
Show that the Coulomb interaction between the two ions as function of
their separation r is given by ¢ = —(e?/r)(1 + a/2r7).

5-10, Consider two ions of charges -+-e and —e; the polarizabilities
of the ions are «;, and «,. Show that the dipole moment induced in one
of them is given by

B = (’Aeal + 2rea1a2)/("6 - 47-1“2)

with a similar expression for u,; r denotes the separation between the
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nuclei. (See, for example, P. Debye, Polar Molecules, Dover, New York,
1945, p. 60.)

5-11. Discuss the binding energy and dipole moment of alkali halide
molecules on the basis of an ionic picture and compare the results with
experiment (see E. S. Rittner, J. Chem. Phys., 19, 1030, 1951).

5-12. Give a simplified discussion of van der Waals forces (see, for
example, S. Glasstone, Theoretical Chemistry, Van Nostrand, New York,
1944, p. 423).



Chapter 6

DIELECTRIC AND OPTICAL PROPERTIES
OF INSULATORS

In the present chapter a brief survey will be given of the atomic
interpretation of the dielectric and optical properties of insulators. The
theory given here is essentially classical; for the quantum theory of
dielectrics we refer to the literature (see, for example, J. H. van Vleck,
Theory of Electric and Magnetic Susceptibilities, Oxford, New York, 1932).
This chapter is divided into two parts: in part A we shall essentially be
concerned with the static dielectric constant, in part B, the frequency
dependence of the dielectric properties, including optical absorption and
dielectric losses, will be discussed. It may be emphasized that only isotropic
substances, for which E, D, and P are parallel vectors, will be considered.

Part A. Static Fields

6-1. Macroscopic description of the static dielectric constant

As an introduction to the concept of the static dielectric constant of a
substance, consider the following well-known experimental result: Two
plane parallel plates of area 4 and separation d are charged with a surface
charge density g, one plate being positive, the other negative. If the space
between the plates is evacuated and if 4 is small compared with the
dimensions of the plates, there will result a homogeneous electric field
between the plates, the field strength being given by

E,.=4nq= D (6-1)

in esu; D is called the electric displacement or flux density. The potential
difference between the plates is equal to

bvac = Evac " d (6-2)
and the capacitance of the system is defined by
Crac = Aq/¢vac = Qléyac (6-3)

Suppose now that the space between the plates is filled with an insulating
substance, the charge on the plates being kept constant. It is then observed
that the new potential difference ¢ is lower than ¢,, ., and similarly, the

133
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capacitance C of the system is increased. The static dielectric constant
¢, is then defined by

€ = ¢vnc/¢ = C/Cvac (6-4)

Thus, as a result of introducing the substance, the ficld strength is reduced
from the value E,,, to the value £, where

Ee = D =¢E (6-9)

In other words, the effective surface charge density on the plates is now
q' = E[4n rather than ¢ = E, /4w, and onc may say that introducing the
diclectric is equivalent to reducing the surface charge
density by an amount

P=q—q =(E,/4n)l —l]e,)=(e,— 1)E[An (6-6)

Thus, under influence of the external ficld, the dicleetrie
facing the positive plate acquires 8 negative induced
surface charge density P and vice versa. This is
illustrated in Fig. 6-1. We shall sce later that this
conclusion is in accord with the atomic interpretation
of the dielectric constant; in fact, it will be shown
that P is equal to the clectric dipole moment induced
Fig. 61. Schematic i (he substance per unit volume by the external

Mustration of — feog; P is called the polarization of the sybstance,

ha induced
fhc rs::,f':“u of ': From (6-5) and (6-6) it follows that one may write

dielectric. D = E + 4nP = ¢,E 6-7)

The link between the macroscopic quantity ¢, and the atomic theory of
the dielectric constant is provided by the relation (6-6). In fact, it will be
shown below that P may be expresscd in terms of the propertics of the
atoms and molecules composing the dielectric,

6-2. The static electronic and ionic polarizabilities of molecules

Although we are mainly intcrested in the diclectric properties of
solids, it will be useful to consider first the much simpler problem of the
behavior of free atoms and molecules sn an external elestric field. The
term “‘free” refers 10 a system in which to a good degree of approximation
the mutual interaction between the parucies may be neglected, as in 2
gas of low density. A basic concept 1n the discussions L0 follow s that
of the clectric dipole moment of 3 system. For a system of clementary
charges ¢, located at the end points of 3 set of veclors r,, drawn from ¢
common ongn, the dipole moment #s defined 3s

M=Zger, (6-8)
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For systems which, as a whole, are neutral, i.e., when Z.e, = 0, one can
show readily that M is independent of the origin chosen (see Problem
6-1); it is with such neutral systems that we shall concern ourselves. As
an example, the dipole moment corresponding to two charges +e and —e,
separated by a distance d, is ed.

In a free atom, the charge distribution is such that the dipole moment
in the absence of an external field vanishes; the center of gravity of the
electron distribution coincides with the nucleus. Consider now an atom
in a static homogeneous external field E. The force exerted on the positive
nucleus will then be oppositely directed to the forces exerted on the
electrons. As a result, the external field tends to draw the center of gravity
of the electrons away from the nucleus. On the other hand, the attractive
forces between the electrons and the nucleus tend to preserve a vanishing

—.—...._.)E

Ve
yA
/
p——teaere$ e

Fig. 6-2. Schematic illustration of Fig. 6-3. Simplified model for esti-

the displacement of the electron
orbit relative to thé nucleus for a
hydrogen atom undet influence of an

mating the magnitude of the elec-
tronic polarizability of an atom, as
described in the text.

external field E.

dipole moment in the atom. Consequently, an equilibrium situation is
reached in which the atom bears a finite dipole moment. This has been
represented schematically in Fig. 6-2. The resulting dipole moment is
thus induced by the field as a result of an elastic displacement of the
electronic charge distribution relative to the nucleus. The induced moment
may be represented by

Wind = aeE (6-9)

where «, is called the electronic polarizability of the atom. It should be
noted that (6-9) is actually only the first term of a power series in the
field strength. For the usual fields employed in dielectric measurements,
however, (6-9) is a very good approximation.

To obtain an idea of the magnitude of «,, consider the following
simplified model: Suppose the atom is represented by a nucleus of charge
Ze and a homogeneous negative charge distribution inside a sphere of
radius r. If the nucleus is displaced over a distance d, as shown in Fig. 6-3,
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the restoring force is equal to the force exerted on the nucleus by a
negative charge Zed®/r®. The equilibrium condition is then

ZeE = (Ze)%d|r? (6-10)
This gives for the induced dipole moment,
Mina = aaE = Zed = r3E (6'11)

For this simple model, therefore, the polarizability «, is equal to r*.1 Note
that «, has the dimensions of a volume. For r ~ 10-8 cm, we see that «,
is of the order of 1024 cm®. Hence, for an external field of 300 volts per
cm one finds d ~ 107! cm, which shows that for most practical field
strengths the condition d < r is satisfied. It is for this reason that in (6-9)
one usually retains only the first term. For atoms with more than one
electron, similar considerations are valid, and with each atom or ion one
may associate a certain electronic polarizability «,. It will be evident that
in general atoms with many electrons tend to have a larger polarizability
than those with few electrons. Electrons in the outer electronic shells will
contribute more to «, than do electrons in the inner shells, because the
former are not so strongly bound to the nucleus as the latter. Positive
ions therefore will have relatively small polarizabilities compared with
the corresponding neutral atoms; for negative ions the reverse is true.
We give a few examples in Table 6-1; more complete tables are available
elsewhere.2

Table 6-1. Some Electronic Polarizabilities in 10-2* cm3. The values for
the alkali and halide ions are those given by Bottcher; the others are due

to Pauling
at ae a’!
He 0.20 Li* 0.02
Ne 0.39 Na* 0.22 F- 0.85
Ar 1.62 K+ 0.97 Cl- 3.00
Kr 2.46 Rb* 1.50 Br- 4.13
Xe 3.99 Cs* 2.42 I- 6.16

The polarizability as function of the frequency of the applied field will
be discussed in Sec. 6-9. It will be shown there that «, may be considered
a constant up to frequencies corresponding to the ultraviolet spectrum.

! A wave-mechanical treatment of the polarizability of the hydrogen atom may be
found in N. F. Mott and S. N. Sneddon, Wave Mechanics and its Applications, Oxford,
New York, 1948, p. 166. See also H. R. Hassé, Proc. Cambridge Phil. Soc., 26, 542
(1930). Second-order perturbation theory gives the value o, = 9a5/2 == 0.667 X 102
cm? (a, is the radius of the H atom).

* C.J. F. Bottcher, Rec. trav. chim., 62, 325, 503 (1943); L. Pauling, Proc. Roy. Soc.
(London), A114, 181 (1927); N. F. Mott and R. W. Gurney, Electronic Processes in
Ionic Crystals, 2d ed., Oxford, New York, 1948, p. 14.
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So far, we have considered only simple atoms and ions. For molecules
one is faced with two more possible influences of an external field :

1. Molecules may have permanent dipole moments which may be
aligned in an external field.

2. The distances between ions or atoms may be influenced by an
external field.

For example, a molecule such as HCl may in first approximation be
considered to consist of two ions; the permanent dipole moment is thus
equal to the effective charge per ion times the separation of the ions.
Symmetric molecules like H,, CO,, CCl,, etc. evidently have no permanent
dipole moment. An external electric field will tend to orient permanent
dipoles along the field direction, and one speaks of orientational polariza-
tion. This contribution to the total polarizability of a molecule will be
discussed in Sec. 6-3.

In molecules as well as in atoms an external field will displace the
electrons with respect to the corresponding nuclei. Over and above this,
however, a displacement of atoms or ions within the molecule may be
caused by an external field. For example, in an HCI molecule an external
field will change the interionic distance to some extent, leading to a change
in the dipole moment. Similarly, in a molecule like CCl, (which has no
permanent dipole moment) a change in the bond angles between the CCl
groups will produce a dipole moment because each of these groups by
itself does have a dipole moment. This kind of induced polarization is
called atomic or ionic polarization because it is a consequence of the
displacement of atoms within the molecule. The induced electric dipole
moment resulting from elastic displacements of ions within the molecule
may again be represented by an expression of the type (6-9), by replacing
2, by the atomic polarizability «,. It should be noted that «, refers to
an average over all possible orientations of the molecule with respect to
the field. In Sec. 6-9 it will be shown that «, may be considered a constant
up to frequencies in the infrared spectrum. For most molecules, «, is of
the order of 10 per cent of «,.

Summarizing, one may conclude that the electric properties of a
molecule may be characterized by the following three quantities:

(a) «,, representing the polarizability due to electronic displacements
within the composing atoms or ions.

(b) «,, representing the polarizability due to atomic or ionic displace-
ments within the molecule (changes in bond angles and interatomic
distances).

(c) a permanent dipole moment .
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6-3. Orientational polarization

In this section we shall consider the polarizability of a molecule in a
static field, resulting from its permanent dipole moment. Consider, for
example, a gas containing a large number of identical molecules, each
with a permanent dipole moment .. Without an external field, the dipoles
will be oriented at random and the gas as a whole will have no resulting
dipole moment. An external field E will exert a torque on each dipole
and will tend to orient the dipoles in the direction of the field (see Fig.
6-4). On the other hand, this ordering influence of the external field will
be counteracted by the thermal
motion of the particles. The problem

<+
: 2 therefore may be stated as follows:
/ge What is the average component of
>E  the dipole moment per molecule in
/ the direction of the applied field at a
eE 9 .
-e temperature 7?7 To answer this ques-

tion it will be assumed that the dipoles
Fig. 6-4. mustrating the torque exerted may rotate freely. We then have
on a dipole by an external field. before us a simple problem in statis-
tical mechanics.
Let us define the potential energy of a dipole making a 90° angle with
the external field as zero. The potential energy corresponding to an angle
6 between w and E is then equal to

—uEcosb = —p-E (6-12)

According to statistical mechanics, the probability for a dipole to
make an angle between 6 and 0 + 40 with the electric field is then
proportional to

27 sin 0 dO exp [(1E cos 0)/kT]

where 27 sin 0 df is the solid angle between 6 and 0 + d9. Hence the
average component of the dipole moment along the field direction is equal
to

Jp/z cos 0 sin 6 df exp [(4E cos 0)/kT]

p(cos ) =2=2 = (6-13)
fsin 0 db exp [(LE cos 0)/kT}

6=0

To evaluate the integrals, let

(uElkT)cos 0 = x and (¢E/kT)=a (6-14)
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We then obtain

+a
1 f_a xe* dx B e‘_—}-e“

cos 0) = - =
¢ ) a +:e“dx e —e*

L (6-15)
a

The fuanction L(a) is called the Langevin function, since this formula was
first derived by Langevin in 1905 in connection with the theory of para-
magretism.? In Fig. 6-5, L(a) has been
plotted as a function of a = uE/KT.  |L@ i3
Note that for very large values of l 7/
a, i.c., for high field strengths, the »
function approaches the saturation
value unity. This situation would
correspond to complete alignment
of the dipoles in the field direction, Y
because then u(cos 6) = pu. —a amuE/AT

As long as the field strength is
not too high and the temperature is  Fig. 6.5. The Langevin function L{a).
not too low, the sitmation may be For a < 1, the slope is 1/3.
strongly smmplified by making the
approximation a<<1 or uE<kT. Under these circumstances the
Langevin function L(a) = a/3, so that then

o e »o
T
\

picos 0) = (W*3kT)E for uEZLKT (6-16)

As an example of the condition implied in (6-16), consider a field of
3000 volts per cm. The dipole moment u of a molecule is of the order of
10-1° esu of charge times 10-® cm, i.e., about 10-'8 cgs units,* so that
#E=~ 10" in cgs units. On the other hand, kT at room ternperature is of
the order of 10-'* erg and for this example the condition is certainly satis-
fied. In this example saturation would be approached only in the vicinity
of 1°K. It may be noted that the quantum mechanical treatment of this
problem leads essentially to the same results as obtained here.*

The existence of clectric dipoles in molecules was first postulated
by Debye m 1912;% this concept has contributed a great deal to the
preserit understanding of dielectrics as well as to our knowledge of
molecular structure. We shall now sce how the molecular quantities
«, x,, and u enter in the description of the macroscopic dielectric
constant.

* P. Langevin, J. Physique, 4, 678 (1905).

¢ 10 ¢so em is called a “*Debye unit.”

3 See. for example, P. Debye, Polar Molecules, Dover, New York, 1945.
¢ P. Dedye, Phys. Z., 13, 97 (1912).
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6-4. The static dielectric constant of gases

We are now in a position to give an atomic interpretation of the static
dielectric constant of a gas. It will be assumed that the number of mole-
cules per unit volume is small enough so that the interaction between
them may be neglected. In that case, the field acting at the location of a
particular molecule is to a good approximation equal to the applied field
E. Suppose the gas contains N molecules per unit volume; the properties
of the molecules will be characterized by an electronic polarizability «,,
an atomic polarizability «,, and a permanent dipole moment x. From the
discussions in the preceding two sections it follows that, as a result of the
external field E, there will exist a resulting dipole moment per unit volume:

P = N(x, + 2, + p*3kT)E (6-17)

Note that only the permanent dipole moment gives a temperature-
dependent contribution, because «, and «, are essentially independent of 7.
If the gas fills the space between two capacitor plates of area 4 and
separation d, the total dipole moment between the plates will be equal to

M = PAd

This simple relation shows immediately that the same total dipole moment
would be obtained by assuming that the dielectric acquires an induced
surface charge density P at the boundaries facing the capacitor plates, as
discussed in Sec. 6-1. Hence the quantity P introduced here as the dipolc
moment per unit volume is identical with the quantity P introduced in
Sec. 6-1, where it represented the induced surface charge density at the
dielectric-plate interface. Therefore, combination of (6-17) and (6-6) leads
immediately to the Debye formula for the static dielectric constant of a gas.®

¢, — | = 4nP|E = 4nN(x, + «, + p2/3kT) (6-18)

As an example of an application of this formula, we show in Fig. 6-6 the
temperature dependence of some organic substances in the gaseous state.”
Note that (¢, — 1) has been plotted versus the reciprocal of the absolute
temperature, leading to straight lines, in agreement with formula (6-18).
From the slope of the lines and a knowledge of the number of molecules
per unit volume, the dipole moment x may be obtained. Also, from the
extrapolated intercept of the lines with the ordinate, one can calculate
(«, + «,). The determination of dipole moments has contributed a great
deal to our knowledge of molecular structure. For example, CCl, and

? R. Sénger, Phys. Z., 217, 556 (1926).
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CH,, according to Fig. 6-6, do not possess permanent dipole moments,
in agreement with the symmetric structure of these molecules. Similarly,
the fact that H,O has a dipole moment
of 1.84 Debye units, whereas CO,
has no dipole moment, indicates
that the CO, molecule has a linear 8k CH3Cl
structure, whereas in H,O the two
OH bonds must make an angle
different from 180° with each other.®

T
‘é’ CH,Cl,
6-5. The internal field according to T 4 /

Lorentz _— CHCl3
ccl,

The theory of the dielectric con-

stant of solids and liquids is much CH,
more complicated than that for 0 I ! n
gases. In gases one may, to a good 25 30 35

approximation, assume that the field — 1000/T

acting on the particles is equal to Fig. 6-6. Temperature variation of the
the externally applied field E. In static dielectric constant of some vapors.
solids and liquids, however, a given [After Sanger, ref. 7]
molecule or atom *‘sees” not only

the external field, but the fields produced by the dipoles on other
particles as well. As a result of the long range of Coulomb forces, the
latter contribution can no longer be neglected. The central problem in
the theory of the dielectric constant of liquids and solids is therefore
the calculation of the field at the position of a given atom. This field
is called the internal or local field and is different from the externally
applied field E.

To calculate the internal field, the following method was suggested
by Lorentz:® Select a small spherical region from the dielectric with the
atom for which the local field must be calculated at the center (see Fig.
6-7). The radius of the sphere is chosen large enough to consider the
region outside the sphere as a continuum of dielectric constant €,. For
the region inside the sphere, however, the actual structure of the substance
must be taken into account. The following contributions to the internal
field at the location of the atom then arise:

(i) The contribution from the charge density on thé plates, giving
4mq = D.

® For a table of dipole moments of a large number of molecules, see, for example,
the article on dielectric polarization by O. Fuchs and K. L. Wolf, Hand- und
Jahrbuch der chemischen Physik, Vol. 6, Leipzig, 1935.

® H. A. Lorentz, The Theory of Electrons, Teubner, Leipzig, 1909, Sec. 117.
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(if) The contribution from the induced charges at the plate-diclectric
interface. According to $ec. 6-1, this contributes —4nP 0 the
field strenigth.

(i1) The contribution from the charges induced at the spherical surface.

(iv) The contribution from the atoriic dipoles of sll atoms inside the
spherical region.

To ecalculate the conttibution (iii)
- we first note that as a consequence of
the symmetry of the problem, only field
comporients parallel to E have to be
taken into account. Thus, consider a
= ring of area 27R? sin 0 df on the inncr
- surface of the sphere. The sutface
- charge density depends on the angle
6 and is equal to —P cos . Hence
the charge on this ring is —P cos 6 2#R?
sin 0 &, leading to a Coulomb field

at the center in the ditection of E
Fig. 67, Hlustrating the calculation equal to
of the internal field as described in
the text. Pcos 0 - 2nR¥ sin 6 &
R

(6-19)

Thus the contribution (iii) i$ equal to
—2nP L—!lcosi 0 d(cos 0) = (4n/3)P (6-20)

For the moment let contribution (iv) be represénted by E,. When
certain conditions of symmetry are fulfilled, this contribution may vanish
and in that case the internal field would be given by

E, = D — énP + 4nP|3 = E + 4nP[3

ot E = "-;—2 E for E,=0 (6-21)

This field is frequently referred to as the Lorentz field; it is always larger
thati the applied field E. To investigate whether or not £, = 0, we may
proceed as follows. Let the atoms inside the sphere have coordinates x,,
Vi 2, and dipole moment COMPONEnts u,,, sy, Uiy One may then write
for the contribution E, in the direction of E,

I — r 3x, 4 3x,£z',)
E‘ - E‘; (/‘kz ’f + By rz + Hars _?t,_ (6'22)

As an example, consider a simple cubic lattice of like atoms, the
external field direction coinciding with & cube edge. In view of the
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symmetry of the problem, u,, = u,, =0, and u,, will be the same for
all atoms. Furthermore, for the atoms inside a spherical regjon,

R S Sy
Lxp= §Yk—§zk—§’r/3 (6-23)

Obviously, (6-22) vanishes for a simple cubic lattice and (6-21) should
hold if the assumption of point like dipoles is accepted. We leave it up
to the reader to show that (6-22) also vanishes for b.c.c. and f.c.c. lattices
and for crystals such as NaCl. It must be emphasized that (6-21) does
not hold for all cubic crystals. For example, in barium titanate, which
has eubic symmetry, the oxygen ions are surrounded by Ti** ions in such
a way that their contribution to (6-22) does not vanish.!® One must
therefore be carefu] in applying (6-21); one should start. from (6-22) in
order to evaluate E, for the particular problem encountered.!* It will alse
be evident from the above discussion that each type of atom in a given
crystal has, in general, its own internal field because the environment of
the different atoms is generally different. Thus the internal field at the
location of atoms of type 1, 2, etc. may be written in the form

E,=E+y,P;, Egys=FE+ y,P, etc. (6-24)

where the y’s are the internal field constants. Only if £, = 0 do we have
y = 4n/3. The internal field for tetragonal and simple hexagonal lattices
has been calculated by Mueller.!?

Even if the crystal symmetry is such that (6-21) applies, it does not
mean that the Lorentz field gives results in agreement with experiments.
This may be due to an overlapping of atoms as well as to the fact that
the dipolar fields produced by atoms which are only a few Angstroms
away are far from homogeneous.!® The latter makes it doubtful whether
one may empjoy the relation

HMinduced = «E, (6-25)

to calculate the dipole moment induced in the central atom, as is done
in the theory outlined in the next section.

As a side line, it may be of interest to remark that the application of
(6-21) to polar liquid dielectrics has led to a great deal of confusion in
the literature. It was not until 1936 that Onsager realized that the internal
field cannot be used as the field which tends to orient the dipoles.!* The

v For a discussion of the diclectric properties of this materia), see Chapter 8.

'! For a generalized expression for E, and an application 1o BaTiO, sec J. H. yvap
Santen and W. Opechowski. Physica, 14, 545 (1948).

1t H Mueller, Phys. Rev., 47, 947 (1935): 50, 547 (}936).

' See N. F. Mott and R. W. Guraey, op. cit., p. 16.

"' L. Onsager, J. Am. Chem. Soc., 58, 1486 ()936); sce ajso C. J. F. Botucher,
Physica, 9, 937 (1942); A.J. Dekker, Physica, 12, 209 (1946); D. G. Frood and A. J.
Dekker, J. Chem. Phys., 28, 103Q (1952).
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reason is that part of the internal field is contributed by the ‘“‘reaction
field” of the dipole, which has the same direction as the dipole itself and
hence is ineffective in orienting the dipole. (See Problem 6-6.)

6-6. The static dielectric constant of solids

From the discussions in the preceding sections it is evident that in
general the dielectric polarization P may be considered the sum of three
contributions,

P=P,4+P,+P, (6-26)

where the subscripts e, a, and d refer, respectively, to electronic, atomic,
and dipolar polarization. This provides a basis for the classification of
dielectrics into three classes:

(i) Substances for which P, = P, = 0, so that P = P,
(ii) Substances for which P, =0and P=P, + P,

(iii) Substances for which all three contributions are different from
zero.

Although the calculation of the internal field is usually complicated
by the fact that the Lorentz expression (6-21) does not apply, some remarks
may be made about each of these classes in so far as they apply to solids.

(i) Substances for which the static polarization is entirely ‘due to
electronic displacements are necessarily elements, such as diamond. If
we assume for the internal field an expression of the type (6-24), one
obtains from the relation

P, = N« ,E; = (¢, — 1)E[4n (6-27)
the following expression for the dielectric constant:
€, — 1 = 4nNa /(1 — Nya,) (6-28)

where N represents the number of atoms per unit volume. In the particular
case for which the Lorentz expression for the internal field (6-21) is valid,
y = 4m[3. The resulting expression is then usually written in the form
of the Clausius-Mosotti formula, which may be obtained by substitution
of (6-24) into (6-27):

(€ — D/(ey + 2) = (4m/3)Na, (6-29)

The main experimental test of the correctness of either (6-28) or (6-29) is
provided by measurements of the dielectric constant as function of the
number of atoms per unit volume. It has therefore been applied mainly
to gases. For solid elements one would have to vary the temperature in
order to vary N and the possible range of N values is of course very
limited. We do not know of any such measurements on, say, diamond or
other possible solids which may fall in this class of dielectrics.



Sec. 6-6] DIELECTRIC PROPERTIES OF INSULATORS 145

It may be noted that for the class of substances under consideration,
the dielectric constant is equal to the square of the index of refraction,
e. = n® The reason is, that «, is constant even for frequencies in the
visible spectrum, as will be explained in Sec. 6-9. This relationship has
been confirmed experimentally for diamond by Whitehead and Hackett.?s
The dielectric constant of diamond is 5.68 4 0.03.

(ii) In general, solids containing more than one type of atom, but no
permanent dipoles, exhibit electronic as well as atomic or ionic polarization.
Of particular interest in this respect are the ionic crystals, such as the
alkali halides. Consider, for example, a NaCl crystal in an external static
field E. Apart from the electronic displacements in the ions relative to
the nuclei, the positive ion lattice will tend to move as a whole relative
to the negative ion lattice. Consequently, a considerable contribution to
the total polarization may be expected to arise from the ionic displacements
(P,). That this is indeed the case, becomes apparent from a comparison
of the values of the static dielectric constant defined by

P, + P, = (e, — 1)Ef4n (6-30)
and the “‘high-frequency dielectric constant” e, defined by
P, = (eq — 1)E[4m (6-31)

(The high-frequency dielectric constant is equal to the square of the index
of refraction for visible light; at such frequencies the ionic displacements
cannot follow the field variations and consequently €, = n* is a measure
only of P,.) By way of illustration, we give in Table 6-2 values for €, and
€, for the alkali halides.1®

Table 6-2. Static and High-Frequency Dielectric Constant for Alkali Halides

€ € = n® € € =n?
LiF 9.27 1.92 KF 6.05 1.85
LiCl 11.05 2.75 KCi 4.68 2.13
LiBr 12.1 3.16 KBr 4.78 2.33
Lil 11.03 3.80 Kl 4.94 2.69
NaF 6.0 1.74 RbF 5.91 1.93
NaCl 5.62 2.25 RbCl 5.0 2.19
NaBr 5.99 2.62 RbBr 5.0 2.33
Nal 6.60 291 Rbl 5.0 2.63

Hence P, is about two or three times P, in these compounds. In non-
ionic compounds, on the other hand, P, is usually a relatively small
fraction of P,.

15 §. Whitehead and W. Hackett, Proc. Phys. Soc. (London), 51, 173 (1939).

18 For a number of other ionic solids, see for example N. F. Mott and R. W.
Gurney, op. cit., p. 12.
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Let us now investigate if a simple theory can account for the observed
difference between the static and high-frequency dielectric constants.
Suppose the positive and negative ions acquire induced dipole moments
of, respectively, 4, and u_, under influence of a static field E. Furthermore,
suppose the positive ion lattice is displaced over a distance x relative to
the negative jon lattice. The atomic polarization may then be represented
by a point dipole ex at the location of each positive ion, because x is very
small compared with the lattice constant. The total electric dipole moment
per unit volume is then

P =N, + pu_ + ex) = (¢, — DEJ4n (6-32)

where N represents the number of ion pairs per unit volume. For the
moment let us assume that the internal field at the location of a positive
ion is the same as that at a negative ion site and let it be represented by
E,. We may then write

py =0, E; and pu =o, E; (6-33)

where «,, and «,_ represent the electronic polarizabilities of the positive
and negative ions. To find the ionic displacement x, it should be remem-
bered that the equilibrium situation is determined by the equality of the
force on a positive ion resulting from the field and the restoring force
produced by the deformation of the lattice. Let the latter be represented
by fx, where f'is the restoring force constant. Then

eE;=fx or x=eEjf (6-34)
From the last three equations it then follows that
(6, — )E = 4nN(x,, + o, + €[f)E; (6-35)

If it were assumed that E, is given by the Lorentz expression (6-21), the
last expression could be rewritten as

(€, — Dl(e, + 2) = (47[3)N (2, + &, + €*[f) (6-36)

This expression is analogous to the Clausius-Mosotti equation (6-29),
with the additional term e%/f associated with the elastic ioni¢ displacements.
To investigate whether or not (6-36) describes the alkali halides satis-
factorily, it is convenient to set up an equation relating €, and the high-
frequency dielectric constant ¢,, determined by (6-31). Thus, if there were
only electronic polarization, which is the case if one measures the index
of refraction for visible light (¢, = n?), and if again the validity of the
Lorentz expression were assumed, one would have

i hak Ry 6-37)

P,=- - E= N(a,, +a, ) -
4
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Substitution of the factor N(x,. + «,_) from this equation into (6-36)
yields the following relation between €, and ¢,:

(¢ — Df(e; + 2) = (g — D/(eg + 2) + (4n/3)Ne*[f  (6-38)

This relation may be checked by inserting the value for f as obtained
from compressibility data and the Born lattice theory. It turns out,
however, that the measured values of ¢, and ¢, do not satisfy (6-38) too
well. This indicates that the Lorentz expression for the internal field does
not describe the situation correctly. In fact, it seems that the formula

4nNed|f
1 — 4nNe*[3f

€, — €9 = (6-39)
gives much better agreement with the experiments. This formula was first
derived by Hojendahl,'” who introduced rather special assumptlons about
the internal field at the location of positive and negative ion sites. From
the above discussion it is evident that the theory of the static dielectric
constant of simple crystals such as the alkali halides is not in a completely
satisfactory state, mainly because of the difficulties involved in calculating
quantitatively the internal field.

It may be noted here that the force constant f and the masses of the
positive and negative ions determine the infrared frequency associated
with the lattice vibrations. It is therefore possible to express the difference
(e, — €o) in terms of the infrared absorption frequency of the lattice.'®
A discussion of recent work on this topic may be found in H. Frohlich,
Theory of Dielectrics, Oxford, New York, 1949, Sec. 18.

(iii) In substances composed of molecules which bear permanent
electric dipole moments, the total polarization is made up of three
contributions,

P=P,+P,+P, (6-40)

where P, corresponds to the dipolar contribution. There exists no general
quantitative theory for dipolar solids because first of all the same
difficulties arise in evaluating the internal fields as in class (ii), and further-
more, the dipoles in such solids may not be able to rotate at all or oniy
to some extent. The discussion must therefore be limited to some
qualitative remarks. As an example of a dipolar solid which behaves in a
relatively simple manner, we show in Fig. 6-8 the dielectric constant
measured as function of temperature for CgH;NO, (nitrobenzene).!? It is
observed that at the melting point there is a large increase in the dielectric
constant. This is interpreted as an indication that in the solid the dipoles

17 K. Hojendahl, Kgl. Danske Videnskab. Selskab, 16, No. 2 (1938).

18 B. Szigeti, Trans. Faraday Soc., 45, 155 (1949); Proc. Roy. Soc. (London), A204,
51 (1950).

19 C, P. Smyth and C. S. Hitchcock, J. Am. Chem. Sac., 58, 1830 (1933).
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cannot rotate freely and P, is essentially zero; in the liquid, alignment
of the dipoles in the field direction is possible, so that the increase in € is
determined by the now freely rotating dipoles. The subsequent slow
decrease in € is a consequence of the thermal motion of the particles, as
may be understood from equation (6-16). In other cases, the behavior
may be more complicated, as illustrated by Fig. 6-9, in which e versus T

241
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Fig. 6-8. The static dielectric con- Fig. 6-9. Dielectric constant of
stant of nitrobenzene as a function hydrogen sulfide as function of
of temperature. [After Smyth and temperature. [After Smyth and
Hitchcock, ref. 20] Hitchcock, ref. 20]

has been plotted for H,S.2° The melting point of H,S is 187.7°K. In this
case, the dipoles are apparently “frozen in” at temperatures below 103.5°K ;
at this temperature the structure changes in such a manner that the dipolar
groups become mobile; as the temperature is further increased, the
dielectric constant decreases as a result of increased thermal motion.
The other changes evidently affect essentially the density of the material,
i.e., N is reduced at these transition points.

Part B. Alternating Fields

6-7. The complex dielectric constant and dielectric losses

When a dielectric is subjected to an alternating field, the polarization

P also varies periodically with time and so does the displacement D. In

general, however, P and D may lag behind in phase relative to E, so that,
for example, if

E = E; cos wt (6-41)

20 C. P. Smyth and C. S. Hitchcock, J. Am. Chem. Soc., 55, 1296 (1933); 56, 1084
(1934).
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we have
D = D, cos (mwt — 0) = D, cos ot + D, sin ot (6-42)

where 0 is the phase angle. Clearly,
D, = Dycosd and D, = Dgsin o (6-43)

For most dielectrics D, is proportional to E,, but the ratio Dy/E, is
generally frequency-dependent. To describe this situation, one may thus
introduce two frequency dependent dielectric constants:

€'(w) = Dy/Ey = (Dy/Ey) cos 6
€"(w) = DylEy = (Dy/E,) sin 6

(6-44)

It is frequently convenient to lump these two constants into a single
complex dielectric constant,
e* =¢€ — e (6-45)

because the relation between D and E, both expressed as complex
quantities, is then simply
D = e*Eye' (6-46)

as may readily be verified.
It is noted that according to (6-44) there exists the relation

tan 0 = €"(w)/€’'(w) (6-47)

and because both €' and €” are frequency-dependent, the phase angle 4 is
frequency-dependent. We shall now show that the energy dissipated in
the dielectric in the form of heat is proportional to €". The current
density in the capacitor is equal to
d 1 dD

1=d—;]=Z7-T-—‘—1?=%(—D1 sin wt + choswt) (6-48)
where use has been made of (6-1) and (6-42);q is the surface charge
density on the capacitor plates. The energy dissipated per second in the

dielectric per unit volume is
2nlw

D T
W=_— -
o 6‘ IE dt (6-49)

By substitution of (6-48) and (6-41) into (6-49) one readily finds that the
integral containing D, vanishes and one is left with

W = (w/87) DyEy = (0/8m)EGe” (6-50)
The energy losses are thus proportional to sin d; for this reason sin 0 is
called the loss factor and 4 is the loss angle.?

1 One frequently calls tan 4 the loss factor; this is correct only for small values of 6,
because then tan 6 ~ sin d ~d.
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6-8. Dielectric losses and relaxation time

Let us consider a dielectric for which the total polarization P, in 8
static field is determined by three contributions,

PN:Pr+pa+Pd (6'51)

In general, when such a substance is suddenly exposed to an external
static field, a certain length of time is required for P to be built up to its
final value. In the present section it will be assumed that the values of
P, and P, are attained instantancously, i.e., we shall be concerned with
frequencies appreciably smaller than infrared frequencies, The time
required for P, to reach its static value may vary between days and 10~3
second, depending on temperature, chemical constitution of the material,
and its physical state,

To begin with we shall give a phenomenological description of the
transient effects based on the assumption that a relaxation time ean be
defined; we can then proceed to consider the case of an alternating field,
Let P,, denote the saturation value of P, obtained after a static field £
has been applied for a long time. It will be assumed that the value of P,
as function of the time after the field has been switched on is given by

P(1) =P, (1 —e™ ') (6-52)
Hence,
dP,[dt = (1[7)[Pas — Py(1)] (6-53)

For the decay occurring after the field has been switched off, this leads to
a well-known proportionality with e~"", In the case of an alternating
field £ = Eqe'”, equation (6-53) may be employed if we make the following
change: P,, must be replaced by a function of time P,(r) representing
the saturation value which would be obtained in a static field equal to
the instantaneous value E(r). Hence for alternating fields we shall employ
the differential equation?

dP,ldt = (1m]Pu1) — P (6-54)

Now, our final goal is to express the real and imaginary parts of the
dielectric constant in terms of the frequency w and the relaxation time 7.
For this purpose we shall define the “instantaneous™ dielectric constant

€. by
€ — |
P, + P, = Zeere e E (6-55)

= For a proof that this procedure is correet, see, for example, M. Gevers, Philips
Research Repts., 1,279, 298 (1946); M. Gevers and F. K. Du Pré, frans. Faraday Soc.,
424, 47 (146).
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We may then write
Py=P,~ (P, +P)=2""F (6-56)

where ¢, is the static dielectric constant. Substitution of P,, into (6-54)
yields

dP, 1 (e, - €y
=

4

Egei™ — Pd) (6-57)

Solving this equation, we obtain

1 e —e¢ ,
— ptlr L A& e it _
P(t) = Ce~l" ool Ee (6-58)

The first term represents a transient in which we are not interested here.
The total polarization is now also a function of time and is given by
P, + P, + P,(t). Hence, for the displacement one obtains

D(t) = €*E(t) = E(1) + 4mP(2) (6-59)

where €* is the complex dielectric constant. From the last two equations
and from the definition ¢* = ¢’ — j¢” the following expressions result:

’ — €5 €ea -
e(w)_eea+————1+w (6-60)
” —4 —_— —— - |
€ ((U) - (es sea) 1 + szz (6 61)

These equations are frequently referred to as the Debye equations. In
Fig. 6-10 the quantities ¢’ and e” are represented as functions of wr. It is
observed that the dielectric loss, which is proportional to €” according to
(6-50), exhibits a maximum for wr = 1, i.e., for an angular frequency
equal to 1/r. Also, for frequencies appreciably less than 1/r, the real part
of the dielectric constant ¢’ becomes equal to the static dielectric constant.
In this frequency range, therefore, the losses vanish and the dipoles
contribute their full share to the polarization. On the other hand, for
frequencies larger than 1/7, the dipoles are no longer able to follow the
field variations and the dielectric constant € approaches e,,. ‘

The question may now be raised as to which physical models actually
satisfy the above phenomenological theory. We shall discuss here a
particular one as an example, viz., the case in which certain positive ions
in a solid may have two equilibrium positions separated by a distance 2a.
For simplicity it will be assumed that the line joining the two positions
A and B is parallel to the external field direction, as indicated in Fig. 6-11.
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As long as there is no external field, we shall assume that the energy in
sites 4 and B are equal, so that without field there are just as many ions
in A sites as in B sites. If we assume that, without field, the potential

Es\

—_

1/r N4
—log w -~ 20 —
Fig. 6-10. Debye curves for ¢’ and €” Fig. 6-11. The full curve represents
as function of frequency for a di- the potential energy for a positive
electric with a single relaxation time. ion in the absence of an external

field; with a field E, the dashed
curve results.

energy barrier separating the two types of sites is ¢, the probability per
second for an ion in an A site to jump into a B site is, according to
statistical mechanics, of the form

Po =7 exp (—¢/kT) (6-62)

where 7 is a frequency factor of the order of 102 per second. Thus, without
external field, the jons will continuously change over from A and B sites,
but on the average there are per unit volume N/2 in A sites and N/2 in
B sites if N is the total number of such ions per unit volume.

Suppose now that suddenly a static field £ is applied in the direction
as indicated in Fig. 6-11. Particles in A sites will then see a potential
barrier (¢ — eaE) and particles in B sites see a barrier (¢ + eaE); hence
the ions will prefer B sites over A sites. In equilibrium we must evidently
have just as many particles making transitions 4 — B as B — A, so that

N, po exp (eaE[kT) = N, p, exp (—eaE[kT) (6-63)
or Nowo Pas = NyoPra

where N, and N, represent the equilibrium values for the number of
particles in 4 and B sites with an external field E. Let us now consider
the transient phenomenon as we go from the initial state N,y = N,y = N/2
to the final state N, and N,. Particularly, we are interested in the time
dependence of (N, — N,) because the dipole moment per unit volume
resulting from this effect is

P, = (N, — N,)ea (6-64)
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At a particular instant we have

dNa/dtz—Na a +N a
Poo 7 TP (6-65)
dN,/dt = Nopa, — NyPps

Subtracting these equations, keeping in mind that N, 4 N, = N, one may
write

(d]dt)(Ny — No) = —(Pay + Poa)(Np — No) + (Pap — Poa)N  (6-66)

Now, one may assume for not too high field strengths that eaE < kT,
so that

Pay=Poexp(eaE[kT)== py(1 + eaE[kT) T ;
and similarly,

Pra == po(1 — eaE[kT)
Hence (6-66) reduces to /\

- T

(d/dt)(N, — Nj) = —2py(N, — N,)
+ 2poNeaE[kT (6-67) Fig. 6-12. The dielectric constant

as a function of temperature at a

The solution of this equation, for the given frequency, as predicted from

initial condition specified above, is the model discussed in the text.
NeaE
N, — No=— (1 — et (6-68)

and the polarization due to this mechanism is, according to (6-64) and
(6-68), given by

Ne2a?E . 1
a2 —e ) with 7=— (6-69)

Pd0) = =7 2,

Note that this equation has the same form as (6-52), which was the basis
on which the Debye equations were derived. The relaxation time is thus
equal to the reciprocal of the jumping probability per unit time in the
absence of an external field. Note also, that for this type of mechanism
the relaxation time decreases with increasing temperature and so does the
saturation polarization. It is of interest to observe that if the quantities
¢’ and €” are measured at a constant frequency but at different temperatures,
the curves as indicated in Fig. 6-12 may be expected to result.

For other possible models which lead to the Debye equations, see
Frohlich, op. cit., Sec. 11. It should be pointed out that the interpretation
of experimental results on dielectric losses frequently requires a distri-
bution of relaxation times rather than a single one as assumed in the above
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discussions. One then employs the following equations instead of (6-60)
and (6-61)

, w F(r)dr
€ = €0+ (€, — €,) fo T ot
' (6-70)
” w F(T)wr dr
€ =(&— € |, T+ ot

where F(7) is the distribution function of the relaxation times, such that

fo‘” F(7)dr = 1 (6-71)

For further details we refer to the literature.2324

6-9. The classical theory of electronic polarization and optical absorption

In Sec. 6-2 the concept of the static polarizability due to elastic dis-
placements of electrons and ions was introduced. In the present section
the classical theory of this phenomenon in alternating fields will be dis-
cussed. From formula (6-10) it is evident that the restoring force deter-
mining the displacement is in first approximation proportional to the
displacement itself. The discussion is therefore based on the model of an
harmonic oscillator. The differential equation governing the motion of an
elastically bound particle of charge e and mass m in an alternating field
E et may be written

d2x

dx 2 it
m—s + my 7 + mowgx = eEye (6-72)

where w, is the natural angular frequency of the particle; w, = (f/m)"/?
where fis the restoring force constant; the second term on the left-hand
side is a damping term, which results from the fact that the particle emits
radiation as a consequence of its acceleration.?® The solution for this
forced damped vibration is

Eoeiwt

0§ — w? + iyo

Xt =<- (6-73)
m

We first of all note that in a static field, i.e., for @ = 0, this reduces simply

to

x = eE,/mw? or a,= ex/Ey= e*lmwi for o =0 (6-74)

* For a review, see M. Gevers, Philips Research Repts., 1, 279, 298 (1946); see also
M. Gevers and F. K. Du Pré, Trans. Faraday Soc., 42A, 47 (1946).

* For dielectric losses in alkali halides resulting from Schottky defects and divalent
impurities, see R. G. Breckenridge, J. Chem. Phys., 16, 959 (1948); 18, 913 (1950);
also his article in W. Shockley (ed.), Imperfections in Nearly Perfect Crystals, Wiley,
New York, 1952.

* A proof that this leads to a term proportional to dx/df may be found in R. Becker,
Theorie der Elektrizitdt, 6th ed., Teubner, Leipzig, 1933.
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where «, is static polarizability associated with the elastically bound
particle. If we take for e and m the electronic charge and miass, this
expression would correspond to the contribution of a particlar electfon to
the electron polarizability. Now we have seen in Sec. 6-2 that the electronic
polarizabilities are of the order of 10~ cm?; this gives a natural frequency
vg == wy/27 =~ 10" per second. Thus, even for frequencies corresponding
to the visible spectrum, the electronic polarizability may be considered
constant. If e and m refer to an ion, the natural frequencies are of the
order of 10 per second, corresponding to the infrared part of the
spectrum. -1
Let us now consider the frequency T

dependence of the polarization re- )

sulting from the elastic displacements. /\

It must be emphasized that the field .
strength appearing in equation (6-73) “o Y
for the displacement x(r) is the in-

ternal field and not the externally

applied field; only in the case of gases 1

of low density may these two fields /\

be considered equal. Let us first . L

consider the case of a gas, for which wo —w
one may write Fig. 6-13. Behaviour of ¢, and € as

&1 function of frequency in the vicinity of
P = -0 E.e'*!'—Na*E-e'“ (6-75 the resonance frequency w.

where the asterisks indicate complex functions. The polarizability is
immediately obtained from (6-73) by multiplying by e and dividing by the
field strength. Hence
e? 1 .
x 47N — - - 6-76
€0 + 4w m of — ? -+ iyo ( )

Now, writing again €§ = €, — i€, one finds

°
g — m?

o2
c=1+4+ 47N — - —
€0 14 m (0 — 0?2 + y2w?

(6-77)

2
€, = 47N ¢
0 = AmN — "

m (0w — 0?)? + y20?

ym

(6-78)

The energy absorbed per unit volume is proportional to ;, accordirng to
(6-50). In Fig. 6-13 we have represented (¢, — 1) and ¢ as functions of
the frequency ». Note that €, contains the damping factor y, which has
the dimensions of a frequency; if there were no damping, there would be
no absorption. This type of absorption is called resonance absorption,
for obvious reasons. In the absorption region, the dielectric constant ¢
depends on frequency and one speaks in this connection of dispersion.
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The region for which ¢, decreases with increasing frequency is referred to
as the region of anomalous dispersion.

For solids, assuming the internal field to be given by the Lorentz
expression (6-21), we should write instead of (6-75),

. *42 :
lEoe“‘" = No* (€° j ) Egeit (6-79)

& —

Pr=

s
which leads to

1 4 4nN
D TNt or =1+ i

(6-80)

e +2 3 oy — 47 N3
Substituting «; obtained from (6-73) in the same way as above, this gives
& —1+4nNE. ! (6-81)

o ™ m wy — w? + iyw — 47Ne2[3m

Comparing this with (6-76) for a gas, we see that by defining a new
frequency
w? = 0§ — 4nNe*/3m (6-82)

the same behavior is obtained as above; in the formulas obtained for a
gas, one only has to replace w§ by w}, i.e., the absorption frequency is
displaced.

In optical work it is usual to introduce instead of the quantity €§ the
complex index of refraction. A few remarks in this connection may there-
fore be in order. It is well known that Maxwell’s equations for a non-
magnetic insulator give for the velocity of propagation of light the expres-
sion v = c/\/;. On the other hand, the index of refraction is defined as
n = c[v. This leads to the Maxwell relation € = n%. Now, when there is
absorption, the electric component of a light wave polarized in the y-
direction and propagated in the x-direction may be represented by

E,(x,1) = Ae™kele giott=—nele (6-83)

where exp (—wkx/c) takes care of the absorption. The coefficient k is
called the extinction coefficient. Its physical meaning is the following:
when the wave has propagated over a distance equal to the wavelength in
vacuum 4, = 2nc/w, the amplitude is reduced by a factor e=2* Now
instead of (6-83) we may also write

E(x,t) = Ae'¢—nl0 (6-84)
where n* is the complex index of refraction and where evidently
n*=n—ik (6-85)

From this relation, together with (n*)? = €f = ¢, — ieg, it then follows
that
e=n*—k® and e, =2nk (6-86)
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and the formulas {6-77) and (6-78) are thus also valid for (n* — k2?) and
2nk, respectively. Note that the absorption per unit volume is proportional
to nk.

T P (real part)
P e +P, a +P, d
P, +P,
Pe
—_—>w
0 + + + t +
Micro- Infrared u.v.\/-
waves

Fig. 6-14. The real part of the total polarization P as function of
frequency for a dipolar substance with a single aiomic and
electronic resonance frequency.

The above considerations may be applied equally well to ionic dis-
placements. To summarize the frequency-dependence of the polarization
we have represented, in Fig. 6-14, P(w) for a dipolar substance with a
single atomic and electronic absorption line.
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PROBLEMS

6-1. Consider a system of positive and negative charges, the system
being neutral as a whole. Show that the dipole moment of the system as
defined by (6-8) is independent of the location of the origin of the co-
ordinate system.

6-2. Show that the potential energy of a dipole @ in an external field
E may be written —p - E. Also show that if « is the polatizability of an
atom, the eriergy of the atom in an electtic field E is given by —(a/2)E2

6-3. From the electronic polarizabilities for the alkali and halide ions
given in Table 6-1 and from the lattice constants for the alkali halides as
obtained from X-ray diffraction data, calculate the high-frequency
dielectric constant for some of these salts on the assumption that the
iiternal field is given by the Lorentz expression; compare the results with
the experimental values given in Table 6-2.

6-4. Calculate the field strength required to reach 0.1 per cent of the
saturation value of the orientational polarization of a dipolar gas at room
temperature if the dipoles have a strength of 1 Debye unit.

6-5. Consider a system of noninteracting dipoles which are confined
to two possible orientations relative to an applied field E: either parallel
or antiparallel. Show that at a temperature T the average dipole moment
along the field direction is equal to u?/kT (which differs by a factor 3 from
formula (6-16).

6-6. (a) A sphere of dielectric constant ¢, and radius R is brought in a
homogeneous field E; the sphere is surrounded by vacuum. Show that
the field inside the sphere is homogeneous and given by 3E/(e; + 2).

(b) A substance of dielectric constant €, contains a spherical cavity of
radius R. If the field at large distances from the sphere is homogeneous
and equal to E, show that the field inside the cavity is homogeneous and
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equal to 3¢,E/(2¢, + 1). (This field is called the cavity field; note that it
is independent of R.)

(¢) Consider a homogeneously polarized sphere of radius R in vacuum;
there is no applied field. If P is the polarization of the sphere show that the
field inside the sphere (the self-field) is given by E; = —(47/3)P = — M|R?,
where M is the total dipole moment of the sphere.

(d) A spherical cavity of radius R inside a homogeneous dielectric €
contains a rigid dipole . at its center. There is no applied field. Show that
the field inside the cavity is homogeneous and given by fu, where

f= (e—l)

This field is called the reaction field of the dipole.

Hint: For all these problems the general solution of Laplace’s equation
V2V = 0 is of the form

V = —(A[r* 4- Br)cos 0
The constants A and B must be found from the boundary conditions.

6-7. Discuss the theory of Bottcher of the refraction of electrolytes
and explain how he arrived at the polarizabilities of the alkali and halide
ions given in Table 6-1. (See C. J. F. Bottcher, Theory of Electric Polariza-
tion, Elsevier, New York, 1953, p. 273; also footnote 2.)

6-8. Readers familiar with the variation method in wave mechanics
may show that if one employs a variation function y,(1 + Az) for a
hydrogen atom in an external field along the z-direction, one obtains for
the polarizability 4a3 = 0.59 X 10~ cm3 (a, = radius of first Bohr orbit ;
the correct answer is 9a3/2).

6-9. Explain the shapes of the ¢’ and €” curves represented in Fig. 6-12.

6-10. Discuss the dielectric losses in alkali halide crystals resulting
from pairs of vacancies and from divalent positive impurities (see footnote
24; also, Y. Haven, Report of the Conference on Defects in Crystalline
Sollds, Bristol, 1954, p. 261).

6-11. Consider the parallel arrangement of the following two circuit
branches: one branch consists of a capacitor C,, the other of a capacitor
C, plus a series resistor R. Show that this circuit is the equivalent of a
capacitor filled with a dielectric satisfying the Debye equations.

6-12. Discuss the theory of the dielectric constant of alkalj halides of
Roberts; this theory is based on a simplified model involving rigid and
weightless ionic boundaries. See S. Roberts, Phys. Rev., 77, 258 (1950),



Chapter 7
IONIC CONDUCTIVITY AND DIFFUSION

7-1. Lattice defects in ionic crystals

We have seen in Sec. 3-3 that a metallic lattice in thermal equilibrium
contains a certain number of lattice defects. Examples of such defects are
vacant lattice sites, interstitial atoms, pairs of vacancies, etc. The formation
of a particular type of lattice defect requires a certain energy ¢ and because
the equilibrium number of defects depends on a Boltzmann factor con-
taining ¢, those defects with the lowest ¢ value will predominate.

Ionic crystals should, according to thermodynamics, also contain
defects in thermal equilibrium with the lattice. Here again, the most
common types are vacancies and interstitial ions. Other defects are, of
course, possible in principle; for example, some positive ions may occupy
lattice positions that are normally occupied by negative ions. It would
seem, however, that the production of such disorderly arrangements
would require very high energies and thus their relative numbers would be
very small.l  In other words, ionic crystals may be looked upon as com-
pletely ordered ‘“‘alloys™ (apart from vacant sites and possible interstitial
ions) of a metal and a metalloid.

Let us consider an ionic crystal of the composition A*B~ Positive ion
vacancies may then be produced in a similar way as in metals, viz., by a
number of successive jumps of positive ions (Fig. 7-1). The result would be
equivalent to taking a positive ion somewhere from the interior of the crystal
and placing it at the surface.? Suppose now that a number of positive ion
vacancies would have been produced in this manner while the negative ion
lattice remained perfect. The surface of the crystal would then contain an
excess of positive charge, the interior an excess of negative charge. Thus
space charges would be set up. It is obvious that such space charges would
counteract the formation of mare positive ion vacancies. On the other
hand, the field set up by the space charges would favor the formation of
negative ion vacancies. We thus conclude that as a consequence of the
tendency to prevent the build-up of space charges, an ionic crystal should
contain nearly equal numbers of positive and negative ion vacancies.?

! J. H. van Santen, Philips Research Repts., 5, 282 (1950), discusses order-disorder
for Coulomb forces.

* Vacancies may also originate at dislocation jogs inside the crystal; see Sec. 3-12.

® A treatment of the space charge problem may be found in J. Frenkel, Kinetic
Theory of Liguids, Oxford, New York, 1946,

160
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Thus even if the energy ¢, required to produce a single positive ion
vacancy were appreciably different from the energy ¢_ to produce a
single negative ion vacancy, they would occur in approximately equal
numbers in the interior of the crystal. It is obvious from this that their
number will be determined only by the sum of the formation energies

p=¢.+¢_ (7-D

As in Chapter 3, it will again be assumed that the external pressure may be
taken as zero, so that the equilibrium condition requires the free energy
E — TS to be a minimum. The free energy of the fictitious perfect crystal
will be represented by

F,=E,—TS, (7-2)

where the energy E, incorporates the binding energy as well as the
vibrational energy. The entropy is thermal entropy only, because for a
perfect crystal the configurational entropy vanishes. Let the actual crystal
contain n positive and n negative ion vacancies. Its configurational

entropy is then
Ser = k log [(N + n)!/N!n!}? (7-3)

The term in square brackets represents the number of ways in which ¥
positive ions and n positive ion vacancies may be distributed over a total
of (N + n) sites. The same holds for the negative ion sites, hence the
square. The free energy of the actual crystal may thus be represented by

F,=F,+n$ — T(S, — S,) — 2kTlog [(N + n)!/N'n]  (7-4)

where S, is the thermal entropy of the actual crystal. Let us define the
increase in thermal entropy AS,, resulting from the production of a
positive plus a negative ion vacancy by

nASy, =S, — S, (7-5)

Applying the equilibrium condition (6F/on); =0 to (7-4) we obtain
forn<< N,
n = Nexp (AS,,/2k — ¢/2kT) (7-6)

Note that the essential factor is the Boltzmann factor containing ¢/2, i.e.,
half the energy required to produce a positive plus a negative ion vacancy.
The exponential term containing the change in thermal entropy per vacancy
AS,,/2 may be calculated on the basis of a particular model, for example,
an Einstein model. In that case the calculation is similar to that given in
Sec. 3-3 for metals. Thus let us assume that the Einstein frequency
associated with the ions in the perfect lattice is ». In the actual lattice,

4 It would be more realistic to introduce two Einstein frequencies, one for the positive
and one for the negative ions; the essential conclusions, however, would remain the
same.
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let the Einstein frequency of an ion neighboring a vacancy be » (< »).
The actual crystal then corresponds to 6zn linear oscillators of frequency »'
and (6N — 6zn) oscillators of frequency », where z is the number of
nearest neighbors surrounding a vacancy. The thermal entropies of the
perfect and actual crystals are then given, respectively, by (see equation 3-2)

S, = 6Nk log (kT|hv) - 6Nk
S, = 6znk log (kT|hv') + (6N — 6zn)k log (kT|hv) + 6Nk
where we assumed kT > hv. Hence
S, = S, + 6znk log (v/v") -7

According to (7-7) and (7-5), we may then write for the increase in thermal
entropy per vacancy formed,

ASy/2 = 3kz log (v[¥') (7-8)

For this model, the expression for the density of vacancies may then be
be obtained by substituting (7-8) into (7-6), giving

n/N = Cexp (—¢/2kT) with C = (y[+')3* (7-9)

Note that the frequency ratio is larger than unity, so that the thermal
entropy changes favor the formation of vacancies.

Here, as in the case of metals, one frequently finds the argument in the
literature that if ¢ depends on temperature in accordance with a relation
of the type

(T) = ¢o + T (dp[dT) = $o — yT (7-10)

the actual expression for the density of vacancies should be
n = N(v[v')*e"** exp (—o/2kT) (7-11)

However, the objections raised in connection with this argument in
Sec. 3-3 are also valid in this case:® it does not take into account the
temperature variation of the thermal entropy change AS,,. In faet, for
zero pressure we have

dé|dT = Td(AS,,)/dT (7-12)

Suppose now that n/N could be measured in some way and that over a
limited range of temperatures the result could be expressed by

d
n/[N = Aexp (—e/kT) or e= —k /D) log (n/N) (7-13)

$Y. Haven and J. H. van Santen, Philips Research Repts., T, 474 (1952).



Sec. 7-1] IONIC CONDUCTIVITY AND DIFFUSION 163

where € is the “‘experimental” slope of log (n/N) plotted versus 1/kT.
Substituting the general expression (7-6) into (7-13) and making use of
(7-12), one finds

€= ¢J2 (7-14)

Hence, one actually measures ¢ in this manner. Also, the pre-exponential
factor A as determined experimentally is always equal to exp (AS/2k).

Approximate methods to calculate the energy ¢ required to create a
positive plus a negative ion vacancy will be discussed in Sec. 7-3 and we
shall therefore postpone giving numerical values for the quantities
involved. + - 4

It will be evident that a positive and a 1/
negative ion vacancy will attract each otheras *+ -+ - + -~
a result of the Coulomb field between them.
For large distances, the energy of attraction is N
equal to —e?/er, where € is the dielectric con- + - -t -
stant of the medium. They may therefore com- _ .
bine to form pairs of vacancies (Fig. 7-1). At
a given temperature there will exist a certain + - + - + -
fatio between the number of single vacancies
and the number of pairs, the ratio depending
on the dissociation energy required to separate + - + - + -
a pa_ir into two sing.lets.‘T.here are ev.idently Fig. 7-1. The sequence
certain degrees of dissociation depending on o jumps 1, 2, 3 may lead
whether the distance between the single vacancies to the formation of a
is small or large; in a sense one may therefore positive ion vacancy A4;
speak of a thermally excited state of a pair if the B represents a negative ion
distance between the vacancies is only a few Yocor)’ C an associated
. . pair of vacancies formed
atomic diameters. Reference to the importance 5 , result of Coulomb
of pairs of vacancies for diffusion in ionic attraction.
crystal will be made later.

Interstitial ions in combination with vacanties may also occur: for
example, a positive ion may jump into an interstitial position, leaving a
vacancy behind. If the vacancy and interstitial ion are far enough apart to
prevent an immediate recombination, one speaks of Frenkel defects.
In this case it is not necessary to have equal numbers of positive and
negative Frenkel defects, because their formation does not require the
setting up of space charges over macroscopic distances. In general,
depending essentially on the energy required to form them, either the
positive or negative Frenkel defects will predominate. Also, they may occur
in combiuation with Schottky defects. The calculation of their density as
function of the energy ¢ required to produce a Frenkel defect is essentially
the same as that given above for Schottky defects, i.e., one finds an
expression for the free energy of a crystal containing n defects and

|
H
+
|
+
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minimizes F. We leave it to the reader to show that in this case,
neglecting thermal entropy changes,$

n = (NN,)Pe=¢T (7-15)

where N is the number of ions under consideration and ¥, is the number of
possible interstitial positions in the crystal; ¢ represents the energy.
required to produce a Frenkel defect.

7-2. The hydration energy of ions

~As an introduction to the next section, where we shall discuss attempts
to calculate the activation energy for the formation of lattice defects in
ionic crystals, we shall sidestep to another problem. It is well known that a
large number of ionic crystals dissolve readily in water, but hardly at
all in organic solvents. To understand this, consider the following cycle :
instead of following what happens when a crystal is dissolved in water,
imagine the crystal taken apart into its separate ions in vacuum. Then,
one by one, the ions are put into the solvent. The total energy involved in
these two steps should then be equal to that required for dissolving the
actual crystal. For simplicity we shall neglect all entropy changes and only
consider energies.

To separate the crystal into its individual ions requires, according to
the Born theory, an energy

2
ELzNAe—-(1—1) (7-16)
a \ n
where N is the number of ion pairs, 4 is the Madelung constant, a, is the
shortest interionic distance, » is the Born repulsion exponent. For NaCl
this is equal to about 7.9 ev per ion pair.

The next question is, What is the change in energy when an ion is
taken from vacuum into the solvent? To simplify the problem let us
consider the ion as a sphere of radius R and the solvent as a continuous
medium of dielectric constant e. If the charge of the ion is e, the energy
required to charge the sphere in vacuum is equal to e?/2R. This energy
may be considered as the energy associated with the Coulomb field
around the sphere. If the sphere were inside a homogeneous dielectric e,
the field energy would be €%/2¢R. Thus when a sphere of radius R and
charge e is taken from vacuum into the dielectric, there is a gain of energy

equal to
2
== (1 — l) (7-17)

¢ See, for example, N. F. Mott and R. W. Gurney, Electronic Processes in Ionic
Crystals, 2d ed., Oxford, New York, 1948, p. 28.

" M. Born, Z. Physik, 1, 45 (1920); K. Fajans, Verhand|. deut. physik. Ges., 21, 549,
709, 714 (1919).
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If (7-17) refers to an ion taken from vacuum to water, H is called the
hydration energy of the ion.

It is probably useful to look at this electrostatic problem from a
somewhat different angle: an ion inside a dielectric material produces a
polarization in the dielectric as a consequence of its Coulomb field. In
turn, the polarized surroundings will produce a field at the location of the
ion. To find the reaction potential at the center of the ion we proceed as
follows. Referring to Fig. 7-3 the field strength in the dielectric is given by

E=eler? == D — 4nP = ¢E — 4=P (7-18)

all vectors having radial direction. Hence the dipole moment induced in a
volume element dr located at a distance r from the center is equal to

Pdr = (e[4nr¥)(1 — 1/e) dr (7-19)

This dipole moment produces a potential at the center of the sphere of
P dr[r?, and thus the reaction potential in the center is

@ ® y 1 1
V:‘- Pd‘r:f ¢ (1—1)-—2-47rr2dr=%(1——) (7-20)
R r €

Jr=R p2 R 47 €

Thus we conclude from (7-17) and (7-20) that the energy of the ion in the
reaction field is

—eV.——-——(l——) (1-21)

We note the appearance of the factor }, which always occurs whenever we
are concerned with the energy of a charge in a reaction potential.
Returning to our original problem, we see that according to (7-16) and
(7-17) the energy required to dissolve the crystal is, per ion pair,
e’ 1 1 1) (1 1
A—\1—- ~—2(1—-)(— ——) 7-22
ao( n) 2°¢ J\R TR (7-22)
where R, and R_, respectively, represent the radii of 4 posiuive and a
negative ion. For the NaCl lattice 4 = 1.746, and if for simplicity we
assume R, + R_ = ayand R, = R_, then (7-22) becomes

1.746ﬁ (1 — l) — sz (l — l) (7-23)

n a, €

We see that, for sufficiently high values of e, expression (7-23) may
become negative, in which case one would expect appreciable solubility
because energy is liberated by dissolving the crystal. This is frequently
the case for water (e = 81), whereas for most organic solvents € is too
small to make (7-23) negative. Although the above reasoning is strongly
simplified, it is obvious that the dielectric constant, and thus the hydration
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energy of the ions, plays a major role in the theory of solubility of ionic
solids. The simple electrostatic problem mentioned above will also enter
in the discussion of the next section.

7-3. The activation energy for the formation of defects in ionic crystals

In Sec. 7-1 we derived an expression for the number of vacancies in an
ionic crystal in thermal equilibrium at a temperature T. According to
(7-6) or (7-9) this number is essentially determined by the formation energy
¢ = ¢, 4 ¢_. Let us first consider the energy ¢, involved in the formation

+ -+ - 4
t €
- + + -
A ¥
+-- D -+
+ N ¢
- - - R
¥
+ - 4+ - 4

Fig, 7-2. Showing the polarizing effect
of a positive ion vacancy on its sur-
roundings. The surrounding negative
ions are displaced slightly outward; the
positive ions assume positions slightly
displaced toward the vacancy. In
addition to the ionic displacements, the
effective negative charge of the vacancy

Fig. 7-3. Jost model to calculate the
polarization energy resulting from the
presence of a vacancy. The vacancy is
represented by a spherical cavity of
radius R inside a homogeneous di-
electric €; the charge e at the center
represents the effective charge of the
vacancy.

induces dipoles in the surrounding ions.

of a positive ion vacancy. Suppose a positive ion is removed from the
interior of the crystal to infinity, while the charge distribution in the
crystal is kept the same as it was. The energy required for this step is
obviously given by
as(1-]) (1249

€g =A— —_— -

z a, n
if we use the simple Born lattice theory. Putting the ion from infinity on
the surface of the crystal leads to a gain in energy of

2
15L=1A5~(1—1) (7-25)
n
Thus if nothing else would happen, ¢, would be equal to the difference of
(7-24) and (7-25). However, the removal of a positive ion will affect the
meighboring ions in such a way that an adjustment takes place by which
energy is gained, thereby lowering ¢,. Referring to Fig. 7-2, we note that
from the point of view of the surroundings of a positive ion vacancy, it looks
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as if a negative charge has been added at this lattice site. In other words,
there is an excess of negative charge in the vicinity of the missing positive
ion. Consequently the surrounding material will become polarized.
This polarization consists first of the formation of dipoles induced in the
ions by the Coulomb field of the missing ion, second of a slight ionic
displacement as indicated in Fig. 7-2. Because of the long range of
Coulomb forces, it is not sufficient to take into account only nearest
neighbors; the effect will spread over distances many times the lattice
constant. The calculation of this polarization energy P, is very complicated
although it may be understood in principle on the basis of a simplified
model, first introduced by Jost.® If we consider the vacancy as a spherical
hole inside a homogeneous dielectric constant e the hole bearing a charge e
at its center, we obtain the situation given in Fig. 7-3. The charge ¢, due
to the missing ion, polarizes the dielectric and thus in turn will create a
reaction potential V at the location of the charge. We see that this problem
is identical with the one treated in the preceding section. Thus the polari-
zation energy is given by

1 1 e? ( 1)
P ==eV==-—|1-— - 7-2
=3V =g\ (7-26)
From (7-24), (7-25), and (7-26), one obtains
1  e? ( 1) 1 e ( 1
,==A— |1 —=) —=-— {1l — = 7-27
bs 2 a, n 2 R, e) ( )

For negative ion vacancies the same reasoning applies, so that the energy
required to produce a positive and a negative ion vacancy is equal to

_ —4% _l_la(ﬁl)(Ll)__ —

bt bmag (1) el =) (g )2

(7-28)
The first term, of course, can be calculated with good accuracy, but as far
as the remainder is concerned the problem arises as to what values one
should assign to R, and R_ in this idealized model. These values can be
found with good approximation only by comparison with more accurate
calculations of P, and P_ based on an actual ionic picture rather than on a
continuum. Calculations of this kind have been made by Mott and
Littleton® and more recently to a higher approximation by Rittner,
Hutner, and Du Pré.1® As an example of the results of the former authors,
we cite those for NaCl and KCl below (all energies in electron volts).

€ P. P_ é R, R_
NaCl......... 794 332 276 186 0.58a, 0.95a,
KCl.......... 718 271 239 208 06la, 0.85a,

8 W. Jost, J. Chem. Phys., 1, 466 (1933); Trans. Faraday Soc., 34, 860 (1938); Ww.
Jost and G. Nehlep, Z. Physik. Chem., B32, 1 (1936); B34, 348 (1938).

® N. F. Mott and M. J. Littleton, Trans. Faraday Soc., 34, 485 (1938).

10 E, S. Rittner, R. A. Hutner, and F. K. Du Pré, J. Chem. Phys., 17, 198 (1949).
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The values of R, and R_ are obtained by substituting the values of P,
and P_ given by Mott and Littleton into (7-26). We note that the number of
vacancies depends on ¢,/2, according to (7-6). Also, we see how important
the polarization energy is for the formation of vacancies in ionic crystals.
In fact, for NaCl it reduces the value of ¢ for NaCl from 7.94 to only
1.86 ev. Because of the relatively small value of ¢, vacancies in alkali
halides close to the melting point may occur in concentrations of the order
of 104 per ion.

From the results quoted above it follows that for alkali halides
R. ~ 0.6ay, and R_ ~ 0.9a,. We shall see in Sec. 7-5 that the calculated
values of ¢ are in fairly good agreement with experiments.

Similar estimates have been made of the activation energies required
for the formation of Frenkel defects in ionic crystals. It turns out that in
alkali halides, defects of the vacancy type are much more likely to occur
than interstitial ions. However, for silver halides there is theoretical and
experimental evidence for the occurrence of Frenkel defects.!! -

We have seen above that the ‘“‘effective” charge of a positive ion
vacancy is negative, of a negative ion vacancy is positive. Thus there will
be attraction between vacancies of opposite sign and one may expect them
to form pairs. The binding energy of a pair of vacancies is about 0.9 ev in
the alkali halides.’? A pair of vacancies is neutral and thus will not lead to
ionic conductivity. On the other hand, they correspond to dipoles and
consequently may give rise to dielectric losses at relatively low frequencies ;
for a review of recent work on this subject we refer to the literature.l
Also, pairs of vacancies of opposite sign appear to be very mobile in the
alkali halides and are therefore important for diffusion in these crystals.14

Besides single vacancies and pairs of vacancies, higher aggregates of
course are possible, as triplets, quadruplets, etc.

7-4. Example of self-diffusion in alkali halides

As an example of diffusion in ionic crystals, some measurements by
Mapother, Crooks, and Maurer will be discussed briefly.!> These investi-
gators measured the self-diffusion of radioactive sodium in NaCl and
NaBr in the following manner: A thin layer of about 5 X 10~%cm of
radioactive salt containing the isotope Na2* was deposited on one face of a
cubic crystal, approximately 1 cm on edge. The crystal was then held at a

11 ]. Tetlow, Ann. Physik, 5, 63, 71 (1949); Z. physik. Chem., 195, 197, 213 (1950);
for further references see the article by F. Seitz in W. Shockley (ed.), Imperfections in
Nearly Perfect Crystals, Wiley, New York, 1952.

12 J. R. Reitz and J. L. Gammel, J. Chem. Phys., 19, 894 (1951).

12 See, for example, the paper by R. G. Breckenridge in W. Shockley (ed.), Imperfec-
tions in Nearly Perfect Crystals, Wiley, New York, 1952.

1 J. G. Dienes, J. Chem. Phys., 16, 620 (1948); F. Seitz. Phys. Rev., 79, 529 (1950).

1> D. Mapother, H. N. Crooks and R. Maurer, J. Chem. Phys., 18, 1231 (1950).
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constant temperature for a certain length of time. After this diffusion
anneal, the distribution of radioactive sodium was determined by means of
a sectioning technique, employing a microtome. In a similar fashion,
Schamp has investigated the diffusion of bromine in NaBr.1. What one
measures in this way is the self-diffusion of the radioactive ions in the salt.
It must be emphasized that this type of experiment is altogether different
from one in which one heats the salt in the vapor of one of the constituents ;
in such experiments one obtains information about the diffusion of color
centers in the lattice (see Sec. 15-6).

According to Fick’s first law, the net flux of ions is proportional to the
concentration gradient (see Sec. 3-5), i.e.,

J = —D grad n* (7-29)

where J is the number of radioactive atoms crossing 1 cm? per sec., D
is the diffusion coefficient, and n* is the number of radioactive ions per cm?.
Applying the continuity condition —on*/dt = div J, (7-29) becomes

on* .
T div (D grad n*) (7-30)
Assuming the diffusion coefficient D to be independent of the concen-
tration of radioactive ions, one obtains for the one-dimensional problem
under consideration,

on* o*n*

o = Doe (7-31)

The solution of this equation for the boundary conditions in the experiment
mentioned above is!?

) — 8 —x 7-32
0 = i P \ 3 (732

Here n*(x,t) is the density of radioactive ions at x after an annealing
period 7; ny* is the initial density at the surface. This solution is based on
the assumption that the migration of radioactive sodium is a result of a
single diffusion process, because only one diffusion constant D has been
introduced. That this assumption is correct may be seen from Fig. 7-4
where the logarithm of the counting rate has been plotted versus the
square of the distance from the surface. It may be pointed out that the
situation is not always so clearcut as in these experiments. For example,
results of similar measurements made by Redington?® on the self-diffusion
of Ba in BaO crystals, when plotted in analogy with Fig. 7-4, give a curve

16 H. W. Scham.p, Thesis, University of Michigan, 1951.

17 See, for example, W. Jost, Diffusion in Solids, Liquids, Gases, Academic Press,
New York, 1952, p. 19.

18 R. W. Redington, Phys. Rev., 87, 1066 (1952).
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consisting of two straight parts separated by a knee. Redington has
interpreted his results in terms of two diffusion processes, each having its
own diffusion constant.
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Fig. 7-4. Distribution of radioactive Fig. 7-5. The fully drawn curve repre-
Na in NaCl. T = 603°C; = 592h; sents the directly measured self-diffusion
D = 1.52 x 10 cm?sec. [After coefficient of Na in NaCl as function of
Mapother, Crooks, and Maurer, ref. 15] temperature. The dashed curve is cal-

culated from the measured conductivity
by means of equation (7-45). [After
Mapother, Crooks, and Maurer, ref. 15]

The diffusion constant of Na in NaCl as a function of temperature is
represented by the fully drawn curve in Fig. 7-5. Evidently the diffusion
constant satisfies the relation

D = Dge~ /M7 (7-33)

where € is an activation energy. It must be noted, however, that the high-
and low-temperature regions have different activation energies of,
respectively, 1.80 ev and 0.77 ev. This point will be taken up below;
it is believed that the low activation energy results from the presence of
divalent positive impurities. For diffusion measurements on crystals
containing intentionally added divalent positive ions, see the work by
Witt and Aschner.!® In the next section, the diffusion measurements will be
interpreted in terms of the migration of lattice defects.

1 H. Witt, Z. Physik, 134, 117 (1953); J. F. Aschner, Thesis, University of
Hlinois, 1954.
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7-5. Interpretation of diffusion in alkali halides

It is evident that diffusion of ions in a perfect lattice, i.e., in a lattice
in which all lattice sites are occupied by the proper ions, is impossible
because a given ion has no place to go. Diffusion is therefore possible only
by the migration of interstitial ions or by the migration of vacant lattice
sites. We have seen before that in the alkali halides lattice vacancies are
the predominant type of defects. Thus the positive ions surrounding a
positive ion vacancy may jump into the latter; consequently, the vacancy
moves through the crystal by virtue of positive ions jumping into it and
diffusion becomes possible.

Consider then in Fig. 7-6 the A C B
sodium chloride structure, assuming
for simplicity that the x-axis along

[}
which the diffusion of radioactive ; o

sodium takes place coincides with i | ’v,,-—'r:;:c:»—-—

one of the cube edges. A particular ,/?:\,/Q ;

positive ion vacancy, such as the one i _O_L__,L____

in Fig. 7-6 indicated by the square °| | |aq-=-s0e2-

may then in time carry out a jump < — »x
to any of 12 equivalent positions,

assuming the latter are occupied by * Na
positive ions. Of these possible AC B ocr

jumps, there are 4 in the positive

x-direction, 4 in the negative x-direc- Fig. 7-6. The positive ion vacancy at

tion, and the remaining 4 leave the the center may jump to any of the
. . . twelve surrounding positive ion sites

vacancy in the original plane. Thus

. . - at a distance aV'2. The planes 4, B,
if p is the probability per second and C are perpendicular to the x-axis,

for the vacancy to make any jump, along which the diffusion takes place.
p/3 is the probability per second for

a displacement +a, —a, and 0, respectively, if a is the shortest inter-
ionic distance. Let us represent the number of radioactive positive ions
crossing 1 cm? of the plane C in Fig. 7-6 per second, going from plane
Ato B, by N*. Similarly, let N* represent the same number crossing plane
C by going from plane B to A. Then if N is the density of positive ions per
cm3, n is the density of vacancies, and »n* is the density of radioactive
positive ions,

1 n p n*

N* —_— .2 .2, r
~ 2¢* N 3 N

.1(*+dn*)
Nn dxa

—
X
Wi

Here 1/2a? represents the total number of positive lattice sites per cm?
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on plane 4 or B; n/N represents the probability that such a site is vacant,
and n*|N represents the probability that a positive ion in plane A4 is radio-
active. Consequently the net number of radioactive positive ions passing
1 cm? of plane C per second from left to right is

np dn*
6N2%a dx
Comparing (7-34) with (7-29) and remembering that N = 1/2a% one

obtains for the diffusion constant associated with the migration of single
positive ion vacancies

(7-34)

J=N* — Nt =

1  n
D == - 2 —_— 7'35
38 NP (7-35)
The reader may compare this result with expression (3-21). As expected,
the self-diffusion coefficient is proportional to the number of vacancies
per unit volume n and to the jump probability of a vacancy per second p.
As in Sec. 3-5, p may be written in the form

p = ve~ kT (7-36)

where » is a frequency and ; is the activation energy associated with a
jump. Finally then, the coefficient of self-diffusion based on the assumption
of the migration of single positive ion vacancies may be obtained by
substituting (7-9) and (7-36) into (7-35), yielding

1
D= 3 Cra?e~#/2Te—lkT (7-37)

The constant C arises from the thermal entropy change associated with the
production of vacancies, as discussed in Sec. 7-1. We note that in a plot of
log D versus 1/kT, the slope of the line according to the above interpretation
is determined by the sum (e; + ¢/2), i.e., by the energy required for the
formation of vacancies plus the activation energy for jumping. Thus, from
the diffusion measurements of Na in NaCl, represented in Fig. 7-5, it
follows from the slope in the high-temperature region that €, + ¢/2 =
1.80 ev.

The break in the log D versus 1/T curve leading to a smaller slope in
the low-temperature region may in principle be a result of either or both
of the following two causes : (1) the presence of divalent positive impurities,
(2) the freezing-in of positive ion vacancies. The explanation is as follows:
Suppose that a salt like NaCl contains in solid solution a small amount of
SrCl, or of the chloride of another divalent metal, the divalent positive
ions occupying sites which are normally occupied by the singly charged
Nat ions. The condition of electric neutrality then requires that for each
divalent positive ion present, there must be a positive ion vacancy. Such
crystals then may contain at lower temperatures more positive ion
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vacancies than would be expected on the basis of thermal equilibrium
alone. In fact, below a critical temperature, the number of vacancies per
unit volume would then remain constant, the critical temperature being
higher the larger the density of divalent impurities. At high temperatures,
however, the number of thermally produced vacancies would predominate
over the number required by the presence of the divalent ions and the
crystal would behave in a normal fashion. Now, if the number of vacancies
per unit volume is independent of temperature, the temperature dependence
of the diffusion coefficient is according to (7-35) and (7-36) determined by
thc factor exp (—e¢,;/kT). Thus if the presence of divalent metallic ions is
accepted as the cause of the break in the log. D versus 1/T curve, the
activation energy for jumping may be obtained separately from the slope
of the curve in the low-temperature region. In view of the fact that
(¢ + ¢/2) is known from the high-temperature slope (the “intrinsic™
region), both ¢; and ¢ may be obtained. Because of strong experimental
evidence, to be further discussed in the next sections, the above explanation
seems now generally favored over the freezing-in hypothesis. The latter
hypothesis is based on the following reasoning: Suppose a crystal contains
a certain number of lattice defects in thermal equilibrium at a high tempera-
ture. If the temperature is suddenly lowered, it will take a certain amount
of time for the new equilibrium to be established because this requires a
migration of vacancies. At lower temperatures such time intervals may be
very long and consequently, the crystals may contain many more defects
than would be permitted by the equilibrium conditions.

For the diffusion of positive ion vacancies in NaCl, it follows from the
slope in the low-temperature region of Fig. 7-5 that €; = 0.77 ev. Hence,
because (¢; + ¢/2) = 1.80 ev, the experimental value for ¢ is 2.06 ev.:
This is in reasonable agreement with the theoretical value of 1.86 ev
given on page 167.

For a vibrational frequency of the ions in the lattice of the order of
10 per sec, one finds for the probability of a jump of a positive ion
vacancy per second in the alkali halides,

p = ve~ T ~ 1 sec™! at room temp. (7-38)

From (7-37) it follows that the pre-exponential factor in the expression for
the diffusion coefficient is equal to

Dy = }Cva® ~ 1 cm?sec™?

when v~ 103, a~3-10%cm and C~ 100. The experimental value
of D, for the intrinsic region in NaCl, according to the work of Mapother,
Crooks, and Maurer, is 3.1 cm2sec™!, and 0.67 cm? sec~! for NaBr.

Diffusion of positive ions does not necessarily take place as a result of
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migration of single positive ion vacancies only. In fact, at least two other
possible diffusion mechanisms must be considered in the alkali halides:

(i) Diffusion resulting from migration of pairs.

(ii) Diffusion resulting from migration of divalent positive impurities
together with associated vacancies.

These two mechanisms are illustrated
-+ - + - + - in Fig.7-7. A pair of vacancies may
diffuse as a result of positive or negative
ions jumping into the corresponding
vacant site of the pair. The resulting
diffusion coefficient is given by an ex-
pression of the type

Dy, = const. exp (qS—_ek%:—{_-_em

) (7-39)

Fig. 7-7. The pair AB may dif- . .
fuse by the positive ion C jumping where ¢ is the energy required to produce

into the vacancy 4, or by a @& positive plus a negative ion vacancy, €,
negative ion jumping into B. is the binding energy of a positive and
The associated complex divalent negative ion vacancy and ¢;, is the activa-
positive ion-positive ion vacancy  tion energy for the jumping of a pair.
may migrate as a result of inter- pyo o etical estimates give €, ~ 1 ev
change between the divalent ion g »
and the vacancy D, combined and €;; =~ 0.4 ev for NaCL* It may be
with singly charged positive ions expected, therefore, that pairs diffuse much
jumping into the vacancy. more rapidly than single vacancies, because
their activation energy for jumping is only
about half that for a single positive ion vacancy. That this must be so
may be seen qualitatively because the jumping ions are allowed more free
space in the former case.

The influence of the presence of divalent positive ions on the diffusion
may be understood as follows: For each divalent positive ion, there must
be a positive ion vacancy to satisfy the neutrality condition. A certain
fraction of these vacancies are free and contribute to the diffusion as
discussed above. However, not all these vacancies are free, because they
are attracted by the divalent positive ions as a result of Coulomb inter-
action. Thus there will be a certain number of associated complexes,
consisting of a divalent positive ion and a neighboring vacant positive ion
site. This unit may migrate through the crystal as a result of other positive
ions jumping into the vacancy and as a result of possible jumps of the
divalent ion into the vacancy. It may be of interest at this point to give

20 G. J. Dienes, J. Chem. Phys., 16, 620 (1948); N. F. Mott and R. W. Gurney
Electronic Processes in loni¢ Crystals, Oxford; New York, 1940, Chap. 2.



Sec. 7-5] 10NIC CONDUCTIVITY AND DIFFUSION 175

values of the binding energy between divalent positive ions and positive ion
vacancies as calculated by Bassani and Fumi:2!

Cd2+ Ca2+ Sr2+
NaCl......... 0.38 ev 0.38 ev 0.45ev
KCl.......... 0.32 0.32 0.39

Thus these binding energies are roughly half as large as those for pairs
of vacancies in the alkali halides. The study of the influence of divalent
impurities on the physical properties of alkali halides receives a good deal
of attention at present.

Although we have limited ourselves to the discussion of a rather
restricted area of the field of diifusion in ionic crystals, the same general
ideas apply to other cases. For further study we therefore refer the reader
to the literature.??

+
7-6. Ionic conductivity in ‘‘pure’’ alkali halides M
When a potential difference is applied between 1 M-X-
two opposite faces of an ionic crystal, an electric
current may be detected. For the alkali halides these 9 X
currents are too large to be explained in terms of
the motion of electrons because the number of [ 7N M

electrons in the conduction band for the tempera-
tures involved would be much too small. Thus )

the currents must be a result of the migration of Fig. 78. Essential ex-
. . . O perimental arrange-
ions under influence of the electric field, similar ot for measuring
to the electrolytic conduction of aqueous solu- transport numbers.
tions of salts. That the currents are indeed of

an ionic nature is also indicated by the fact that decomposition occurs
at the electrodes.

The first problem which arises is to determine which constituent carries
the current. Although the actual experiments are usually more involved,
this question may be answered in principle by employing an experimental
arrangement®? such as indicated in Fig. 7-8. Two slabs of a salt MtX~ are
pressed together between two electrodes of the metal M. For the polarity
as indicated, the two following extreme possibilities exist :

(i) Only positive ions move; in that case the cathode will grow at the
expense of the anode, the thickness of the two salt slabs remaining
the same.

(ii) Only the negative ions move; the X~ ions are then neutralized at
the anode and form new layers of salt. Hence the anode decreases

‘1 F. Bassani and F. G. Fumi, quoted by F. Seitz, Revs. Mod. Phys., 26, 7 (1954).
*% See W. Jost, Diffusion in Solids, Liquids, Gases, Academic Press, New York, 1952,
Chap. 4.
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in thickness, the cathode increases. Furthermore, slab 1 will grow
at the expense of slab 2.

If both types of ions contribute to the current, the result will be
intermediate between (i) and (ii). By weighing, the relative contri-
butions to the ionic current by the positive and negative ions may be
determined.

The ionic conductivity of an isotropic crystal is defined by the scalar
equation '

I =oE

where I is the current density, E is the field strength, and o is the con-
ductivity. If the conductivity of the positive ions alone is o, the transport
number of these ions is defined by

t,=o,lo (7-40)

Similarly, t_ = o_/o, and of course 1, + t_ = 1.

In the alkali halides the experi-
ments show that the positive ions are
much more mobile than the negative
ones. In the older literature one will
find for KClI, for example, values for
t, of about 0.9 over a wide tempera-
ture range. Recent measurements on
crystals of high purity indicate, how-
ever, that the presence of small
Fig. 79. The fully drawn curve amounts of divalent positive ions has
represents the resultant of the field-free  a marked influence on the measured
o o i oy SR mubers. For very pure
zxternal field E. A, B, :m(;g C may be KC(I), Kerkhoff finds 1, = 0'808 at
associated with positions of a positive 925 C and 7, = 0.70 at 600 c=
ion in the planes 4, B, C of Fig. 7-6. We shall return to this point in Sec.

7-7 and first discuss the interpre-
tation of ionic conductivity in terms of lattice defects.

In the alkali halides ionic conductivity, like diffusion, is explained in
terms of the motion of vacant lattice sites. The positive ion vacancies
have an effective negative charge and will therefore move toward the
anode; similarly, the negative ion vacancies will move towards the
cathode. As mentioned above, the mobility of the positive ion vacancies
is appreciably larger than that of the negative ones, and for the moment it
will therefore be assumed that the conductivity is entirely due to the
motion of the former. For simplicity we shall use the geometry of Fig. 7-6,
assuming an electric field along the x-axis. Let us denote the number of

External field
’/

~

2 F. Kerkhoff, Z. Physik, 130, 449 (1950).
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positive ion sites per cm?® by N, the number of positive ion vacancies percm3
by n. If the electric field in Fig. 7-6 is directed to the right, a positive ion
vacancy will jump with a higher probability to the left than to the right,
because it is negatively charged. The potential energy along the line of
motion may therefore be represented by the full curve in Fig. 7-9 which is
the resultant of the dashed field-free curve and the linear potential due to the
external potential difference. Clearly then, the probabilities per second for
a jump to the left and to the right are, respectively,

P = vexp [—(¢; — L aeE)/kT]

P = dvexp [—(¢; + } aeE)[KT]

where the notation used is identical with that of Sec. 7-5; E represents
the field strength. The current density, i.e., the net flux of charge passing
per second through 1 cm? is then equal to

(7-41)

1 n

I=— —(p_ — -
5oy (P — Po)e (7-42)
because 1/24? is the number of positive ion sites in a plane perpendicular
to the x-axis of an area of 1 cm? and n/N is the probability for such a site
to be vacant. Now, for nearly all practical cases, aeE << kT, so that in first

approximation
2, E —&;/kT
L _GE (7-43)

~ N 6akT

Now the number of vacancies » is given by (7-9), so that the conductivity
is equal to
Ce%v
g =
6akT

exp [—(e; + $4)/kT] (7-44)

We note that the current density is proportional to E only as long as
aeE < kT, i.e., Ohms law is valid only under this particular condition.
For very high electric fields such that geE is not small compared with kT,
the current increases exponentially with the field strength. According
to (7-44), the conductivity associated with the positive ion vacancies
depends on the two activation energies €; and ¢, as does the cuefficient
of self-diffusion. In fact, the conductivity o is related in a simple manner
to the diffusion coefficient, as was first pointed out by Einstein. From
(7-37) and (7-44) it follows that

o/D = Ne*kT (7-45)

It must be emphasized that the Einstein relation is valid only if the
conductivity and self-diffusion are due to the same mechanism; in the



178 IONIC CONDUCTIVITY AND DIFFUSION [Chap. 7

present case the assumption implicit in the derivation of (7-45) is that
both phenomena are a result of the migration of single positive ion
vacancies. In Fig. 7-5 the diffusion coefficient calculated from the con-
ductivity by means of (7-45) is represented by the dashed curve. That the
Einstein relation is not exactly satisfied is of interest for the interpretation
of the diffusion mechanism. First of all, in the high-temperature region
the slope of the diffusion coefficient curve as calculated from (7-45)
appears to be slightly larger than the directly measured one. This may
be explained as a result of the fact that a small fraction of the ionic
current is carried by the negative ion vacancies; these, of course, do not
contribute to the self-diffusion of Na. In the low-temperature region,
the calculated diffusion coefficient is somewhat smaller than the directly
measured one. This implies that besides the diffusion of positive ion
vacancies, there is some diffusion associated with the migration of neutral
carriers. For example, pairs of vacancies and positive divalent ions
associated with vacancies (see Fig. 7-7) may contribute to the diffusion
but will not contribute to the ionic conductivity.

We have seen above that in the alkali halides the ionic current is
carried for the greater part by the positive ions. This is not always the
case, however. In the halides of barium and lead, for example, the
negative ions are mainly responsible for the ionic conductivity. In the
silver halides, the positive ions are the mobile constituent.

7-7. Ionic conductivity in alkali halides with added divalent impurities

We have mentioned several times the influence of the presence of
divalent metallic ions on the properties of alkali halides. Although the
study of such solid solutions was initiated in 1938 by Koch and Wagner
on silver halides, the subject has received a great deal of attention lately,
and a few remarks may therefore be in order.

It is possible to grow crystals of alkali halides or silver halides with
intentionally added small amounts of the halides of divalent metals,
such as Sr, Ba, or Ca. The density of crystals of KCI containing small
amounts of CaCl, and SrCl, has been measured by Pick and Weber.*
The results demonstrate that the divalent ions are incorporated sub-
stitutionally, i.e., they occupy lattice sites which are normally occupied
by the monovalent alkali ions.

In Fig. 7-10 we give as an example of the influence of the divalent ions
on the conductivity some results obtained by Kelting and Witt.?® The
logarithm of o has been plotted versus 1/7 for a “‘pure” crystal of KCl
(curves 7 and 8) and for KCI with different amounts of SrCl,. We note

% H. Pick and H. Weber, Z. Physik, 128, 409 (1950).
s H. Kelting and H. Witt, Z. Physik, 126, 697 (1949).
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that all curves come together to a single straight line, the intrinsic region.
In that region, the conductivity is determined essentially by the density
of vacancies produced thermally. Thus the slope of the intrinsic curve
is determined by the sum of the activation energies ¢; and ¢/2 in accordance
with (7-44). Now for each divalent ion there is one positive ion vacancy.

300 400 500 600 700 °C
T T LB T 1
_4 -
T
8
e 1
2
1)
2
¥ s}
1
~-7F
" . | PR . 1 s 1
18 16 14 12 10
—> 1000/T

Fig. 7-10. The ionic conductivity of KCl crystals containing various

amounts of SrCl,. In units of 10~* the numbers refer to the

following mole fractions: M;=19; M,=8.7; M;=6.1;

M,=135 M;=19;, M,=12;, M,,=0. [After Kelting
and Witt, ref. 25]

Consequently, at low temperatures the number of vacancies per unit
volume remains constant and is equal to the density of divalent metal
ions. At a given temperature, the experiments show that the “induced”
conductivity is nearly proportional to the concentration of the divalent
metal. This justifies the above interpretation and indicates that the
vacancies are almost completely dissociated from the divalent ions.
The importance of measurements of this kind lies in the fact that they
permit us to determine:

(i) The mobility of the positive ion vacancies.
(ii) The density of Schottky defects in the intrinsic range.

(iii) The binding energy of a divalent impurity and a positive ion
vacancy.

This follows from the following considerations: when the conductivity
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o and the concentration of charge carriers n are known, the mobility u
(i.e., the velocity per unit field) may be calculated from the relation

o = neu (7-46)

Comparison of this expression with (7-43) shows that this in turn allows
one to calculate the jump probability. As mentioned before, the
probability for a jump of a positive ion vacancy at room temperature is
about 1 per second for the alkali halides. Once the mobilities are known,
the density of Schottky defects in the intrinsic range may be determined
from the measured conductivity. In this fashion Etzel and Maurer find
for the density of Schottky defects in the intrinsic range for NaCl,%

n = 1.2 X 10% exp (—¢/2kT) per cm? (7-47)

where ¢ = 2.02 ev is the energy required for the formation of a positive
and a negative ion vacancy. Close to the melting point, this gives a
density of Schottky defects of about 108 per cm?, i.e., about 1 vacancy
per 10* ions. At room temperature n ~ 10 per cm®. It is of interest to
compare (7-47) with the theoretical expression (7-9). With N ~ 1022
it follows that the constant C ~ 10.

Information about the binding energy of a divalent positive ion and a
positive ion vacancy may be obtained from the fact that the “induced”
conductivity is not exactly proportional to the concentration of the added
divalent salt. In this way, Etzel and Maurer conclude that a fraction of
the vacancies is associated with the divalent impurities, the binding energy
being about 0.3 ev for NaCl containing CaCl,.?® However, this topic
is still in a state of flow and will not be discussed here any further. We
may refer to page 175, where calculated binding energies are given.

We mentioned in Secs. 7-5 and 7-6 that the break in the log D and log o
versus 1/T curves is now generally interpreted as resulting from the
presence of divalent impurities rather than as a freezing-in of vacancies.
As experimental evidence we reproduce in Fig. 7-11 measurements by
Kerkhoff?? of the conductivity and positive ion transport number for three
KCl crystals. Itis important to compare the position of the knees in the
three cases; as the materials become purer, the knee shifts to lower
temperatures, in agreement with the above interpretation. It is also of
interest to note the influence of the divalent ions on\ the measured positive
ion transport numbers, mentioned in Sec. 7-6. Evidently most of the trans-
port numbers quoted in the literature are unreliable as a consequence of the
presence of impurities. The recrystallization of the “analytically pure”
KCl carried out by Kerkhoff corresponds to a tenfold increase in purity.

26 H. W. Etzel and R. J. Maurer, J. Chem. Phys., 18, 1003 (1950).
*" F. Kerkhoff, Z. Physik, 130, 449 (1951).
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We may finally mention the influence of divalent positive ions on the
dielectric losses of alkali halides. The associated complex of a divalent
ion and a vacancy corresponds to a dipole. The direction of this dipole
may change as a result of the jumping of the vacancy as well as by the
interchange of the divalent ion and the vacancy. When the dielectric
losses are measured as function of frequency (or temperature), a peak
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at the jumping frequency (which depends on temperature through
a Bolizmann factor) may be expected. For experimental work on this
topic we refer o Breckenridge and Haven.?®
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PROBLEMS

7-1. From equation (7-9) calculate the number of vacancies per unit
volume, assuming N = 107 cm=3, ¢ = 2¢V, and v, = vV 2.

7-2. Assuming a simple Coulomb interaction between positive and
negative 10on vacancies, estimate the binding energy of a pair of vacancies
in LiF, NaCl, and K1

7-3. Neglecting ionic displacements, set up a general expression for
the cnergy required to produce a Frenkel defect in a crystal of the sodium
chloride structure, employing the simple Born theory. Calculate the
energy required to form a Frenkel defeet in NaCl and compare the result
with that required to form a positive and a negative 1on vacancy. (To
check your results, see, for example, W. Jost, Diffusion in Solids, Liquids,
Gases, Academic Press, New York, 1952, p. 108.)

7-4. Assuming only a Coulomb interaction between a divalent
positive ion and a positive ion vacancy, employing the static dielectric
constant of the medium, calculate the association energy of the complex
for NaCl. Compare the result with the more detailed calculations of
Reitz and Gammel, J. Chem. Phys., 19, 894 (1951) and of Bassini and
Fumi (feotnote 2}).

7-5. Neglecting therma: entropy changes, set up an expression for
the free energy of a crystal with the NaCl structure containing n, single
positive ion vacancigs, n, single negative ion vacancies, and ny pairs of

R G Breckenridge, J. Chem. Phys., 16, 959 (1948); 18, 913 (1950). see also his
sriicle in W Shockley (ed.), /mperfaciions in Nearly Perfect Crysials, Wiley, New York,
1952, p. 219, Y. Haven, J. Chem. Phys.. 28, 171 (1953).



Chap. 7) JIONIC CONDUCTIVITY AND DIFFUSION 183

vacancies. From the minimum conditions 8F/én, = 0 and 0F[éng = 0,
show that

nyjns = 6 exp [(¢ — § $)/kT)

where € represents the binding energy of a pair and ¢ is the energy re-
quired to produce a single positive and negative ion vacancy.

7-6. On the basis of the simple Born lattice theory cakculate the energy
required 1o create a positive and negative ion vacancy in MgO. Assume
that in the Jost model R, == 0.6a and R_ = 0.9a and use for the diclectric
constant the value 9.8 (Answer: The lattice energy is 41 cv per ion pair;
the total polarization enetgy in M ev; ¢ = 7 ev).

7-7. Consider a crystal of monovalent ions of the NaCl structure.
Let N represent the number of positive ion sites per em?, n, the number of
added divalent positive ions per cm?. Furthermore, let 71, be the number
of associated complexes per cn?, so that (5, — n,) equals the density of
free positive ion vacancies and free divalent ions. Show that in thermal
equilibrium

By — ]2(/31'

("l - "e)z

where ¢ is the association energy of the complex. (See A. B. Lidiard,
Phys. Rev., 94, 29 (1954).)

7-8. Consider a solution of n molecules of NaCl per cm? of water.
Suppose the concentration is small enough for the interaction between
the ions to be negligible. Consider the ions as spheres of radii R, and R_
and show that the clectrical conductivity is given by o = (n€?/6n7)
(1/R, + 1/R_) where 7 is the viscosity of water (n =~ 10-% cgs units at
20°C). Find an expression for the “effective viscosity” in the case of
ionic conductivity in solid NaCl. Cakulate the mobilities of Na* and Ct-
ions in solution on the assumption that R, and R_ are equal to the ionic
radii; compare the results with the experimental values at 20°C
(. =45 < 10%and p_ = 6.8 X 10~ cm sec™! volt~! emr?).

7-9. Discuss the determination of the concentration and association
of lattice defects in NaCl from measurements of the ionic conductivity
and dielectric losses. (See Y. Haven, Report of the Conference on Defects
in Crystalline Solids (Btistol 1954), Physical Society (London), 1955,
p. 261.



Chapter 8

FERROELECTRICS

8-1. General properties of ferroelectric materials

The dielectrics discussed in the preceding chapter show a linear relation-
ship between polarization and applied electric field. In the present chapter
we shall deal with dielectrics for which this relationship exhibits hysteresis
effects. Since the dielectric behavior of these materials is in many respects
analogous to the magnetic behavior of ferromagnetic materials, they are
called ferroelectric solids, or simply ferroelectrics. A ferroelectric is
spontaneously polarized, i.e., it is
A c polarized in the absence of an external
B field; the direction of the spontaneous

” polarization may be altered under

P’A influence of an applied electric field.

In general, the direction of spon-

E, 0 / E  taneous polarization is not the same

throughout a macroscopic crystal.
Rather, the crystal consists of a
number of domains; within each
domain the polarization has a specific
direction, but this direction varies
Fig. 8-1. Schematic representation of {rom one domain to another. On the
hysteresis in the polarization versus basis of the domain concept, the
applied field relationship. occurrence of hysteresis in the P
versus E relationship can be explained
as follows: With reference to Fig. 8-1, consider a crystal which initially has
an over-all polarization equal to zero, i.e., the sum of the vectors represent-
ing the dipole moments of the individual domains vanishes. When an
electric field is applied to the crystal, the domains with polarization com-
ponents along the applied field direction grow at the expense of the
““antiparalle]” domains; thus the polarization increases (O4). When all
domains are aligned in the direction of the applied field (BC), the polariza-
tion saturates and the crystal has become a single domain. A further
increase in the polarization with increasing applied field results from “‘nor-
mal” polarization effects discussed in the preceding chapter; rotation of
domain vectors may also be involved if the external field does not coincide
184
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with one of the possible directions of spontaneous polarization. The extra-
polation of the linear part BC to zero external field gives the spontaneous
polarization P,. The value of P, so obtained is evidently the same as the
polarization which existed already within each of the domains in the virgin
state corresponding to O in Fig. 8-1. Thus, when we speak of “‘spontaneous
polarization” we have in mind the polarization within a single domain and
not the over-all polarization of a crystal. We note here that the spon-
taneous polarization and its dependence on temperature, or on other
external conditions that might be imposed, can be measured by displaying
the hysteresis loop on an oscilloscope screen. When the applied field for a
crystal corresponding to point B in Fig. 8-1 is reduced, the polarization
of the crystal decreases, but for zero applied field there remains the
remanent polarization P, where P, refers to the crystal as a whole. In order
to remove the remanent polarization, the polarization of approximateiy
half the crystal must be reversed and this occurs only when a field in the
opposite direction is applied. The field required to make the polarization
zero again is called the coercive field E,. 1t is evident that if the coercive
field is larger than the breakdown field of the crystal, no change in the
direction of spontaneous polarization can be achieved, i.e., under those
circumstances we cannot speak of the solid as a ferroelectric.

In connection with the last remark a few words may be said here about
the crystal structure of ferroelectrics. A necessary, but not sufficient,
condition for a solid to be ferroelectric is the absence of a center of
symmetry. In total there are 21 classes of crystals which lack a center of
symmetry ; the classes are based on the rotational symmetry of crystals.
Of these 21 classes, 20 arg piezoelectric, i.e., these crystals become polarized
under influence of external stresses. As soon as the crystal structure of a
particular solid falls within this group, it can be predicted to be piezo-
electric; piezoelectricity is thus determined solely by the symmetry
properties of a crystal. Ten out of the 20 pieozelectric classes exhibit
pyroelectric effects. These pyroelectric crystalsare spontaneously polarized.
However, the polarization is usually masked by surface charges which
collect on the surface from the atmosphere ; when the temperature of such
a crystal is altered, the polarization changes and this change can be
observed, hence the name pyroelectricity. As in the case of piezoelectricity,
pyroelectric properties can be predicted as soon as the crystal structure of
the solid has been determined. The ferroelectric materials discussed below
are part of the group of spontaneously polarized pyroelectrics. However,
they have the additional property that the polarization can be reversed by an
applied field. This additional feature cannot be predicted from the crystal
structure ; it can be established only on the basis of a dielectric experiment.

The ferroelectric properties of a ferroelectric disappear above a
critical temperature 7, ; this temperature is called the ferroelectric Curie
temperature. Associated with the transition from the ferroelectric to the
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nonferroelectric phase are anomalies in other physical properties. Thus
for a first-order transition, there will be a latent heat ; for a second-order
transition the specific heat will exhibit a discontinuity (see Sec. 8-7).
We should also mention that the spontaneous polarization in the ferro-
electric state is associated with spontaneous electrostrictive strains in the
crystal; thus the ferroelectric structure has a lower symmetry than the
nonpolarized state. At the transition temperature a change in crystal
structure is therefore observed.

The dielectric constant of a ferroelectric is, of course, not a constant,
but depends on the field strength at which it is measured; this is a con-
sequence of the nonlinear relationship between P and E. When one speaks
of “the dielectric constant,” one refers to the slope of the curve OA in
Fig. 8-1 at the origin, i.e., € is measured for small applied fields so that no
motion of domain boundaries occurs. The dielectric constant € so defined
is very large in the vicinity of the transition temperature, of the order of
10%-105. Above the transition temperature € obeys the Curie-Weiss law,

e=C(T—6)+ ¢, (8-1)

where C’ is a constant and 6 is a characteristic temperature which is
usually some degrees smaller than the transition temperature 7,; € is a
constant contributed by the electronic polarization. In the vicinity of the
transiticn temperature €, may be neglected, since it is of the order of umity
and €3> ¢, Likewise, the susceptibility y = (e — 1)/4m =~ e/4m is given
by x =: C/(T — 0) in this region, where C = C’[4~ is called the Curie
constaiit.

Tke interpretation of ferroelectric properties is based on the one hand
on thcrmodynamic considerations, which are independent of any particular
modcl; on the other hand, theories have been advanced on the basis of
atomic miodels. The latter require for their verification detailed
studies of the structure of the crystals as function of temperature. An
excellent description of structure studies on ferroelectrics can be found in
G. Shirane, F. Jona, and R. Pepinsky, ““Some Aspects of Ferroelectricity,”
Proc. IRE, December 1955, p. 1738. This paper also contains a large
number of references to the literature on the subject.

8-2. Classification and properties of representative ferroelectries

We shall now give some experimental data concerning the properties of
representative ferroelectrics. The presently known ferroelectrics can be
conveniently classified into four groups, the classification being based on
their chemistry and structure.

1. The first solid which was recognized to exhibit ferroelectric properties
is Rochelle salt, the sodium-potassium salt of tartaric acid; it has the
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chemical formula NaKC,H,O44H,0.) The salt was first prepared in
1672 by a pharmacist Seignette, living in Rochelle; it is therefore also
known under the name Seignette salt. It is representative of the “tartrate
group.” Other members of this group are those in which a fraction of the
potassium in Rochelle salt is replaced by NH,, Rb, or Tl Lithium
ammonium tartrate and lithium tantalum tartrate also belong to this
group.

Rochelle salt has the peculiar property of being ferroelectric only in the
temperature region between —18°C and 23°C, i.e., it has two transition
temperatures. In the region above 23°C and below —18°C it crystallizes
in the orthorhombic structure (three mutually perpendicular axes 4, b, c).
In the ferroelectric phase the crystal is monoclinic and the angle between
the a- and c- axes differs from 90°. The spontaneous polarization
occurs along the direction of the original orthorhombic a-axis. Thus
Rochelle salt has only one polar axis and two possible polarization
directions (4 and — along the g-axis). The domain pattern of this salt is
therefore rather simple.

The dielectric constants for Rochelle salt along the three axes are
given in Fig. 8-2, according to Halbliitzel.? Note that ¢, reaches values as
high as 4000 near the transition temperatures. In the region above 23°C the
susceptibility along the a-axis can be represented by the Curie-Weiss law,

Yo~ €,J4m = C(T — 0;) with C; = 178°K; 0, ~ 296°K
In the region below —18°C the susceptibility is described 5y
Yo = Ca)(0, — T) with C,=938K; 6, ~ 255°K

The spontaneous polarization of Rochelle salt as function of temperature is
represented by the lower curve in Fig. 8-3; the upper curve corresponds
to the deuterated salt. Note that the replacement of hydrogen by deuterium
has a marked influence on the magnitude of the spontaneous polarization
and on the teiaperature range over which the material is ferroelectric.
In this connection we may mention that some theories of the ferroelectric
properties of Rochelle salt have been based on the idea that certain hydrogen
bonds are essential in the polarization mechanism;> the effect associated
with the replacement of H by D would seem to support this idea. Recent
investigations of the structure of Rochelle salt with X-ray and neutron
diffraction techniques are believed to show, however, that the hydrogen
bonds may not at all be involved in the mechanism of the transition.*

1 §. Valasek, Phys. Rev., 17, 475 (1921); 19, 478 (1922); 26, 644 (1922); 24, 560
(1924).

* J. Haiblirtzel, Helv. Phys. Acta, 12, 489 (1939).

* W. P. Mason, Pays. Rev. 72, 854 (1947).

1 B. C. Frazer, M. McKeown, and R. Pepinsky, Phys. Rer.. 94, 1435 (1954).
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Fig. 8-2. The logarithm of the dielectric constants of Rochelle salt
along the a, b and c axes as function of the absolute temperature.
[After Halbliitzel, ref. 2]
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Fig. 8-3. The lower curve represents the spontaneous polarization
for Rochelle salt as function of temperature. The upper curve
corresponds to the deuterated salt. [After Halbliitzel, ref. 2]
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2. In 1935 Busch and Scherrer discovered ferroelectric properties in
potassium dihydrophosphate, KH,PO,.> This is a typical example of the
second group of ferroelectrics, consisting of dihydrogen phosphates and
arsenates of the alkalimetals.

In contrast with Rochelle salt, KH,PO, has one Curie temperature,
T, = 123°K. Above the transition temperature it has a tetragonal
structure (3 mutually perpendicular axes a, a, ¢); below T, it is ortho-
rhombic (3 mutually perpendicular axes a, b, ¢). The c-axis is the direction

uC/cm?
5+
w 4r €c
2 3t
2
2 L
f — —
1 - a
1 1 1 1 JE 0 1 1 1 1 1
100 105 110 115 120 125 50 100 150 200 250 300
— T (°K) — T (°K)
Fig. 8-4. The spontaneous polari- Fig. 8-5. The logarithm of the di-
zation of KH,PO; as function of electric constants of KH,PO, along
temperature. [After A. von Arx and the ¢- and qg-axes. [After Busch,
W. Bantle, Helv. Phys. Acta, 16, 211 ref. 5]

(1943)]

along which the spontaneous polarization occurs and here, as in Rochelle
salt, there is only one polar axis. The spontaneous polarization and the
dielectric constant as function of temperature are given in Fig. 8-4 and
Fig. 8-5. The dielectric constant above the Curie temperature follows the
Curie-Weiss law (8-1) with the numerical values

e =4.5 + 3100/(T — 121)

From an analysis of the structure of KH,PO, it appears that the PO,
groups form tetrahedrons with the four oxygens at the corners and the
phosphorus at the center.® These phosphate groups are bound together
by what is known as a hydrogen bond.” In these bonds, the proton may
occupy a number of possible positions, each of which corresponds to a
certain polarization of the unit cell. Recent experiments employing
neutron diffraction confirm the important role played by these ions.

% G. Busch and P. Scherrer, Naturwiss., 23, 737 (1935); G. Busch, Helv. Phys. Acta,

11, 269 (1938).

¢ B. C. Frazer and R. Pepinsky, Acta Cryst., 6, 273 (1953); S. W. Peterson, H. A.
Levy, and S. H. Simonsen, J. Chem. Phys., 21, 2084 (1953); Phys. Rev., 93, 1120 (1954);
G. E. Bacon and R. S. Pease, Proc. Roy. Soc. (London), A220, 397 (1953).

7 See L. Pauling, Nature of the Chemical Bond, Cornell University Press, Ithaca, 1945.
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Replacement of hydrogen by deuterium in KH,PO, raises its Curic tempera-
ture from 123° 10 213°K, an increase of 90°C.* 1t thus seems fairty certain
that the hydrogen bonds are essential in the polarization of this group of
ferroelectrics.

3. Wainer and Salomon in 1942 observed a number of anomalous
diclectric properties of barium titanate (BaTiO,). It was recognized in this
country as a ferroelectric material by von Hippel and coworkers® and
independently, by investigators in England, Holland, and Switzerland.
This brings us to the third group of ferroclectrics, viz., the so-called
oxygen octahedron group. This group
can be subdivided into others, one of
which is the subgroup of the perovskites
with the general chemical formula A BO,,
where A is a di- or monovalent metal
and B is a tetra- or pentavalent metal.
BaTiO, is the most important and most
thoroughly studied representative of the
perovskites. In the nonpolarized phase
Fig. 86. The structure of BaTiO, it has cubic symmetry; the Ba®' ions

in the cubsc phase. occupy the corners of a cube, the

oxygen ions are located at the centers

of the faces, and the Ti** ion is at the center (see Fig. 8-6). Typical for the

BaTiO, structure and for the other members of this group is the arrange-

ment of the highiy jolarizable oxygen ions in the form of an octahedron
with a small metallic ion at the center.

Barium titanate has an upper transition temperature of 120°C; above
this temperature it is nonferrockctric and has the cubic structure of
Fig. 8-6. In this region the dickctric constar’ is well described by the
Curie-Weiss law,

¢ = L7 x 10°/(T — 393)

Below the Curic temperature, the direction of the spontancous polarization
and the crystal siructure vary in the following fashion :

Temp._ region ( Ky Dir._ of pol. Structiure
278393 [ )] tetragonal
193-278 fo11) orthorhombic

- 193 111)] rhombohedtal

The transition points are evident from Fig. 8-7 and Fig. 8-8, representing,
respectively, the diclectric constant and spontancous polarization as

*B. T. Matthias, Science, 113, 91 (195)). sex also Phase Transformations in Seolids,
Natiovial Research Council, Wilkey, New Yor s, 1951
Y For a review, sex A, von Hirned P.... Mod. Phys., I, 12) (1950).
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function of temperature.’® Thus BaTiO, has three ferroelectric phases,
As the spontaneous polarization sets in at 393°K, the crystal expands in the
direction of polarization (c-axis) and contracts perpendicular to it (a-axis).

16,000

£006 -

o c-axis__~
0

90 130 170 210 250 290 330 370 410
= T{K)

Fig. 87. The diclectric constant of BaTHO, as function of
temperature. [After Merz, ref. 10]

In connection with Fig 8-8 it should be mentioned that the spontaneous
polarization was measured along the {001) direction, so that actually
the values obtained in the regions 193° < T < 278° and T < 193°K should

o~ 18
g |
o 12F
20—
x 8r
I L
tor
o i i 1 " i o 1
120 180 40 300 360
—> T ’K)

Fig. 8-8. The spontancous polarization of BaTiO,. (After Merz,
ref, 10)

be multiplied, respectively, by v'2 and V'3, Thus the spontaneous polari-
zation is nearly constant in the region below say 300°K.

It is interesting to note that the Curie temperature of barium-strontium
titanate mixtures varics linearly with the lattice constant of the mixed

Y W. J. Merz_ Phys, Rev., 76, 1221 (1949).
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crystals.! In this way Curie temperatures between 83°K and 393°K can
be obtained.

Other compounds of the perovskite structure which are known to be
ferroelectric are KTaO,;, NaTaO,;, KNbO; (7, = 708°K) and NaNbO,
(T, = 913°K).

4. Recently a fourth group of ferroelectrics has been found which is
unrelated to the groups mentioned above. This group is exemplified by
guanidine aluminium sulfate hexahydrate, NHC(NH,),AIH(SO,),"6H,0.!?
The structure of these compounds is presently unknown; they apparently
decompose before a Curie temperature is reached.

8-3. The dipole theory of ferroelectricity

In order to obtain some appreciation of the problems encountered in
the interpretation of ferroelectricity, we shall first discuss the dipole theory
of ferroelectricity in its simplest form. The existence of spontaneous
polarization in general requires a physical model in which the dipole
moments of the different unit cells are oriented along a common direction.
This brings ferroelectrics in the class of cooperative phenomena, the
cooperation between the different unit cells in this case consisting of a
tendency for a given unit cell to have its dipole direction parallel to that of
its neighbors. The dipole moment per unit cell may result partly from
electronic and ionic displacements and partly from permanent dipoles. The
early theories aimed at explaining the properties of Rochelle salt were
based on the assumption that the permanent dipole moments of the H,O
groups were responsible for the spontaneous polarization.® These dipoles
were assumed to be freely rotating, and a theory analogous to the Langevin-
Weiss theory of ferromagnetism was developed. The essential point in the
dipole theory is that the internal field E; which tends to orient a given
dipole is assumed to be of the form,

E=E + yP (8-2)

where E is the externally applied field, P is the polarization, and y is the
internal field constant. This expresses the cooperation between the dipoles,
because the larger P, the larger E; and the stronger the tendency for the
dipole under consideration to align itself in the direction of the polarization
of its surroundings. For the high temperature region, an internal field of
the form (8-2) indeed leads to the Curie-Weiss law (8-1), as may be seen in

11 D. F. Rushman and M. A. Strivens, Trars. Faraday Soc., 42A, 231 (1946).

12 G. Shirane, F. Jona, and R. Pepinsky, loc. cit.

13 P. Kobeko and I. Kurchatov, Z. Physik, 66, 192 (1930); R. H. Fowler, Proc. Roy.
Soc. (London), 149, 1 (1935). It is illustrative to compare the dipole theory of ferro-
electricity with the Bragg-Williams theory for order-disorder transitions in alloys (see
Chapter 4).
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the following manner. As long as one is far away from saturation of the
polarization, one may write in accordance with (6-16)

P = Nu (cos 0) = N (u*/3kT)E; (8-3)

where N is the number of dipoles u per unit volume.!4 From (8-2) and (8-3)
it then follows that
Nu*[3kT 0fy

r=FlE = kT~ T—0 (8-4)
where the “extrapolated” Curie temperature § = yNu?2/3k and the Curie
constant is 0/y.
~ To show that (8-2) also leads to
spontaneous polarization, we make
use of the Langevin expression (6-15),
which allows for saturation effects.
Applied to the case under consider-
ation, this gives

/‘Ei)
P = — —
Nu (cos 0) = NuL (kT

= NuL [kﬁT (E + yP)] (8-5)

—_ X

Fig. 8-9. The fully drawn curve repre-

. . . sents the Langevin function; the dashed
where L(x) is the Langevin function. lines are those given by expression (8-7)

We may now ask, Does this equation g5, various temperatures. The slope of
provide a nonvanishing solution for L(x) at the origin is 1/3.
P in the absence of an external field ?
We shall see that the answer is positive, so that (8-2) indeed leads to the
possibility of spontaneous polarization. Putting E = 0 in (8-5), we may
write
PINu = P|Py, = L() (8-6)

where

x = uyPlkT or P|Nu = (kT|Nu%*)x 8-7

Nu = P, represents evidently the saturation polarization corresponding
to complete alignment of the dipoles. In Fig. 8-9 we have represented
P[P, as function of x according to (8-6), leading to L(x). However,
P[Py, should also satisfy (8-7), which corresponds to a set of straight lines
passing through the origin, the slope of the lines being given by kT/Nu?y.
A few of these lines have been represented in Fig. 8-9. Thus the solution
for P/P, corresponding to the temperature T; is determined by the inter-
section of L(x) and the line of slope kT;/Nu?y.1® It is observed that as T

** For simplicity, the contributions to P resulting from electronic and ionic displace-
ments will be neglected in this section, because it does not impair the essential arguments.

13 It can be shown that the origin, which is also a common point of the straight line
and the Langevin function, corresponds to an unstable physical state; P, however,
corresponds to a stable physical state.
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decreases, the slope of the straight line (8-7) decreases and the solution
P|P,,, approaches unity. Also, when the temperature is higher than a
critical value determined by

kT /Nu*y =% or T.,= Nu¥[3k =10 (8-8)

it is observed that (8-6) and (8-7) intersect only at the origin. (Note that
in this model T, = 0.) In other words, there is no spontaneous polarization
for T > 0. By means of the method outlined above, it is thus possible,
to find P/P,, as function of T/ and the
result is represented in Fig. 8-10. It is
observed that just below the Curie tem-
perature, the spontaneous polarization
increases rapidly, in agreement with ex-
periment. (Compare, for example, Fig.
8-4.)

One may thus conclude that the
Fig. 8-10, Schematic representa- assumption (8-2) for a model of freely
tion of the spontaneous polari-  rotating dipoles accounts for: (a) the
zation as function of temperature, ¢ ie_Weiss law above the Curie tem-
as derived from the procedure I

given in Fig. 8-9. perature; (b) the possibility of spon-

taneous polarization below the Curie

temperature; (c) qualitatively the correct temperature behavior of

P|P,,, versus temperature in the ferroelectric region. It does not explain

the existence of two Curie temperatures, observed in the case of Rochelle
salt. :

It may be of interest to point out the relation between the internal field
constant ¥ appearing in the above theory and the anomalous peak in the
specific heat as function of temperature observed for ferroelectrics in the
vicinity of the Curie temperature. In the completely ordered state, when all
dipoles are aligned in parallel, the energy of a given dipole in the field of
all others is equal to —uyP,,, because in general the energy of a dipole p
in a field E is given by —p - E. Thus the energy of polarization in the
ordered state is per unit volume equal to — NuyPg,/2, where the factor of
1 is introduced because otherwise the energy of each pair of dipoles
would be counted twice. Now, as the temperature is increased to above the
Curie temperature, the spontaneous polarization decreases to zero.
It is evident that an ‘“‘extra” amount of heat must be supplied to the
crystal to bring about the transition from the completely ordered tq the
completely disordered state. Let C, represent the extra specific heat per
unit volume ; we may then write

§ €. (T) dT = NpuyPoi/2 = yPau/2 (8-9)

Thus, if C,(T) and P,,, are known from experiment, (8-9) allows one to
calculate the internal field constant y. However, y may also be obtained

—> P[Py

0 1 —T/6
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from (8-4) if the Curie constant and the Curie temperature are known.
According to Blattner and Merz one obtains the following results :16

y from (8-9) y from (8-4)

Rochelle salt......... 2.1 2.2
BaTiO; ............... 0.044 0.049
KH,PO, .............. 0.37 0.48

It is observed that the agreement is rather good, especially because y
differs appreciably for the three substances. Blattner and Merz take this as
an argument in favor of the internal field theory outlined above. It seems,
however, that the agreement between (8-4) and (8-9) follows from much
more general considerations than given here and the conclusion drawn is
probably unjustified.1?

8-4. Objections against the dipole theory

In connection with Rochelle salt, the following objections may be
raised against the theory outlined in the preceding section: in the vapor,
H,0 has a dipole moment of 1.85 Debye units; if we assume this to be the
same in Rochelle salt, one calculates for the maximum spontaneous
polarization

P = Nu = 1.52 X 102 X 1.85 X 10-18 — 28120 esu

The experimental value is about 750 esu which is smaller by a factor of
nearly 40. Furthermore, the dipole theory does not predict the existence of
two Curie points, as observed for Rochelle salt.

A much more serious objection against the dipole theory is of a
theoretical nature and refers to the use of the internal field given by
equation (8-2). In fact, if the dipole theory based on (8-2) were correct, a
large number of polar liquids should also be ferroelectric; we know, on the
other hand, that ferroelectric materials are rare. The incorrectness of
(8-2) was first pointed out by Onsager in 1936 and may be understood in
the following way:'® Consider a spherical cavity of molecular radius
inside a dielectric in the absence of an external field. Suppose a dipole u
is located at the center of the cavity. The dipole will polarize the
surrounding material and this in turn will produce a “reaction field” inside
the cavity. If the dielectric is homogeneous, it can be shown that the reac-
tion field E, is homogeneous and parallel to the dipole w29 It is evident

16 H. Blattner and W. Merz, Helv. Phys. Acta, 21, 210 (1948).

" For a discussion of this point see E. T. Jaynes, Ferroelectricity, Princeton
University Press, Princeton, 1953, Chaps. 1, 3.

18 L. Onsager, J. Am. Chem. Soc., 58, 1486 (1936); see also C. J. F. Bottcher,
Theory of Electric Polarization, Elsevier, New York, 1952, pp. 63 ff.

1% See, for example, C. J. F. Béttcher, op. cit., Chap. 3; see also Problem 6-6.
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that the reaction field does not exert a torque on the dipole. If one now
applies to this system a homogeneous external field E and calculates the
internal field by the Lorentz method, a part of the internal field is contri-
buted by the timeaverage of the reaction field ; this part is equal to E,{cos 0)
where 0 is the angle between w and E and, as emphasized above, does
not produce a torque on the dipole. To find the actual field strength tend-
ing to orient the dipole, one must subtract the reaction field component in
the external field direction. This may be done simply by first taking away
the dipole and calculating the field inside the cavity. The field so obtained
is called the cavity field and is equal to

by E. = [3¢/(2¢ + 1)IE (8-10)

(Note that this is always smaller than the Lorentz field.)
t | Making use of the formula P/E = (¢ — 1)/4w, we may
write (8-10) in the form

t E,=E+4rP|2c + 1) = E+p(9P  (8-11)
Comparing this expression with (8-2), one sees that y
t | is not a constant but that it depends on the dielectric

constant in such a manner that as e increases, y decreases.
ferroelectric ar- Now, if inst?ad of (8-2) one were to ‘employ (8-10) 'fls.t'he
rangement of di- field producing the torque on the dipoles, the possibility
poles. for spontaneous polarization disappears (see Problem
8-5). Although the above model is admittedly over-
simplified and needs refinement, the arguments shed doubt on the validity
of the dipole theory based on the internal field (8-2). In fact, calculations
by Luttinger and Tisza on a model consisting of dipoles occupying the
lattice points in a simple cubic structure indicate that the stable con-
figuration for such a system contains alternate arrays of dipoles oriented
in opposite directions (see Fig. 8-11).2° Such arrangements of course, have
no resultant polarization ; they correspond to a so-called antiferroelectric
arrangement.?l’ Substances which appear to be antiferroelectrics are
tungsten trioxide (WO,) and lead zirconate (PbZrO;).%

Fig. 8-11. Anti-

8-5. Ionic displacements and the behavior of BaTiO,; above the Curie
temperature

In Sec. 8-3 we have seen that the dipole theory, with an expression of
the type (8-2) for the internal field, led to a Curie-Weiss law for the suscepti-
bility above the Curie temperature. However, in Sec. 8-4 it was pointed

20 J. M. Luttinger and L. Tisza, Phys. Rev., 70, 954 (1946); 72, 257 (1947).

2 C. Kittel, Phys. Rev., 82, 313, 729 (1951).

22 S. Roberts, Phys. Rev., 83,1078 (1951); E.Sawaguchi, H. Mariwa, and S. Hoshino,
Phys. Rev., 83, 1078 (1951).
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out that the internal field (8-2) could not be considered the field producing a
torque on the dipoles. On the other hand, the objection of Onsager raised
there does not refer to electronic and ionic displacements, and for these an
internal field of type (8-2) may still be applied. In this section it will be
shown that in case the dielectric constant of a material is large compared
with unity, a Curie-Weiss law may be obtained which is solely due to
electronic and ionicdisplacements.?? At first sight this may seem somewhat
surprising because one generally connects a strong temperature de-
pendence of e with the existence of permanent dipoles.
For the sake of argument, let us

assume that for a particular nondipolar i
solid the Clausius-Mosotti expression 4
holds (which is based on the Lorentz
internal field formula):

(e — 1)(e+2) = (4n[3) Nu =BN (8-12)

Here N represents the number of unit
cells per cm® and « represents the total
polarizability per unit cell; it will be : I
assumed that « is independent of tem- 0 5 L0
perature. As long as e is of the order of — ::;

10 or smaller, any chfinges in N resulting Fig. 812. The logarithm of the
from thermal expansion do not affect the  gielectric constant ¢ as function of
value of € to any great extent. On the the quantity (¢ — 1)/(¢ + 2).
other hand, if € > 1, the left-hand side

of (8-12) approaches unity and it is observed from Fig. 8-12 that small
variations in SN may lead to large changes in the dielectric constant. In
order to determine the temperature coefficient of e, differentiate (8-12)

with respect to T'; this yields, after dividing through by N,

3 de 1 dN
(e+2(e—1D)dT~ N dT

—>logyy ¢
n w
T T

-
T

—32 (8-13)

where 4 is the linear coefficient of expansion of the solid. Making use of
the fact that € > 1, so that (e + 2)(e — 1) ~ €2, one obtains

de 1/A

—=—|AdT = -14

5= or €=y (8-14)
The last expression has indeed the form of the Curie-Weiss law; the
Curie temperature 0 enters as a constant of integration. It is of interest to
note that the Curie constant is equal to the reciprocal of the linear coeffi-
cient of expansion. For BaTiO;, 4 ~ 10~% per degree, which gives fair
agreement with the experimental value for the Curie constant quoted in

2 G. H. Jonker and J. H. van Santen, Science, 109, 632 (1949).
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Sec. §-2. Although the assumption of the validity of the Clausius-Mosotti
relation (8-12) for BaTiO; is doubtful, the simple arguments given here
definitely indicate the importance of lattice expansion for the temperature
dependence of the dielectric constant in case € > 1.

8-6. The theory of spontaneous polarization of BaTiO,

Since ferroelectricity occurs in relatively few substances, it seems that
the crystal structure of ferroelectrics is of paramount importance in any
explanation of this phenomenon. It was first pointed out by Megaw that if
one employs the Goldschmidt radii for the different ions in BaTiOj it is
found that the space available for the Ti** ion inside the oxygen octahedron
is somewhat larger than the size of this ion requires.® This observation
has induced a number of theoretical attempts to explain the ferroelectricity
of BaTiO,; on the assumption that the Ti‘* ion plays an essential role.
If one were to explain the spontaneous polarization of 50,000 esu solely
on the basis of a displacement of Ti** ion, one would require a displacement
d such that

4 Ned = 50,000 or d~0.15 X 108 cm

which seems not unreasonable. Actually, the required displacement would
be less than this, because BaTiOj, has a large index of refraction (n = 2.4 or
€9 == 5.76). In fact, if one assumes the Lorentz-Lorenz relation one
obtains

(e — D/(e +2) = (4n[I)L(Nieto; + Nixo)) = 0.62 + (47/3)IN;,;  (8-15)

where «,; and «,; are the polarizabilities of the ions associated with
electronic and ionic displacements, respectively.? Now, if the right-hand
side of this expression becomes unity, € becomes infinite, and spontaneous
polarization will occur. Thus the Ti*+ displacement would have to account
for less than 38 per cent of the total polarization.

One theory based on the assumption that the Ti** jons are mainly
responsible for the ferroelectric properties of BaTiO4 has been developed
by Mason and Matthias.?> These authors assume that the stable position
for the Ti** is not in the center of the unit cell (Fig. 8-6) but that there
exist six stable positions corresponding to slight displacements from the
center toward the six surrounding oxygen ions. In each of these positions,
the unit cell would thus bear a dipole moment. They furthermore assumed
an internal field of the type (8-2) and essentially their theory is similar
to the dipole theory discussed in Sec. 8-3. With this 'theory it is not

* H. D. Megaw, Trans. Farcday Soc., 42A, 224, 244 (1946).

25P. Mason and B. T. Matthias, Phys. Rev., 74, 1622 (1948); also W. P. Mason,
Piezoeleesric Crystals and Their Applications in Ultrasonics, Van Nostrand, New York,
1950.
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possible, however, to obtain consistent agreement with experiment.26
That a dipole theory for BaTiOj; is hardly acceptable follows from the
fact that the observed Curie constant is about 10* degrees absolute,
whereas (8-4) gives 393/y, where y is certainly larger than unity. Besides,
the same objections as in Sec. 8-4 may be brought to bear.

Another type of theory that has been suggested does away with the
assumption of permanent dipoles and is based solely on electronic and
ionic displacements. The essential point of these theories consists of the
calculation of the internal field at the positions of the different ions.
We have seen already in the preceding chapter that the Lorentz field
E + (47/3)P holds only when all atoms arc surrounded cubically by
others. This is the case for the Ba?+ and Ti%* ions, but not for the oxygen
ions in BaTiOj. The interesting feature of this type of theory is that it
brings in explicitly the peculiarities of the perovskite structure. Calcu-
lations of the internal field, which will not be given here, indicate that in the
perovskite structure there exists a strong coupling between the Tit+
and O* ions, leading to internal field constants about eight times as large
as the usual 4=/3 factor.2” Thus the internal field at the position of the Ti**
ion is very strong, and this, combined with the high charge and small
restoring force of the Ti** ion, would lead to the conclusion that the
perovskite structure is particularly favorable for ferroelectricity to occur.
It must be emphasized, however, that in the calculations referred to above,
the internal field is calculated at the position of the undisplaced ions.
Actually, one is interested in the internal field at the position of the
displaced ions. That this is a serious objection has been pointed out by
Cohen, who showed that this may lead to an appreciable overestimation of
the internal fields.?®8 Also, the theories under consideration leave un-
explained the pertinent experimental fact that as the temperature of BaTiO,
is lowered, the direction of spontaneous polarization changes in the order
[001], [O11], [111].

A model which explains in a natural fashion the existence of the three
transitions just mentioned is based on the assumption that the displacement
of oxygen ions is essential in the understanding of BaTiO;.2® 1t was first
pointed out by Devonshire that the restoring force for small oxygen
displacements in a direction perpendicular to the plane of the four
surrounding Ba®* ions is probably very small.3® This is a consequence of the
fact that the O?~ ions are tightly squeezed between the Ba®" ions. Now,
with each unit cell one can associate three oxygen ions (because each of the

* For a discussion see for example E. T. Jaynes, op. cit., Chap. 2.

#7 J. H. van Santen and W. Opechowski, Physica, 14, 545 (1948); J. C. Slater, Phys.
Rev., 78, 748 (1950).

8 M. A. Cohen, Phys. Rev., 84, 368 (1951).

* k. T. Jaynes, Phys. Rev., 79, 1008 (1950).

% A. F. Devonshire, Phil. Mag., 40, 1040 (1949).
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six ions belongs to two unit cells), which may be denoted by O,, O, and O,.
As the crystal is cooled from above the Curie point, the cubic lattice
contracts and at the Curie point one of the three oxygen ions is squeezed
out of the plane of the barium ions, let us say the ion O,. This produces a
dipole moment per unit cell along the z-axis, part of which is equal to
2ed,, where d, is the displacement of the ion O, relative to the plane of Ba?*
jons.. At the same time, this allows for a possible contraction of the
lattice in the plane of the barium ions. The direction of polarization
corresponds to the c-axis of the tetragonal structure and sets in along
one of the cube edges at the Curie temperature. As the temperature is
lowered further, the O, and O, ions are successively squeezed out of their
normal positions, leading to a polarization along a face diagonal [011] and
a body diagonal [111], respectively, (by combination of their own effect
with the polarization already existing). This model is in agreement with
the changes of structure associated with the changes in polarization
direction mentioned in Sec. 8-2. Also, X-ray diffraction studies have
shown that the oxygen ions are indeed displaced by 0.08-0.1 A relative to
the Ba?t ions; the displacement of the Ti** is about 0.06 A according to
these measurements (the cube edge of BaTiO, is 4.00 A).3' The essential
feature of this model is that it combines the mechanical forces with the
electric forces.

On the quantitative side, the following simple argument may be
put forward: Experimentally it is found that in the tetragonal region
the contraction of the lattice is proportional to the square of the polarization
and satisfies the relation

Aaja = 1.2 x 10-12p2 -~ (8-16)
where a is the cube edge just above the Curie point and Aa is the contraction
in the tetragonal phase. Now, in the cubic phase, the sum of the radii of the

Ba%* and O ions is equal to a/V/2. Suppose now that the oxygen ion is
displaced out of the plane of Ba?+ ions by an amount z and let it be assumed
that the radii of the ions remain constant and that the oxygen and barium
ions remain in contact. With reference to Fig. 8-13 it then follows that if
(a — Aa) is the new edge of the square of Ba** ions, we must have

(@a— Aa)*)2 =a*2 — 22
As long as Aafa < 1, this yields
Aala = (z]a)? (8-17)

The dipole moment per unit volume resulting only from the displaced
oxygen ions is equal to P = 2ez/a® and it thus follows from (8-17) that

Aaja = (a*]4e*)P5_ = 2.8 x 10712P§ (8-18)

L H. T. Evans, Acta Cryst., 4, 377 (1951); W. Kinzig, Helv. Phys. Acta, 24, 175
(1951).
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Comparison of (8-16), and (8-18) shows that both expressions are of the
same form, and that if P, represents two thirds of the total polarization,
the agreement is quantitative. Although the oxygen displacement theory
has attractive features, recent neutron diffraction studies suggest that the
oxygen octahedra suffer little distortion in passing through the transition,
in contradiction with the theory. One must therefore conclude that the
problemissstill not solved satisfactorily.3?

. . (@-Aa) V2
8-7. Thermodynamics of ferroelectric . !
z TBa

transitions B
Ba
It is of interest to investigate the
behavior of a ferroelectric in the vicinity
of its transition temperature T, on the
basis of thermodynamic arguments. A
thermodynamic theory has the advan-
tage of being independent of any par- g g43  Relative position of
ticular atomic model and thus leads to  p,rijum ions and displaced oxygen
quite general conclusions. Although such ions in a (110) plane.
a theory does not provide the physical
mechanism responsible for the ferroelectric properties of a given material,
it does point to certain features one should look for in atomic models.
We shall now discuss the elements of the thermodynamic theory of
ferroelectricity developed by Devonshire.33
Consider a solid which is ferroelectric for temperatures 7 < T,;
let the external pressure be zero and let there be no applied electric field.
If the crystal is in equilibrium at a given temperature, the free energy of
the crystal £ should be a minimum. For simplicity we shall assume that in
the ferroelectric region the spontaneous polarization occurs along a
single axis; this would be the case for the Rochelle salt, KH,PO,, and
for the upper transition of BaTiO;. Let F, represent the free energy of the
unpolarized crystal; the free energy F of the polarized crystal may then be
expanded as a power series in the polarization

rBa+r0 =a/\/2_

F— Fy=4c,P*+ }e,PP + §c,P5 + . .. (8-19)

The coefficients ¢ are functions of temperature; the numerical factors
are introduced for later convienence. Note that since we want the
free energy to be the same for “positive” and “‘negative” polarization
along the polar axis, only even powers of F are included. In thermal

32 G. Shirane, F. Jona, and R. Pepinsky, op. cit.
3 For a review of this work see A. F. Dcvonshire, “Theory of Ferroelectrics,”
Advances in Physics (quarterly suppl. of Phil. Mag.), 3, April 1954, p. 85.
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equilibrium (0F/¢P), = 0 so that the spontaneous polarization satisfies
the equation
0 =¢,P, 4 P} + P2 + . .. (8-20)

It is observed that P, = 0 is always a root of this equation and that
this will correspond to a minimum of the free energy if c, is positive.
If ¢, ¢, and ¢ are all positive, the root P, = 0 will correspond to the only
minimum of the free energy and thus spontaneous polarization would
not occur. However, if as a result of the temperature dependence the
coefficient ¢; would become negative, F would have a maximum for P, == 0
and there would be at least one nonvanishing value for P, for which F
would be a minimum, ie., spontaneous polarization would occur.

F-Fo
4
Cl=0
c; >0 K
(5] <0
0 —>c;
—P
(a) (b)

Fig. 8-14. Second-order transition. In (a) the free energy is given

schematically as function of polarization for various values of ¢,; in

(b) the spontaneous polarization is represented as function of ¢,. The

critical temperature corresponds to c; = 0. [After Devonshire,
ref. 33]

Consequently, if ¢; changes continuously with temperature from a positive
to a negative value, the equilibrium of the crystal changes from an
unpolarized to a spontaneously polarized state. In order to discuss the
properties in the vicinity of the transition temperature, we shall consider
two cases of particular interest.

(i) Second-order transitions. 1f the coefficients ¢y, ¢3, . . . are all positive
and the value of ¢, varies from positive to negative as the temperature is
lowered, one obtains free energy curves as illustrated in Fig. 8-14a.
The corresponding spontaneous polarization as function of temperature
is indicated in Fig. 8-14b. The transition temperature corresponds to
¢; = 0. Assuming in (8-20) that the term with c; is negligible, one obtains
for the spontaneous polarization,

P} = —c¢jfc, (8-21)

Note that P, is a continuous function of temperature; a transition of
this type is not associated with a latent heat but with a discontinuity in the



Sec. 8-7] FERROELECTRICS 203

specific heat and is called a second-order transition. We shall return to
this point below.

Let us now consider the susceptibility of the crystal above and below
the transition temperature. For this purpose it is necessary to apply a
small electric field to the crystal. Now, for a crystal under zero pressure
in an applied field E, we may write according to thermodynamics,

dF = —SdT + EdP (8-22)

Hence the applied field may be written £ = (0F/0P);. Above the tran-
sition temperature the polarization will be small for small applied fields,
and in this region we may neglect all terms on the right-hand side of
(8-19) except the first. We thus obtain for 7> T,

E=CF/cP=c¢P and 1]y,= dE[dP = ¢, (8-23)

where g, is the susceptibility above the critical temperature; the co-
efficient ¢; is evidently equal to the reciprocal of the susceptibility .
However, we know that in this temperature range the susceptibility is
given by the Curie-Weiss law y, = C/(T — 0), so that ¢, = (T — 0)/C,
where C is the Curie constant. However, since the transition at 7T,
corresponds to ¢; = 0, we have ) = T, and thus

a=(T—TJ)C=1[y, (8-24)
In the ferroelectric region we obtain likewise from (8-19) and (8-23),
E =P+ cP? or 1)y, =dE[dP = ¢; + 3c,P? (8-25)

where y, is the susceptibility below the transition temperature; the
terms with powers >>6 have been neglected in (8-19). For small applied
fields, P ~ P, in this region, so that according to (8-25) and (8-21) we
have

g, = —2¢ (8-26)

If we assume that the temperature dependence of ¢; on the ferroelectric
side of T, is still given by (8-24), we obtain

g =2AT. —T)C (8-27)

The temperature dependence of the reciprocal of the susceptibility on
both sides of the transition temperature as given by (8-24) and (8-27) is
illustrated in Fig. 8-15a. Note that the slope in the ferroelectric region is
twice that above the transition temperature.

In connection with the remark made above that the transition under
discussion is of the second order, let us consider the entropy associated with
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the spontaneous polarization. According to (8-22) and (8-19), the entropy
is given by
S = —(0F|0T)p = Sy — P 0c,/0T) — }P¥0c,y/0T) 4 . ..
where S, is the entropy of the unpolarized crystal. To a first approxi-
mation we may then write
S — So~ —3P¥0cy /0T (8-28)

Since P is a continuous function of temperature for the case under con-
sideration and since the slope of P? has a discontinuity at T = T, there

I/Xb

l/xb

(a) (b)

Fig. 8-15. Reciprocal susceptibility near the critical temperature.
(a) For a second-order transition; (b) for a first-order transition.
The corresponding spontaneous polarizations are indicated by the
dashed curves; in (a) P, is continuous. in (b) discontinuous at T.

should be a discontinuity in the specific heat, but no latent heat, i.c.,
the transition is of the second order. This type of transition is observed
in Rochelle salt and in KH,PO,.

(i) First-order transitions. We have seen that spontaneous polari-
zation requires the coefficient ¢; to be negative. Furthermore, we have
seen that if at the same time c, is positive, a second-order transition results.
We shall now consider the case for which ¢, is negative and ¢, is positive.
Under these circumstances it is possible for the free energy curves to have
a minimum value for a nonzero value of the polarization to coexist with
a minimum for P, = 0. Assuming that ¢, varies from positive to negative
values as the temperature is lowered, one obtains free energy curves of the
type indicated in Fig. 8-16a. A transition from the nonpolarized state to a
spontaneously polarized state will now occur when the minimum of the
free energy corresponding to P, = 0 becomes equal to the minimum
associated with a nonzero value for P,. It will be evident that in this case
the polarization jumps at the critical temperature from zero to some non-
zero value, i.e., the polarization as function of temperature exhibits a
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discontinuity at T'= T, as shown in Fig. 8-16b. According to (8-28),
the entropy will also be discontinuous at 7 = T, and there will be a latent
heat, i.e., the transition is of the first order.

In the absence of an external field we obtain from the equilibrium
condition (0F/0P); = 0 and from (8-19) for the nonvanishing value of the
spontaneous polarization the equation

0=c; + P’ + 3P} + ... (8-29)

At the critical temperature T, the quantity P(T,) should satisfy (8-29)

F-F,

"l>0

—T

;=0
;<0
(a) (b)
Fig. 8-16. First-order transition. In (a) the free energy is represented
as function of P for different values of ¢,. In (b) the spontaneous

polarization is given as function of 7; note the discontinuity
at T,.. [After Devonshire, ref. 33]

as well as the condition mentioned above that F(7,.) = Fy(T). According
to (8-19) we thus have also

0 = 3¢, PXT,) + 1coPXT,) + 5c,PXT) + . .. (8-30)

From this equation and (8-29) as applied to the critical temperature we
then find the relations

PUT) = —3(caley); oo =s(c3eg); PUT) = 3cyfey (8-31)

The first of these results shows that the polarization is discontinuous
at the critical temperature (Fig. 8-16b).

We shall now consider the susceptibility on both sides of the critical
temperature. As in case (i), the coefficient ¢, in the region above the
temperature 7, is again equal to 1/y,. In this region the susceptibility

follows the Curie-Weiss law, so that
Ye=C(T—0) and ¢, =(T—0)/C (8-32)

where 0 is somewhat smaller than 7, as mentioned in Sec. 8-1. We leave
it to the reader to show that by similar arguments as used under (i) and by
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making use of the relations (8-31) we find for the susceptibility below the

critical temperature,
I/Xb == 4(’1 (8-33)

At the critical temperature ¢, is, according to (8-32), equal to (T, — 6)/C
and the susceptibilities just above and just below 7, are given by

1/%e = (T, —6)/C and 1/y, = 4T, —0)/C for T=T, (8-34)

The reciprocal susceptibility as one passes through the transition tempera-
ture is illustrated in Fig. 8-15b.
We should mention here that decisive evidence as to whether a parti-
cular ferroelectric transition is of the first order may be obtained from
a so-called “‘double loop” experi-
P ment in which the transition is in-
duced slightly above the critical
temperature T, by application of a
strong electric field. Such an induced
transition was first produced by
>  Roberts in ceramic material and has
more recently been demonstrated for
a good single crystal of BaTiO; by
Merz3* A strong a-c field is applied
to the crystal a few degrees above its
normal transition temperature. At
zero applied field the crystal is
a double hysteresis loop, of the type nonferroelectric ‘but at a criticz}l
observed for BaTiO, slightly above the ~ Value of the applied field the polari-
transition temperature. zation increases rapidly and upon
reversal of the field hysteresis is
observed. The hysteresis loop is not complete, however, and for
low applied fields the behavior is normal again (see Fig. 8-17).
A double hysteresis loop obtained in this manner can only occur if the
transition is of the first order, as may be understood in the following
manner: In the absence of an applied field the transition occurs when in
Fig. 8-16a the minimum of the free energy for P,= 0 is equal to the
minimum associated with nonvanishing value of the spontaneous polari-
zation. For a crystal subjected to a field E, however, the induced transi-
tion occurs when F— EP rather than F has the same value as the minimum
at the origin. Such induced transitions can evidently occur only if the free
energy curves are of the type illustrated in Fig. 8-16a and not if they are
of the type corresponding to Fig. 8-14a. Hence the double loop experi-
ment distinguishes between first- and second-order transitions. Since a

Fig. 8-17. Schematic representation of

i
31 8. Roberts, Phys. Rev., 85, 925 (1952); W. J. Merz, Phys. Rev., 91, 513 (1953).
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double loop has been observed for BaTiO;, the upper transition of this
material is evidently of the first order. We should note that it is usually
not possible to obtain a clear-cut distinction between a first- or second-
order transition from measurement of the spontaneous polarization as
function of temperature, since P, rises rapidly just below T, even for a
second-order transition. For further details on the thermodynamic theory
of ferroelectricity and for a treatment of antiferroelectric transitions we
refer the reader to A. F. Devonshire, op. cit.

8-8. Ferroelectric domains

It was mentioned in Sec. 8-2 that when a Rochelle salt crystal is cooled
to below the Curie temperature, spontaneous polarization along the
a-axis of the orthorhombic structure sets in. In general, however,
the direction of spontaneous polarization is not the same throughout the
crystal; certain regions are polarized in the +-a direction, others in the
—a direction. These regions are referred to as domains. The boundaries
between domains are called domain walls. In a Rochelle salt crystal the
domains are polarized in opposite directions. For KH,PO, there is also
only one axis along which spontaneous polarization takes place, viz., the
c-axis of the tetragonal structure. The domain structure is thus similar
to that of Rochelle salt. In the case of BaTiO,, spontaneous polarization
may occur along any one of the three edges, leading to six possible
directions for the spontaneous polarization. The domain structure for
BaTiO, is therefore more complicated than in the other two groups of
ferroelectrics.

The ferroelectric domains are the electrical analogues of the Weiss
domains in ferromagnetic materials, although there are certain interesting
differences in their formation and growth, as we shall see below. The
existence of domains, which has been confirmed by X-ray investigations and
optical studies®, explains the possibility for a crystal below the Curie
temperature to have a zero or very small total polarization. By applying
an electric field to such a crystal, the number and size of domains polarized
in the external field direction may be increased. This process leads,
upon reversal of the field direction, to hysteresis in the P versus E curves,
and gives rise to dielectric losses. These losses are proportional to the
area of the hysteresis loop and to the frequency of the applied a-c field.

Optical observation of ferroelectric domains is possible since ferro-
electrics are birefringent. In BaTiO; for example, the optical axis coincides
with the direction of spontaneous polarization. Thus a domain polarized
in a direction perpendicular to the surface of a crystal plate looks dark

% B. T. Matthias and A. von Hippel, Phys. Rev., 73, 1378 (1948); P. W. Forsbergh,

Phys. Rev., 76, 1187 (1949); Blattner, Kinzig, Merz, and Sutter, Helv. Phys. Acta, 21,
207 (1948); W. J. Merz, Phys. Rev., 95, 690 (1954).
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through a microscope between crossed nicols. On the other hand, a domain
polarized in a direction parallel to the surface appears bright between
crossed nicols, except when the direction of polarization of the light is
parallel or perpendicular to the domain polarization. It is thus possible
to see the domains and to study changes in the domain structure. In barium
titanate the direction of polarization of neighboring domains differs either
by 90° or by 180°; this is a consequence of the three mutually perpendicular
axes along which spontaneous polarization may occur. In this con-
nection one speaks of 90° and 180° walls. The latter can be observed
only when the crystals are strained, by an external electric field or
by mechanical stresses.

A number of interesting experiments on
the formation of domains and the motion of

- domain walls in BaTiO; have been carried

e = out by Merz.3¢ His work shows that when an
electric field is applied in a direction opposite

— to that of the spontaneous polarization, a

——— — large number of new needle shaped domains
of about 10~* cm width are created (Fig.

— = 8-18). These new domains grow essentially
— in the forward direction rather than sideways.
This behavior is quite different from that of

- ferromagnetic materials, where the change in
- direction of magnetization is accomplished by

the growth of domains which have the right
direction of magnetization, the growth result-
Fig. 8-18. Schematic repre- ing from a sidewise motion of the domain
sentation of new antiparallel walls. This indicates that the forward coupling
domains resulting from appli- of the electric dipoles is much stronger than
cation of an external field E.  the sidewise coupling. At this point the
reader may be reminded of the remarks
made at the end of Sec. 8-4, with reference to the calculations of Tisza and
Luttinger.2® Merz has given some semiquantitative arguments which
confirm this behavior: when one estimates the energy per cm? of a domain
wall between antiparallel domains and minimizes this with respect to the
thickness of the wall, it is found that the wall thickness is of the order of a
few lattice distances. In contrast with this, the wall thickness in a ferro-
magnetic material is of the order of 300 lattice constants. Thus to move a
domain wall in BaTiO, sidewise over one lattice distance requires an
energy which is about equal to the energy of the wall itself. In a ferro-
magnetic material, it takes roughly 1/300 of the total wall energy to
displace the wall over one lattice distance.
For Rochelle salt and for KH,PO, it has also been found that

% W. J. Merz, Phys. Rev., 95, 690 (1954).

—_ E
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the wall thickness is considerably smaller than for ferromagnetic
materials.3?

In view of the absence, or at least infrequent occurrence, of a sidewise
motion of the domain walls in ferroelectric materials, the problem of
nucleation of the needle shaped new domains becomes of primary
importance for the understanding of the reversal of polarization in an
external field.
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PROBLEMS

8-1. Let P be the spontaneous polarization of a ferroelectric solid and
let yP be the internal field. Show that the ‘“‘extra specific heat” of the
material is given by C = —(y/2)(dP?/dT). For the dipole theory, draw the
curve for specific heat versus temperature and show that at the critical
temperature the specific heat is equal to 3k/2 per dipole.

8-2. In the theory of Mason and Matthias?> of ferroelectricity of
barium titanate it is assumed that the Ti** ion has six stable positions
corresponding to small displacements from the center of the unit cell
toward the six surrounding oxygen ions. If the absolute value of the dipole
moment due to this displacement is 4, show that in a field applied parallel
to a cube edge, the polarization due to these dipoles is given by

by, _Sinh WEJKT)
@ = M Cosh (WEJKT) + 2

where N is the number of unit cells per unit volume and E; is the internal
field. Introduce the approximation uE; << kT and compare the result with

37 T. Mitsui and J. Furuichi, Phys. Rev., 90, 193 (1953); W. Kinzig and
R. Sommerhalder, Helv. Phys. Acta, 26, 603 (1953).
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that for freely rotating dipoles. Assume further that the intérnal field is
given by E; = E + y(P, + «E;) where « represents the polarizability
per unit volume with the exclusion of the Ti** displacements. Show that
spontaneous polarization can occur only below a critical temperature
T, = (yNu?/3k)[(1 — ya). Show further that the dielectric constant of the
material is given by

- 47 ( +1_ T, )
€= * y T—T,

8-3. Discuss an experimental method for growing large platelike
single crystals of BaTiO,. (See J. P. Remeika, J. Am. Chem. Soc., 76, 940
(1954).)

8-4. Discuss the results of X-ray and neutron diffraction studies of
ferro- and antiferroelectric materials. See, for example, G. Shirane,
F. Jona, and R. Pepinsky, op. cit.

8-5. Consider a system of dipoles and assume that the field acting on a
given dipole is equal to the cavity field (8-11). If there are N dipoles percm?,
show that the dielectric constant of the system is

=1+ 3[4nNa — 1 + (1 + 87Nw/3 + 1672N2%2)'?]

where « = u?/3 kT. This shows that e remains finite for any finite tempera-
ture, i.e., the system is nonferroelectric.



Chapter 9
FREE ELECTRON THEORY OF METALS

In this chapter the free electron theory of metals as developed by
Sommerfeld and others will be discussed. Conductivity, Hall effect and
other transport phenomena will be treated separately in Chapter 11.
The discussions assume the reader’s familiarity with the material pertaining
to Appendixes B, C, D, and E. A reference such as D-7 stands for formula
7, Appendix D, etc.

It must be emphasized that in the model employed below, the existence
of free electrons is assumed. The question dealing with the reasons for
the occurrence of conduction electrons in certain materials and not in
others is deferred until the next chapter.

9-1. Difficulties of the classical theory

The outstanding properties of metals are their high electrical and
thermal conductivities. Thus, soon after the discovery of the electron, a
number of investigators, in particular Drude and Lorentz, attelmpted an
explanation of these properties on the basis of the assumption that a
metal contains a certain number of “free”” electrons. The free electrons
were supposed to be able to move through the lattice, thereby suffering
collisions with the atoms (see Chapter 11). These theories were developed
at the turn of the century and, of course, employed Boltzmann statistics.
One of the greatest achievements of these theories was that they led to
semiquantitative agreement with the Wiedemann-Franz law, discussed in
Chapter 11.

There existed, however, a number of serious difficulties in the classical
electron theory, one of which was the following: According to classical
statistical mechanics, the average kinetic energy of a free electron is 3k772.
Thus if a metal contains N free electrons per gram atom, the total kinetic
energy of the electrons should be 3NkT/2. Associated with this is a specific
heat of 3Nk/2 per gram atom. Now, from measured values of the optical
reflection coefficient of metals, one had to assume that the number of free
electrons is of the order of one per atom. This corresponds to an electronic
specific heat of 3R/2 ~ 3 cal per gram atom per degree. On the other
hand, the specific heat (at high temperatures) associated with the lattice
vibrations is 3R per gram atom. One therefore concludes that the specific
heat of metals should be about 50 per cent higher than for insulators.
However, experiments show that any specific heat associated with the

211
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electron gas is very small. Another difficulty encountered in the classical
theory, and intimately related to the one just mentioned, pertains to the
magnetic properties of the free electrons. Each electron has a magnetic
moment associated with its spin, and classically, should therefore give rise
to a paramagnetic susceptibility inversely proportional to the temperature.
Experimental results, on the other hand, show that the paramagnetism of
metals is nearly independent of temperature.

We shall see below that both difficulties are removed when quantum
statistics is used.

9-2. The free electron model

An electron in a metal, or for that matter in any solid, finds itself in
the field of all nuclei and all other electrons. The potential energy for
i such an electron may therefore be
expected to be periodic, the periodicity
being that of the lattice. In the model
employed by Sommerfeld, however, it
= is assumed that the ‘“‘free” electrons,
Fig. 9-1. The Sommerfeld model. 1-€-, those giving rise to the conduc-
E, is the energy difference between tivity, find themselves in a potential
an electron at rest inside the metal which is constant everywhere inside
and one at rest in vacuum. At  the metal! Since one does not observe
gnz 0, all energy levels up to Epare 1004100 emission from metals at room
ed, all higher ones are empty I .
(see Sec. 9-3); the work function temperature, it seems evident that the
¢ =E, — E,. potential energy of an electron at rest
inside the metal must be lower than that
of an electron at rest outside the metal. This is confirmed by relatively
simple theoretical arguments.? The change in potential energy of an
electron E, as one crosses the metal-vacuum boundary may, for a number
of problems, be considered abrupt (see Fig. 9-1). For some problems,
however, it is necessary to consider the variation of potential at the surface
in some more detail (see Sec. 9-8). One thus arrives at a physical model in
which the interior of the metal is represented by a potential energy box of
depth E| as indicated in Fig. 9-1; the energy of an electron at rest outside
the metal is used as a reference and is commonly referred to as the vacuum
level.
It may be of interest to note that E, may be determined experimentally
from electron diffraction experiments with slow electrons (a few hundred
ev). An electron impinging on the metal from the outside with an initial

! A. Sommerfeld, Z. Physik, 47, 1 (1928); see also the article by A. Sommerfeld and
H. Bethe, Handbuch der Physik, Vol. 24/2.

* See, for example, H. Frohlich, Elektronen Theorie der Metalle, Springer, Berlin,
1936, p. 11.



Sec. 9-2] FREE ELECTRON THEORY OF METALS 213

energy E, gains an amount E, upon entering the metal. It may be shown
(see Problem 9-1) that the position of the diffraction maxima is determined
by the quantity [(E, + EJ)/EgJ”2. Thus from a knowledge of the lattice
structure and E|, it is possible to determine E,. For nickel one has found
in this way E, = 14.8 ev.? In general, E, is of the order of 10 ev.

In the Sommerfeld model, the free electrons are assumed to be the
valence electrons of the composing atoms. Thus the alkali metals are
assumed to contain one free electron per atom; aluminum supposedly
has three free electrons per atom.

The first problem to be discussed now is the energy distribution of a
“free electron gas” with a density of the order of 10> per cm?®.

9-3. The Fermi-Dirac distribution NE)

For convenience let us define the f _____ CE'?
energy of a free electron at rest inside N —T=0
the metal as zero, i.e., we choose the \
bottom of the potential energy box as a . T#0
reference. According to Appendix B the ‘(/
possible energy levels for an electron N F

are then given by ER,
E=p[2m = (l*x*2mV*3}ni+n>+n?) Fig. 9-2. The curve CE!? repre-
(9-1) sents Z(E) in accordance with (9-3):
the energy distribution N(E) is
where V' is the volume of the metal obtained by multiplying Z(E)by F(E).
and n,, n, n, are integers > 1. Each
set of integers n,, n,, n, defines an allowed wave function of the spatial
coordinates x, y, z. From this, it can be shown that the number of allowed
wave functions corresponding to a momentum range between p and p +- dp
is equal to 4mp® dp V/h® (see Appendix B). Taking into account the fact
that the electron has a spin which can accept two possible values, one
concludes that the number of possible states (i.e., wave functions including
the spin) corresponding to a momentum range dp is equal to

Z(p) dp = 8np? dp VI 9-2)

It is frequently convenient to have an expression for the number of allowed
states in an energy range between E and E + dE. This may readily be
obtained from (9-2) by replacing p?/2m by E, yielding

Z(E)dE = CE2dE with C = 4=V(2m)*?[h® (9-3)
The function Z(E) is represented schematically in Fig. 9-2. To find the
states actually occupied by the free electrons at a temperature 7, we must

3 C. Davisson and L. H. Germer, Phys. Ret., 30, 705 (1927): H. Bethe, Ann. Physik.
87, 60 (1928).
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make use of Fermi-Dirac statistics because electrons obey the Pauli
exclusion principle. Denoting the number of electrons occupying states
between E and E + dE by N(E) dE, we find from (D-10),

1

(9-4)
where « is a parameter and F(E) is called the Fermi function, Note that
F(E) simply represents the fraction of possible states which is ogcupied.
When there is about one free electron per atom in the metal, the glectron
gas may be expected to be highly degenerate at room temperature, This
implies that e* < 1 and we shall therefore write (see Appendix D)

FE) e = e HHT ©-5)
f where Ej is called the Fermi energy,

1 T=0 . . . . 2
~ its physical meaning will become clear
k’l‘((Ep/\ below. With this notation we may

ST X write
\—E

0 S F(E) = (9-6)

e E-EpFT |

Fig. 9-3. The Fermi distribution [n discussing the energy distribution it
function F(E) at abs‘;l”‘f’b_z":’ and s conyenient to distinguish between
ata temperature T'<< E,[k. different temperature ranges:

1. T=0. At absolute zero, the Fermi function has the preperty
F(E)=1 for E<Ep,
F(E)=0 for E>Ep o7

Thus at absolute zero, all possible states below Ep are occupied. all
those above Ey are empty. The physical meaning of Ej is, therefore,
that it represents the highest occupied energy level at T = 0 (see Figs.
9-2 and 9-3). It is of interest to calculate Ep in terms of the number of
free electrons per unit volume. In general, one must satisfy the condition

[0” N(E) dE = fo‘” Z(E)F(E)dE = N 9-8)
In view of (9-7) and (9-3) this gives
Er K2 (3n\23
N=C (0 ° E12 dF or Ep, = oy (8—) 9-9)
R T

Note that £, is determined essentially by the number 7 of electrons per
unit volume. Values for £; calculated from (9-9) for a number of metals
are given in Table 9-1. 1t is observed that £y is of the order of several
electron wvolts. This brings out the very significant difference between
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classical statistics and Fermi statistics. In the former case, all electrons
would have zero energy. For “‘classical electrons” to have an energy of
1 ev, a temperature of about 5000°K would be required.

Table 9-1. Fermi Energy Calculated from (9-9) and Work Function
¢ (Exp.) for Some Metals

Metal Valence EF, (ev) ¢ (ev)
Na 1 3.1 2.28
K 1 2.1 2.22
Cu 1 7.0 4.45
Ag 1 5.5 4.46
Ba 2 3.8 2.51
Al 3 11.7 4.20

The average kinetic energy of the electrons at absolute zero may be
calculated from

1 _
(Eo) = NfoE’” EZ(E) dE = §CE}P’IN (9-10)

From this and (9-9) one readily finds by eliminating C that
(Ey) = §Ep, (9-11)

2. kT <L Ey. For all temperatures below the melting point of metals
kT is small compared with Ej (kT at room temperature is only 0.025 ev).
It follows from the definition of the Fermi function (9-6) that for £ = Ej,
F = }. Hence the physical meaning of E; may be stated: at the Fermi
level, the probability for occupation is 4. An example of the Fermi
function at 7> 0 is given by the dashed curve in Fig. 9-3. For energies
below Ej such that (Ep — E)>> kT, the value of F(E) is still practically
unity, i.e., the energy distribution in that region is the same as that for
T = 0. It is only in the vicinity of Ez minus a few kT that F(E) begins
to drop below the value at 7= 0.

For energies above Ej, such that (E — E;)>> kT, one may neglect
the term 1 in the denominator of (9-6) and one obtains

F(E)y~ e~ E~EPIT for E_— E.> KT (9-12)

Thus, in this region, the Fermi distribution becomes identical with a
Boltzmann distribution ; one speaks in this connection of the ““Boltzmann
tail.”

The Fermi level and the average kinetic energy of the electrons in this
case are determined by the integrals

“ dE
N= Z(E) (9-13)
1 (o EdE
(Ey = Kr.fo 2(E) e (9-14)



216 FREE ELECTRON THEORY OF METALS [Chap. 9

The evaluation of these integrals may be found elsewhere and it may
suffice here to give the results:*

w? (kT2

EF ~ EFo [1 — '1-—2' (-E'_Fo) ] (9'15)
Sw2 (kT2

(E) = (Ey) [1 + V) (E;'—o) ] (9-16)

where the subscripts O refer to the quantities at T = 0. It is observed that
as T increases Ej decreases and (E) increases slightly. The smallness of
the changes follows immediately from the occurrence of the factor
(kT|Eg,)* For example, with Ep =~ 5ev, this factor is ~2 X 107° at
room temperature. For many practical purposes, therefore, the Fermi
level may be considered a constant.

9-4. The electronic specitic heat

The expression for the average energy of an electron (9-16) has an
important consequence for the specific heat problem mentioned in Sec. 9-1.
In fact, it follows immediately from (9-16) that the specific heat at constant
volume per electron is given by

¢ = d(E)[dT =~ 57*k*T(E,)/6E%,
Making use of (9-11) this may be written
¢y = n¥(kT|2Ep Yk = n(T|2Tp)k 9-17)

where Ty is the Fermi temperature defined by kT, = Ej. Thus for
Ep = 5ev one finds at room temperature an electronic specific heat of
about k/40, which may be compared with the classical value of 3k/2. The
use of Fermi-Dirac statistics thus removes the specific heat difficulty
encountered in the classical theory. It is of interest to note that the
electronic specific heat rises linearly with 7. Now, at low temperatures,
the specific heat associated with the lattice vibrations is proportional to
T3, so that the total specific heat of a metal may be represented by

Cy = AT + BT? (9-18)

This expression is, at least qualitatively, in agreement with experiment.
At sufficiently low temperatures the linear term predominates and this
allows one to determine the electronic specific heat term from experiment.
For copper, for example, Kok and Keesom find 4 = 1.78 cal/mole/deg?.®

! See, for example, F. Seitz, Modern Theory of Solids, McGraw-Hill, New York,
1940, pp. 146ff. For numerical tables involving integrals of the type (9-13) see
J.McDougall and E. C. Stoner, Phil. Trans., A237, 67 (1929).

*J. A. Kok and W. H. Keesom, Physica, 3, 1035 (1936); 4, 835 (1937).
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When one calculates the coefficient A on the basis of (9-17) and uses
E,,.o= 7.04 ev, calculated from (9-9), one obtains 4 = 1.24, which is
appreciably smaller than the observed value. This is a difficulty which
one encounters also for other metals and is a consequence of the over-
simplifying assumptions made in the free electron model. From the
discussion to be given in Chapter 10 it may be concluded that the dis-
crepancy is in part a result of the fact that the effective mass of the electrons
may be larger than that of a free electron.

Qualitatively, the results obtained may be summarized as follows: As
a consequence of the Pauli principle, even at low temperatures most
electrons have appreciable kinetic energy. Thermal excitation of electrons
is possible only if they can be excited into unoccupied states. This is
essentially possible only for electrons in the vicinity of the Fermi level;
the electrons in the low-energy region require too large an excitation
energy. Thus only a relatively small number of electrons contribute to the
specific heat.

9-5. Paramagnetism of free electrons

It is well known that when a certain charge distribution rotates about
an axis, a magnetic dipole moment results. Thus, as a consequence of the
angular momentum, or spin, each electron bears a magnetic dipole
moment. An important property of the electronic magnetic moment is
that in an external field H its component along the field direction is either
~+eh/2nic or —eh/2mc (see Sec. 18-2). In other words, the component is
either parallel or antiparallel to the external field direction. The magnitude
of the component

up = ehi[2mec = 0.917 x 10720 erg/oersted (9-18)

is called a Bohr magneton. The energy of a dipole in an external field is
equal to —p - H, so that in the parallel orientation the energy is —upH,
and in the antiparallel orientation is +4-uzH.

In a metal, let there be n free electrons per unit volume. In the presence
of a magnetic field H let there be n, with an orientation parallel to H and
n, antiparallel to H. The magnetic moment per unit volume (the
magnetization) is then equal to

M = (n, — n)up (9-19)

If we assume classical statistics M may be calculated in the same way
as the orientation polarization of electric dipoles in the Debye-Langevin
theory. We leave it to the reader (Problem 9-4) to show that in that case,

M = y,H = (nuy/kT)H (9-20)
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as long as uH < kT. The quantity y, is called the paramagnetic suscep-
tibility. Note that for freely rotating dipoles the average component in
the field direction is (u%/3kT)H. The fact that the factor 3 is missing in
(9-20) is a consequence of the fact that the dipoles can accept only two
possible orientations relative to H. If (9-20) were correct, one would find for
the susceptibility of metals at room temperature with » ~ 10% per cm?,
7, = 10~* per cm®. Also, x, should vary as 1/T. Experimentally, however,
one finds x, ~ 10~% per cm® and practically no temperature dependence.

The disagreement with experiment disappears when one applies Fermi-
Dirac statistics, as was first shown by Pauli.® For simplicity let us first
consider the situation at 7 = 0. Without external magnetic field all energy

NE)

(&) (b}

Fig. 9-4. The number of occupied states N(E) as function of the
energy at T = 0. In(a) an external field H is applied while keeping
the electrons in their original states; as a result of the shift in
energy, this situation is unstable. In () equilibrium is established,
corresponding to an excess of parallel spins.

levels below Ey_are occupied and all those above E, are empty. Leaving
for a moment all electrons in their original state and applying an external
field H, all electrons with a magnetic moment parallel to H would suffer
a shift in energy of —u;H, all antiparallel ones of +uzH. This is indicated
in Fig. 9-4a. It must be noted that uzH << Ey, ; in fact, even for a field
strength of 103 gauss, uzH ~ 103 ev as compared with Ep =~ 5ev.
The situation as depicted in Fig. 9-4a is, of course, unstable and a number
of antiparallel spins will enter the group of parallel ones. In equilibrium
both halves are filled to the same level, as in Fig. 9-4b. Now, according
to (9-3), the number of allowed states in each of the halves is per cm3
equal to

2(E) dE = 2n(2m)32EY2 dE[h3 (9-21)

¢ W. Pauli, Z. Physik, 41, 81 (1927).
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The number of antiparallel spins entering the group of parallel spins is
therefore
2m(2m [k u , HE?

because uy,H L E r, The total excess of electrons with parallel orientation
is twice this, so that one finds by making use of expression (9-9) for Ep ,
dmm (3n\13
M= —5 (;) wpH = y,H 9-22)
This may be written in a more convenient form for purposes of comparing
the quantum result with the classical result (9-20) by multiplying top and
bottom by Ey . This gives

Iy = 3n|2K Ty, (9-23)

where T3, is the Fermi temperature defined by ATy = Ep,. Substituting
numerical values, one finds for the volume susceptibility,

vy = 2.21 X 10-14p13 (9-24)

For temperatures different from zero, the theory must be extended.
However, because the influence of temperature on the Fermi distribution
is slight, one expects y, to be nearly temperature-independent. It has
been shown by Stoner? that for kT << Ey,,

B 3'n,u23[ wz(kT)2]
=3 T2 \E, 0-23)
The factor in brackets is identical with that occurring in (9-15) for the
temperature-dependence of Ey. For T = 0, (9-25) reduces to (9-23).
With n ~ 10 it thus follows from (9-23) that the paramagnetic suscep-
tibility of the free electron gas is of the order of 10=¢ per cm?, in agreement
with experiment.

A quantitative comparison between the results obtained above and
experiment is rather difficult. First of all, the magnetic susceptibility of a
metal consists of three contributions:

(i) The paramagnetic contribution of the free electrons

(ii) A diamagnetic contribution of the free electrons, first calculated
by Landau®

(iif) The diamagnetic contribution of the ionic cores

Thus, in order to obtain y,, the last two contributions must be
subtracted from the total susceptibility measured. For completely free
electrons, contribution (ii) is equal to —y,/3. Contribution (iii) is usually
calculated from susceptibility data on ionic solutions; this involves the

? E. C. Stoner, Proc. Roy. Soc. (London), A152, 672 (1935).
8 L. Landau, Z. Physik, 64, 629 (1930).
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assumption that the susceptibility per ion is the same in the solution and
in the metal. Furthermore, the experimental data are sometimes impaired
by the presence of ferromagnetic impurities. Finally, the free electron
model can be expected to hold in good approximation only for the alkali
metals, as we shall see in Chapter 10.

For further details, we refer to the literature.®

9-6. Thermionic emission from metals

With reference to Fig. 9-1, let us define the energy of a free electron
at rest inside the metal as zero. In order to escape from the metal an
electron must have an energy perpendicular to the surface of at least E,.
Thus if x is the coordinate perpendicular to the surface, an electron must
have a momentum p, > p, in order to escape, where

piJ2m = E, (9-26)

However, even if an electron at the surface has a momentum p, = p, , it
does not necessarily escape, but may be reflected by the potential barrier.
This is a phenomenon which follows readily from wave mechanics.1
Thus the probability of escape for an electron satisfying the condition
Pa = Pe, is equal to 1 — r(p,), where r(p,) is the reflection coefficient as
function of p,. The reflection coefficient also depends on the shape of the
potential barrier. Suppose now that the number of electrons per unit
volume with a momentum between p, and p, + dp, inside the metal is
equal to n(p,) dp,. The number of such electrons arriving at the surface
per second per unit area is equal to v,n(p,) dp,. From this it follows that
the emission current density is equal to

1= (elm) [~ pun(pll — r(p)) dp. (9-27)

The term in brackets is usually replaced by a factor (1 — r) in front of the
integral, where r represents a suitable average of the reflection coefficient.!!
One is thus left with the problem of calculating r(p,); this quantity may
be obtained in the following manner: From (9-2) it follows that for an
isotropic momentum distribution, as presumably exists inside the metal,
the number of allowed states corresponding to an element dp, dp, dp, in
the momentum space is equal to

2dp, dp, dp,|h®

® N. F. Mott and H. Jones, The Theory of the Properties of Metals and Alloys, Oxford,
New York, 1936, p. 184; A. H. Wilson, The Theory of Metals, 2d d., Cambridge,
London, 1953, Chap. 6.

1 See, for example, N. F. Mott and I. N. Sneddon, Wave Mechanics and its Applica-
tions, Oxford, New York, 1948, pp. 13ff.

11 For a calculation, see, for example, L. W. Nordheim, Proc. Roy. Soc. (London),
121, 626 (1928); L. A. MacColl, Phys. Rev., 56, 699 (1939). ‘
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per unit volume. The number of electrons occupying states with momenta
between p,, p, + dp,; p,, p, + dp,; p., p. + dp. is therefore

2 ) dp, dp, dp,

n(pz, Py, P2) dp. dp, dp, = B E S ERT ] (9-28)
where E = (p} + p} + p?)[2m. Hence
2 f+ o 4 o0 (I'l)” dpz
nps) dp. = 5 dp, | [ SEEPRT ] (9-29)

Now we are interested only in those electrons for which p, > Py 1-€., the
total energy of the electrons of interest is at least equal to £,. On the other
hand, E, — E;. = ¢ > kT for all metals at temperatures below the melting
point (see Fig. 9-1). Hence the term of unity in the distribution function
may be neglected; we are interested only in the Boltzmann tail of the
Fermi distribution. The quantity ¢ is called the work function of the
metal; it represents the energy difference between an electron at the Fermi
level and the vacuum level.
One thus obtains from (9-29),

n(p,) dp, = (A4mmkT|h3)e"rFT g~ rii2mkTgp (9-30)

Substituting this expression into (9-27) one finds upon integration for the
emission current density,

I = A(l — r)T2% ~¢HT (9-31)

where A = 4memk®[h* = 120 amp/cm?/deg®. This is the Dushman-
Richardson equation.

From the form of (9-31) one may be inclined to conc¢lude that by
simply plotting log (//T?) versus 1/T one obtains ¢ from the slope of the
resulting straight line and A(1 — r) from the intercept at 1/7 = 0 (see
Fig. 9-5). A number of complicating factors in the thermionic emission
of an actual metal must, however, be considered.!?

(i) The apparent work function increases if a negative space charge
exists in the vicinity of the emitter; the anode potential should
therefore be sufficiently positive to prevent space charge build-up,
i.e., one should work in the region of saturation-current density.

(i) The apparent work function decreases with increasing external
field strength, as explained in Sec. 9-8. Thus I(T) should be
measured for different external fields and then extrapolated by
means of a so-called Schottky line to zero field strength (see
Fig. 9-7).

12 For an evaluation ot thermionic emission data and a thorough discussion of the

theory, see C. Herring and M. H. Nichols, “Evaluation of Thermionic Data,” Revs.
Mod. Phys., 21, 185 (1949).
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(iliy As a result of thermal expansion, ¢ itself is a function of
temperature, and so is (1 — r).

(iv) In the derivation of (9-31) it has been assumed that the work
function is the same over the whole area of the emitter; this
assumption is valid only if the emitter is a single crystal, because
¢ varies from one crystallographic plane to another.!?

3]

T“’log 1T

N 1 R L R .
0 2 4 6

— 103/T

Fig. 9-5. Richardson plot for tungsten. [After Herrmann and
Wagener, L.c., vol. 2, page 74]

(v) Small amounts of adsorbed gases may influence ¢ strongly, as
explained in Sec. 9-9; thus the surface should be atomically clean.

(vi) The macroscopic area of the emitter is in general not equal to the
actual surface area.

From these remarks it is evident that reliable conclusions regarding
# and A(1 — r) can be drawn only from extremely carefully controlled
experiments. Many of the older experimental results in the literature are
worthless because of poor vacuum techniques.!

A few remarks may be made in connection with (iii) above. Let us
assume that r is temperature-independent and that ¢ varies linearly with
T according to

¢ = ¢o + (dp/dT)T (9-32)
where ¢, is the work function at absolute zero. (This assumption is

13 For an extensive study of this and other aspects of the thermionic emission of
tungsten, see G. F. Smith, Phys. Rev., 94, 295 (1954).

14 Tilustrative in this respect is a table of values for ¢ and A(1 — r) for platinum in
chronolegical order in G. Herrmann and S. Wagener, The Oxide Coated Cathode,
Chapman and Hall, London, 1951, Vol. 2, p. 78.
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probably inaccurate because the coefficient of expansion goes to zero as
T — 0.) Substituting (9-32) into (9-31), one obtains

log (I/T?) = log A + log (I — r) — (dp[dT)[k — $o/kT  (9-33)

On the basis of this expression one thus determines from the slope of a
Richardson plot, such as represented for tungsten in Fig. 9-5, a value for
¢, rather than for ¢. Also, it is evident that the constant obtained from
the intercept at 1/T =0 may differ appreciably from A = 120 amp
cm?/deg?. A number of experimental results obtained by various methods'®
indicate that for metals dg/dT ~ 10~ ev per degree. Work functions for
a number of metals are given in Table 9-2.

Table 9-2. Average Values of the Work Function of Metals in ev.
For references to the original literature, see footnote 15

Al 4.20 Cs 1.93 Na 2.28
Ag 4.46 Cu 4.45 Ni 4.96
Au 4.89 Fe 4.44 Pd 4.98
Ba 2.51 K 2.22 Pt 5.36
Cd 4.10 Li 2.48 Ta 4.13
Co 441 Mg 3.67 w 4.54
Cr 4.60 Mo 4.24 Zn 4.29

9-7. The energy distribution of the emitted electrons

The energy distribution of the emitted electrons may be derived from
the results obtained in the preceding section as follows: According to
the Dushman equation (9-31) the total number of electrons emitted per
cm? per second is equal to

N = (dmmk?|I®)T2e— 47 (9-34)

if we assume for the moment that the reflection coefficient r = 0. Also,
the number of electrons arriving at the surface per cm? per second with
Pz = P, and velocities normal to the surface in the range dv, may be
obtained from (9-30):

n(v)v, dv, = (AmmkT|h3)e £rkT = mei/2Ty gy, (9-35)

When v,, represents the velocity of an electron in the x-direction after
emission, we have
2
oz, = ymvy — Ep — ¢
Uy AV, = U, dU,, (9-36)

15 For a review of methods to determine ¢, see Herrmann and Wagener, 1.c. Chap. 2.
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As each of the electrons of the group represented by (9-35) contributes
an external electron as described by (9-36), the velocity distribution
f(v,.) ev,, of the emitted electrons is obtained by dividing (9-35) by (9-34)
and substituting (9-36); this gives

(Vg dvyg| N = (mv,g[kT)e~ ™57 dp,, (9-37)

Thus the velocity distribution perpendicular to the surface exhibits a
Maxwellian form. It is left to the reader (Problem 9-6) to show that the
average energy of the emitted electrons perpendicular to the surface is
equal to

(E;) = (m|2)(vi;) = kT (9-38)

Clearly, the velocities of the electrons in the y- and z-directions (parallel
to the surface) do not change upon crossing the surface potential barrier ;
it can be shown (Problem 9-6) that (E,) = (E,) = kT/2. One thus
concludes that the total average energy of the escaping electrons is equal to

(Ey = 2kT (9-38a)

This result is basic to the so called ““‘cooling method” employed to determine
the work function ¢ at any operating temperature.!® To explain this
method, we have to refer to a result of the thermodynamics of a gas, in
this case the electron gas. The change in entropy dS resulting from a small
change in the number of particles dN and a small change in the total
energy dE is given by (see D-8 and E-5)

dS = ak dN +- dE|T - p dV|T (9-39)
where « is an undetermined multiplier, related to the Fermi energy in
accordance with (9-5) by

o = —Eg[kT (9-40)

Let us now apply this to the electron gas at constant volume, assuming
that one electron leaves the metal with an average kinetic energy of 2kT.

dN = —1, dE= —(Ep+ ¢+ 2kT) (9-41)
From the last three equations one obtains for the heat lost by the metal

per emitted electron,’
dQ =TdS = ¢ + 2kT (9-42)

Note the important physical meaning of the work function in this result

16 C. Davisson and L. H. Germer, Phys. Rev., 20, 300 (1922); 30, 634 (1927);
G. M. Fleming and J. E. Henderson, Phys. Rev., 58, 887 (1940).

17 A detailed thermodynamical study shows that an additional term must be added
to the right-hand side of (9-42), containing the Thomson coefficient; this term is of the
order of 10-2ev. See C. Herring, Phys. Rev., 59, 889 (1941).
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for the latent heat of evaporation per electron. The power consumed by
the emitter per cm? due to this process is thus

P = (Ile)$ + 2kT) (9-43)

From the power input and correcting for losses due to thermal radiation
and heat conduction, it is possible to determine ¢ at a given temperature.
This method has been used to determine d/dT.18

9-8. Field-enhanced electron emission from metals

In the preceding sections the metal-vacuum boundary has been
represented by a discontinuity in the potential. Actually, the potential

X9 Xm Vacuum

Cc

Fig. 9-6. Surface potential barrier and Schottky effect (greatly
exaggerated).

changes smoothly, and this has some interesting consequences, as we shall
see. Let us define the potential energy of an electron far away from the
metal surface as zero. As we approach the metal with the electron, the
metal will become polarized and will exert an attractive force on the
electron. For distances x large compared with the interatomic distances,
the metal surface may be considered homogeneous, and the attractive
force is given by the well-known image force e?/4x2. This leads to a
potential energy of the electron equal to

Vimage = ——82/ 4x (9'44)

The image potential is represented by curve AB in Fig. 9-6. It will be
evident that (9-44) is not valid for distances smaller than several Angstroms ;
in fact, this would lead to a potential energy of —oo for an electron at
rest inside the metal. Schottky suggested that the image potential holds

18 See, for example, F. Krueger and G. Stabenow, Ann. Physik, 22, 713 (1935).
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for x > x,, where x, is a critical distance; for the region 0 < x < x, he
assumed a constant force, i.e., the potential energy in that region would
be a linear function of x (see CA, Fig. 9-6).1° Wave-mechanical calculations
indicate that this model is rather good.2® To obtain the order of magnitude
of x,, let us assume the total potential energy barrier to be E; = 10 ev.
For x = x, the image force is €%/4x{, so that the increase in potential
energy along CA is e?/4x,. Also, the energy rise between A and B in
Fig. 9-6 is €?/4x,, leading to E, = €*/2x, or xo =~ 1 A.

The existence of the image potential has some important consequences :

(i) It reduces the reflection of escaping electrons considerably relative
to that by an abrupt potential change.

(i1) It leads to a reduction in the apparent work function in the presence
of an external electric field; this phenomenon is known as the
Schottky effect and may be understood as follows:!?

Suppose there exists a homogeneous electric field between the emitting
metal surface and another metal plate which is made the anode. The
potential for an electron due to the external field may then be represented
by a line such as PQ in Fig. 9-6. Combining this potential with the image
potential, we obtain the dashed curve, so that it is now easier for electrons
to escape than without an external field. The total potential energy
corresponding to the dashed line may be represented by

V(x) = —e*/d4x — eEx (9-45)

where the last term corresponds to the external field. The maximum of
this curve occurs for x = x,, and from (9-45) one finds x,, = 3(e/E)'%
Substituting, one finds for the change in work function

Ap = V(x,,) = —e(eE)'? (9-46)
Instead of the Dushman equation, we thus obtain
log (I/T?) = log A + log (1 — r) — ¢/kT + e(eE)*[kT  (9-47)

Thus, if one plots the logarithm of the saturation current for a given
temperature as function of the square root of the anode voltage, one
expects a straight line (the Schottky line). A comparison of theory and
experiment for tungsten is given in Fig. 9-7; the agreement is good for
anode voltages above 100 volts; the deviations below 100 volts are
ascribed to variations of the work function over the surface.?

It should be noted that the actual change in the work function is
relatively small. For example, for E = 10® volts per cm, one obtains
x,, ~ 107% cm and A¢ ~ 0.01 ev.

1% W. Schottky, Physik Z., 15, 872 (1914).
20 See, for example, J. Bardeen, Phys. Rev., 49, 653 (1936); 58, 727 (1940).
31 W. B. Nottingham, Phys. Rev., 47, 806 (1935); 58, 927 (1940).
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Field emission. When the external electric field becomes of the order
of 10® volts per cm, cold emission or field emission sets in. This pheno-
menon is quite different from the Schottky effect: in the latter case the
electrons cross over the potential barrier, in field emission they tunnel
through the barrier. For simplicity, consider a metal at absolute zero and
let us assume the surface potential barrier to be abrupt. The potential
energy of an electron outside the metal is then equal to —eEXx, represented
by the line 4B in Fig. 9-8. If the distance d in Fig. 9-8 is of the order of
10 Angstroms or less, electrons in the vicinity of the Fermi level will be

20+ E
2 . A Vacuum
\ine 2
£ 101 .@'m i
X 7'/ —eEx
C, ¢
'?‘ (]
| 5 f Ep g
2 Il | L B
0 10 20 30 NE) <« x
—_ (Va)l/Z 0
Fig. 9-7. Schottky line for tungsten. Fig. 9-8. To illustrate high-field
[After Nottingham, ref. 21] emission; the distance d should

be 10 Angstroms or less for
appreciable tunneling to take
place.

able to tunnel through the barrier.?? For ¢ ~ 3 ev, this requires a field of
the order of 107 volts cm~!. As the field strength becomes larger, more
and more electrons below the Fermi level begin to contribute to the
emission current. According to Fo.ler and Nordheim, the emission
current as function of the field strength E for a triangular barrier may be
written in the form

I = BE?% ¥ (9-48)

where B and f are constants containing the work function.? Note that
E plays the same role in this formula as T in the Dushman-Richardson
expression for the thermionic current. Thus if log (I/E?) is plotted versus
1/E, a straight line should result. This has been confirmed by experiment.?
Usually, field emission sets in at fields of the order of 108 volts cm™,
probably as a consequence of high fields occurring at surface irregularities.

** See, for example, N. F. Mott and I. N. Sneddon, op. cit.
* R. H. Fowler and L. Nordheim, Proc. Roy. Soc. (London), 119A, 173 (1928).
** See, for example, R. Haefer, Z. Physik, 116, 604 (1940).
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It will be evident from the above discussion that field emission is not
strongly influenced by temperature. Of course, the temperature should
be kept low enough to assure the absence of thermionic emission.

9-9, Changes of work function due to adsorbed atoms?®

It is well known that the work function of metals such as tungsten
can be lowered by surface adsorption of alkali or alkaline earth atoms.
The lowest value of the work function is obtained roughly for a monatomic

N
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Fig. 9-9. The decrease A¢ of the Fig. 9-10. ABC represents the

work function of tungsten as func-
tion of the fraction ¢ covered with
adsorbed Csatoms; § =1 corresponds

potential energy of an atom as
function of distance from the metal;
PQR corresponds to an ion.

to a monolayer. [After J. A. Becker,
Trans. Faraday Soc., 28, 151 (1932)]

layer of adsorbed atoms, as may be seen from Fig. 9-9.26 It is observed
that the work function of tungsten (4.52 ev) may be lowered to 1.5ev
by Cs-adsorption. Adsorption of oxygen usually increases the work
function of metals. We shall now investigate the reasons for such changes.

First consider the potential energy of an atom as function of its
distance from a metallic surface. It is convenient to think of the metal as
a huge molecule which is “perfectly” polarizable. Since any atom has a
certain polarizability, the atomic potential energy curve will be of the
type ABC in Fig. 9-10, the attraction resulting from van der Waals forces.
The energy D, corresponds to the energy required to dissociate the
adsorbed atom from the metal surface. Suppose now that in point 4 we
ionize the atom by supplying the ionization energy /. The electron is then
taken to the metal, yielding a gain in energy equal to the work function
¢ of the metal (see 9-42). Thus the potential energy curve for the ion
starts (/ — ¢) above the atomic curve, in point P. When we now approach
the metal with the ion, it will be under influence of an image force, i.e.,

5 For an extensive discussion see J. H. de Boer, Electron Emission and Adsorption

Phenomena, Cambridge, London, 1935.
* See also J. B. Taylor and 1. Langmuir, Phys. Rev., 44, 423 (1933).
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the attraction potential will be a Coulomb attraction, proportional to the
reciprocal of the distance from the metal. On the other hand, the potential
curve for the atom AB is of the van der Waals type and varies with a
higher power of the distance. For the ion we thus obtain a curve such as
PQR, which intersects the atomic curve. In this curve, D, represents the
binding energy of the ion. Thus, if Q lies lower than B, the foreign atom
will be adsorbed as a positive ion rather than as an atom. The condition
for ionic adsorption is therefore

D,—1+¢é>D,
Thus atoms with a low ionization energy may be adsorbed as positive
ions and experiments indicate that this is indeed the case for alkali and
alkaline earth atoms adsorbed on a metal with a relatively high work
function like tungsten. We may note that (/ — ¢) may be negative, so
that point P may be lower than point 4 in Fig. 9-10. This is the case for
example with Cs on tungsten: /., = 3.9 ev and ¢;;- = 4.5 ev. This has
been confirmed experimentally by heating a tungsten wire in cesium
vapor; if the tungsten wire is made positive with respect to a surrounding
metal cylinder, one observes that the cesium is
ionized at the tungsten and evaporates as ions
rather than as atoms.?” The same is true for /
rubidium, which has an ionization energy of “
4.2 ev. For sodium, on the other hand, the
ionization energy is 5.1 ev, so that for Na
adsorbed on tungsten point Pin Fig. 9-10is indeed
above point 4. Sodium therefore evaporates in

the form of atoms from a tungsten surface, even
though it is adsorbed in the form of ions.

7

CICIOIOIO

Let us now consider the influence of atoms
adsorbed as positive ions on the work function
of the base metal. Opposite the positive ions
exists a negative surface charge on the metal,
i.e., there exists a double layer (Fig. 9-11).
According to electrostatics, the field outside the
double layer vanishes, but inside the layer, the
force on an electron is 4moe, where oe is the
surface charge density.

Thus as an electron is taken from the
interior of the metal into vacuum there is an

I

Fig. 9-11. Electric double
layer on a metal resulting
from the adsorption of
atoms in the form of
positive ions. The curve
underneath represents the
potential energy of an
electron as it crosess the
layer; A is the lowering
of the work function.

extra potential energy drop, resulting from the double layer, equal to

A¢ = 4nged = 4w Ned

(9-49)

where d is the distance between the positive and negative charges and N
2" J. B. Taylor and 1. Langmuir, Phys. Rev., 44, 423 (1933); J. A. Becker, Phys. Rev..

28, 341 (1926).
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is the number of adsorbed ions per cm?. For example, if d = 10~8cm,
one requires N =~ 0.5 X 10" cm=2 to produce a drop of 1ev, which is
approximately a complete monoatomic layer. It is therefore easier for the
electrons to escape than without the double layer, and the effective work
function of the metal is lowered by A¢. Similarly, if the double layer
consists of negative ions adsorbed on the surface, as in the case of oxygen
on tungsten, the work function is increased.

9-10. The contact potential between two metals

Consider two different metals of work functions ¢, and ¢, at absolute
zero temperature. The energy levels of the electrons in the two metals

Vacuum o

(a) (b)

Fig. 9-12. Contact between two metals. In (a) no equilibrium
has been established yet; (b) represents the equilibrium situation,
showing the contact potential difference ¢, — ¢,.

may then be compared with reference to the common “vacuum level.”
Suppose now the two metals are brought in contact with each other so
that their separation is comparable to interatomic distances. Initially then,
the situation is as indicated in Fig. 9-12a. Assuming ¢, << ¢,, the energy can
be lowered by taking an electron from metal 1 to metal 2, and evidently
the situation depicted by Fig. 9-12a is unstable. A certain number of
electrons will therefore move from 1 to 2 by tunnel effect or, for tempera-
tures different from zero, by thermionic emission. Consequently, the
surface of metal 2 will become negatively charged, that of metal 1 positively.
Thus, as the number of electrons shifted from 1 to 2 increases, it becomes
increasingly more difficult for other electrons to move from 1 to 2. Finally,
an equilibrium will be established corresponding to Fig. 9-12b, in which
the two Fermi levels coincide as a consequence of the potential rise (for
electrons) across the gap associated with the surface charges. Obviously,
the potential rise V is given by

eV =d¢,— ¢ (5-50)

where V is called the contact potential. We note that V' is determined only
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by the two work functions and is independent of the depths of the potential
energy wells.

In connection with the great importance of the Fermi level in equilibria
between two or more sets of electronic energy levels, let us consider the
problem from the thermodynamic viewpoint. Suppose two sets of energy
levels, distinguished by the subscripts 1 and 2, are in thermal equilibrium
at constant pressure and temperature. This means, according to Appendix
A that the Gibbs thermodynamic potential of the combined systems should
be a minimum; i.e., when one electron is transferred from system 1 to
system 2, the resulting change dG = dG, + dG, should vanish. Now,
according to thermodynamics,

TdS=dE+ pdV — udN 9-51)

where —u/T is the change in entropy per particle added at constant E
and V,

u = —T(0S/ON)g (9-52)
At constant pressure and temperature, therefore,
dG =d(E — TS + pV)= pndN (9-53)
Applying this to the combined systems under consideration and keeping
in mind that dN; = —dN,, we may write as the condition for equilibrium
at constant p and 7,
p ANy + g dNy =0 or  py = p, (9-54)

Equilibrium thus requires that the u’s of the two systems be the same.
However, from (9-39), (9-40), and (9-52) it follows that u = Ej, showing
that for two (or more) sets of electronic levels, the Fermi levels must be
the same in equilibrium. This conclusion is of importance in the discussion
of contacts between metals, semiconductors, and insulators.

1
T M
|

'(s

Fig. 9-13. Simple circuit to measure contact potentials.

=

Measurements of contact potentials may be used to determine the
difference in work function of two surfaces and is thus important in cases
where one is interested in changes in work functions. In Fig. 9-13, let 4
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and B be two such surfaces with different work functions. Thus, without
external voltage, the plates will be charged as explained above. A sudden
change in the distance betwecn the plates (switch S open) will lead to a
voltage pulse resulting from the change in capacitance and can be measured.
If an external voltage is applied by means of a potentiometer (S closed),
the levels of one metal are raised or lowered relative to those in the other.
For a particular value of the external voltage the charges on the plates
vanish and a change in distance (S open) will not yield a voltage pulse.
Clearly, the external voltage then just compensates the contact potential
and thus (¢, — ¢5) may be obtained. A method devised by Zisman
employs a vibrating plate so that a-c techniques can be used and work
functions can be measured in a matter of seconds.?® In this way one has
measured, for example, the change of work functions with temperature,
with the result that for metals ¢ increases with about 10~* ev per degree.

9-11. The photoelectric effect of metals

In the photoelectric effect, an electron absorbs a light quantum and is
thereby excited into a state of higher energy; if the energy in the excited
state is large enough, the electron may appear as a photoelectron outside
the metal. The photoelectrons may originate from: (a) the interior of the
metal (volume effect), (b) near the surface of the metal (surface effect),
(c) foreign atoms adsorbed on the metal surface.

To begin with, it must be pointed out that completely free electrons
cannot absorb photons; this may be shown from the expression for the
quantum mechanical transition probability.?® By mecans of the following
simple argument, one arrives at the same conclusion. Consider the
interaction between an electron and a photon as a collision in which
momentum and energy arc conserved. Let £ be the initial energy of the
electron and hv the energy of the photon. The energy of the electron after
absorption is then E = E; 4- hv. When p and p, represent the absolute
values of the momentum of the electron, respectively after and before the
absorption process, and remembering that Av/c is the momentum of the
photon, conservation of momentum requires that

P < po+ hfe (9-55)

or 2CmE)Y2 < (2mEy)V2 + hv/c (9-56)
This may be rewritten in the form

hv[2mc® + QEy/mc?)'/2 > 1 (9-57)

However, for the energies of interest we have hv < mc? and Ey<< mc>

%8 W. A. Zisman, Rev. Sci. Instr., 3, 367 (1932).
*¢ See, for example, H. Frohlich, Elcktronen Theorie der Metalle, Springer, Berlin,
1936, p. 122; A. Sommerfeld and H. Bethe in Handbuch der Physik, Vol. 24/2.
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One thus concludes that in the free electron approximation, the conserva-
tion laws cannot be satisfied and thus free electrons cannot absorb photons.
This argument would hold for the electrons in the interior of the metal.
The reason that there actually exists a volume effect is a consequence of
the fact that the free electron approximation is not valid ; even in the case
of the alkali metals, for which this approximation is better than for any

_ _1_ 5"
E,
mVacuum

(a) (b)

Fig. 9-14. Tllustrating the photoelectric effect: for a frequency

v the electrons in the shaded part of the Fermi distribution may

contribute to the emission (a); (b) represents the photo current
as function of the collector voltage.

other metals, the volume effect may contribute to the surface eftect (b).3°
The discussion given below is confined to process (b); because of lack of
space, only some qualitative remarks will be made.

Notwithstanding the arguments given above, the free electron approxi-
mation applied to electrons near the surface leads to the possibility of
photon absorption for these electrons; this follows from the wave-
mechanical treatment of the problem.3! One might say that the presence
of the potential barrier at the surface makes it possible to satisty thc
conservation laws in the sense that the surface itself acts as a possib!s
source or sink for momentum. In other words, the system under considera-
tion is no longer the electron plus a photon, but electron plus photon plus
surface. With reference to Fig. 9-14a the following conclusions may then
be drawn for the emission characteristics of a metal at absolute zero.

3 H.J. Fan, Phys. Rev., 68,43 (1945). In the volume effect, the excitation of electrons
is governed by the selection rule that the transition should be *vertical™ in the reduced
zone scheme (sec Chapter 10).

31 K. Mitchell, Proc. Roy. Soc.(London), A146, 442 (1934); 153, 513(1936); I. Tamm
and S. Schubin, Z. Physik, 68,97 (1931); A. G. Hill, Phys. Rev., 53,184 (1938); R.E.B.
Makinson, Phys. Rev., 75, 1908 (1949).
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The minimum energy perpendicular to the surface required for an electron
to escape from the metal is E; + ¢. Thus, if hv is the energy of the
incident photons, electrons in the shaded portion of the Fermi distribution
may contribute to the emission current. It is evident that the threshold
frequency », of the incident photons is given by

hy, — - (9-58)

For » <, no emission occurs. Evidently the work function of a
metal may be obtained by measuring the threshold frequency »,. At
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Fig. 9-15. Relative photoemissive current as function of the
wavelength of the incident light for alkali metals. [After E. F. Seiter,
Astrophys. J., 52, 129 (1920)]

temperatures different from zero, a method devised by Fowler may be
used to determine ¢.32

As the frequency is increased beyond »,, more and more electrons can
contribute to the emission” and thus the emission current rises with
increasing frequency; for hv > Ej + ¢, saturation occurs. However, the
transition probabilities decrease with increasing frequency, leading to a
maximum in the current versus frequency curves (see Fig. 9-15).3

Besides measuring the total number of emitted electrons, one frequer:ly
measures the emission current for a given incident photon frequency as
function of a retarding potential applied to a spherical collecting anode
surrounding the target. The maximum energy with which an electron can
leave the target at T = 0 is, according to Fig. 9-14a, equal to

E,=h—¢ (9-59)

3 R. H. Fowlet, Phys. Rev., 38, 45 (1931).
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Thus for a potential —E, /e applied to the collector, all emitted electrons
are stopped and the collected current 7 = 0. As the collector potential is
made less negative, the collector current increases until for zero collector
potential the current reaches its saturation value /; for the particular
incident frequency. The [/ versus V.o curve thus has the form as
indicated in Fig. 9-14b; this is in agreement with the observations.®® By
differentiation of such curves, the energy distribution of the emitted
electrons may be obtained.

Quantitatively, the theory may be set up in the following way: let
n(E) dE be the number of electrons in the metal occupying states in the
energy range between £ and E -+ dE. Also, let P(v,E) be the probability
that an incident photon of frequency » excites an electron from a state £
into the state E + hv. The number of electrons emitted by the metal
originating from the range E, E + dE is then per incident photon,

n(E)P(v,E)Q(E + hv) dE (9-60)

where Q(E +- hv) is the probability for an electron of energy E -+ hv to
escape. In most theories the assumptions made with regard to P(v,E) and
Q(E + hv) are such that expression (9-60) is proportional to

FO)E — Ej. — ¢) dE = F()E' dE’ (9-61)

Here F(v) is a function of the frequency only, and E’ is the energy of the
electron in the excited state relative to the vacuum level. From (9-61) an
expression for the collector current as function of the retarding potential
can be obtained.®
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PROBLEMS

9-1. Discuss how one can determine E, in Fig. 9-1 from electron
diffraction experiments.

9-2. Calculate the average velocity of a -onduction electron in sodium
at T = 0. Compare the corresponding “‘classical temperature” with the
melting point of Na. What is the electronic specific heat at T = 300°K ?

9-3. Show that the derivative of the Fermi function is symmetrical
+ o
about E and that f(?F/@E)dE = —1.

9-4. Give a derivation of the classical expression (9-20) for the
paramagnetic susceptibility of free electrons.

9-5. Assuming dé/dT = 10~ ev per deg, what is the ordinate intercept
of a Richardson plot? Compare this with 4 = 120 amp/cm?/deg2.

9-6. Show that the average energy of the thermionically emitted
electrons perpendicular to the surface is k7'; show that the average energy
parallel to the surface is kT.

9-7. On the basis of expression (9-61) derive an expression for the
photoemission current as function of the retarding potential on the
collecting anode.

9-8. A nondegenerate gas obeys the gas law pV = RT; derive a
relation between p, V, and T for a degenerate electron gas. (Hint: first
show that in general p equals two-thirds of the kinetic energy per unit
volume).

9-9. Consider a gas of similar molecules in thermal equilibrium. Let
the energy levels for the individual particles be denoted by E,, where
n=20,1,2,.... Let the energy level E, correspond to Z, possible states
(wave functions inctuding the spin) and let on the average N, of these
states be occupied in equilibrium. Consider a collision between two
particles such that before the collision their energies are E; and E,, and
after the collision E,, and E,.
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(a) Assume that the number of transitions k, /— m, n per second is
given by AN;N,Z ,Z,, and that the number of transitions m, n— k, I is
given by AN, N,Z,Z, where A is a constant. Show that the equilibrium
condition and the law of conservation of energy lead to the distribution
function N, = CZ,e "%« for all k. This is identical with the Boltzmann
distribution if § is identified with 1/kT.

(b) Suppose the number of transitions k, / — m, n per second is given
by AN\N(Z,, — N, )J(Z, — N,). Show that this leads to the Fermi-Dirac
distribution function.

(c) Assuming that the number of transitions k, / — m, n is proportional
to NN(Z,, + N, XZ, + N,), show that the same reasoning leads to the
Bose-Einstein distribution. .

(d) Comment on the physical meaning of the assumed expressions for
the number of transitions k, / — m, n for the three types of statistics.

9-10. For an ideally flat metal surface calculate the lowering of the
work function resulting from a field outside the metal of 10 volts per cm.
Also calculate the distance from the surface for which the potential
barrier has its maximum value.

9-11. Discuss the theory of high-field emission of electrons for a metal
at 0°K on the assumption that the potential barrier through which
tunneling takes place is of a simple triangular form.

9-12. The equation of motion of a free electron in a metal under
influence of light polarized along the x-direction may be written d2x/dr* +
2my (dx|dt) = —(e/m)Eyexp (—2mivt), where the second term is a damping
term. Solve the equation for x and from it calculate the electric moment
per unit volume. From this, show that the real part of the dielectric
constant € = n* — k2 and the conductivity o are given by
n e

ne%y
=] —-—F d o=nkv=—""—
¢ mm(v? + %) ané g =ntv 2am(v? 4 p?)

where n, is the number of free electrons per cm®. Show that y = 1/2#77
where 7 is the relaxation time occurring in the static conductivity
0o = n,e*r/m. Also show that metals are transparent for frequencies
>10%5 per second and that they are reflecting in the region 10** < » < 105
per second. For background see Secs. 6-9 and 11-2; see also F. Seitz,
op. cit., p. 638.



Chapter 10

THE BAND THEORY OF SOLIDS

10-1. Introductory remarks

In a solid one deals with a large number of interacting particles, and
consequently the problem of calculating the electronic wave functions and
energy levels is extremely complicated. It is thus necessary to introduce a
number of simplifying assumptions. In the first place we shall assume that
the nuclei in the crystalline solid are at rest. In an actual crystal this is of
course never the case, but the influence of nuclear motion on the behavior
of electrons may be treated as a perturbation for the case in which they are
assumegl. to be at rest. As we shall see in the next chapter, the lattice
vibrations play an important role in the interpretation of electrical
resistivity and other transport phenomena. Even with the above assump-
tion, however, we are still left with a many-electron problem which can be
solved only by approximative methods. In the case of solids, the most
important approximative method which has been applied extensively is
the so-called one-electron approximation. In this approximation the total
wave function for the system is given by a combination of wave functions,
each of which involves the coordinates of only one electron. In other
words, the field seen by a given electron is assumed to be that of the
fixed nuclei plus some average field produced by the charge distribution of
all other electrons. An extreme case of the one-electron approximation is
the Sommerfield theory of metals discussed in the preceding chapter.
There it was assumed that the potential seen by a given conduction electron
is simply constant within the metal.

Within the framework of the one-electron theory there are two
different approaches to the problem of the electronic structure of molecules
and solids. One of these, the Heitler-London or valence bond scheme,
is accurate when the atoms are far apart, i.e., when the atomic properties
are pronounced. This scheme is thus based on atomic or localized orbitals.
Another approach is that of Bloch; it is closely related to the Hund-
Mulliken scheme which has been applied to molecules. In the Bloch
scheme an electron is considered to belong to the crystal as a whole rather
than to a particular atom. One speaks in this connection of the crystal
orbital method and the discussion given below is essentially limited to this
scheme. For a recent review of the one-electron method and many

238
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references we refer the reader to the article by Reitz cited at the end of this
chapter. The problem as outlined above involves essentially that of the
behavior of an electron in a potential which has the periodicity of crystal
lattice. We shall see that this leads, among other things, to a natural
distinction between metals, insulators, and semiconductors.

Before discussing the actual problem it may be useful to point out the
analogy which exists between (i) clectronic motion in a constant and a
periodic potential, and (ii) the propagation of elastic waves in a continuum
and in a periodic structure.

For elastic waves in a continuous medium the frequency is inversely
proportional to the wavelength, i.e., there exists a linear relationship
between frequency and wave number (or wave vector). This implies a
velocity of propagation which is independent of the wavelength. Further-
more, there exists no upper limit for the frequency of the vibrational
modes in a continuous medium. However, when one considers the modes
of vibration in a lattice of discrete mass points which form a periodic
structure, two characteristic features appear (see Chapter 2):

1. There exist allowed frequency bands, separated by forbidden
regions.

2. The frequency is no longer proportional to the wave number buta
periodic function of the latter.

Returning now to the motion of electrons, the reader is reminded of the
fact that in a constant potential (free electron theory) the energy of the
electron as function of the wave vector k is given by

E = r2k?2m where k = 2m|A = plh

Here /7 is the wavelength associated with the electron and p is the momentum
of the electron ; the potential energy has been assumed zero. In this case,
there is no upper limit to the energy, i.e., the energy spectrum is quasi-
continuous (quasi, because the limited dimensions of the potential box
produce closely spaced but discrete energy levels). However, if we
consider the motion of an electron in a periodic potential we arrive at the
following results:

1. There exist allowed energy bands separated by forbidden regions.

2. The functions E(k) are periodic in k.

These results will be derived below. The analogy pointed out above is
not too surprising if one recognizes that in both problems one deals with
waves in periodic structures; in one case they are elastic waves, in the
other they are waves associated with the electrons. For further details
with regard to the general problem of wave motion in periodic structures
we refer the reader to Brillouin.!

! L. Brillouin, Wave Propagation in Periodic Structures, Dover, New York, 1953.

The existence of energy bands for electrons in crystals was first pointed out by M. S. O.
Strutt, Ann. Physik, 84, 485 (1927); 85, 129 (1928).
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10-2. The Bloch theorem

In the free electron theory one assumes that an electron moves in a
constant potential ¥, leading to the Schrodinger equation for a one-
dimensional case:

d*pldx® + (2m[R*)E — Vo)y =0
This equation can be solved by plane waves of the type
p(x) =e* ™ (10-1)
Upon substitution one obtains for the kinetic energy of the electron
En = E — Vo = h*?22m = p*[2m

The physical meaning of k is that it represents the momentum of
electron divided by A. The complete solution for the wave function
containing the time is obtained by multiplying w(x) by exp (—~iwt) where
o = E[h, so that actually solutions of the type (10-1) represent waves
propagating along the x-axis.

Let us now consider the Schrodinger equation for an electron moving
in a one-dimensional periodic potential. Thus, let the potential energy of
an electron satisfy the equation

V(x) = V(x +— a) (10-2)
where a is the period. The Schrodinger equation is then
d*yldx® + 2m[RP)E — V(x)ly =0 (10-3)

With reference to the solutions of this equation there is an important
theorem which states that there exist solutions of the form

p(x) = et® ™y (x) where wu(x) = u(x -+ a) (10-4)

In other words, the solutions are plane waves modulated by the function
u(x), which has the same periodicity as the lattice. This theorem is known
as the Bloch theorem ;2 in the theory of differential equations it is known as
Floquet’s theorem. Functions of the type (10-4) are called Bloch functions.
Before giving a proof of this theorem we note that the Bloch function
y(x) = exp (ikx)u,(x) has the property

v(x + a) = exp [ik(x + @)] u(x -+ a) = (x) exp (ika)

since u(x + a) = y,(x). In other words, Bloch functions have the
property that

p(x 4 a) = Qp(x) where Q = exp (d-ika) (10-5)
* F. Bloch, Z. Physik, 52, 555 (1928).
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It will be evident that if we can show that the Schrodinger equation (10-3)
has solutions with the property (10-5), the solutions can be written as
Bloch functions and the theorem is proved. This will now be done.?

Suppose g(x) and f(x) are two real independent solutions of the
Schrodinger equation. Now a differential equation of the second order has
only two independent solutions, and all other solutions are expressible as a
linear combination of the independent ones. Then, since f(x - a) and
g(x 4+ a) are also solutions of the Schrodinger equation, we must have the
relations

Sflx + a) = o, f(x) + 28(x)
g(x 4 a) = B, f(x) + Bag(x)

where the «’s and f’s are real functions of E. The solution of the Schro-
dinger equation may be written in the form

y(x) = Af(x) + Bg(x)
where 4 and B are arbitrary constants. According to (10-6) we must have
¥(x + a) = (day + Bf)f(x) + (Axy - Bpy)g(x)

In view of what has been said above about the property (10-5) of the
Bloch functions, let us choose 4 and B such that

Aoy + Bf, = QA
Axy + Bf, = OB

where Q is a constant. In this way we have obtained a function y(x) with
the property

(10-6)

(10-7)

p(x 4 a) = Qy(x) (10-8)

Since equations (10-7) have nonvanishing solutions for 4 and B only if
the determinant of their coefficients vanishes, we have the following
equation for Q: '

o —Q B

%2 B:— Q
or 0% — (3 +B2) @+ oyfy — =0 (10-9)
Now, one can show that «;8, — a,f; = 1 in the following manner:
from equations (10-6) one can derive that
fixt+a gx+a| [f(x) g la o
fx+a) gx+a |[f) g |f B

3 See H. A. Kramers, Physica, 2, 483 (1935); F. Seitz, The Modern Theory of Solids,
McGraw-Hill, New York, 1940, p- 279; N. F. Mott and H. Jones, Theory of the Pro-
perties of Metals and Alloys, Oxford, New York, 1936, p. 57. A. H. Wilson, Theory of
Metals, 2d ed., Cambridge, London, 1953, p. 21I.

(10-10)
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where f” = dffdx, etc. If we multiply the Schrodinger equation
for g(x) by f(x) and the equation for f(x) by g(x), we find upon
subtracting,

0=fg" — gf" = (ddx)(fg’ — gf")
Hence the so-called Wronskian is in this case a constant:

S gx)
') gx)

= constant

This result, together with equation (10-10), leads to the conclusion that
785 — %56, = 1. Instead of (10-9) we may therefore write.

Q*— (4 +P)2+1=0 (10-11)

where we should remember that («, -|- 8,) is a real function of E. In
general then, there are two roots Q; and Q,, i.e., there are two functions
11(x) and p,(x) which exhibit the property (10-8). Note that the product
0,0, = 1. For certain ranges of energy E, viz., for those corresponding
to (%, =+ f3,)% < 4, the two roots will be complex, and since 0,0, =1
they will be conjugates. In those regions of energy we may then write

0, =é* and Q, = e i (10-12)

The corresponding functions ,(x) and wy,(x) then have the property

pi(x 4+ a) = "y (x) and po(x + a) = e *y,(x)  (10-13)
and thus are Bloch functions (see 10-5). In other regions of the energy E,
viz., those corresponding to (¢, + f,)? > 4, the two roots Q, and Q, are
real and the reciprocals of each other. These roots correspond to

solutions of the Schrodinger equation of the type
P(x) = eu(x) and pu(x) =e “u(x)

where u is a real quantity. Although such solutions are mathematically
sound, they cannot in general be accepted as wave functions describing
electrons, since they are not bounded. Thus there are no electronic
states in the energy region corresponding to real roots Q, and Q,. The
above discussion thus leads also to the notion that the energy spectrum of
an electron in a periodic potential consists of allowed and forbidden
energy regions or bands. This will be illustrated further in the next
section where we consider the motion of electrons in a particularly
simple one-dimensional periodic potential.
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10-3. The Kronig-Penney model

The essential features of the behavior of electrons in a periodic
potential may be illustrated with reference to a relatively simple one-
dimensional modelfirst discussed by Kronigand Penney.* Ttisassumed that
the potential energy of an electron has
the form of a periodic array of square wells, Vix)
as indicated in Fig. 10-1. The period of the

potential is (@ 4 b); in regions such as T Y%
0 < x < a the potential energy is assumed
equal tozero, in regionssuchas —b <x <0
-5 0 a
—— X

the potential energy is V,. Each of the
potential energy wells may be considered a
rough approximation for the potential in Fig. 10-1.

One-dimensional

the vicinity of an atom. The Schrodinger Kronig-Penney potential.
equations for the two regions are
d*pldx® + 2m[F)Ey =0 for 0<x<a (10-14)

d®pldx® + 2m[RP)E — Voyy =0 for —b < x <0 (10-15)
We shall assume that the energy E of the electrons under consideration
is smaller than V. Defining two real quantities « and § by
o =2mE[R? and f?=2m(V,— E)/R® (10-16)
and making use of the fact that the solutions must be Bloch functions of
the form e"**u,(x), one obtains upon substitution into (10-14) and (10-15)
the following equations for u,(x):
d?uldx?® + 2ik(duldx) + («® — kD) u=0 0<x<a (10-17)
d2uldx?® 4 2ik(duldx) — (2 + kHu=0 —b<x<0  (10-18)
The solutions of these equations are
Uy = Ae'* N7 L Be—itxthr 0<x<a
U, = Cel? =02 | pe=B+ibr — _p < x<0
where A4, B, C, and D are constants. These constants must be chosen in
such a manner that the following four conditions are satisfied :
1,(0) = u,(0), uy(a) = uy(—b
1(0) = g (@) = uy(—b) 1020)
(din]dx), o = (dugfdx), g, (duy]dx), = (duyldx)_,

1 R. de L. Kronig and W. G. Penney, Proc. Roy. Soc. (London), A130, 499 (1930);
see for an extension of this work D. S. Saxon and R. A. Hutner, Philips Research Repts.,
4, 81 (1949): J. M. Luttinger, Philips Research Repts., 6, 303 (1951); G. Allen, Phys.
Rev., 91, 531 (1953). The case ¥ (x) = A sin x has been discussed by Morse, Phys. Rev.,
28, 1210 {192G). For another calcuiable one-dimensionai case see J. C. Slater, Phys.

Rev., 87, 807 (1952).

(10-19)
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The two conditions on the left are imposed because of the requirement of
continuity of the wave functions and of their derivatives; the two on the
right are required because of the periodicity of w(x). It is evident that
apphcatlon ‘of (10-20) on (10-19) leads to four linear homogeneous
equations in the constants 4, B, C, D; thus the wave functions may be
calculated. However, for our purpose we are more interested in determining
the values of the energy for which satisfactory solutions are obtained. The
four equations just mentioned have a solution only if the determinant of
the coefficients of A, B, C, D vanishes. It can be shown that this leads to
the following condition:

f:— o2
2af

sinh b sin aa + cosh pb cos xa = cos k(a + b) (10-21)

To obtain a more convenient equation, Kronig and Penney consider the
case for which the potential barriers become delta functions, i.e., ¥V, tends

P .
}—a—a sin a.a +C08 a.a

NN

Fig. 10-2. The left hand side of (10-24) for P = 37/2, plotted as
function of xa. The allowed regions are heavily drawn.

to infinity and b approaches zero, but the product Vb remains finite. Under
these circumstances (10-21) reduces to

(mVob/h2x) sin aa + cos aa = cos ka (10-22)
Let us now define the quantity
P = mVballi® (10-23)

which is evidently a measure for the “‘area’ Vb of the potential tarrier.
In other words, increasing P has the physical meaning of binding a
given electron more strongly to a particular potential well. From the last
two equations we find that solutions for the wave functions exist only if

sin aa
P

-+ cos aa = cos ka (10-24)

As an example, we have represented in Fig. 10-2 the left-hand side of this
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equation as function of aa for the value P = 3#/2. The reader is reminded
that «? is proportional to the energy E, i.e., the abcissa is a measure for the
energy. Furthermore, it is important to realize that the right-hand side
can accept only values between —1 and +-1, as indicated by the horizontal
lines in Fig. 10-2. Therefore the condition (10-24) can be satisfied only for
values of aa for which the left-hand side lies between -1.

From the figure, the following interesting conclusions may be drawn:

(a) The energy spectrum of the electrons consists of a number of
allowed energy bands separated by forbidden regions.

(b) The width of the allowed energy bands increases with in-
creasing values of aaq, i.e., with increasing energy; this is a consequence
of the fact that the first term of (10-24)
decreases on the average with increasing aa. \

(c) The width of a particular allowed band
decreases with increasing P, i.e., with increasing
*“binding energy’’ of the electrons. In the extreme =
case for which P— o0, the allowed regions become
infinitely narrow and the energy spectrum be-
comes a line spectrum. In that case, (10-24) has
only solutions if sinaa =0, i.e., if aa = +-n=w
withn =1, 2, 3,... According to this and (10-16),
the energy spectrum is then given by 0 1 0

P/4m <«— —> 47 /P

E, = (mF*[2ma®)n* for P—o0 (10-25) o 103 Allowed and

. . forbidden energy ranges
which one recognizes as the energy levels of a  (shaded and open respec-

particle in a constant potential box of atomic tively) as function of P.
dimensions (see Appendix B). Physically, this The extreme left corre-
could be expected because for large P, fponds to P = 0 (free clec-

. R . rons), the extreme right
tunneling through the barriers becomes im- to P = o,
probable.

These conclusions are summarized in Fig. 10-3, where the energy
spectrum is given as function of P. For P = 0, we simply have the free
electron model and the energy spectrum is (quasi) continuous ; for P = oo,
a line spectrum results as discussed under (c) above. For a given value of P
the position and width of the allowed and forbidden bands are obtained by
erecting a vertical line; the shaded areas correspond to allowed bands.

From (10-24) it is possible also to obtain the energy E as function of the
wave number K ; the result is represented in Fig. 10-4a. This leads us to the
conclusion that

(d) The discontinuities in the E versus k curve occur for

k = nrla n=1223 .. (10-26)
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These k-values define the boundaries of the first, second, etc. Brillouin
zones. It must be noted that Fig. 10-4a gives only half of the complete E(k)
curve; thus the first zone extends from —-w/a to +=/a. Similarly, the
second zone consists of two parts; one extending from =/a to 2n/a, as
shown, and another part extending between —m/a and —2n/a.

A further important conclusion may be drawn from (10-24):

(e) Within a given energy band, the energy is a periodic function of 4.
For example, if one replaces k by k + 27n/a, where n is an integer, the
right-hand side of (10-24) remains the same. In other words, k is not

E(8ma2/h2) E

15+

/

[N
VAN

0 T/a 27 Ja 37 /a -7/a 0 r/a —>k
i e e e
1st 2nd 3rd
(a) (b)

Fig. 10-4. In (a) the energy is represented as function of & for

P = 37/2; the Brillouin zones are indicated (note that this is only

half the picture). In (b), E is plotted versus the reduced wave
vector.

uniquely determined. It is therefore frequently convenient to introduce the
“reduced wave vector’’ which is limited to the region

—nla <k < 7la (10-27)

The energy versus reduced wave vector is represented in Fig. 10-4b. It may
be noted here that the fact that k is not uniquely determined also follows
quite generally from the form of the Bloch function (10-8). Consider the
function e*"u(x) and introduce a new wave vector k' = k + 2mn/a,
where n is an integer. One may then write

u,‘.(x)e = 2min e __ eil""rllk'(.\’) (10-28)

It will be noted that u,.(x) is also periodic with the lattice so that (10-28)
is just as good a Bloch function as the initial function e”*u,(x).

Y= eik'.l'
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The number of possible wave functions per band. So far, we have assumed
the crystal to be infinite, but it will now be necessary to investigate the
consequences of imposing boundary conditions. Since we have employed
the running wave picture, it will be convenient to use cyclic or periodic
boundary conditions (see Sec. 2-9 for the same problem in the theory of
elastic waves in a chain of atoms). For a linear crystal of length L the
boundary condition may be taken as

Y(x + L) = p(x) (10-29)

Strictly speaking, this applies to a circular lattice, but it may also be
imposed on a linear lattice of macroscopic dimensions, as explained in
Sec. 2-9. Making use of the fact that we are dealing with Bloch functions,
this requires

etkz+ L)uk(x + L) — eikxuk(x)

Because of the periodicity of u,, we have wu(x 4 L) = u(x), and the
boundary conditions thus require

k =2nn/L with n= 41, 42, ... (10-30)

The number of possible wave functions (or k-values) in the range dk is
therefore
dn = L dk[2m (10-31)

Since k is limited in accordance with (10-26), it follows that the maximum
value of n in (10-30) is L/2a = N/2, where N is the number of unit cells.
This leads to a very important conclusion:

(f) The total number of possible wave functions in any energy band is
equal to the number of unit cells N.

Now, as a result of the spin of the electrons and the Pauli exclusion
principle each wave function can be “‘occupied” by at most two electrons.®
Thus each energy band provides place for a maximum number of electrons
equal to twice the number of unit cells. In other words, if there are 2N
electrons in a band, the band is completely filled. This conclusion, as we
shall see below, has far-reaching consequences for the distinction between
metals, insulators, and semiconductors.

10-4. The motion of electrons in one dimension according to the band theory

The Kronig-Penney model is evidently an oversimplification of the
actual potential encountered in real crystals. However, before we discuss
the results obtained for more realistic models, it will be useful to consider
the consequences of the conclusions reached so far for the motion of
electrons in the band theory. First of all, let us consider the velocity of an
electron described by a wave vector k. From the wavemechanical theory

% See Appendix C.
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of particles it follows that the particle velocity is equal to the group
velocity of the waves representing the particle,® i.e.,

v = do|dk (10-32)

Here w is the angular frequency of the de Broglie waves ; it is related to the
energy of the particle by the relation E = Aw. Thus instead of (10-32),
one may write in general for the velocity of the particle,

I 4E
| |

(a)

|
b) k—t l

(c)

NZERN

-7 /a 0 T/a

Fig. 10-5. Energy, velo-

city, effective mass and

/i as function of k. The

dashed lines correspond to

the inflection points in the
E(k) curve.

¢ = K\(dE|dk) (10-33)

This in itself shows the importance of the E
versus k curves. In the case of free electrons
E = h*k%j2m, and (10-33) simply leads to the
identity v = hk/m = p/m. In the band theory,
however, E is in general not proportional to k2,
as may be seen from Fig. 10-4. Employing an
E(k) curve such as represented in Fig. 10-5a, one
obtains, according to (10-33) for the velocity as
function of k, a curve of the type illustrated in
Fig. 10-5b. (Note that for free electrons v is
proportional to k.) At the top and bottom of
the energy band v = 0, because from the peri-
odicity of the E(k) curves it follows that there
dE/dk = 0. The absolute value of the velocity
reaches a maximum for k = k,, where k, cor-
responds to the inflection point of the E(k) curve.
It is of importance to note that beyond this point
the velocity decreases with increasing energy, a
feature which is altogether different from the
behavior of free electrons.

The effective mass of an electron. Let us now
consider what happens to an electron when an
external electric field F is applied.” It will be
assumed that the Brillouin zone under considera-
tion contains only one electron, so that the
Pauli exclusion principle does not enter. Sup-
pose the electron is initially in a state k. When
the field has acted on the electron for a small
time dt, it has gained an energy

dE = eFv dt = (eF|h)(dE[dk)dt (10-34)

® See, for example, M. Born, Aromic Physics, Sth ed., Hafner, New York, 1951.
* To avoid confusion with the energy, the electric field will be represented by F.
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where we used (10-33).8 Now dE = (dE/dk) dk so that as a result of the
applied field, the rate of change of the wave vector is given by

dk|dt = eF]h (10-35)

To obtain the acceleration of the electron, differentiate (10-33) with
respect to ¢; this gives

a = dvldt = (1/h)(dE|dk?)(dk|dt) (10-36)
From the last two equations it follows that
a = (eF|h*)(d*E|dk?) (10-37)

Itisillustrative to compare this result with the acceleration of a free electron
of mass m,
a = eFlm

From the last two expressions it follows that the electron behaves as if it
had an effective mass m* equal to

m* = R2|(d*E|dk?) (10-38)

Thus the effective mass is determined by d2E/dk?; this result indicates
once more the importance of the E(k) curves for the motion of the electrons.
In Fig. 10-5c the effective mass is represented as a function of k; this
curve shows the interesting feature that m* is positive in the lower half of
the energy band and negative in the upper half. At the inflection points in
the E(k) curves, m* becomes infinite. Physically speaking, this means
that in the upper half of the band the electron behaves as a positively
charged particle, as will be explained further in Sec. 10-6. One arrives at
the same conclusion by considering the v(k) curve and making use of
(10-35). Suppose an electron starts at k = 0; when an electric field is
applied, the wave vector increases linearly with time. Until the velocity
reaches its maximum value, the electron is accelerated by the field;
beyond the maximum, however, the same field produces a decrease in v,
i.e., the mass must become negative in the upper part of the band.
It is frequently convenient to introduce a factor

fo = mim* = (m|h®)(d®E[dk?) (10-39)

where f, is a measure for the extent to which an electron in state k is “free.”
If m* is large, f, is small, i.e., the particle behaves as a *“‘heavy’” particle.
When f, = 1 the electron behaves as a free electron. Note that f, is
positive in thie lower half of the band and negative in the upper half, as
shown in Fig. 10-5d.

® Throughout this section, only the influence of the external field on the motion of the
electron will be discussed. Actually, the electron also interacts with lattice vibrations,
leading to resistivity. The problem of resistivity is discussed in Chapter 11.
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It may be mentioned here that when the above treatment is extended to
three dimensions, the effective mass may be represented by

1/m* = (1/A®) grad, grad, E(k)

where grad, grad, E(k) is a tensor with nine components of the general
form 0%E[0k; 0k; with i, j = x, y, z.°

10-5. The distinction between metals, insulators, and intrinsic semiconductors

Although a proper distinction between these three groups of materials

is possible only by considering the results of a three-dimensional periodic

potential, it is instructive at this point

E to indicate how the band theory leads

naturally to the possibility of such a

distinction. To see this, let us con-

sider a particular energy band which

we shall assume to be filled with

electrons up to a certain value k,, as

>k indicated in Fig. 10-6. As far as the

influence of an external electric field

Fig. 10-6. Energy band filled up to is concerned one would like to know

states k, at T = 0. with how many ‘“‘free’’ electrons the N

electrons in the band are equivalent.

Presumably, once we knew the answer to this question, it would be

possible to draw conclusions about the conductivity associated with this

band. The effective number of ““free’’ electrons in the band isin accordance
with the preceding section equal to

Ner=3f; (10-40)

where the summation extends over all occupied states in the band. Now,
according to (10-31) the number of states in an interval dk (excluding the
spin) for a one-dimensional lattice of length L is equal to L dk/2m.
Because two electrons occupy each of these states in the shaded region of
Fig. 10-6, one may write instead of (10-40),

N eff — (L/ ) J‘j:;l

fidke = QLm[?) [ (2E|dk?) dk
where we used (10-39). Thus the effective number of electrons in the band is
Neg = Lm[mh*)(dE|dk);. -, (10-41)

9 See, for example, F. Seitz, op. cit., p. 316.
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From this result we draw the following conclusions:
(i) The effective number of electrons in a completely filled band
vanishes, because dE/dk vanishes at the top of the band.

(i) The effective number of electrons reaches a maximum for a band
filled to the inflection point of the E(k) curve, because then dE/dk
is a maximum.

From the above discussion it follows that a solid for which a certain
number of energy bands are completely filled, the other bands being

E
]
722277
e
Insulator Semiconductor Metal

(a) (b) (c)

Fig. 10-7. Electron distribution at T = 0 in an insulator, intrinsic
semiconductor, and metal. The shaded regions are occupied by
electrons.

completely empty, is an insulator (see Fig. 10-7a). On the other hand, a
solid containing an energy band which is incompletely filled has metallic
character (Fig. 10-7c). It will be evident that the situation depicted by
Fig. 10-7a can occur actually only at absolute zero, when the crystal is in
its lowest energy state. At temperatures different from zero, some electrons
from the upper filled band will be excited into the next empty band
(‘*‘conduction band’’) and conduction becomes possible. If the forbidden
energy gap is of the order of several electron volts, however, the solid will
remain an “insulator’’ for all practical purposes. An example is diamond,
for which the forbidden gap is about 7 ev. For a small gap width, say
about 1ev, the number of thermally excited electrons may become
appreciable and in this case one speaks of an intrinsic semiconductor.
Examples are germanium and silicon. It is evident that the distinction
between insulators and intrinsic semiconductors is only a quantitative one.
In fact, all intrinsic semiconductors are insulators at 7 = 0, whereas all
insulators may be considered semiconductors at 7> 0. It may be noted
here that the conductivity of semiconductors in general increases with
increasing temperature, whereas the conductivity of metals decreases with
increasing temperature. The properties of these materials will be further
discussed in later chapters.
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It must be noted that three-dimensional models allow the possibility of
overlapping of bands (see Sec. 10-9); i.e., a solid which in the one-
dimensional model should be an insulator may turn out to be a metal;
the divalent metals are an example in point, as we shall see later.

10-6. The concept of a ‘‘hole”

It has just been mentioned that in an intrinsic semiconductor at
temperatures different from zero, a certain number of electrons may be
excited thermally from the upper filled band into the conduction band.
Thus some of the states in the normally filled band are unoccupied. We
shall see in the next chapter that these unoccupied states lie essentially
near the top of the filled band. For the moment, let us consider a single
*“hole” in the filled band of a one-dimensional lattice and consider its
influence on the collective behavior of this band when an external electric
field is applied. Denoting the charge of an electron by —e and the velocities
of the electrons by v;, we may write for the current associated with all
electrons in a completely filled band in the absence of an external field,

I=—eXv,=—e[v,+ X v]=0 (10-42)
7 T#]J

Thus if the electron j were missing, we should have
I'=—e 3 v,=ey, (10-43)
IR
Applying an external field F, the rate of change of the current I’ due to the
field is
dl'[dt = e(dv;/dt) = —e*F[m} (10-44)

Now, since holes tend to reside in the upper part of a nearly filled band,
m} is negative and the right-hand side of (10-44) becomes positive. In
other words, a band in which an electron is missing behaves as a ‘““positive
hole” with an effective mass |m*|. This concept is of great importance in
the theory of conductivity and Hall effect as we shall see later. It explains,
for example, why certain materials show a positive rather than a negative
Hall coefficient (free electrons give a negative Hall coefficient).

10-7. Motion of electrons in a three-dimensipnal lattice

So far, the discussion has been limited to a simple one-dimensional
periodic potential. We shall now consider the motion of electrons in a
three-dimensional lattice from a general point of view. The results are
very similar, though more complicated, to those for the Kronig-Penney
model.

The most fundamental property of an infinite crystal with primitive
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translation vectors a,, a,, @, is that if we make a translation corresponding
to any vector,
d=d 0, +d,a,+ d;a, (10-45)

where d,, d,, d;, are integers, we arrive at a point that is geometrically
equivalent to the point we started from. Thus the physical properties
remain unchanged when we make a translation defined by any vector of
the type d. For example, if the potential energy of an electron is given by
V(r), we must have

V(r) = V(r 4 d) (10-46)

Vectors such as d are called direct lattice vectors; the adjective “direct’ is
included to distinguish such vectors from the “‘reciprocal’ lattice vectors
to be introduced below. In order to discuss the behavior of an electron in
a periodic potential it will be convenient to consider first how one represents
periodic functions such as (10-46) in terms of three-dimensional Fourier
series. For a one-dimensional periodic potential which satisfies the
condition
V(x) = V(x 4 dya) where d; = integer

one may of course always write
V(x) = X V, exp (2migx/a) g = integer (10-47)
4

where the summation extends over all integers from —a0 to +00; the
coefficients V, are the Fourier coefficients. That this series indeed satisfies
the periodicity requirement may readily be shown as follows. Replacing x
in (10-47) by x + da, where d; is an integer, we obtain

V(x + dia) = X V, exp (2wigx/a + 2migd,)
g

However, since gd, is an integer, exp (2mid,g) = 1 and the right-hand
side of this expression equals V(x).
Similarly, the potential in a cubic lattice satisfies the requirement

V(x,y,2) = V(x + dya, y + da, z + dsa) (10-48)

where d,, d,, d; are integers. The reader may readily verify that V(x,y,z)
may be written in the form of the following three-dimensional Fourier
series.

V(x,y,2) = ZZ X V, 4,0, ¢xp [(2mi[a)(g1x + g2y + g52)] (10-49)

91 92 95

Returning now to the general three-dimensional lattice for which the
primitive translations a,, @,, a; are not necessarily equal in magnitude, nor
perpendicular to each other, it is not immediately obvious how one
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represents a potential with the periodicity (10-46) in terms of a three-
dimensional Fourier series. It can be done rather easily, however, if we
introduce the so-called reciprocal lattice. The reciprocal lattice is defined
by three primitive translations b,, b,, b; which satisfy the conditions
a,°b,=0,;= L= (10-50)
0 if i#j

Thus the vector b, is perpendicular to the plane through the direct lattice
vectors a, and a;. The explicit expressions for the b’s are evidently of the

form
a; X a,

= ——— | etc. (10-51)
a,(a; X ay)

1

from which the absolute magnitudes of the b’s may be obtained in terms
of the primitive translations of the direct lattice. Any vector

n = nb, + nyby, + nyb, ny, Ny, ng integers (10-52)

is called a reciprocal lattice vector. The end points of these vectors
define the reciprocal lattice points. The reader may show himself that the
reciprocal lattice of an f.c.c. lattice is b.c.c. and vice versa.1?

We shall now show that the three-dimensional Fourier series,

V(ir) =X V,exp (2nin - r) (10-53)

exhibits the periodicity requirement (10-46).11 The symbol V,, stands for
Vangm, and the summation extends over all integers ny, ny, ny from —oo
to -+-00. The proof is as follows. Applying to (10-53) a translation over a
direct lattice vector d, we obtain

Vir+d)=3V,exp[2ni(n-r - n-d)

However, nn + d according to (10-45), (10-50), and (10-52) is equal to n,d; +
nydy + nads, which is an integer. Hence the right-hand side of the last
expression is equal to ¥(r), which proves the statement.

Since we now have a method for representing periodic functions in
three dimensions in terms of Fourier series, let us consider some of the
general features of the motion of electrons in a potential of three-
dimensional periodicity. First of all, the Bloch theorem concerning the
form of the wave functions, discussed for the one-dimensional case in Sec.

19 For other properties of the reciprocal lattice, see, for example, Brillouin’s book
quoted at the end of this chapter.

1! Some authors define the reciprocal lattice by means of the relations @, * b; = 2nd,;;
with this definition the factor 2= in the exponential of (10-53) is absent.
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10-2, may be extended to three dimensions. The result is that the wave
functions are, in analogy with (10-4), of the type

p(r) = eE* Tuy(r) (10-54)

where u,(r) has the periodicity of the lattice. Hence, in general, we may
write
u(r) =X c,exp 2min - r) (10-55)

where n is a vector in the reciprocal lattice. In analogy with what has been
said in connection with equation (10-28), one can show that any two Bloch
functions for which the wave vectors differ by 2+ times a reciprocal lattice
vector are physically equivalent. For example, let n be a reciprocal lattice
vector and let us introduce instead of k another wave vector ¥’ = k -+ 27n
in (10.54). We may then write

w(r) — e;l:ik’~re:,':21rin'ruk(r) — eiik'-ruk' (r)

where u,(r) as defined by the above expression is still periodic because
exp (4-2nin - r) is periodic, i.e., we are still left with a Bloch function.
We can say also that k is not uniquely determined and that k and k 4 27n
correspond to physically equivalent states. In order to avoid the occurrence
of physically equivalent solutions with different k-values, it is convenient
to restrict the range of k-values. This can be done most conveniently by
limiting the components k,, k,, k3 of k along the directions of by, b,, b, to
the ranges

X
o < by (10-56)
<

In this case we refer to k as the reduced wave vector; the region of k-space
defined by (10-56) is referred to as the first Brillouin zone or reduced zone.

As in the Kronig-Penney model, a given reduced wave vector k
corresponds to a set of energy values E,(k), E,(k), ..., where the subscripts
refer to a particular energy band. Within each energy band the k-values
are restricted in accordance with (10-56). We shall now show that for a
finite crystal the number of possible reduced k-values within a single energy
band is equal to the number of unit cells contained in the crystal. This
statement is the analogue of conclusion (f) in Sec. 10-3 for the Kronig-
Penney model. Consider a crystal in the form of a parallelepiped with
edges M,a,, Nja,, Nya;, where N,, N,, N; are large integers. Employing
cyclic boundary conditions (compare 10-29), the wave functions should
satisfy the condition

w(r) = y(r + N,a; + Njya, + Nja,) ‘(10-57)
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Since y(r) is a Bloch function of the type (10-54), for which u,(r) is periodic
with the lattice, this condition is equivalent with the requirement

k- (Nya, + Nya, |- Nja;) = 2« times an integer (10-58)
This implies that the possible k-values are given by
k = 27{(ny/N1)by + (ng/ Ny)by + (ng/N3)bs] (10-59)

where n,, n,, ng are integers, since upon substituting this expression for k
into (10-58) the left-hand side of (10-58) reduces to 2#(n, + ny, + ny);
any k-value chosen not in accordance with (10-59) does not satisfy (10-58).
Now the components of k along the reciprocal lattice vector directions are
restricted in accordance with (10-56). From this and from (10-59) it thus
follows that n,, n,, and ny can accept a total of, respectively, Ny, N,, N
different values. In other words, the total number of k-values within an
energy band is given by the product Ny N, N3, which is equal to the number
of unit cells in the crystal. Each k-value corresponds to one wave function
if we exclude the two possible spindirections ; including thespin, the number
of possible electronic states within an energy band is therefore equal to
twice the number of unit cells in the crystal. The result obtained here may
be expressed also in the following way. Consider a crystal of unit volume,
the volume of the unit cell being a, - (a, X a5) = Q. The crystal then
contains N = 1/Q unit cells. We leave it to the reader as a problem to
show that the volume of a unit cell in the reciprocal lattice is given by
b, - (bs¥ b3) = N. Since the whole reduced zone contains N possible
k-values, and since these values are uniformly distributed in the k-space,
the number of electronic states dn, corresponding to a volume element
dQ,, in k-space is, per unit volume of the crystal,

dn, = (2/873) dQ, (10-60)

The factor 2 arises from the spin. The quantity dn, is referred to as the
density of states corresponding to the element dQ, in k-space. In
subsequent discussions it will frequently be desirable to introduce the
number of states per unit volume of the crystal per unit energy interval.
Thus, consider in the k-space two surfaces of constant energy, one of E,
the other of E 4 dE. The volume element dQ2, in k-space corresponding
to a differential area dS and bounded by the constant energy surfaces, is
then given by
dQ, = dS[|grad,, E(k)[I* dE

so that the density of states per unit energy interval is given by

: das
dns/dE = (2/8773) J m|

where the integral extends over the whole area of the constant energy planes.

(10-61)



Sec. 10-8] BAND THEORY OF SOLIDS 257

10-8. The tightly bound electron approximation

As an example of evaluating the energy levels for an electron in a solid,
we shall discuss one particular approximation in some detail, viz., the
tightly bound electron approximation. In this approximation one starts
from the wave function for an electron in a free atom and then constructs a
crystal orbital, i.e., a Bloch function, which describes the electron in the
periodic field of crystal as a whole. This method is abbreviated LCAO,
since it is based on a linear combination of atomic orbitals. We shall see

t the discrete electron levels corresponding to a free atom will broaden

> energy bands as the atoms are brought together in the form of a
crystal. The approximation used
here is valid only for electrons cor-
responding to the inner electronic
shells in the atoms, as will become
clear below from the assumptions
that will be introduced.

Consider first an electron in a
free atom. Suppose the potential
energy of the electron in the field
of the nucleus plus that of the other

electrons in the atom is glyen by Fig. 10-8. Schematic representation of
Vo(r), where r represents the distance the potential energy of an electron in an
from the nucleus. The potential has  3tom (fully drawn) and in a solid
a form as indicated by the fully (dashed curve).

drawn curve in Fig. 10-8. Let the

wave functioii of the electron in the free atom be ¢(r) and let its energy
be E, The wave function then satisfies the Schrédinger equation,

—(22m)V2$ + V(N = E, (10-62)

We shall assume that the level is nondegenerate, i.e., there is only one
wave function corresponding to E,. Furthermore, we shall assume that
the wave functions are normalized. Suppose then that simiiar atoms are
brought together in the form of a crystal. The potential energy of the
electron in the crystal then looks like the dashed curve in fig. 10-8; the
potential energy in this case will be represented by V(r), where ¥(r) has the
periodicity of the lattice. Taking a particular atom as the origin of our
coordinate system, the position of any atom may then be represented by a
vector R; where R; is a lattice vector. In the tightly bound electron
approximation it is assumed that the electron in the vicinity of a particular
nucleus j is only slightly influenced by the presence of other atoms, i.e.,
when the end point of the vector r lies in the vicinity of R;, the wave
function for the electron is approximately given by ¢(r —- R,) and the
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energy of the electron is still very close to the value E, in the free atom.
Consequently, one calculates the energy of an electron with a wave vector k
in the crystal on the basis of a linear combination of the form

yul(r) = X ci(k)$(r — R)) (10-63)

since this expression satisfies the approximation just mentioned: if
r lies close to R; all contributions in the sum will be small except that from
¢é(r — R,). However, since we are dealing with an electron in a periodic
field, the wave function must be a Bloch function, and this restricts the
choice of the coefficients ¢;. If in expression (10-63) we take the coefficient
c;(k) equal to exp (ik * R;) we obtain -

we(r) = 2; é(r — R)) exp (ik * R)) (10-64)

which indeed has the properties of a Bloch function. This can be seen by
applying a transformation corresponding to a lattice vector, say R,,.
This gives
wk(r + Rm) = ‘:—“ eik.Ri¢ [f - (R} - Rm)]
= ¢ Fuy & (R-Rdr — (R, — R,)]
J

The sum in the last expression, however, is equal to y,(r), so that (10-64)
satisfies the characteristic property of a Bloch wave. We shall now calculate
the energy of an electron with wave vector k in the crystal, based on the
wave function (10-64). This can be done by starting from the expression

E(k) = [ wr 'y, dr/fyiy, dr (10-65)

where S is the Hamilton operator for an electron in the crystal; the
denominator takes care of the proper normalization of the Bloch functions.
The denominator becomes

f’/’:‘l)k dr = g:‘ E eik.<Rj—R’") .‘.¢*(r - Rm)¢(r - RJ) dT

Now ¢(r — R,,) has appreciable value only when the end point of the
vector r lies in the vicinity of atom m ; similarly, ¢(r — R;) has appreciable
value only in the vicinity of atom j. In other words, there is very little
overlap between the wave functions, even for nearest neighbors. To a
first approximation, therefore, we shall neglect all overlapping, so that of
the summation over j only the term j = m will be retained. Since we have
assumed that the atomic wave functions were normalized, we may then
write

fvtyedr =3 [ ¢*(r — R,)$(r — R,)dr =N (10-66)

where N is the total number of atoms in the crystal. Let us now consider
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the numerator of (10-65). The Hamiltonian of an electron in the crystal
may be written

H = —(R2m)V? + V(r) = —([2m)V? + V(1) — V(r — R))
+ Vir — R) = —(#2m)V2 + V'(r — R) + V, (r — R)

(10-67)
where we have introduced the quantity

Vi(r—R)=V(r)— V,(r — R, (10-68)

The reason for this will become obvious below. The physical meaning
of ¥'(r — R)) s that it represents the potential energy of the electron in the
crystal at the point r, minus the potential energy of the electron in the same
point if there were only a single atom, viz., the one located at R,. In other
words, V'(r — R)) represents the potential energy of the electron in point r
resulting from the presence of all atoms except the one located at R;. Itis,
in a sense, a perturbation potential. According to Fig. 10-8, V'(r — R))
is a negative quantity. Substituting the Hamilton operator (10-67) into
(10-65), making use of (10-66), and realizing that

—(B2m)V2§(r — R,) + V,(r — R)$(r — R;) = E, $(r — R)

where E; is the energy of the electron in the free atom, we obtain

E(kt) = (IIN) 3 5 e ®=Raf ¢3(r — R,)E, + V'(r — R)I$(r — R;) dr
i m

First consider the term containing E,. Since the overlapping is small

anyway, we may neglect in the summation over m all terms except m = j.

Thus the term containing E, becomes

(1/N) 3 f ¢*(r — R)Eyd(r — R,) dr = E,

In the term containing the “perturbing’’ potential V’(r — R;) we shall
neglect all overlap except for wave functions ¢ corresponding to nearest
neighbors. Furthermore, we shall assume that the atomic wave functions ¢
are spherically symmetric, which would be the case if they corresponded to
s functions. Defining two positive quantities « and y such that

x = —[¢*(r — R)V'(r — R;) §(r — R)) dr (10-69)
y=—fé*(r —R,)V'(r — R)$(r — R)) dr (10-70)

where the vector R, is understood to correspond to the location of one of
the nearest neighbors of atom j, we may finally write
E(R)=Ey—a —y 3 e* Ri~Rn) (10-71)
m
where the summation extends over nearest neighbors of atom j only.
Note that « and y are positive because V’'(r — R)) is negative. It is
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observed that the energy of the electron in the crystal differs from the
energy of the electron in the free atom by a constant factor « plus a term
which depends on the wave vector k. It is this last part which transforms
the discrete atomic level into an energy band in the solid. In order to see
this more clearly, we shall apply this result to the case of cubic crystals in
the next section.

Another important approximation is the so-called nearly free electron
approximation. In thiscase it is assumed that the Fourier coefficients of
the periodic potential are small relative to the constant potential. This
approximation may therefore be expected to be applicable to the conduction
electrons in monovalent metals. The energy versus wave vector curves
obtained for a one-dimensional lattice on the basis of this approximation
resemble closely those given in Fig. 10-4 for the Kronig-Penney model.

For a discussion of the nearly free electron approximation as well as
other approximations we refer the reader to the literature.

10-9. Application to a simple cubic lattice

In order to appreciate the consequences of the results obtained in the
preceding section we shall first apply expression (10-71) to a simple cubic
lattice. In this lattice a given atom has six nearest neighbors, located such
that

R; — R, =(44,0,0); (0, 4 4,0); (0,0,+4)

Evaluation of the sum in (10-71) then yields for the energy of an s electron
in the¢ crystal

E(k) = Ey — a — 2y(cos k,a + cos k a + cos k.a) (10-72)

From this we may draw a number of important conclusions. In the first
place it is observed that the part of E(k) which depends on the wave
vector k is periodic with k. In order for k to be uniquely determined we
should restrict the components to the regions —=/a < k, < m/a, etc. Since
the reciprocal of a simple cubic lattice of edge a is again a simple cubic
lattice with edge b = 1/a, this conclusion is in agreement with the general
expressions (10-56) ; see also (10-27). The first Brillouin zone in this case is
evidently a cube of edge 27/a in k-space, the origin of k-space being located
at the centre of the cube. Furthermore, since the cosine terms vary between
=1, the energy levels are contained within an energy band of a total width
12y. The bottom of the energy band is given by

Evottom = Eg —a — 6y
and the top is given by
E,,, = Ey— o+ 6y
From the definition (10-70) of y it follows that the width of the band
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increases as the overlap of the wave functions on neighboring atoms
increases. Thus the inner electronic levels of the free atoms give rise to
narrow bands in the solid ; as one proceeds to the outer shells the corre-
sponding band widths in the solid increase. This conclusion is in agreement
with conclusion (c) in Sec. 10-3 derived from the Kronig-Penney model.
By way of illustration we have represented in Fig. 10-9 the formation of
energy bands for sodium according to Slater.'

I
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] ' i
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0 2 4 6 8 10 12
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Fig.10-9. Formation of the 3s and 3p bands in sodium. The energy

E is plotted in Rydberg units as function of half the distance

between nearest neighbors (in atomic units). The dashed line cor-
responds to the actual metal. [After Slater, ref. 12]

The bottom of the band corresponds to
cosk,a=cosk,a=cosk,a=1

i.e., to k = 0 in this case. As long as k is small, the cosine terms may be
expanded. Retaining only the first approximation of this expansion, one
obtains from (10-72)

E~ E,— a — 6y + ya%k* for small k (10-73)

where k2 = k, + k,2 + k,2. Itis observed that with reference to the bottom
of the band, the energy of the electron is proportional to k2, as in the case
of free electrons; the constant energy surfaces are then spheres. Thus in
this region the electrons may be considered free electrons with an effective
mass m* determined by

Rk 2m* = ya®k* or m* = h?[2ya® (10-74)
As the band width decreases (decreasing y), the effective mass of the

electrons near the bottom of the band increases. This is consistent with the
qualitative notion that strongly bound electrons do not move readily from

12 J C. Slater, Phys. Rev., 45, 794 (1934); 49, 537 (1936).
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one atom to another; they have a high effective mass, and the acceleration
produced by an electric field will be relatively small.

The top of the band corresponds to cos k,a = cos k,a = cos k.a = —1,

e., to k,, k,, k, = +m/a. Thus the corner points of the reduced zone

correspond to states at the top of the band. In the vicinity of such a

corner point we may expand the cosines again; for example, if we expand

about the pointk, = k, = k, = w/awe may write cos k@ = cos(m — k,a)

where the new component k, = m/a — k, is measured relative to the

ky ky
3 3

B
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Fig. 10-10. Schematic representation of constant-energy curves for
a two-dimensional square lattice: (a) for the tightly bound electron
approximation; (b) for the nearly free electron approximation.
corner point. For small values of k, we then obtain cos(w — kza)
—cos k,a= —1 + (k,a)?/2. Hence near the top of the band, (10-72)

leads to E~E,— o+ 6y —yak'? (near top) (10-75)

Thus, relative to the top of the band, the electron energy is proportional
to k' 2, where the new wave vector k’ is measured from the corner point of
the Brillouin zone. Constant-energy surfaces in this region are therefore
again spherical, but with the corner point as center. By way of illustration
we give in Fig. 10-10a a schematic representation of constant-energy
surfaces in k-space for a two-dimensional square lattice, based on the
tightly bound electron approximation. In the nearly free electron approxi-
mation, the proportionality with k2 of the energy relative to the bottom of
the band extends to much larger values of the wave vector than in the
tightly bound approximation. Here again, however, constant energy
surfaces near the top of the band are spherical relative to corner points of
the reduced zone. This is illustrated for comparison in Fig. 10-10b.

It is left as a problem for the reader to discuss in a similar manner the
application of the tightly bound electron approximation to body-centered
and face-centered cubic lattices.
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10-10. Brillouin zones; density of states; overlapping of energy bands

In order to understand the electronic properties of solids the following
topics need some discussion: 1. the structure of the Brillouin zones,
2. the shape of constant-energy surfaces in k-space, 3. the density of
states as function of energy, 4. the possibility of overlapping of energy
bands. Some of these topics have already been discussed to some extent
above; in the present section we shall consider these topics somewhat
further. The discussion will mainly be concerned with simple cubic lattices.

The structure of Brillouin zones. X
. . y

In the preceding section we had Iy
arrived at the conclusion that the first p
Brillouin zone of a simple cubic lattice
is given by a cube of edge 27/a, where
ais the lattice constant. Although for
many purposes only the first or re- S Q> k=
duced Brillouin zone is sufficient, it s
is sometimes desirable to introduce
higher zones. The structure of the Bril- * R
louin zones may be obtained on the
basis of the general discussion of Sec.
10-7 involving the reciprocal lattice. Fig. 10-11. The first three Brillouin
Consider the set of vectors 2m(n,b, zones for a square lattice of edge a.
+ n,by, + ngb,), where ny, ny, ny are
integers and by, b,, b; are the primitive translations of the reciprocal lattice.
The end points of the vectors so defined form a lattice which may be
considered an enlarged reciprocal lattice, the enlargement factor being 2.
In this lattice we shall represent the k-vectors, choosing a particular lattice
point as origin for the k-space. Suppose now we draw vectors from the
origin to all other lattice points and that we draw planes which bisect these
vectors perpendicularly. The smallest volume enclosed by these planes
is then the first Brillouin zone. That this is consistent with our previous
discussion may be seen from the definition of the first Brillouin zone
according to (10-56). In order to illustrate the procedure with regard to
higher zones, consider the case of a square lattice in Fig. 10-11. The
lattice points of the ‘“‘blown-up’ reciprocal lattice are separated by a
distance 27/a, forming again a square lattice. The first Brillouin zone in
this case is a square of edge 27/a. The second Brillouin zone is defined
by the area between the smallest and next smallest area enclosed by the
lines bisecting the lattice vectors. Higher zones are obtained in a similar
way. The zone boundaries are determined by the equations

nk, + nk, = n(n; + n})a (10-76)

where n, and n, are integers. The first Brillouin zone is enclosed by the

. [ 1st zone
E3 2nd zone
T /a D 3rd zone
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four lines corresponding to n, = +1, n,=0 and n,=0, n,= +1.
The square PQRS in Fig. 10-11 is determined by four lines corresponding
to the four sets of integers n,, n, = 41, 4-1. The area between PQRS
and the first zone forms the second Brillouin zone. Note that the areas
of the zones are equal.

The extension of this procedure to the simple cubic lattice is relatively
easy. The zone boundaries are in this case in analogy with (10-76) given
by the solutions of the equation

nk, + nk, + nk, = nn: -+ n; + nl)la (10-77)

or, written in vector notation.
n.k=mn?la (10-78)
At the zone boundaries, the energy exhibits a discontinuity as in the
one-dimensional case (see Fig. 10-4). It is of interest to note that the values
of the wave vector satisfying (10-78) are those for which the electron
suffers a Bragg reflection.l® We leave it as a problem to show that this is
the case. An electron which satisfies the Bragg condition cannot penetrate
the lattice, since it suffers reflections. Such an electron therefore does not
correspond to a wave propagating through the crystal, but to a standing
wave. The energy discontinuities or energy gaps occurring at the Brillouin
zone boundaries represent the energy ranges for which it is impossible
for an electron to move through the crystal. This is clearly borne out by the
fact that if such electrons are incident on the crystal from the outside,
they are totally reflected and unable to penetrate into the crystal. For
the structure of Brillouin zones for various crystal structures we refer the

reader to the literature.14

The density of states as function of energy. The number of electronic
states per unit volume associated with a volume element d€2; in the
k-space is, according to (10-60), equal to (2/8#%) dQ,. The density of
states per unit energy interval is given by the general expression (10-61).
Let us now consider the consequences of this for a simple cubic lattice.
In order to simplify the problem, let us assume that the constant-energy
surfaces are spheres or parts of spheres around the center of the first
Brillouin zone. This situation is approached in the nearly free electron
approximation (see Fig. 10-10b), although even there it does not hold
in the vicinity of the corner points of the zone. With this assumption we
have, as for free electrons, E(k) = /2k%/2m*. Since the density of states
corresponding to wave vectors for which the absolute magnitude lies
between k and k + dk is given by (2/87)4nk? dk, we obtain for the
density of states Z(E) dE, corresponding to an energy interval dE

Z(E)dE = CE'®dE with C = 4a(2m*/h?>"* (10-79)

13 See, for example, N. F. Mott and H. Jones, op. cit., p. 64.
1 See, for example, N. F. Mott and H. Jones, op. cit., Chap.’5.
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Hence Z(E) increases as E'/2; also note that as the effective mass increases,
Z(E) increases. For narrow energy bands, therefore, Z(E) rises more
rapidly than for broad bands. For the examplé under consideration,
expression (10-79) will hold up to values of the wave vector equal to
k = m/a because for this k-value the spherical constant energy surface
just touches the Brillouin zone boundary. For larger values of k& and E,
only the corners of the cube are available for electronic states, and (10-79)
can no longer be used. In fact, for k = (71'/0)\// 3 the density of states
becomes zero. One thus obtains a Z(E) curve as represented schematically
in Fig. 10-12; the energy E, corresponds to k = =/a.

Z(E) ZIE)
B

I

|

I A

|

!

1 >

Ep E 0 c F
Fig. 10-12. Schematic representa- Fig. 10-13. Schematic representa-
tion of the density of states versus tion of the density of states as
energy for a simple cubic lattice, function of energy in an energy band.

assuming spherical energy surfaces;
the energy E, = n*h*[2m*a®.

Actually, the E(k) surfaces are spherical around the point k=20
only in the vicinity of the bottom of the band, as may be seen from Fig.
10-10. In general, therefore, the density of states as function of energy
exhibits a shape of the type indicated in Fig. 10-13. Close to the bottom of
the band, (10-79) holds (OA); as one approaches the zone boundary
E does not change much with k (compare Fig. 10-4) and thus the density
of states increases relative to (10-79), leading to a peak (4B); the sub-
sequent drop (BC) is a result of the fact that only the corners of the zone
are available. Near the top of the band, Z(E) approaches zero as
(E\,p — E)'*in agreement with the behavior expressed by equation (10-75).

Overlapping of energy bands. In the one-dimensional model there
exists a clear-cut difference between metals and insulators: for a linear
lattice to be a metal, there must exist an incompletely filled band. If
the same simple picture were true for a three-dimensional lattice however,
all divalent metals should be insulators, as will be explained further
in Sec. 10-11. That elements such as Be, Ca, Ba, etc. are metallic is a
result of overlapping of energy bands, a phenomenon which in the one-
dimensional model is absent. This may be explained with reference to
Fig. 10-10b, in particular by considering the energy corresponding to
the points 4, B, and C. (4 and C lie within the first zone, B in the second
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zone.) Let these energies be denoted, respectively, by E ,, Eg, and E.
In crossing the Brillouin zone from A4 to B, the energy changes discon-
tinuously by the amount AE = Ez — E ;. There exist now two possi-
bilities with regard to E and E, viz.,
Eg >E, or Ez<E,

In the former case all energies inside the first Brillouin zone are lower
than any of those in the second zone. This is likely to be the case when
the energy discontinuity AE is large. In the second case, however, the
lowest energy state in the second zone (Ey,) lies below the top of the first

ky
A
== Z\E)
£ ; k,
=4
Fig. 10-14. Electron distribution Fig. 10-15. Schematic representa-

(shaded) for the case of partial over-
lapping of the first and second
energy bands; the number of holes
in the first zone equals the number
of electrons in the second zone if
there are two electrons per atom.

tion of the density of states versus
energy in the case of two overlapping
bands. The shaded region may cor-
respond to states occupied by
electrons in case each atom con-
tributes two electrons.

band (E;). Thus the two bands overlap to some extent, and this may
possibly happen when AFE is relatively small. It is instructive to consider
the consequences of this type of overlapping by filling up the available
states with electrons. Suppose we use twice as many electrons as there are
unit cells in the crystal; this number would just completely fill a band in
the absence of overlapping. With overlapping, the electron distribution
in the two-dimensional case would look as indicated in Fig. 10-14. The
first zone is partly empty, the second zone is partly filled, because there
are energy states available in the latter which lie below those at the top of
the first zone. It will be evident that under these circumstances conduction
becomes possible and the solid may behave as a metal, be it a “poor” one.
In Fig. 10-15 we have represented schematically the density of states
when overlap occurs.

10-11. The zone structure of metals

It is impossible within the scope of this volume to give a detailed
account of the zone structure of metals; we shall therefore confine
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ourselves to a few general remarks.?® First of all, for not too complicated
structures such as the f.c.c.,, b.c.c., and hexagonal lattice, it is always
possible to choose the unit cell in such a fashion that there is one atom per
unit cell. For example, in the f.c.c. lattice one may use as translational
vectors those joining a given corner atom with atoms at the center of three

0 -12-
4s
band

3d band

-1---F11-|Cu

—> E (atomic units)
1
-
T
zZ

0 — 0 — Z(E)

Fig. 10-16. The density of quantum states of copper in the 4s and

3d bands; the dashed lines indicate the highest filled levels for the

transition metals, assuming the Z(E) curves are the same as that for

Cu. [After H. M. Krutter, Phys. Rev., 48, 664 (1935); see also J. C.
Slater, J. Appl. Phys., 8, 385 (1937)]

faces (see Fig. 1-4a). Under these circumstances, each band can accom-
modate twice as many electrons as there are atoms in the lattice. It then
foliows that electronic shells which are filled in the atom will lead to
completely filled bands in the solid state (at least if T = 0). It is therefore
not difficult to understand that monovalent elements such as the alkalis,
Cu, Ag, Au are metallic because they contain a half-filled band. In the

13 For a review, see F. V. Raynor, Repts. Progr. Phys., 18, 173 (1952).
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divalent metals such as Ca, Ba, Sr, etc. there is evidently overlapping
between the energy bands associated with the valence electrons.

The zone structure of the transition elements is of considerable interest.
For example, the elements of the iron group have an incompletely filled
3d shell in the atomic state. As the atoms are brought together, the
3d level gives rise to a relatively narrow band; the 4s level broadens
much more strongly, as indicated in Fig. 10-16.16
W V]/////— ;\ri a consequenie, both the fs and 3d bands.

partly filled with electrons in these metals;
in copper the 34 band is completely filled. (The
3d band can accommodate 10 electrons per
atom because it consists actually of five
completely overlapping bands; the 4s band
contains at most two electrons.) The im-
portance of this type of structure for the
. . magnetic properties will be discussed in
::i;:els(:{)-’f' )1(1_1::;2:55;:; Chagtf:r 19. The glectronic speciﬁc heat pf 'the
by a metal after ionization transition metals is abnormally high. This is a
of K or L levels. For the consequence of the fact that the effective mass
transitions indicated, the of the 3d electrons is very high (narrow band
width of the emitted energy  \idth). For the same reason, the 3d electrons
;Pizct;‘mrgfls tﬁgua(l’ctczpti:g show a high paramagnetic‘susceptib‘ility and a
region in the conduction low efficiency for conducting electric current.
band. Thus the conductivity of the transition metals

is determined essentially by the 4s electrons.

o)

10-12. The density of states and soft X-ray emission spectra

It may be mentioned here that information about the density of states
and band width may be obtained from studies of the soft X-ray emission
spectra. For example, if one ionizes the relatively sharp K or L levels in a
solid by bombardment with fast electrons, electrons from higher bands will
make transitions to the vacated levels, with emission of X-rays. Itis evident
from Fig. 10-17 that the spectrum of the emitted radiation provides infor-
mation about the energy distribution of the electrons in the higher energy
bands.!? Thus it is possible to determine the bandwidth of the upper bands,
atleastso far as theyare occupied byelectrons. One has found, for example,
that the conduction electrons in Al cover a range of ~12 ev,in Li ~4.2 ev,
and in Na ~3.0 ev. This method may of course also be used to determine

¢ N. F. Mott, Proc. Phys. Soc. (London), 47, 571 (1935); 49, 258 (1937); 62, 416
(1949).
17 For a review see, for example, H. W. B. Skinner, Repts. Prog. Phys., 5, 257 (1939);

Trans. Roy. Soc. (London), A239, 95 (1940). For recent work in this field see E. M.
Gyorgy and G. G. Harvey, Phys. Rev., 87, 861 (1952); 93, 365 (1954).
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the bandwidth of the upper filled band in insulators. The exact shape of the
emission spectrum also depends on the transition probabilities.

10-13. The Wigner-Seitz approximation and the cohesive energy of metals

In view of its importance, a few words may be said here about the
Wigner-Seitz approximation, which is based on the following physical
model.!® Imagine a number of straight lines joining the nucleus of a
particular atom in a metal with those of its
nearest and next nearest neighbors. A set of
planes bisecting these lines perpendicularly then
defines what is known as an atomic polyhedron.

An example is given in Fig. 10-18 for a body-

centered cubic lattice. These polyhedra evidently

fill the whole space occupied by the crystal.

Confining ourselves to monovalent metals, each

of the polyhedra contains a singly charged

positive ion; one of the aims of this approxi-

matiog is to obtain informatiop about the Fig. 10-18. Atomic poly-
behavior of the valence electrons in the field of  hedron for a body-centered
these ions. Near the center of a polyhedron, cubic lattice.

the potential will be spherically symmetric;

in the vicinity of the boundaries of the polyhedron the field will be small.
In the Wigner-Seitz approximation it is assumed that the field is spherically
symmetric inside the whole polyhedron; also, the field is assumed to be
that of the singly charged positive ion at the center.

Consider now the wave function for an electron in the state k = 0.
Then, because the wave function must be of the Bloch type, it follows that
p = u,(r), i.e., the wave function itself must be periodic with the lattice.
One may thus require that on the boundary of the polyhedron dy/dn = 0,
where 9/0n stands for differentiation normal to the surface of the poly-
hedron. For simplicity, Wigner and Seitz approximate the polyhedron
by a sphere of radius ro such that (4/3)rj equals the volume of a polyhedron
and then use as a boundary condition,

@9/3n), _,, =0 (10-80)
The problem of calculating y(r) then reduces to solving the spherically
symmetric Schrodinger equation,
1 a? 2m
~ a5 [E—Vly=0 (10-81)
for the boundary condition (10-80). Note that because ¥(r) represents the

18 E. Wigner and F. Seitz, Phys. Rev., 43, 804 (1933); 46, 509 (1934). See also J. C.
Slater, Phys. Rev., 45, 794 (1934).
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potential energy of an electron in the field of a free ion, the solution of
(10-81) with the boundary condition ¢ — 0 for r — 0o would be identical
with that for the valence electron in the free atom. As an example of the
results of such calculations, we reproduce in Fig. 10-19 part of the wave
function of a conduction electron (3s) in sodium in its lowest state. It is
important to observe that the wave function is very flat over the region
between 2 to 4 hydrogen radii. This means that the wave function for

= 0is flat over about 90 per cent of the atomic volume ; the total charge

4
e
v 0
-4
-8 . L N N ! .
0 1 2 3 4

T o

Fig. 10-19. Part of the wave function of a conduction electron in
sodium for k = 0 as function of the distance from the center of
‘an atomic polyhedron (r is expressed in atomic units).

distribution corresponding to the flat region is nearly equal to e. Now
when a Bloch function for & = 0 is constant over a certain region of space,
we may conclude that the periodic part u,, of the Bloch function is constant,
i.e., the electron behaves as a free electron in that region. Thus the valence
electrons in sodium and in the other alkali metals behave very much like
free electrons. For copper and silver and presumably also for gold, the
flat part of the wave functions extends over a relatively small region,
and here the free electron model can hardly be applied.!® It is interesting
in this connection to point out that the ratio of the ionic to the metallic
radii is much smaller for the alkali metals than for the monovalent noble
metals.
Li Na K Cu Ag Au

Fionic/rmetal:  0.39 051 058 075 088  0.95

Thus Cu, Ag, and Au may be pictured as consisting of a system of hard
spheres (the ions) held together by the valence electrons. In the alkali
metals on the other hand, the ions are separated by relatively large
distances.

1* N. F. Mott and H. Jones, p. cit., p. 79; R. Fuchs, Proc. Roy. Soc. (London),
A1S51, 585 (1935); 153, 622 (1936).
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In Fig. 10-20 we have plotted the energy E, of the electron in sodium
in the state k = 0 as a function of the variable ry. The physical meaning of
E, is clearly this: it represents the energy corresponding to the bottom of
the conduction band relative to the vacuum level. Thus the Wigner-Seitz
approximation allows one to determine what we denoted by E, in
Fig. 9-1.

A ‘“‘complete’ theory of metals should allow one to calculate, among
other things, the cohesive energy, the lattice constant, and the elastic con-
stants. Although these problems are necessarily very complicated, a great

E
4 T
2+
(3/5)Ef
o—
-2+
E0+(3/5)EF
-4+
E,
-6F '—’7'0
1 1 1 L 1

0 2 4 6 8 10

Fig. 10-20. Curves for E,, Ey and E, + 2E (all in Rydberg units)
versus r, (in atomic units) for sodium.

deal of progress has been made towards solving them for simple metals.
We shall discuss here a simplified theory of the cohesive energy of metals
based on the Wigner-Seitz approximation. In general, the total potential
energy of the metal is determined by the interaction of the charges within
a given polyhedron plus the interaction of the polyhedra with each other.
Suppose now that the valence electrons are distributed such that each poly-
hedron contains one electron. In that case the polyhedra are neutral, and
to a first approximation the interaction between them may be neglected.
Doing this, the total energy of the crystal is then given simply by the sum of
of the kinetic energy of the electrons plus the potential energy of each
electron in the field of a positive ion. Now the latter quantity is given by E,,
represented as function of ry in Fig. 10-10. The kinetic energy of the
electrons may be obtained to a first approximation by assuming a free
electron model for the valence electrons, which for the alkali metals is
quite good as we have seen above. In the preceding chapter we have seen
that the average energy of such a system is equal to 2E;. Now, according
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to (9-9), Er may be expressed in terms of the density of electrons; making
use of the fact that 1/n = (47/3)r] one may write
Eyin = $Ep = 1 (B[mr)(9m|4)? (10-82)

This is represented for Na as function of r, in Fig. 10-20; the sum of
the curves Ey;,(ro) and E(r,) is also given. The position of the minimum of
the curve E, + 2E determines the calculated lattice constant. From these
results the cohesive energy may be obtained with reference to the system
of free atoms at infinite separation. When E; represents the ionization
energy of a free atom, the cohesive energy (positive quantity) in the metal
is, per atom, equal to

E('ohesive = _(Eo + %EF + EI) with ro = (ro)min (10'83)
Here E, is the only negative quantity; E, and E; are both positive, and
as they increase the binding becomes less strong. The above model is, of
course, too simple and a number of corrections are required. For example
it is estimated that the Coulomb energy between the valence electrons
gives a term 0.6e%/r,; also, account must be taken of the fact that the
electrons tend to keep away from each other, an effect which depends on
the relative spin orientations of the electrons involved. Furthermore,
there are van der Waals forces between the ions. Although it is evident
that the problem is a very complicated one, it may be of interest to indicate
the extent to which theory and experiment agree; the following com-
parisons are from Seitz.20

Lattice spacing Sublimation energy
A) (kcal/mole)
Metal Calc. Obs. Cale, Obs.
Li 3.50 3.46 36.2 39
Na 4.51 4.25 24.5 26
K 5.82 5.20 16.5 23

In these figures, the minimum in the total energy versus r, curve was used
to define the theoretical lattice spacing, and the cohesive energy was
calculated for this particular value of r, Calculations of the
compressibility are also in reasonable agreement with experiment. For
Na the observed and calculated values are, respectively, 12.3 and 12.0 X
10712 cm?/dyne.2!

Attempts have also been made to explain the crystal structure of
metals in terms of the electronic structure; the differences in energy
obtained for different crystal structures are in general too small to draw
unique conclusions. For certain alloy structures, however, Jones has
been able to account for structural transitions associated with particular
compositions on the basis of the band theory.2

% F. Seitz, op. cit., p.365.

*1 J. Bardeen, J. Chem. Phys., 6, 367, 372 (1938).

* H. Jones, Proc. Roy. Soc. (London), A144, 225 (1934); Proc. Phys. Soc. (London),
49, 243 (1937); Physica, 15, 13 (1949); Phil. Mag., 41, 663 (1950).
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PROBLEMS

10-1. Let a,, a,, a, and by, b,, b, represent the primitive translation
vectors of the direct and reciprocal lattice. In the direct lattice consider
a set of planes with Miller indices n,, n,, ng. Show that the reciprocal
lattice vector n = n,b; 4 nyb, + n;b; is perpendicular to these planes.
Also show that the distance between consecutive planes is equal to 1/|n|.

10-2. Consider an f.c.c. lattice with a cube edge a. Show that the
reciprocal lattice is b.c.c. with an edge 2/a. Also show that the reciprocal
lattice of a b.c.c. lattice is f.c.c.
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10-3. Show that the volumes of a unit cell in the direct and reciprocal
lattices are the reciprocal of each other.

10-4. Suppose a beam of monochromatic X-rays is reflected by a
crystal, i.e., the beam satisfies the Bragg condition. Let s, and s be unit
vectors in the direction of the incident and reflected beams. Show that
the Bragg condition is equivalent with the requirement that (s — sg)/4
must correspond to a vector in the reciprocal lattice; 4 is the wavelength
of the X-rays.

10-5. In Sec. 10-10 we concluded that the band theory. for cubic
crystals leads to discontinuities in the E(k) surfaces whenever k satisfies
the condition n - k = mn?/a (see expression 10-78). Show that this
condition is equivalent with that for Bragg reflection of the electrons by
the set of planes with Miller indices n,, ny, ng.

10-6. Show that in the tightly bound electron approximation the
energy E(k) for b.c.c. and f.c.c. lattices are given by

E(k) = Ey — a — 8y cos kacos k,acos k,a (b.c.c)
E(k) = E, — a — 4y[cos k,a cos k,a + cos k,a cos k.a
+ cos k,a cos k,a] (f.c.c)

where 2a is the cube edge. Show also that for small values of |k| the energy
varies proportionally with |kJ2. Discuss the shape of constant energy
surfaces in k-space.

10-7. Calculate the width of the energy region occupied by electrons
in the conduction bands of Li, Na, and Al on the basis of the free electron
theory of metals, assuming that each atom contributes as many electrons
as its chemical valence. With reference to the bandwidths quoted in Sec.
10-12, what average effective mass would one have to assume in order
to obtain agreement ?

10-8. Discuss the nearly free electron approximation for a one-
dimensional lattice.



Chapter 11

THE CONDUCTIVITY OF METALS

In this chapter an elementary discussion is given of the electrical and
thermal conductivities of metals; a brief account of the thermal con-
ductivity of insulators is given in Sec. 11-9. Within the allowed space
it did not seem possible to discuss superconductivity, thermoelectric,
galvanomagnetic, and thermomagnetic effects, although a simplified
derivation of the Hall effect is included as the last section.

11-1. Some features of the electrical conductivity of metals

Any theory of the electrical conductivity of metals must explain a
number of pertinent experimental facts. Apart from deviations in special
cases or under extreme conditions, the general features of the electrical
conductivity of metals are the following.

1.

In accordance with Ohm’s law, the current density in the steady
state is proportional to the field strength.

. The specific resistivity of metals at room temperature is of the order

of 10-5 ohm cm (1 ohm cm ~ 1.1 X 10712 cgs unit)

. Above the Debye temperature the resistivity of metals increases

linearly with temperature.

. At low temperatures, but above approximately 20°K, the resistivity

of many metals is proportional to 72; at liquid helium temperatures
some metals exhibit a minimum in the resistivity versus temperature
curve.

. For most metals the resistivity decreases with increasing pressure.
. According to Matthiessen’s rule, the resistivity p of a metal

containing small amounts of impurities may be written
p = po + p(T) (11-1)

where p, is a constant which increases with increasing impurity
content and p(T) is the temperature-dependent part of the resistivity.

. The resistivity of alloys which exhibit order-disorder transitions

shows pronounced minima corresponding to ordered phases
(Fig. 11-7).
275
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8. Above the Debye temperature the ratio of thermal to electrical
conductivity is proportional to T, the constant of proportionality
being approximately the same for all metals (Wiedemann-Franzlaw).

9. A number of metals exhibit the phenomenon of superconductivity,
i.e., their resistivity disappears at temperatures above absolute zero.!

11-2. A simple model leading to a steady state; drift velocity and relaxation
time

In order to appreciate the essential problemin the theory of conductivity
it is useful to consider a simple model which shows the features of the
more sophisticated theory. From the macroscopic point of view, the
electrical conductivity of a metal is defined by

I, = oE, (11-2)

where I, is the current density resulting from an applied electric field E,
in the x-direction. In the case of an anisotropic solid, the conductivity
depends on direction, and ¢ becomes a tensor (see Sec. 1-12); we shall
assume an isotropic solid. From an atomic viewpoint, we may ascribe the
current to a flow of electrons, i.e.,

I, = —ne(v,) (11-3)

where n is the number of electrons per unit volume, —e is the electronic
charge, and (v,) is the average velocity of the electrons in the x-diréction
(the average being taken over the electrons per unit volume). In the
absence of an external field, the velocity distribution is isotropic and (v,)
vanishes. Now, a free electron under influence of an external field E,
obtains an acceleration a, = —eE_/m, and thus its velocity would continue
to increase with time. It is evident that the influence of the electric field
alone would not lead to a steady state as required by Ohm’s law; it is
therefore necessary to assume the occurrence of some kind of “frictional”
process. This process together with the influence of the external field
should then lead to an average velocity (v,) which, according to (11-2)
and (11-3), should be proportional to E,. The origin of the “frictional”
process must obviously be sought in a possible interaction of the conduction
electrons with the atomic lattice, since collisions between the electrons
themselves cannot provide the required result (the latter would not destroy
momentum in the field direction).

! This topic will not be discussed here; for an introductory survey and references to
the literature, see C. Kittel, Introduction to Solid State Physics, Wiley, New York, 1953
Chap. 20.
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In its simplest phenomenological form the interaction of the electrons
with the lattice may be described in the following manner: suppose the
probability for an electron to collide with the lattice during a small time
interval dr is dt/r. For the moment we shall assume for simplicity that =
is constant, independent of the energy of the electron and of the direction
of motion. Furthermore, let it be assumed that in a collision with the
lattice, the electron loses all the energy it has gained from the external
field and that its velocity after the collision is random (independent of the
direction of motion before the collision). In other words, the collisions
are assumed to be so designed that immediately after the collision the
electron has no memory of what happened before the collision. Under
the terms of the model specified above, we may argue in the following
way: The rate of change of the average velocity in the x-direction due to
the field alone is

(0002)[00)ge1qa = —€E,[m (11-4)

Also, the rate of change of (¢,) due to collisions with the lattice alone is
@@ )0y = — ()T (11-5)

since 1/7 is the probability for a collision per second and after the collisions
the velocities are random. In the steady state we must have

d(v)[dt = 0 = (0(v,)/00)paiq + (902} con (11-6)

From the last three equations it then follows that the average drift velocity
in the field direction is given by

(v,) = (—er/m)E, (11-7)
From (11-3) and (11-7) it then follows that the conductivity is given by
o = ne*r[m (11-8)

Suppose that under influence of an electric field E, the electrons have
a certain average drift velocity and that at the instant = O the field is
suddenly switched off. As a result of the collisions with the lattice the
average drift velocity will gradually approach zero; since the rate of
change of (v,) by collisions alone is given by (11-5), the decay will follow
the expression

(1)) = (va(0))e™""" (11-9)

where (v,(0)) is the average drift velocity at r = 0. Because of the
exponential form of (11-9), the quantity r is called the relaxation time.
We may note here already that with n ~ 1022 cm3, expression (11-8)
requires 7 ~ 10~ second in order to obtain agreement with experimental
room temperature data (see point 2, Sec. 11-1).
For the particular type of collisions postulated above, 7 also represents
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the mean free time between collisions. This may be shown as follows:
Let P(7) be the probability that # seconds after a certain collision has
occurred, an electron has not yet collided again; P(r 4 dt) represents the
same quantity after (¢ 4 dr) seconds. Then

P(t + dt) = P(t) + (dP|dt) dt
On the other hand, we may also write
P(t + dt) = P(t)P (dt) = P(t((1 — dt[7)

where (1 — dt/7) represents the probability for an electron not to collide
during the interval dr. From the last two equations one finds

P(I) — e—llr
since P =1 for r = 0. Hence the mean free time between collisions is

(ty = f0°° t(dP/dt)dt =T (11-10)

It must be emphasized, however, that the relaxation time and the mean
free time between collisions are identical only if the velocity after collision
is random. For example, if the scattering is not isotropic and 7, is the
mean free time between collisions, the relaxation time can readily be

shown to be
7 =71,J(1 — (cos B)) (11-11)

where (cos f3) is the average of the cosine of the scattering angle.? Thus
when nearly all collisions involve small angles, the electron has a rather
strong ‘““memory” and it takes a relatively large number of collisions to
erase this memory, i.e., 7> 7, in that case.

11-3. The Boltzmann transport equation

It will be evident that in a state of steady flow of heat or electricity,
the distribution function for the velocity components and spatial co-
ordinates of the electrons will be different from that in thermal equilibrium
in the absence of flow. Thus the theory of transport phenomena is
concerned with determining this distribution function for given external
fields. We shall see in this section that the determination of the distribution
function requires solving an integrodifferential equation, viz., the
Boltzmann transport equation.?

* See, for example, W. Shockley, Electrons and Holes in Semiconductors, Van
Nostrand, New York, 1950, p. 255.
® L. Boltzmann, Vorlesungen iiber Gastheorie, Barth, Leipzig, 1923.
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Let p,, p,, p. represent the components of the momentum of an
electron and let

SPapup2ixyz;it) dp, dp, dp, dx dy dz (11-12)

represent the number of electrons in the volume element dx dy dz which
at the instant ¢ have momenta in the range dp, dp, dp,. The steady state

is then defined by
dfldt =0 (11-13)

In order to obtain information about the function f, it is necessary to
consider the causes which, when operative by themselves, would tend to
produce a change of f with time. First of all, we must consider the rate
of change of f resulting from the velocities of the electrons and from the
components X, Y, Z of the external forces which are assumed to act on
the electrons. Consider the group of particles defined by (11-12) at an
instant ¢ 4 0t, where 0t is a very small time interval. The momenta and
spatial coordinates of this group of electrons at ¢ 4 dr are then to be
found about the point

P+ X t; py+ Yot, p,+Zdt
x+p,otlm; y+p, otIm; z4-p,dtjm (11-14)

However, according to the definition of the distribution function (11-12)
the number of electrons which at the instant # 4 o have their representative
points in an element dp, dp, dp, dx dv dz around the point defined by
(11-14) must be equal to

flp. -+ Xdt,...;x+ p,otm...;t+ 6t)dp,dp,dp,dxdydz  (11-15)

Since (11-12) and (11-15) must be equal, one is led to the following result,
obtained by expanding (11-15),
ifX —al Y afZ—ifv g{ dfv, (11-16)

(aﬂa’)ﬂelds = - apx - apu a[)z ax x ay v, — P_Z

where v,, v,, v, represent the velocity components. In the steady state
there must be other processes which just balance the rate of change (11-16)
produced by fields and gradients. As we noted already in the preceding
section, such processes are provided by electron-lattice interactions. Thus
condition (11-13) may be written in the form

(9f108)geras + (9f108) o = O (11-17)

where the first term is given by (11-16) and where the second term refers
to electron-lattice scattering (compare 11-6). Since the force exerted on
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an electron by a combined electric and magnetic field is given by the
Lorentz expression

F:—e(E+-lvx H)
(4

where v is the velocity vector, we may write (11-17) combined with (11-16)
in the general form '

9f]01) .on = ——e(E + % v X H) ~grad, f+ v-grad, f  (11-18)

which is the Boltzmann transport equation for electrons.

The left hand side of this equation involves an integral operator,
making the equation an integrodifferential equation; this may be seen as
follows: The number of electrons per unit volume which, due to collisions
with the lattice, change their momenta per unit time from the range
dp, dp, dp, to another range dp, dp, dp, can be represented by

f(p,r,t) dp, dp, dp, P(p,p’.r) dp, dp, dp,

where the transition probability P(p,p’,r) is determined by the type of
electron-lattice interaction. Similarly, the corresponding number of
electrons thrown from the range dp, dp, dp, into dp,, dp,, dp, per unit time is

f(p',r.1) dp, dp, dp, P(p',p.r) dp, dp, dp.,

The net difference between the above quantities integrated over dp; dp, dp;
determines (9f]/01)cqu, i-€.,

@f1ot).on = [fS LF(P",r.0)0P(P",p,1) — f(P,7.0) P(P,p’,7)] dp, dp, dp, (11-19)

It is evident that since the left-hand side of (11-18) is given by expression
(11-19), containing the transition probabilities P, the distribution function
in the state of steady flow depends explicitly on the mechanism of inter-
action between the electrons and the lattice. From the atomic theory of
electron scattering it can be shown that under certain circumstances it is
possible to define a relaxation time such that (9f/01),,, takes the form

[2.0) o
©f[0t)con = — ) (11-20)
(compare 11-5). Here f, represents the distribution function in thermal
equilibrium in the absence of external fields. The physical meaning of
the relaxation time 7(p,r) is analogous to that of 7 introduced in the
preceding section: when the external fields are suddenly removed, (f — f)
decays to zero in the fashion

(=S = —foh=ae™"" (11-21)
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When for a certain problem a relaxation time exists, the treatment is
strongly simplified, since the integrodifferential equation then becomes
an ordinary equation. An example of this type will be discussed in the
next section.

Special cases for which a relaxation time can be defined consistently
may be mentioned here.

(i) In processes whereby the electrons may be considered to be
scattered by elastic spheres; this is of importance for that part of
the resistivity which is due to impurity scattering.

(ii) From the (approximate) theory of the interaction between electrons
and lattice vibrations it follows that a relaxation time can be
defined when (6/T)? << 1, where 6 is the Debye temperature. This
simplifies the theory of electrical and thermal conductivities at
high temperatures.

11-4. The Sommerfeld theory of electrical conductivity

A theory of metallic conductivity based on average velocities, as
employed in Sec. 11-2, was developed by Drude in 1900. Lorentz in 1905
reinvestigated the problem, using the Boltzmann transport equation and a
simplified model for the collisions between the electrons and atoms in the
lattice. However, the use of classical statistics led to serious difficulties;
for a review of these theories we refer to the literature. In 1928 Sommerfeld
recalculated the conductivities along the lines of Lorentz’ theory, but
replacing classical statistics by Fermi-Dirac statistics.> Sommerfeld did
not investigate the actual mechanism of interaction between the electrons
and the lattice any further, but assumed that a relaxation time can be
defined which is a function of the energy of the electrons only. As an
application to the Boltzmann transport equation we shall discuss below
Sommerfeld’s theory of the electrical conductivity based on the free
electron approximation; the thermal conductivity will be discussed later.

The number of electronic states per unit volume associated with an
element dp, dp, dp, in momentum space is (including the spin) (2/A4%) dp,
dp, dp,. In thermal equilibrium and in the absence of fields, let the average
number of occupied states be

(2/r*)Fy(p) dp.. dp,, dp,

where F is the Fermi distribution function in terms of the total momentum
p. Suppose we apply an electric field E, along the x-direction, other

1 See, for example, A. H. Wilson, The Theory of Metals, 2d ed., Cambridge, London,
1953, pp. 8, 264.

> A. Sommerfeld, Z. Physik, 47, 1 (1928); see also the article by A. Sommerfeld and
H. Bethe, in Handbuch der Physik, Vol. 24/2, 1934, or A. Sommerfeld and N. H. Frank,
Revs. Mod. Phys., 3, 1 (1931).
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fields or gradients being absent. When in the state of steady current the
average number of electrons per unit volume in the range dp, dp, dp, is
represented by

Q/H)F(p) dp, dp, dp, (11-22)

we may write immediately for the current density,
2e
I, = —-h—a'”‘j V(F — Fo)dl’z dpv sz (11-23)

which is a generalization of (11-3). The term F, does not contribute
anything to the current, since it is spherically symmetric with respect to
P; it has been added, however, to emphasize the fact that the current is
essentially determined by the deviation (F — F;) from the Fermi distri-
bution Thus, if one can calculate (F — Fy), /, may be obtained.
The Boltzmann transport equation (11-18) reduces for the case under
consideration to
(aF/at)coll = —eEz(aF/an) (1 1'24)

We shall now assume that there exists a relaxation time = such that
(OF[0) o = —(F — Fo)/7 (11-25)
(compare 11-20). Thus, according to the last two equations,
(F — Fy)/v = eE, (0F/0p,) = eE, (0F,/dp,) (11-26)

where the last approximation is valid for small fields so that (F — F,) is
relatively small (physically speaking this assumption is equivalent with a
linear dependence of I on E). Making use of the fact that the energy of
the electrons is given by € = (p% + pZ + p?)/2m, one may write instead
of (11-26),

(F — Fy)/m = ev,E, (0Fy/0¢) (11-27)

Substituting (11-27) into (11-23), one obtains for the current density,
I, = —Qe|R)E, ([ vir(9F,|d¢) dp, dp, dp. (11-28)

We shall assume that 7 is a function only of the energy and not of the
direction of motion (compare 11-20). Since 9F,/0de is also a function of €
alone, one may transform (11-28) into a single integral by replacing 2 by
v*/3 and dp, dp, dp, by 4mp® dp. Expressing the integrand in terms of ¢,
one obtains

2 1/2 o
O p, [ e (52) e a19)
Jo Oe

N 3n

Now we have seen in Sec. 9-3 that dF,/de has an appreciable value only
in an energy range of a few kT about the Fermi level €. To a good
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approximation €27(e) under the integral sign may thus be replaced by
the quantity €327, in front of the integral. Furthermore,

fom (OF/0€) de = —1

and if one substitutes €, from formula (9-9), one finally obtains the
simple result,
LJE, = 0 = né*rg/m (11-30)

where n is the number of electrons per unit volume. It is interesting to
note that although all electrons take part in the conduction mechanism
only the relaxation time of the elec-
trons at the Fermi level occurs in
the conductivity. The reason for this
may be explained with reference
to Fig. 11-1. The full circle repre-
sents the Fermi distribution for a
two-dimensional case in the absence
of an external field. In the presence
of a field along the x-direction, the
velocity of all electrons is shifted
by an amount Av (the average drift
velocity), leading to the dashed circle.  Fig. 11-1. Exaggerated representation
It is evident that the distribution is of the influence of an electric field on the
changed only in the vicinity of the velocity distribution for a two-dimen-

- . sional crystal. The fully drawn circle
Fermi level, so that Only the relaxa- corresponds to the Fermi distribution in

tion time of electrons near e, is of (pe absence of a field; the field E,

importance. produces a shift Av opposite to the field
Note that (11-30) is essentially the direction (dashed curve).

same as (11-8), except that = has

been replaced by 7. Although the treatment given here was based on the

free electron approximation, a similar treatment may be given for the

band approximation.® The result of such a calculation is

0 = Rg€1p/m (11-31)

i.e., n is replaced by the effective number of free electrons n.q as defined
in Sec. 10-5. It must be noted that (11-31) is based on the assumption
that the energy of the electron as well as 7 are functions of the absolute
value of the wave vector only.

11-5. The mean free path in metals

If we confine ourselves to the conductivity of metals in the temperature
region T > 0, the existence of a relaxation time is assured according to

® See, for example, N. F. Mott and H. Jones, Theory of the Properties of Metals and
Aloys, Oxford, New York, 1936, p. 258.
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what has been said in Sec. 11-3. So far, however, we have not paid any
attention to the actual cause of resistivity, i.e., to the physical mechanism
which determines 75. On the other hand, it follows from the basic formula
(11-30) that features such as the temperature dependence, pressure
dependence, etc. must be hidden in the quantity 7.

Let us assume that the scattering of the electrons is isotropic; from
the discussion given at the end of Sec. 11-2 it then follows that we may
introduce a mean free path A, between collisions for electrons at the
Fermi level by means of the relation

Ap = vprp (11-32)

where v is the velocity of an electron with the Fermi energy. Hence
(11-30) may then be written

o = ne*Ag/muy (11-33)

From experimental values of ¢ and from a knowledge of the Fermi level
(which is determined by n) one can thus calculate Az. Results of such
calculations at 0°C are given for a number of monovalent metals in
Table 11-1. The point of special interest is the fact that the mean free path
is of the order of several hundred Angstroms.

Table 11-1. Conductivity, Mean Free Path and Relaxation Time at 0°C
for Some Monovalent Metals

Metal Ogps % 10'7 (esu) E. (ev) A (D) 7p in 1071 sec
Li 1.1 4.7 110 0.9
Na 2.1 3.1 350 3.1
K 1.5 2.1 370 44
Cu 5.8 7.0 420 2.7
Ag 6.1 5.5 570 4.1

Before the development of the band theory by Bloch and others, this
fact presented a great difficulty. The electrons were supposed to move in
the spaces between the ionic cores, as illustrated in Fig. 11-2, and such a
model inevitably leads to a mean free path of a few Angstroms. This model
also led to unsurmountable difficulties in explaining the temperature
dependence, pressure dependence, influence of impurities on the con-
ductivity, etc.

In Chapter 10 we have seen, however, that the wave vector of an
electron moving in a perfectly periodic potential remains unchanged in the
absence of external fields. Thus, as a result of the wave nature of the
electrons, they can pass through a perfect crystal without suffering any
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resistance. This is a result of interference of the electron waves scattered
by the periodic potential representing the lattice. It may be compared
with the unattenuated passing of a light wave through a perfect crystal.
The important consequence of this is that if all nuclei were at rest, the mean
free path for electron scattering would be infinite.” The actual cause of
resistivity must therefore be sought in deviations from the periodicity of the
potential in which the electrons move. Itis on this concept that the modern
theory of conductivity is based.
Deviations from the periodicity of the
potential causing resistivity may be due to:

(i) Lattice vibrations

(ii) Lattice defects, such as vacancies, in- O O
terstitials, and dislocations
(iii) Forelgn Impurity atoms Fig. 11-2 The classical model
(iv) Boundaries for electron scattering by the
atoms in a solid. This leads
It is interesting to note that Wien in 1913, to A ~ 10~-* cm.

before the development of wave mechanics,

put forward the hypothesis that the resistivity in pure metals was due to
thermal vibrations of the atoms in the lattice. The justification of this idea
had to await the development of the band theory.

11-6. Qualitative discussion of the features of the resistivity®

Temperature dependence of p. For the moment we shall assume
scattering processes of the types (ii), (iii), and (iv) mentioned above to be
negligible and confine ourselves to the temperature dependence of the
resistivity. In the complete theory of the temperature-dependence of p
it is necessary to investigate the influence of the lattice waves on the
motion of the electrons. This is a complicated problem, and only on the
basis of a number of simplifying assumptions is it possible to calculate
the resistivity. One of the approximations involves the representation
of the lattice waves by a Debye model (see Sec. 2-6); furthermore, certain
assumptions must be made about the influence of such lattice waves on
the potential seen by the electrons. We shall simplify matters even
more strongly by assuming an Einstein model for the lattice vibrations
(see Sec. 2-4) and by considering the interaction between the electrons and
the atomic vibrations in a qualitative way. The results obtained in this
way are, for the high temperature region, in agreement with the advanced
theory and with experiment. In view of (11-33) we are particularly
interested in the scattering of electrons with the Fermi energy.

This was first pointed out by W. V. Houston, Z. Physik, 48, 449 (1928); Phys. Rev.,
34, 279 (1929).
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When » represents the vibrational frequency of the atoms in the
Einstein model, M the mass of an atom, and x its displacement from the

equilibrium - position along a given axis, the equation of motion of the
atom is

M(d%x|dt?) + 4m*vMx = 0 (11-34)
The average potential energy associated with the vibration is equal to half
24 | Na
20+
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N
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Fig. 11-3. Values of o/M®6? versus atomic number obtained from

conductivity measurements at 0°C (the values employed are those

given by Mott and Jones, l.c., page 246); o is expressed in ohm™*
cm~!, M in terms of the mass of a H atom.

the total thermal energy, i.e., equal to k72 for temperatures well above the
critical temperature 6 = hv/k. Hence

2002M(x?) = kT2  T>0 (11-35)

The quantity (x2) is of particular interest for the scattering of electrons.
In order to see this, we shall first introduce the ““scattering cross section”
QOr associated with an atom with reference to its capability of scattering
an electron with the Fermi energy. From the definition of Ay it follows
that an electron traveling over Ay has unit probability of being scattered.
Suppose we represent the atoms by obstacles with a cross section Qp

perpendicular to the diréction of motion of the electron. Then Qj may
be defined by the relation
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where N is the number of atoms per unit volume. Since there is no scatter-
ing of electrons (Q; = 0) when the atoms are all in their equilibrium
position, one may expect that Qp is proportional to {x2) (both have the
dimensions of an area). Accepting this, it follows from the last two
equations that

Ay =const. MB}T T >0 (11-37)

Combining (11-37) with (11-33), we may write the conductivity in the form
g=const. MO})T T >0 (11-38)

Thus o varies as T-2, in agreement with the experimental fact (3) mentioned
in Sec. 11-1. Expression (11-38) may be brought in harmony with Bloch’s
theory if 0.is interpreted as the Debye rather than the Einstein temperature;
this will be done from now on.

In comparing different metals, it is more meaningful to compare
/M2 values than the ¢ values themselves. The reason is that the former
quantity is a measure for the conductivity per unit amplitude of vibration
of the atoms. In Fig. 11-3 we have plotted o/M62 as function of atomic
number for 7 = 300°K. It is observed that the alkali metals and the
noble metals with one outer electron exhibit large values of this quantity,
indicating a relatively small cross section for scattering. For the divalent
metals next to them in the periodic table, o/M6? is smaller by a factor
between 2 and 4; this is a consequence of the small effective number of
free electrons in these metals. Note also the low values of a/M6? for the
transition metals.

As a result of the expansion of the lattice and the associated reduction
in the binding forces, 6 decreases slightly at high temperatures; conse-
quently oT is not exactly constant but decreases somewhat at high tem-
peratures. The transition metals form an exception to this rule; they
exhibit an increase of oT with increasing T which may be explained on the
basis of the band structure of these metals.®

Matthiessen’s rule. When a metal contains impurities, the field in the
vicinity of the impurities is in general different from that near the host
atoms. The impurities thus produce deviations from the periodicity of the
potential and act as scattering centers for electrons. Thus electrons in an
impure metal are scattered by impurity atoms as well as by the thermal
vibrations of the atoms. Denoting the relaxation times associated with
each of these processes by 7, and r,, respectively, the resulting relaxation
time 7 is given by

/7 =17, 4+ 17y, (11-39)

because the probabilities for scattering in this simple model are additive
8 See also J. Bardeen, J. Appl. Phys., 11, 88 (1940).
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and they are proportional to the reciprocals of the relaxation times.
Since the resistivity is proportional to 73", associated with electrons at the
Fermi level, the impurity scattering leads to a constant term in Matthiessen’s
rule (11-1). Actually, =, will itself be slightly temperature-dependent, but
in general the temperature-independent part predominates strongly. For
not too high impurity concentrations, 1/, is proportional to the impurity
concentration and so is pg in (11-1). As an example, we give in Fig. 11-4
the resistivity of pure copper together with that of copper containing
small amounts of nickel, as function of temperature.®

6| 106,
51 T 3
4 P
B 2.\6 -«
X
3 22 g
2t T
Cu
l -
L 1 " 1 o | i | ]
-200 -100 1] 0 25 50 75 100
—> Temp. (°C) Cu —> Atomic x Au Au
Fig. 11-4. Specific resistivity (ohm Fig. 11-5. Fully drawn curve repre-
cm) as function of temperature for sents the resistivity of copper-gold
copper and copper-nickel alloys; alloys annealed at 200°C (ordered);
the numbers refer to atomic per- the dashed curve refers to alloys
centages. [After J. O. Linde, ref. 9] quenched from 650°C (disordered).

[After Barrett, ref. 10}

Resistivity of alloys. As an example of the behavior of the resistivity
of alloys, consider Fig. 11-5 for the copper-gold system.!® The dashed
curve refers to alloys quenched from 650°C, leading to disordered systems.
The fully drawn curve refers to alloys which have been annealed at 200°C,
leading to at least partly ordered alloys. For low concentrations of gold
in copper (or copper in gold) the resistivity increases linearly with impurity
concentration for reasons explained above. Particularly noteworthy are
the resistivity minima corresponding to the ordered structures of the
composition CuzAu and CuAu, and of course those corresponding to the
pure elements; in all these cases the potential seen by the electrons is
nearly periodic, in contrast with that of the disordered alloys. The amount

® J. O. Linde, Ann. Physik, 15, 219 (1932).
10 C. S. Barrett, Structure of Metals, 2d ed., McGraw-Hill, New York, 1952, p- 288.
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of order in the lattice is thus clearly reflected by the resistivity of the
material 1!

Resistivity due to vacancies and interstitials. It may be remarked here
that resistivity measurements play an important role in the study of radia-
tion effects. For example, when a metal is exposed to a beam of neutrons
or other types of radiation, a certain number of interstitial atoms and
vacancies are formed. Each of these contribute to the scattering of
electrons, i.e., to the resistivity. From resistivity measurements it is
possible to obtain information about the numbers of defects produced,
about the time required for these defects to anneal out at a given tem-
perature, etc.

Variation of resistance with pressure. As mentioned under (5) in Sec.
11-1, the resistivity of most metals decreases with increasing pressure
(exceptions are Li, Ca, Sr, Bi). Qualitatively, this may be understood by
starting from expression (11-38). Under high pressures, the forces between
the atoms are stronger, and as a result 6 increases. Hence

doldp = d(6%)|dp > 0 (11-40)

The variation of 6 with pressure or, rather, the so-called Griineisen
coefficient d(log 6)/d(log V'), where V is the volume, may be deduced from
the coefficient of expansion of the solid. Calculations carried out along
these lines give fair agreement with the observed changes in o. For a
discussion of the exceptional cases the reader is referred to the literature.1?

11-7. Thermal scattering described as electron-phonon collisions

Although the treatment followed in the preceding section gives a
qualitative insight into the causes of resistivity, it does not touch upon the
actual problem of calculating the perturbing influence of the lattice
vibrations on the motion of the electrons. The problem of the coupling
between the electrons and the lattice is a very complicated one, and in
order to calculate the conductivity, strongly simplifying assumptions must
be introduced. In a theory developed by Bloch the lattice vibrations are
described in terms of a Debye model, and the interaction of the electrons
with the lattice vibrations is assumed to be weak.® Furthermore, it is
assumed that the lattice and the electronic system remain essentially in

1 For a simplified treatment of the resistivity of completely disordered alloys see
N. F. Mott and H. Jones, op. cit., p. 297. Their treatment leads to p, = const. x(1 — x),
where x is the atomic concentration of one of the elements and (I — x) is that of the
other. This type of curve is in rather good agreement with experimental results; it gives
rise to the arch in Fig. 11-5.

12 For references see N. F. Mott and H. Jones, op. cit., p. 272.

3 F. Bloch, Z. Physik, 52, 555 (1928); 53, 216 (1929); 59, 208 (1930).
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thermal equilibrium. For critical reviews of this subject and for the
details of the theory we must refer the reader to the literature.* A few
remarks will be made here in connection with the description of electron-
lattice interaction in terms of electron-phonon collisions.

Suppose an elastic wave of wave vector ¢ and angular frequency w, is
propagated through a crystal lattice. The displacement of an atom at the
lattice point r due to the vibrational mode may then be written in the form

(see Chapter 2),
Aqei(q-r —wyl)

where A, is the amplitude. For a transverse mode the displacement is
perpendicular to g; for a longitudinal mode it is parallel to g. At the
temperature T the average energy associated with this mode is given by

Planck’s formula,
how, [lexp (Awg/kT — 1)]

It is convenient to call /w, the energy of a ““phonon,” in analogy with the
photon concept in electromagnetic radiation. We may then say that the
vibrational mode at the temperature T corresponds to exp (fw,/kT — 1)
phonons. Note that the energy of a phonon may be written

ho, = hcq

where ¢, is the velocity of sound (if we use a Debye model, c, is independent
of q).

As a result of the atomic displacements, an electron of reduced wave
vector k sees a potential which is somewhat different from that corre-
sponding to the situation in which all nuclei are in their equilibrium
positions. Thus there exists a nonvanishing transition probability for the
electron to be scattered into another state k’. In order to deal with this
type of problem, one usually applies time-dependent perturbation theory
to the system consisting of the electron plus the lattice vibrations. It turns
out that the transition probabilities vanish unless the following selection
rules are satisfied

E, =E,+ hcg (11-41)

K = k- q -+ 2nb (11-42)

where either the upper or the lower signs should be used. The vector b is
a vector in the reciprocal lattice and for a simple cubic lattice 27b =
(2m/a)n, where n is a vector with integer components. For the moment we
shall assume b = 0; in this case the selection rules have a simple physical
interpretation: (11-41) expresses the conservation of energy in an electron-
phonon collision, the 4 sign corresponding to absorption, the — sign
corresponding to emission of a phonon by the electron. Similarly, (11-42)
(with b = 0) may be considered as expressing the law of conservation of
momentum in an electron-phonon collision; the momentum of the
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electron is given by p = hk, the momentum associated with the phonon is
hq = hw,[c; in complete analogy with the momentum associated with a
photon. The selection rules have interesting consequences, a few of which
may be mentioned here. First of all, we may bear in mind that the values
of g are limited to the range 0 < ¢ <C g,,,,x =~ m/a. Hence the energy of the
most energetic phonons is only /c.g,,,. =~ 0.01 ev, assuming ¢, ~ 10> cm
sec™!. On the other hand, electrons near the Fermi level, the scattering of
which determines essentially the conductivity of metals according to
(11-30), have energies of severalev; hence when suchelectrons are scattered
their energy remains essentially unaltered, although they may be scattered
over large angles (when k ~ g). The angle 8 over which an electron is
scattered by phonon absorption or emission may also be found from the
selection rules if the functions E(k) and E(k’) are known. We leave it to
the reader to show that when E(k) = /4%k%/2m* and the electron energy is
large compared to the phonon energy,

sin (8/2) ~ q/2k (11-43)

Since the absolute value of the left-hand side of this equation is <1, the
electrons can interact only with such phonons for which ¢ < 2k. Thus
low-energy electrons with small k-values can interact only with a fraction
of the total spectrum of vibrational modes ; electrons near the Fermi level
can interact with essentially the whole spectrum of vibrations.

At temperatures far below the Debye temperature, there are essentially
only phonons for which the wave vector q satisfies the inequality

hew, = heyg < koT or g < koT/hc, (11-44)

(ko is Boltzmann’s constant); the higher-frequency modes require too
much excitation energy. Consequently, electrons near the Fermi level can
be scattered only over small angles when the temperature is low. In fact,
according to the last two equations,

B < koT|hcky or B<T/0 for T<KO (11-45)

A few remarks may be made here about the case for which b % 0
in equation (11-42); such processes are called ‘‘Umklapp-Prozesse”
(‘“‘reversal processes™).1 For cubic crystals they are described by

E =k -+ q -+ (2nja)n (11-46)

where n has integer components. Such processes, viz., with ¢ =0, we
have encountered in the preceding chapter; in fact, k' = k 4 (2=/a)n
represents the condition for Bragg reflection of an electron by a set of
atomic planes with Miller indices (n;n,n3). The only difference which
arises presently is that k 4- q satisfies the Bragg condition rather than k

1% R. Peierls, Ann. Physik, 4, 121 (1930); 5, 244 (1930).
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alone. Since ¢ may accept a great variety of values, an electron in state k
has many more possibilities for such reflections. It is evident that in an
Umklapp process there is no conservation of momentum of the system
electron plus phonon. In fact, in such a process an electron absorbs a
phonon and thereby arrives in a state at the boundary of a Brillouin zone,
whereupon it suffers a reflection.

Peierls has suggested that Umklapp processes are essential in maintain-
ing thermal equilibrium in the phonon system when an electric current
flows at low temperatures.’> The problem involved here is the following.
When there is an electric field in the positive x-direction, the electrons gain
momentum in the negative x-direction. This momentum is given off to the
lattice by the electron-lattice interaction, and thus the phonon equilibrium
is disturbed. In the theory of conductivity it is usually assumed that the
phonons are in thermal equilibrium; at normal temperatures the inter-
action between the phonons (due to anharmonic forces) is probably strong
enough to maintain essentially thermal equilibrium. However, at low
temperatures, the “self-relaxation” of the lattice may require long periods ;
in that case the lattice waves would accumulate momentum in the direction
of the electronic current, and consequently further transfer of momentum
from the electronic system to the phonon system would be inhibited. In an
Umklapp process, however, electronic momentum may be destroyed
without the necessity of having this momentum absorbed by phonons;
thus Peierls suggests that these processes must be responsible for main-
taining phonon equilibrium at low temperatures.® His suggestion has
been criticized by Klemens, who claims that the anharmonicity of the
lattice forces is strong enough to maintain phonon equilibrium.® The
problem of “phonon-drag™ has received much attention in recent years.

11-8. The electrical conductivity at low temperatures

From the Bloch theory,’® in which the interaction between the con-
duction electrons and the lattice vibrations is investigated by approximative
methods, it follows that for (7/6)?> 1, a relaxation time can be defined.
Thus once 75 has been calculated, the conductivity can be obtained
immediately from (11-30) (or from its more general torm). In that
temperature region his theory leads for free electrons to

o = 2.83 X 10732aMO%/C2T (cgs) (11-47)

where n is the number of electrons per cm3, M is the atomic weight, 0 is
the Debye temperature, and C is a constant characteristic of the metal,
with the dimensions of an energy; C may be calculated from experimental

15 R. Peierls, Ann. Physik, 12, 154 (1932).
16 P. G. Klemens, Proc. Phys. Soc. (London), A64, 1030 (1951).
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o-values by means of (11-47) and turns out to be roughly equal to the
Fermi energy. The value of C is determined by the coupling between the
electrons and the lattice vibrations. We note that this formula confirms
expression (11-38) which we used in our qualitative discussion of the
conductivity in the high-temperature range.

At low temperatures (7€ f), a relaxation time cannot be defined
consistently. It is, of course, always possible to define 75 in accordance
with (11-30) by 7. = moa/ne?; however, if one defines 74 in a similar way
from the thermal conductivity, the two values of 7, are no longer equal
(for T <L 0) and the concept has lost its usefulness. On the other hand, for
the electrical conductivity it is still possible to find a relatively simple
solution to the Boltzmann transport equation in the region 7<< 0; for the
thermal conductivity this is not the case (because it is a second-order
phenomenon). For low temperatures, Bloch’s analysis leads to a resistivity
proportional to 7°. In an oversimplified way, one may make the 7% law
plausible by the following arguments. First of all, at low temperatures the
specific heat of the metallic lattice is proportional to T3 (in the Debye
model); therefore the density of phonons and the probability for scattering
are proportional to 73. Furthermore, the angle of scattering at low tem-
peratures is proportional to T according to (11-45). Now, if one sub-
stitutes (11-45) into (11-11) one finds that the influence of the small
scattering angles alone would lead to a factor 72 in the conductivity, i.e.,
T?in the resistivity. Consequently, p is proportional to 7372 = T5. Since
this argument implies the existence of a relaxation time, it is not very
satisfactory; on the other hand, it points to the two essential causes for
the 75 law: the decrease in density of phonons and the decrease of the
scattering angle with decreasing temperature.

On the bases of certain approximations it is possible to obtain from
Bloch’s theory a formula which covers the whole temperature range:'7
this formula had been used previously by Griineisen'® on a semiempirical
basis and is of the form

0 5d.
oD = AT [ =

(11-48)

where A is a constant characteristic of the metal. Note that for T > 0 the
integral =~ }(6/T)*, so that in that region p is proportional to T, in agree-
ment with experiment. For T << 6 we may replace the upper limit of the
integral by oo, leading to the 7% law. When one plots p(T)/p(0) versus
(T/6), one obtains from (11-48) the universal curve given in Fig. 11-6,
which represents the experimental data above ~20°K very well for many
metals. On the basis of (11-48) one may determine the Debye temperature

17 See, for example, M. Kohler, Z. Physik, 125, 679 (1949).
18 E. Griineisen, Ann. Physik, 16, 530 (1933).
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0 from resistivity measurements; in fact, when two temperatures 7; and
T, satisfy the condition T <€ 6 << T,, one finds from (11-48),

p(TY)[p(Ty) = 497.6(T,/0)(T,/T,) (11-49)
A comparison of Debye temperatures so obtained with those determined
from specific heat data is given in Table 11-2; the agreement is good.
3 However, systematic studies by the
Leiden® and Oxford?® low-tempera-
ture groups have shown that devi-
ations from (11-48) occurin the region
21 between 4° and 20°K. One type of
deviation is illustrated in Fig. 11-7,
which represents the ‘‘apparent”
Debye temperature as function of T’

= p(T)/p(6)

ol for Rb; the apparent 6 at a given
temperature is calculated from (11-49)
on the basis of resistivity measure-

L ! ! L ments. It is observed that instead

0 1 2 3 4 5

of being constant, 6 varies with T.
Such discrepancies may be compared
AT)/p(0) as function of the reduced with those observed at low tempera-
temperature (TJ0), according to the tUres for the apparent 6 calculated
Bloch-Griineisen formula (11-48). from the 7% law of the specific heat
(see Sec. 2-13). The occurrence of
such deviations is not too surprisingin view of the approximationsinvolved
in the theory, in particular the use of the Debye approximation for the
lattice vibrations, which is known to be inaccurate at low temperatures.
Deviations of a more fundamental character in the region < 10°K were
first reported by de Haas, de Boer, and van den Berg;'® they found a
minimum in the resistivity versus 7" curve of gold specimens, the minimum
shifting to lower temperatures as the sample becomes more pure. The
effect has since been observed in other metals as well; the explanation of
the effect is still in doubt.

— T/6
Fig. 11-6. The reduced resistivity

Table 11-2. Comparison of Characteristic Temperatures in Degrees
Absolute Obtained from Specific Heat and from Resistivity Data. {After
D. K. C. MacDonald, Progress in Metal Physics, 3, 42 (1952).]

Metal Na Cu Ag Au | Al Pb W Ta

0 (sp. heat) | 159 | 315-330 | 210-215 | 163186 | 390 | 82-88 | 305-337 | 245
0 (resist.) 202 333 223 175 395 86 333 228

1* Work by W. J. de Haas, J. de Boer, and G. J. van den Berg has been reported
in Physica 1, €09 (1934); 1, 1115 (1934); 2, 453 (1935); 3, 440 (1936); 4, 683 (1937).

20 D. K. C. MacDonald and K. Mendelssohn, Proc. Roy. Soc. (London), A202,
523 (1950).
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Fig. 11-7. The “apparent” characteristic temperature 6 for Rb, as
deduced from resistivity measurements by employing (11-49). [After
MacDonald and Mendelssohn, ref. 20}

11-9. The thermal conductivity of insulators

A thermal gradient in a cubic crystal gives rise to a flow of heat in a
direction opposite to that of the gradient. Thus if there exists a thermal
gradient dT/dx along the x-direction and Q, is the resulting heat current
density, the thermal conductivity K is defined as

K = —Q,/(dT]dx) (11-50)

In normal insulators the heat flow is carried by lattice waves. In metals,
the thermal conductivity is, at least in principle, determined by the
conduction electrons as well as by the lattice waves. Usually the electronic
contribution dominates strongly in metals; however, in poor metals such
as bismuth, or in metals containing large amounts of impurities (alloys),
the lattice conductivity may be important. For the moment we shall
confine ourselves to the thermal conductivity in insulators to obtain some
insight into the lattice conductivity.

A theory of the thermal conductivity of insulators was developed in
1914 by Debye;2! as in his theory of the specific heat (1912), he assumed
that the lattice vibrations may be described by a model in which elastic
waves are propagated through a continuum. Since solids expand upon
heating, these waves cannot be purely harmonic but must be anharmonic.
This anharmonicity was, according to Debye, the source of coupling
between the lattice waves, so that mutual scattering of the waves becomes
possible. (He pointed out that mutual scattering is not possible for purely
harmonic waves.) As a measure for the coupling, Debye introduced a
mean free path A, which measures the distance of travel of a wave required
to attenuate its intensity by a factor e.

2t P. Debye, Vortrige iiber die kinetische Theorie der Materie und der Elektrizitat,
Teubner, Berlin, 1914, pp. 19-60.
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These ideas were extended by Peierls and translated in terms of
phonon-phonon interaction.?2 When a temperature gradient is present in
a solid, the phonon distribution is different from that existing in thermal
equilibrium; the phonon-phonon collisions tend to restore this equilibrium,
the rate of the restoring process being the determining factor for the
thermal resistance. The selection rules for the collisions between two
phonons are similar to those for the collision between an electron and a
phonon (11-41) and (11-42); in fact, a collision between two phonons 1
and 2 is possible when

0, + W, = wy (11-51)
9 + 92 = g3 + (2m/a)n (11-52)

where a is the cube edge in a cubic crystal and n is a vector with integer
components. According to (11-51), two phonons may give rise to a single
phonon with an energy fiw; equal to the sum of the energies of the original
phonons (conservation of energy). Ifin (11-52) we assume for the moment
n = 0, this equation expresses the law of conservation of momentum.
However, collisions of the type n = 0 do not contribute to the thermal
resistance because after such a collision the energy is still flowingin the same
direction as before. On the other hand, when the vector n £ 0, the
direction of flow of energy has changed after the collision; these so-called
“Umklapp” processes (compare Sec. 11-7) are therefore responsible for-
the thermal resistance in Peierls’ theory. Since the vector n may accept
a number of directions in space, €.g., along the six directions corresponding
to the cube edges in a cubic lattice, the scattering may be considered
as approximately random.

In order to set up an expression for the thermal conductivity, we remind
the reader of a well-known formula for the thermal conductivity of a gas :2

K= 3;CvA (11-53)

where C is the specific heat (at constant volume) of the gas per unit
volume, v is the average velocity of the molecules, and A is the mean free
path. In analogy, we may write for the conductivity associated with the
Umklapp processes,*

u = % EZ C”U“A (l 1'54)
i

The subscript j refers to the direction of polarization of the phonons; the
summation over i extends over the complete frequency range of the

22 R. Peierls, Ann. Physik, 3, 1055 (1929).
%2 For a derivation, see any texibook on the kinetic theory of gases.
% See, for example, R. Berman, Advances in Physics, 2, 103 (1953).
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vibrational spectrum. In a Debye model for the lattice vibrations the
velocities v,; are all equal (to the velocity of sound c,).

For a given solid the thermal resistance may arise as a result of a
variety of causes:

(i) Umklapp processes (K,)
(ii) Scattering of phonons by boundaries (X,)
(iii) Scattering by impurities and lattice imperfections (K)

If we consider these processes independent, their scattering probabilities
may be added, and the resultant conductivity is then given by

1/K = 1/K, + 1/K, + 1K, (11-55)

For the moment we shall consider an ideal crystal of infinite dimensions,
and inquire about the temperature-dependence of K,. As long as the
temperature is well above the Debye temperature, the specific heats C;; in
(11-54) are all the same and independent of T (viz., equal to k, per mode,
where k, is Boltzmann’s constant). Furthermore, the mean free path for
a given phonon ij is inversily proportional to the density of all other
phonons with which it can interact. Since the number of phonons of a
given type is equal to kT/hw,;, the density of all phonons is proportional
to T. We thus conclude that

AjjocTt and K,ocT! for T >0 (11-56)

For macroscopic crystals which are well annealed, (ii) and (iii) may usually
be neglected in this range of temperatures. For example, for NaCl at
0°C, K= 0.017 cal cm™! degree~!sec™!; assuming K = K, we find by
using the simple expression (11-53) that A, ~ 20 A on the basis of a
specific heat of 0.45 cal cm~2 and a velocity of sound of ~5 X 105cm sec™.
When processes (ii) and (iii) lead to a mean free path of the same order
as A, or smaller, they can, of course, no longer be neglected. It is obvious
that (ii) and (iii) may be expected to become important at low temperatures
and in imperfect crystals.

In considering the Umklapp processes at low temperatures (T < 6),
we must point out that equation (11-52) indicates that Umklapp processes
can occur only when the phonons have an energy larger than a certain
minimum value. In fact, we want at least one of the g’s to be of the order
1/a, corresponding to a phonon energy ~k 6 (k, is Boltzmann’s constant).
Peierls takes as a threshold energy k6/2.22 Now the number of phonons
with this energy is proportional to 1/[exp (6/2T) — 1]. From this we
deduce that the temperature-dependences of A, and K, at low temperatures
are essentially given by

A, c e”?T and K, oc e”?T for T<K6 (11-57)
Thus the Umklapp processes lead to a thermal conductivity which
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decreases exponentially with T in the low-temperature region; in the
high-temperature region it decreases as 7-1. Although K, — oo for T— 0,
the total thermal conductivity remains finite even in a perfect crystal, as a
result of boundary scattering. Qualitatively, the influence of the latter at
low temperatures may be seen from (11-53): since the specific heat is
proportional to 7% and the mean free path A, is determined by the
dimensions of the crystal, K, is proportional to T® and to the crystal
dimensions. A quantitative calculation of this effect has been made by

K
T o Scattering by electrons

Boundaries

Fig. 11-8. The fully drawn curve represents the general theoretical

form of the thermal conductivity of an insulator; in metals,

phonons are scattered by electrons as well (dotted curve), leading

to the dashed resultant curve. [After R. E. B. Makinson, Proc.
Cambr. Phil. Soc., 34, 474 (1938)]

Casimir.?® The general form of the thermal conductivity of an ideal
insulating crystal is given by the fully drawn curve in Fig. 11-8, indicating
the occurrence of a maximum. In order to observe the exponential
behavior predicted by Peierls, one must measure K in the range between
6/10 to 6/20. The lower limit of this temperature region is determined
not only by the boundary scattering, which must be negligible, but also
by the fact that scattering by imperfections must be avoided. Results for
the mean free path obtained in this region are represented in Fig. 11-9
for sapphire, diamond, and solid helium. The conductivity in this range
fits a relation of the type K oc T"e”*T, where b is approximately 2 (compare
11-57). For further details on this topic we refer to the literature.* In
general, Peierls’ theory combined with Casimir’s calculation of the
influence of crystal size at low temperatures describes the experiments
satisfactorily.

* H. B. G. Casimir, Physica, 5, 595 (1938); see also H. B. G. Casimir, Magnetism
at Very Low Temperatures, Cambridge, London, 1940.
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11-10. The thermal conductivity of metals

Although lattice conductivity may become important in metals under
certain circumstances (low T, high magnetic fields, large impurity content),
we shall assume for the moment that their thermal conductivity is deter-
mined solely by the conduction electrons. Thus, let there be a thermal

gradient dT/dx in a metal and a 5x10-3 | Au fem)

thermal current density Q.. Since % r T

the gradient produces a drift velocity

of the electrons and since the heat 10-3 A

flow is determined under conditions gy 1g-4}

of zero electric current, a small B

electric field must be set up intern-

ally to counteract the drift velocity 1074 C

due to the gradient; this is achieved ~ 5X107°f

by a slight redistribution of the

electrons. Thus, in the Boltzmann 10-5

equation (11-18) we must include, 5x10-6 -

besides the thermal gradient dT/dx

(which leads to a term df/0x), a term —0/T

containing an electric field E,. We 10-6 L L 1
10 15 20

shall first consider the region T > 6,
since in this region one can define a  Fig. 11-9. The mean free path for
relaxation time, which simplifies the ;"mtliiigefﬁ::?sh?; f‘;g‘ﬁ%“gé’; 0/;:
calculation  of t.he conductl\flty di;\mgn d (021520)’ C, solid helium
tremendously. Using the notation (5 2235) [After R. Berman, F. E.
of Sec. 11-3 we obtain for this case Simon, and J. Wilks, Nature, London,

from (11-18), 168, 277 (1951)]

—(f = fo)lT = —eE(9f9p,) + v,(9f]0x)(0T[0x)  (11-58)
As long as the electric field and (97/0x) are small, we may replace f on the
right-hand side by f,, as we did in calculating the electrical conductivity.

The thermal current density in terms of the distribution function F(p,p,p,)
introduced in Sec. 11-4 is given by

Q.= /) [ff v Fedp, dp,dp, (11-59)

where e is the energy of an electron. When Q, is calculated by solving
(11-58) under the condition that the electric current

I, = —Q2e/l®) [[f v Fdp,dp,dp,
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vanishes, one finds for the electronic thermal conductivity K, in the free
electron approximation,?2¢
K, = n*2Tnry[3m, T>19 (11-60)

Here 7, is again the relaxation time for electrons at the Fermi level. From
the theory of interaction of electrons with lattice vibrations one can show
that 7 is proportional to 71, so that

K,=constant T>6 (11-61)

Br TK watts o™ deg”™ in good agreement with experimental
sl data. Note that combination of
(11-60) and (11-31) leads to the
o5l Wiedemann-Franz law [see point
(8) in Sec. 11-1].
20+ L=K,[oT = (*|3)(k[e)?
I =2.7 X 10" Bcgsunit (T > 6)
151 (11-62)
Here L is called the Lorenz number;
101 the theoretical value is in rather good
agreement with experimental data in
51 the high-temperature region.
o S—— It can be shown that the existence
0 20 40 60 80 100 of a relaxation time is a sufficient
— T(K) condition for the constancy of the

Lorenz number. Experimentally one
of two samples of sodium: 2 finds, however, that as the tempera-
ples of sodium; sample II is oL

purer than sample I. [After Berman tUre decreases, L decreases, indicating

and MacDonald, ref. 27 that the concept of a relaxation

time cannot be extended to low tem-

peratures. At this point we may mention that, like the electrical resistivity,

the thermal resistivity associated with electrons may be considered to

consist of two parts: one due to scattering by lattice vibrations, another

due to scattering by impurities or other lattice imperfections. Denoting

these parts, respectively, by subscripts / and i, we may write, if they are
independent,

Fig. 11-10. The thermal conductivity

1/K, = 1/K,, + 1/K,;, = 1[K,, + 1/Lo,T (11-63)

The last equality follows from the fact that for impurity scattering one
may always define a relaxation time (see the end of Sec. 11-3). Thus, by
plotting 7/K, versus T, one can obtain 1/Lo; from the intercept at 7 = 0
and K,, may be determined by subtraction.

In the case of the electrical conductivity one can, even in the low-
temperature region where no relaxation time can be defined properly,

* See, for example, A. H. Wilson, op. cit., pp. 18, 201.



Sec. 11-10] CONDUCTIVITY OF METALS 301

arrive at a relatively simple solution for the Boltzmann transport equation.
For the thermal conductivity, which is a second-order phenomenon, this is
much more complicated; for a discussion of this subject we refer the
reader to the literature. As an example of the thermal conductivity of
metals we represent in Fig. 11-10 measured curves for two sodium samples
of different purity.2? The theory leads to curves of a similar-type.

In alloys, the lattice conductivity must also be taken into account,
since the electronic thermal resistance is increased as a result of impurity
scattering. Furthermore, the lattice conductivity is modified as a result of
phonon scattering by electrons, as indicated in Fig. 11-8.

For pure metals, one may estimate
the ratio of the electronic and lattice
conductivities at high temperatures as
follows : according to (11-60)and (11-53) AR A B B

we may write /'H, lE, —>Ux
Kelectrons/ 1<lamce = 7'rzk(z)TnTF‘/ mACCs

Considering a monovalent metal for Fig. 11-11. Illustrating the Hall
which the density of electrons n is ¢ffect, in a metal, produced by an
equal to the density of atoms, one electric field E; and a magnetic field

. R ’ H, perpendicular to the front face.
finds with a specific heat (at constant The electrons move with a drift
volume) of 3nk,, a velocity of sound velocity o, as indicated; the Lorentz
¢, =~ 5%X10% cm sec™!, 75 ~ 3x 10~ force acts downward along the
sec, and a phonon mean free path J-axis. For positive charge carriers,

A ~ 100 A for this ratio ~ 102. E, will be reversed.

11-11. The Hall effect in metals

Consider a slab of material subjected to an external field E, along the
x-axis and a magnetic field H, along the z-axis as illustrated in Fig. 11-11.
As a result of the applied electric field, a current density 7, will flow in
the direction of E,. For the moment let us assume that the current is
carried by electrons of a charge —e. Under influence of the magnetic
field the electrons will be subjected to a Lorentz force such that the lower
surface collects a negative charge, the upper surface a positive charge.
Ultimately, a stationary state is obtained in which the current along the
y-axis vanishes and a field E, is set up. If the charge carriers were positive,
the upper surface would become negative relative to the lower surface,
i.e., E, would be reversed. From this it is evident that a measurement of
the “Hall voltage™ in the y-direction gives information about the sign of
the charge carriers. Measurements of this kind are thus useful in semi-
conductor research. Furthermore, the density of the charge carriers may

*” R. Berman and D. K. C. MacDonald, Proc. Roy. Soc. (London), A209, 368 (1952).
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be obtained, at least if the current is carried either by electrons or holes.
To illustrate this, let us assume a free electron model for a metal; the
derivation given here is strongly simplified, but leads to the same result
as obtained from the Boltzmann transport equation.?® The force exerted
on an electron of charge —e by a combined electric and magnetic field is
given by the Lorentz formula,

|
Fe —e [E L ox H] (11-64)

¢
For the configuration of Fig. 11-11 we have from F, = 0 in the steady state
E,=(/c)w H,

where ¢, is the average drift veiocity of the electrons. Also, the current
density may be expressed in terms of the number of electrons n per unit
volume as

I, = —ner,

From the last two equations one obtains for the Hall coefficient,
Ry =E|I.H, = —1/nec (11-65)

Thus the Hall coefficient is determined essentially by the sign and density
of the charge carriers. Observed Hall coefficients for a number of metals
are given in Table 11-3. It is observed that a number of metals have
positive Hall coefficients. Qualitatively, this can be explained on the
basis of the band theory of metals, since a metal with a nearly filled band
is equivalent to a conductor in which the current is carried by positive
holes ; this would change the sign of R. For further details on the Hall
effect see Chapter 13. We should mention that the same information as
obtained from Hall  coefficient measurements can be obtained from the
thermoelectric force.

Table 11-3. Hall Coefficient of a Number of Metals at Room
Temperature, in volts/cm-abamp-gauss. (After Seitz, Modern
Theory of Solids, McGraw-Hill, New York, 1940, p. 183)

10"2Ry 102 Ry 102 Ry
Cu —5.5 Be 24.4 Fe 100
Ag —8.4 Zn 33 Co 24
Au -17.2 Cd 6.0 Ni —60
Li -17.0 Al —-3.0
Na -25.0

Negative signs indicate electron conduction, positive signs indicate hole conduction.

** See, for example, F. Seitz, The Modern Theory of Solids, McGraw-Hill, New York,
1940, p. 181,
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PROBLEMS

11-1. From the observed electrical conductivity of copper at room
temperature, calculate the relaxation time and the mean free path for
electrons at the Fermi level on the basis of (11-30); assume one free
electron per atom. Also calculate the average drift velocity of these
electrons in a field of 1 volt per cm and compare the result with the average
velocity in the absence of a field.

11-2. Show that on the basis of the classical picture of electron
scattering by rigid spheres (the atoms) and on the assumption that the
electrons obey Boltzmann statistics, the electrical conductivity should be
proportional to 7-¥/2. How does this compare with experiment ?

11-3. Set up a simple classical theory for the thermal conductivity
K of a metal and show that in this theory K/oT = 3(k/e)? = 2.48 X 103 cgs
unit, where o is the electrical conductivity. This is the Wiedemann-Franz
law. See for example the first chapters of the books by A. H. Wilson,
op. cit., and by N. F. Mott and H. Jores, op. cit.

11-4. Show that if the ions in a metal behave as rigid spheres with
respect to electron scattering, a relaxation time can be properly defined
(see, for example, A. H. Wilson, op. cit., p. 8).
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11-5. Consider a group of similar particles which at the instant ¢ = 0
all move in the x-direction with the same velocity vy,. Suppose the
particles are scattered by obstacles such that the average time between
collisions is 7.. The scattering is not isotropic. Show that the average
velocity of the group measured along the x-direction decreases exponen-
tially to zero with a relaxation time 7 = 7./(1 — (cos f3)), where f is the
scattering angle and (cos ) is the average of cos f.

11-6. Give a rough estimate of the density of vacancies or interstitial
atoms required in a metal such as copper to make the impurity resistivity
comparable to the resistivity associated with lattice vibrations at room
temperature; do this on the basis of mean free path considerations. Do
the same problem for liquid air and liquid helium temperatures.

11-7. In the simplified discussion of Sec. 11-6 it was assumed that the
cross section for scattering of an electron by an atom was proportional
to the mean square displacement of the vibrating atom. Calculate the
mean square displacement of a silver atom in the metal at room tempera-
ture, assuming that the frequency is equal to the Debye frequency. Also,
calculate the cross section Q;. for scattering per silver atom from the
observed conductivity at room temperature. Find the proportionality
factor relating QO and (x2) for this case.

11-8. Consider a collision between an electron and a phonon in which
the phonon is absorbed by the electron. Assume that the energy of the
electron may be written E(k) = A%*/2m, and that the electron energy is
much larger than the energy of the phonon. From the conservation laws,
show that sin (8/2) ~ g/2k where § is the angle over which the electron is
scattered and q is the magnitude of the wave vector of the phonon. Also,
calculate the scattering angle if the electron has an energy of 4 ev and
the phonon has a wavelength of 10 A; assume that the velocity of sound
is 105 cm sec™. For this case, what is the required angle between k and
q before the collision ?

11-9. Consider a metal subject to an electric field and a constant
temperature gradient, both in the x-direction. Set up the Boltzmann
transport equation for this case and show that in the free electron
approximation, if a relaxation time exists, the thermal conductivity is
given by (11-60). See, for example, F. Seitz, op. cit., pp. 174 ff.

11-10. Define the thermoelectric effects: the Thomson effect, the
Peltier effect, and the Seebeck effect. Discuss these effects for metals on
the basis of the free electron approximation. See F. Seitz, op. cit., 178,
or A. H. Wilson, op. cit., p. 202.

11-11. Discuss the influence of a magnetic field on the resistivity of
metals (magnetoresistance effect). For this and other galvanomagnetic
effects see A. H. Wilson. op. cit., or N. F. Mott and H. Jones. op. cit.



Chapter 12

THE ELECTRON DISTRIBUTION IN
INSULATORS AND SEMICONDUCTORS

The electrical properties of semiconductors are determined essentially
by the following quantities:

(i) The number of electrons and holes per unit volume.
(ii) The mobility of the electrons and holes.

It is therefore convenient to discuss the temperature-dependence of the
density of charge carriers for some frequently occurring cases before going
into the details of specific types of semiconductors.

12-1. The Fermi distribution

As shown in Appendix D, the number of electrons per unit volume
occupying states in the energy range between E and E - dE in any
electronic system in thermal equilibrum is given by

n(E)dE = Z(E)F(E) dE (12-1)
where F(E) is the Fermi distribution function,

1

F(E) = e(E—E,)/kT + 1

(12-2)
and Z(E) represents the number of possible states per unit volume,
(including the spin). So far we have had an opportunity to employ this
distribution law only in the free electron theory of metals, in which case
Z(E) is proportional to EV/2 when E is measured from the bottom of the
potential well representing the metal. In that case, the physical meaning
of Ep at T = 0 was simply that it represented the highest occupied state.
In the case of insulators and intrinsic semiconductors where Z(E) may be
a complicated function of E which vanishes in the forbidden energy ranges,
the physical meaning of Ex may not be immediately obvious. In general,
of course, we may say that E corresponds to that level which has a proba-
bility of 4 for being occupied; this follows immediately from (12-2).
However, Ej, in the case of insulators and semiconductors is usually
located somewhere between the valence and conduction bands, i.e., in
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general Ej is not a level which can actually be occupied by an electron.
The physical meaning in these cases is therefore somewhat more abstract
than that in the case of metals. The position of the Fermi level in any case
may be determined from the condition

{ n(E) dE = [ Z(E)F(E)dE = n (12-3)

where n is the total number of electrons per unit volume. The general
procedure of calculating n(E) for given Z(E) and T therefore is this: from
(12-3) one calculates E} and from it
n(E) may be determined by substitu-
tion into (12-1).

12-2. A simplified model of an insulator

In order to indicate the general
features of the electron and hole dis-
tribution in insulators and intrinsic
semiconductors as functions of tem-
perature, we shall first consider a
Fig. 12-1. Insulator with Fermi level simplified model. Tt will be assumed
half-way between valence and con-  that the widths of the valence and
duction bands. The band widths are  conduction bands are small compared
assumed small compared with E,. The ;i he forbidden gap between the
Fermi distribution function is indicated .

on the left. two bands. In this case we may
associate a single energy E, with all
states in the conduction band and a single energy E, with all states in
the valence band (see Fig. 12-1). This situation resembles closely
the system of discrete energy levels in an atom. Let each band contain
Z possible states per unit volume; Z ~ 10%2 per cm®. At 7 =0 the
electrons are in their lowest state, and because the solid is assumed
to be an insulator at this temperature, the valence band and all lower
bands are completely filled: the conduction band at T = 0 is completely
empty. At temperatures different from zero, the density of electrons in
the conduction band is given by

FIE) <

1 5 0

z
n, = 12-4
exp (B, — Ep)kT1 + 1 (124)
Similarly, the density of electrons in the valence band is
z
(12-5)

T I, — EpfkT] + 1

It will be evident that for gap widths of the order of several electron volts,
practically all electrons in the conduction band originate from the valence
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band, so that the presence of bands below the latter may be neglected.!
In other words, we may write

n+n, =2 (12-6)

Substituting (12-4) and (12-5) into this expression, one obtains an equation
for E,.. leading to:

Ep = }E, + E,) (12-7)

Thus, in this model, the Fermi level is located exactly halfway between the
valence and conduction bands. Also, its position is independent of tem-
perature in this approximation.

The density of electrons in the conduction band may now be found by
substituting E from (12-7) into (12-4). If we assume that the Fermi level
is more than about 4kT away from the conduction band, the term
unity in the denominators of (12-4) and (12-5) may be neglected to a good
approximation. In that case,

N, ~ ZeEJUT ~ 1022¢ - Ey/2kT (12-8)

where E, = E, — E, represents the width of the forbidden gap. This
result may be compared with the improved formula (12-19). The number
of holes in the valence band is, of course, equal to n,. Note the occurrence
of half the gap width in the Boltzmann factor (see Problem 12-1). Clearly,
when log n, is plotted versus 1/7, a straight line with a slope of —E,[2k
results (see Fig. 12-6). In this connection it is of interest to note that the
conductivity of a material is given by

o =neu, + neu;, (12'9)

where u represents the mobility of the charge carriers, (i.e., the velocity
per unit electric field); the subscripts e and A refer to electrons and holes,
respectively. In the case under discussion n, = n, = n,. One speaks in
this case of intrinsic conductivity. Now we shall see in the next chapter
that u, and u, are much less strongly temperature-dependent than the
density of electrons and holes. The temperature-dependence of o in the
intrinsic region is therefore essentially given by (12-8); i.e., log o versus
1/T yields a straight line with a slope of —E,/2k. We shall see below that
the same result is obtained with a more sophisticated model. Note that
the conductivities of insulators and intrinsic semiconductors increase with
increasing temperature. In contrast to this, the conductivity of metals
decreases with increasing T; the reason is that in metals the density
of charge carriers remains constant and the mobility decreases with
increasing 7.

! The reader is reminded of the fact that at room temperature k7 =~ 0.025 ev; the
gap width in a good insulator is several ev.
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12-3. Improved model for an insulator and intrinsic semiconductor

It is evident that when the width of the allowed energy bands becomes
comparable with the width of the forbidden region, one is no longer
justified in using a single energy for a complete band. Thus, in general,
(12-4) should be replaced by

top

n, = _‘E Z(E)F(E) dE (12-10)

where E, represents the bottom of the conduction band and Z(E) is the

E

ﬂx

Cond. band >
E.
m D

——>Z(E)

Fig. 12-2. Schematic representation of the density of states in an

insulator. Near the bottom of the conduction band Z(E) is

proportional to (E — E,)'/?; near the top of the valence band Z(E)
is proportional to (E, — E)*'2.

density of the states (see Fig. 12-2). Because we expect from the results
obtained above that Ej lies roughly halfway between E, and E,, the
Fermi function F(E) decreases strongly as one moves up in the conduction
band. In other words, to evaluate the integral (12-10) it is sufficient to
know Z(E) near the bottom of the conduction band and one may then
integrate from E = E, to E = 0. Near the bottom of the conduction
band we have, in accordance with (10-79),

Z(E) = (4n[R®)2m*¥*(E — E )2 dE (12-11)

where m; is the effective mass of an electron near E,. Hence the density
of electrons in the conduction band is

n, = npiyampye [ E ST (12-12)

E. ¢E-EPIT I |

For simplicity we shall assume that (E, — Ez) = 4kT, in which case the
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term unity in the denominator may be neglected to a good approximation.?
The integral (12-12) may then be reduced to the type

‘;}w xPe== dx = 7122

and one obtains

n. = 2Q2mm2kT/h2)¥2eEr ~ T (12-13)

In order to find Ej,, which so far is an unknown quantity, we make use of
the fact that n, must be equal to the number of holes in the valence band.
To calculate the latter, we note that [I — F(E)] represents the probability
for a state of energy E to be unoccupied. The density of holes in the
valence band may thus be written

E!‘
m=[ Z(ENI — FE)dE (12-14)
boftom

where the integration extends over the valence band.

Itis readily verified that the factor [1 — F(E)] decreases rapidly as one
goes down below the top of the valence band (i.e., the holes reside near
the top of the valence band). Hence, to evaluate the integral (12-14) one
is essentially interested in Z(£) near the top of the valence band. According
to the results obtained in Chapter 10, Z(E) varies in this region in the
following fashion:

Z(E) dE = (4n[H®)2m¥)¥*(E, — E)2 dE (12-15)

where mj} represents the effective mass of a hole near the top of the valence
band. If we make the assumption that the Fermi level lies more than about
4kT above E,, we may use the approximation

1 — F(E) ~ eE—EPIT (12-16)

Substituting the last two expressions into (12-14) and integrating from
—0o0 to E,, one obtains in the same way as above

n, = 2Q2emrkT[h2)32e Ee—EPNKT (12-17)

Employing the fact that n, = n,, it follows from (12-13) and (12-17) that
Ep = (E, 4 E,))|2 4 3kT log (m}/m}) (12-18)

In case mj = m}, the Fermi level lies again exactly halfway between the

* For numerical tables of integrals of the type (12-12), see J. McDougall and E. C.
Stoner, Phil. Trans., A237, 67 (1929).
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top of the valence band and the bottom of the conduction band; (12-18)
is then identical with (12-7). In general m} > m} and the Fermi level is
raised slightly as T increases. This is indicated schematically in Fig. 12-5
by the “intrinsic Fermi level.”

The density of electrons in the conduction band n, and the density of
holes in the valence band n, may be obtained by substituting (12-18) into
(12-13). This gives

n, = n, = 22ukT|R2)¥ A (m*m})3/%e ~ B/ T (12-19)

where E; represents the gap width. It is observed that the temperature-
dependence is the same as in the simplified model. The temperature-
dependence of n. is represented schematically by the curve labeled
“intrinsic”” in Fig. 12-6. It is convenient to remember that at room
temperature

2(2mmkT[h?)%% ~ 10'° per cm? (12-20)

where m is the mass of a free electron. Note that the constant in front of
the exponential in (12-8) is much larger than that in (12-19). We emphasize
again that (12-18) and (12-19) are good approximations only if the Fermi
level is more than a few kT away from the bottom of the conduction band
and from the top of the valence band.

12-4. Models for an impurity semiconductor

Most semiconductors owe their conductivity to impurities, i.e., either
to foreign atoms built into the lattice or to a stoichiometric excess of one
of its constituents. At absolute zero such a solid may contdin a certain
concentration of occupied electronic levels which lie in the normally for-
bidden region between the valence and conduction bands. These electrons
are localized in the vicinity of the impurities and therefore do not con-
tribute to the conductivity unless they are excited into the conduction band.
Centers of this kind are called donor levels. In the energy level scheme
they are represented by a short bar, to indicate that they are localized (see
Fig. 12-3a). Similarly, an impurity semiconductor may contain a certain
density of holes which at T = 0 are trapped in levels lying in the forbidden
gap. Such levels are called acceptor levels because they may become
occupied by electrons excited from the filled band; these excited electrons
leave a hole in the valence band and conduction becomes possible in this
band (see Fig. 12-3b). The physical reasons for the existence and location
of donor and acceptor levels will be discussed in the next chapter.

We shall now consider the density of free electrons and holes for two
simple models.
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(i) The simplest model for an n-type semiconductor consists of a
conduction band below which there are #, donor levels per cm3 of energy
E, (see Fig. 12-3a).? The influence of the valence band will be neglected
for the moment, i.c., the model may be applied only at relatively low
temperatures. Let us assume that at 7 = 0 all donor levels are filled with
electrons. At low temperatures, when only a small fraction of donors is
ionized, we expect the Fermi level to lie about halfway between the donor
levels and the bottom of the conduction band. We shall assume for

E Cond. band Cond. band E,
E; o Y .I_
T - E;
o 77 27"
(a) (b)

Fig. 12-3. Donor levels are indicated in (a); one of the donors

is ionized, leading to a free electron in the conduction band.

Acceptor levels are indicated in (b); one of them is ionized (i.e.,

occupied by an electron from the valence band), leading to a free
hole.

simplicity that E lies more than a few kT below the bottom of the con-
duction band. In that case, the density of conduction electrons n, is given
by (12-13). This number must be equal to the density of ionized donors.
If we assume that Ej lies more than a few kT above the donor levels,
the density of empty donors is equal to

n 1l — F(E)] =~ nge'E—EpIT (12-21)

Equating (12-13) and (12-21), one obtains for the location of the Fermi
level the expression,

Ep = WE, + E) + (kT/2) log [ (12-22)

n, ]
22mm KT Ry

Thus at T = 0, E}, lies exactly halfway between the donor levels and the
bottom of the conduction band. As T increases, the Fermi level drops.
This is illustrated in Fig. 12-4 for the case E, — E, = 0.2 ev for three

* Semiconductors in which the current is carried predominantly by electrons are
called »-type semiconductors, (# = negative); a hole conductor is referred to as a
ptype (p = positive) semiconductor.
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different values of n,.* Within the triangular region ABC the Fermi level
is more than 2kT away from the conduction band and from the donor
levels; only in this region is (12-22) applicable (with an accuracy of about
8 per cent). Outside this region, the term unity in the Fermi distri-
bution entering in (12-21) must be retained. Note that for this model, Ex
falls indefinitely; in an actual case, however, the presence of the valence

0 Cond. band
A
-1 (o
E 2 B Donor
'? : level
-3F 1018
7
-4l 3x101
1017
PR S SER S S
0 200 400 600 800
— T (°K)

Fig. 12-4. The Fermi level as' function of T for a set of donor

levels 0.2 ev below the conduction band; the presence of the valence

band is neglected. The numbers next to the curves represent the

number of donors per cm® Within ABC, the Fermi level is

more than 2kT away from the donors and from the conduction
band. [After Hutner, Rittner, and DuPré, ref. 4]

band would ultimately keep the Fermi level about halfway between the
valence and conduction bands (see Fig. 12-5).

For the region in which (12-22) is applicable, the density of free
electrons in the conduction band is obtained by substituting Ej into
(12-13), leading to

n, = (2n )2 (2nm*kT|h2)4e—AEIKT (12-23)

where AE = E, — E, represents the ionization energy of the donors.
Note again the occurrence of AE/2 rather than AE; also note that n,
is proportional to the square root of the donor concentration (see Problem
12-2).

The case of acceptor levels above the valence band may be treated in

¢ R. A. Hutner, E. S. Rittner, and F. K. DuPré, Philips Research Repts. S, 188,
(1950).
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the same way. The density of holes in the valence band, making similar
assumptions as above, is given by an expression similar to (12-23). In this
case the Fermi level lies halfway between the acceptor levels and the top
of the valence band at T = 0; as T increases, the Fermi level rises (see
Problem 12-3 and Fig. 12-5).

Cond. band il 3

KR 2 2
Donors

Intrinsic S<

Acceptors
T T T

Val. band

T

Fig. 12-5. Schematic representation of the Fermi level as function

of temperature; curve 1 for insulator with donors, curve 2 for

insulator with acceptors. The intrinsic Fermi level slopes slightly

upward, in accordance with (12-18). The dashed curve, 3, cor-

responds to the case in which the electron gas in the conduction

band is degenerate over a certain range of temperatures, as
discussed in Sec. 12-6.

From these results it follows that the logarithm of the density of carriers
plotted versus the reciprocal temperature should yield a straight line of
slope —AE/2k. However, as the temperature is increased to such vaiues
that the intrinsic excitation becomes important, the slope changes gradualiy
to —E,, /2k. The reason is that the density of electrons in the filled band
is of the order of 10?2 per cm®, whereas the density of impurity centers is
usually <10'® per cm3. This is illustrated schematically in Fig. 12-6.
Similar curves are encountered when the logarithm of the conductivity
is plotted against 1/T, as we shall see in later chapters.

(ii) The above model applies to a large extent to semiconductors such
as germanium and silicon, containing trivalent or pentavalent impurities;
the former produce acceptor levels, the latter donor levels. In other cases,
such as the alkali halides containing excess metal, the density of available
levels may be larger than the number of excess electrons. In other words
itis possible that at T = O only a fraction of the-available levels is occupied.
As an extreme case, we shall assume that the density of donor electrons n,
is very small compared with the density of available levels Z;. In this casc,
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the Fermi level evidently lies below the donor levels. At any temperature
T, the number of filled “impurity’’ levels is equal to

Z; ~ Z,e Er—E)HT

e (E;—Ep)/kT + 1

where we assumed (E; — Ey) > few kT. As long as the temperature is low,

the density of electrons in the im-

log n, purity levels is large compared with

1 the density of electrons n, in the
conduction band and we may write

ZEr-BT ~ p  (12-24)

from which the Fermi level may be
calculated. Substituting Ep from
(12-24) into (12-13) we find for the
density of conduction electrons,

n, = 2Q2mm*kT[h2P'*(n,|Z )e ~ SEIFT
a1 (12-25)
—1/T

It is interesting to compare this
Fig. 12-6. Schematic representation of expression with (12-23); inthe present
the logarithm of the density of conduc- case n, is proportional to n, (instead
tion‘electrons versus 1/7.‘f.or an in}purity of n}/2), and the exponential contains
semiconductor  containing  different AE (instead of AE/2). This shows

donor densities, (ns; < nap < ng3). At .
high temperatures the slope is deter- that in some cases one must be careful
mined by E,,,/2k; at lower tempera- in interpreting the slope of the log

tures by AE/2k. n, versus 1/T curve as giving half the
ionization energy of the donors.

12-5. Thermionic emission from semiconductors

The importance of the Fermi level in the discussion of contacts between
conductors has been stressed in Sec. 9-10. It was shown there that in such
contacts the Fermi levels of the materials must coincide. We shall show
here another important aspect of the Fermi level, viz., the fact that it
determines the thermionic work function of a semiconductor.

In Sec. 9-6 we derived the Richardson expression from the free electron
model for the thermionic emission of metals;

I = (4nmek®T?[h3)e 4T (12-26)
We neglect reflection for simplicity. We shall now consider the thermionic

emission from a semiconductor, assuming that the electrons in the con-
duction band may be treated as free electrons with an effective mass m*.
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Let the vacuum level (i.e., the energy of an electron at rest outside the
semiconductor) be higher than the bottom of the conduction band by an
amount y as indicated in Fig. 12-7; y is called the electron affinity of the
crystal. Ifx is the direction perpendicular to the surface, an electron needs
at least a momentum in the x-direction given by

P, = 2m*y (12:27)

in order to escape. As a result of thermal excitation let there be n, electrons
per unit volume in the conduction
band. If the Fermi level is assumed
to lie more than a few kT below the
bottom of the conduction band, the

conduction electrons have a Max- ) l
wellian velocity distribution accord- Fermi level |

ing to the discussion of the preceding
sections. We leave it as a problem
to the reader to show that the g 155 )ugrating the electron
density of electrons with momenta affinity y and the work function ¢

in the range dp,, dp, dp, is then of a semiconductor.
equal to

n(p,.pysp,) dp. dp, dp, = [n,|Qum*kT)32e~2*12"*kT gp_dp dp, (12-28)

Following the same treatment as in the thermionic emission of metals, one
may then write for the emission current density,

Vac, level

Condband |}

en, I
I= G d § (pulm®)e 4T dp, dp, dp,  (12:29)

The integrations over p, and p, go between +4-c0; the integration over p,
extends from p, to co. This yields

en,
(2mm*kT )2

2mm*k2T2e~ kT (12-30)

The value of n, is for intrinsic as well as for impurity semiconductors
given by (12-13). Substitution gives finally

I = (4rm*ek®T2/h3)e = 4T (12-31)

where the work function ¢ represents the energy difference betwegn the
Fermi level and the vacuum level, as indicated in Fig. 12-7. It is observed
that (12-31) becomes identical with (12-26) if one replaces the effective
mass of the conduction electrons by that of a free electron. It is of interest
to note that according to (12-30) the thermionic emission is proportional
to n,, i.c., the emission current density is correlated with the conductivity
of the material.
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12-6. Electronic degeneracy in semiconductors

In the preceding sections it was assumed that the Fermi level was
located at least a few kT below the bottom of the conduction band. In
that case the electrons in the conduction band follow closely Boltzmann
statistics, i.e., the electron gas is nondegenerate. Under certain circum-
stances, however, the Fermi level may enter the conduction band and the
electron gas in the conduction band may become degenerate. From the
preceding discussions it should be clear that the conditions favorable for
such a situation are the following:

(i) Relatively high donor densities (~10® per cm3)
(ii) Small donor ionization energy

(iii) Low density of states near the bottom of the conduction band,
i.e., small effective electronic mass (see Sec. 10-9).

When these conditions are fulfilled, the Fermi level as function of
temperature varies as indicated by the dashed curve 3 in Fig. 12-5. As T
increases from absolute zero, the donors begin to ionize and as a result of
the low density of states, the lower energy states in the conduction band
become completely filled. The position of the Fermi level relative to the
bottom of the conduction band is then given by (9-9),

Ep = (B[2m?)(3n,[8m)*?

where n, is the density of electrons in the conduction band. As long as
Er> kT, the electron gas is degenerate. Clearly, as the effective electronic
mass is reduced, degeneracy may occur at lower electron densities. As T
is increased further, the degeneracy is removed and the Fermi level leaves
the conduction band again.

The circumstances described here are believed to occur in InSb,
containing donor levels in concentrations of about 108 per cm3; the
effective mass of the conduction electrons is probably only about m/30 in
this case.

REFERENCES

J. S. Blakemore, “Carrier Concentrations and Fermi Levels in Semi-
conductors,” Elec. Commun., June 1952, pp. 131-153.

R. A. Hutner, E. S. Rittner, and F. K. DuPré, “Fermi Levels in Semi-
conductors,”” Philips Research Repts., 5, 188 (1950).

F. Seitz, The Modern Theory of Solids, McGraw-Hill, New York, 1940,
pp- 186 ff.

W. Shockley, Electrons and Holes in Semiconductors, Van Nostrand,
New York, 1950.



Chap. 12] ELECTRON DISTRIBUTION IN INSULATORS 317

PROBLEMS

12-1. With reference to the problem discussed in Secs. 12-2 and 12-3,
consider the reaction

electron in valence band % electron in conduction band
-+ hole in valence band

Applying the law of mass action as used in chemical reactions, show that
the equilibrium concentration of the conductien electrons is proportional
to exp (—E,,,/2kT).

12-2. With reference to the problem discussed in Sec. 12-4, consider
the reaction

bound electron = free electron 4 empty donor

Making use of the law of mass action, answer the following questions:

(a) Assuming that at T = 0 all donor levels are filled, show that the
density of free electrons is proportional to nj/* exp (—AE/2kT).

(b) Assuming that at T = 0 only a small fraction of the donor levels
is filled, show that the density of free electrons is proportional to Z; exp
(—AEJKT), where Z, is the density of impurity levels and AE is the ioniza-
tion energy of the donor levels.

12-3. For an intrinsic semiconductor with a gap width of 1lev,
calculate the position of the Fermi level at 7= 0 and at T = 300°, if
my = Sm}. Also, calculate the density of free electrons and holes at
T = 300° and at T = 600°.

12-4. Assuming a Maxwellian velocity distribution for the electrons in
the conduction band, derive expression (12-28).

12-5. Assuming a valence band above which there are n, acceptor levels
per unit volume, derive an expression for the Fermi level and for the
density of free holes in the valence band as function of T.

12-6. What is roughly the temperature range over which an electron
gas in the conduction band is degenerate if n, = 10'® per cm® and
m} = m(30? Compare this with perfectly free electrons.

12-7. If the Fermi level in a semiconductor lies more than a few kT
below the bottom of the conduction band and more than a few kT above
the top of the valence band, show that the product of the number of free
electrons and the number of free holes per cm? is given by

nny, = 2.33 X 103173~ E/*T
where E, is the gap width. Note that this holds irrespective of the presence

of donors or acceptors in the gap, as long as the condition imposed on the
Fermi level is satisfied.
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12-8. Consider a crystal which at T'= 0 is an insulator; the crystal
contains N, donor levels per cm®, which at T = Q are all occupied, and
N, electron traps per cm®, which at T = 0 are all empty (the traps lie above
the doner levels). Discuss in detail the distribution of electrons at a
temperature T and the various approximations which may hold under
particular circumstances.



Chapter 13

NONPOLAR SEMICONDUCTORS

13-1. Introductory remarks

Semiconductors are characterized by an electrical conductivity
(associated with the motion of electrons or holes or both) which on the
one hand is considerably smaller than that of metals, and on the other
hand, is much larger than that of “insulators.” Furthermore, the con-
ductivity increases with temperature, in contrast with the behavior of
metals at normal temperatures. The number of current carriers per unit
volume in a semiconductor is in general much smaller than the number
of atoms per unit volume. This situation is encountered, for exaniple, in
a solid for which the forbidden energy gap between the highest normally
filled band and the conduction band is small, i.e., of the order of one
electron volt. At absolute zero such a solid is an insulator, and as the
temperature is raised, the density of free electrons and holes increases as
explained in the preceding chapter. In this case the density of free electrons
equals that of the free holes and one speaks of intrinsic semiconductors;
the properties are then characteristic of the solid itself. Semiconductor
properties may also be exhibited by solids which in the pure state are
good insulators, viz., when impurities are present which either donaté¢
free electrons to the conduction band (donors) or free holes to the upper
filled band (acceptors); in this case one speaks of extrinsic or impurity
semiconductors. Impurity conductivity may of course be superimposed
on the intrinsic semiconductor properties of a solid.

The semiconducting elements are those appearing within the area
enclosed by the lines drawn in Table 13-1; this table represents the A
subgroup elements in a number of columns of the periodic table. Of
these, silicon and germanium have received a great deal of attention
because of their great technical importance, particularly in the field of
crystal diodes and transistors. The discussion in this chapter will be
concerned mainly with the properties of Si and Ge; the amount of
literature on this subject is so vast that the discussion is necessarily very
incomplete. A review which is up to date until the beginning of 1955
may be found in H. Y. Fan in F. Seitz and D. Turnbull (eds.), Solid State
Physics, Academic Press, New York, 1955, Voluftie 1.

319
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Extensive studies have recently been initiated on intermetallic
compounds formed between the elements. of the third and fifth columns
in Table 13-1; these will be discussed briefly in the last section of this
chapter.

Table 13-1. The A Subgroups of the 3rd, 4th, Sth, 6th, and 7th Columns
of the Periodic System of Elements

A IVA VA VIA VIIA
B C | N o F
Al Si P S

Cl
Ga Ge As Se Br
In Sn Sb Te 1

Tl Pb B | po At

Of the semiconducting salts in which the binding is essentially ionic,
the alkali halides containing color centers have been investigated most
thoroughly; we shall return to these compounds in Chapter 15.

13-2. Some lattice properties of the elements of the fourth group

Structure. Diamond, silicon, germanium, and grey tin all have the
diamond structure represented in Fig. 13-1. Each atom is surrounded by
four others, occupying the corner points of a tetrahedron, to which it is
bound by electron pair bonds. The structure may be described by an
f.c.c. point lattice in which each lattice point corresponds to two atoms,
one located at (0,0,0) and another at (4,%,}). The free atoms of the
elements have an outer electron configuration in which two electrons
occupy an s state and two others occupy a p state. In the solid state the
total of four outer electrons per atom is just sufficient to produce electron
pair bonds with four other atoms; in this configuration the s and p wave
functions .form hybrid wave functions giving rise to four equivalent
chemical bonds, the angle between any two of them being approximately
109°.1 This type of covalent binding may be contrasted with the ionic
bonds in crystals such as the alkali halides; in the latter, the particles are
charged and the field around a given ion is spherically symmetric, i.e.,
the restriction on the coordination number is essentially of geometrical
origin. In terms of a two-dimensional picture one arrives at an electron
distribution as indicated schematically in Fxg 13-2.

One expects the electrons taking part in the electron pair bonds to be
rather strongly bound, i.e., one expects that a certain amount of energy
is required in order to set them free to the extent that they can move about
in the crystal. This is in agreement with the fact that at very low tempera-
tures these elements are insulators. In terms of the energy band scheme,

! See L. Pauling, The Nature of the Chemical Bond, 2d ed., Cornell University Press,
Ithaca, 1945, p. 81.
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this means that at absolute zero the electron distribution is such that a
certain number of energy bands is completely filled, thz Figher ones being
completely empty.
S

O
5
5
5

©O:+:0:0:0
[
Fig. 13-1. The crystal structure of Fig.13-2. Schematic two-dimen-
diamond, showing the tetrahedral bond sional representation of the elec-
configuration. [After W. Shockley, tronic distribution in the diamond
Electrons and Holes in Semiconductors, structure, showing the electron
Van Nostrand, New York, 1950] pair bonds.

Physical constants. 1t is of interest to consider how some of the
physical properties of these elements vary in a regular fashion with their
position in the periodic table. As the atomic number increases, the
interatomic distances increase, i.e., the binding forces become weaker, and
the solids become “softer.” In Table 13-2 some physical constants are
given for diamond, silicon, and germanium to illustrate this. In this order,
the lattice parameter a (the edge of the f.c.c. lattice) increases, the elastic
constants, the melting point, the Debye temperature, and the forbidden
energy gap decrease. Qualitatively, this regularity can be explained on
the basis of the relative strengths of the chemical bonds between the
atoms. It is also observed that the dielectric constant increases in the
order C, Si, Ge; this is to a large extent a result of the increase in the
number of electrons per atom, leading to a larger polarizability. With
reference to the quantities given in Table 13-2, some remarks should be
made. The lattice constants for Si and Ge are those obtained at 20°C by

Table 13-2. Some Physical Constants of Diamond, Silicon, and Germani.
(see text for details)

m.p. 0p Egap Cay
a Ol ¢ |eK (ev) n fr | (o dynes/cm)
C 3.561 3550 5.7 | 1800 | ~7 9.2 39 4.3
Si 5.43086 | 1420 | 12 658 1.21 1.674 | 0.652 0.796

Ge | 565748 | 936 | 16 362 0.785 | 1.298 | 0.488 0.673
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Straumanis and Aka from X-ray diffraction data; the coefficients of
expansion, measured between 10°C and 50°C, obtained by these authors
are 4.15 X 10-¢ and 5.92 x 10-¢ per °C for Si and Ge, respectively.?
The dielectric constant € given above is based on measurements of the
index of refraction in the optical region as well as on measurements of
the dielectric constant in the microwave region.? The Debye temperatures
for Si and Ge were obtained from specific heat measurements below 4°K
by Keesom and Pearlman;? in this region the lattice specific heat is
proportional to T3, and 6}, may be calculated on the basis of formula
(2-37). The energy gap in Si and Ge is not a well-defined quantity because
of certain peculiarities in the band structure of these elements; we shall
return to this problem in Sec. 13-6. The values given in the table are
derived from the density of charge carriers in the intrinsic region. The
elastic constants have been obtained from measurements of the velocity
of propagation of elastic waves.®

Influence of impurities. Of great interest is the fact that Si and Ge
can be ““doped” with foreign elements. For example, Pearson and Bardeen
have shown that boron and phosphorus form substitutional solid solutions
in Si.® Evidence for this was obtained from the decrease in the lattice
constant with increasing concentration of these elements (the atomic radii
of Si, B, P are, respectively, 1.17,0.89, and 1.1 A). If the solute atoms were
incorporated interstitially, the lattice constant should have increased.
Thus, consider a phosphorus atom at a position which is normally occupied
by Si. The phosphorus atom has five outer electrons, one in excess of
the number required to form electron pair bonds with four nearest
neighbors. As a result, the extra electron is relatively weakly bound and
only a small amount of energy is required to set the electron free. In
terms of the energy band picture, this means that phosphorus and other
pentavalent atoms give rise to donor levels close to the conduction band.

The order of magnitude of the energy required to ionize the phosphorus
atom, i.e., the energy difference between the donor level and the bottom of
the conduction band may be estimated according to a suggestion by Bethe
as follows: the extra electron of the phosphorus atom may be pictured as
moving in the field of a single positive charge, i.e., the problem is somewhat

* M. E. Straumanis and E. Z. Aka, J. Appl. Phys., 23, 330 (1952).

3 See, for example, K. Lark-Horovitz and K. W. Meissner, Phys. Rev., 76, 1530
(1949); W. C. Dunlap and R. L. Watters, Phys. Rev., 92, 1396 (1953).

* P. H. Keesom and N. Pearlman, Phys. Rev., 91, 1347 (1953); N. Pearlman and P.
H. Keesom, Phys. Rev., 88, 398 (1952).

> W. L. Bond, W. P. Mason, H. J. McSkimin, K. M. Olsen, and G. K. Teal, Phys.
Rev., 78, 176 (1950); H. J. McSkimin, W. L. Bond, E. Buehler, and G. K. Teal, Phys.
Reb., 83, 1080 (1951).

¢ G. L. Pearson and J. Bardeen, Phys. Rev., 75, 865 (1949); also F. H. Horn, Phys.
Rev., 97, 1521 (1955).
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analogous to that of the hydrogen atom.” The difference is, however, that
the extra electron and the positive charge are embedded in a medium of
rather high dielectric constant (see Table 13-2). As a result, the radius of
the orbit covers several atomic distances and the binding energy is small.
In fact, if one employs for an estimate the simple Bohr picture modified by
taking into account the dielectric constant € and the effective mass m*, one
obtains for the radius and the energy of the ground state

r = el*m*e* and E, = —m*e*[2h%e? (13-1)

The energy E, is measured relative to the -bottom of the ionization
continuum, i.e., relative to the bottom of the conduction band. Assuming
for the moment the effective mass m* to be equal to the free electron mass,
one finds

€ r E, (Bohr) E,exp
Si 12 64 A —0.09 ev —0.05
Ge 16 8.5A —0.05 ev —0.01

The last column gives the experimental ionization energy of the donor
levels for doping with P, As, or Sb.8 A detailed calculation of the ionization
energy of donors by Kittel and Mitchell gives 0.009 ev as a lower limit for
germanium and 0.03 ev as a lower limit for silicon, in good agreement with
the experimental values.® These calculations made use of recent informa-
tion about the E(k) surfaces as revealed by cyclotron resonance experiments
(see Sec. 13-6).

Silicon and germanium may also be doped with trivalent elements such
as B, Al, Ga, and In. In these cases the added atoms are one electron short
for four electron pair bonds. Each added trivalent atom thus gives rise to a
vacant electron level slightly above the valence band. These levels are
acceptor levels because they may accept an electron from the filled band if
the electron is excited thermally. One may picture the acceptor level as a
hole describing a Bohr orbit about the impurity atom; the binding energies
are approximately equal to those for the donors. Ionization of the
acceptor level in this type of picture is equivalent to the excitation of a
valence electron into the hole. In the energy band scheme, electrons are
excited upward, holes downward (see Fig. 13-3).

From what has been said above, it is evident that ionization of donor
levels (P, As, Sb) gives rise to electronic carriers in the conduction band;
ionization of acceptor levels (B, Al, Ga, Sn) produces hole conductivity in
the valence band. In germanium at room temperature nearly all donor or

G. Wannier, Phys. Rev., 52, 191 (1937); see also G. F. Koster and J. C. Slater,
Phys. Rev., 95, 1167 (1954); 96, 1208 (1954).
& J. A. Burton, Physica, 20, 845 (1954).
® C. Kittel and A. H. Mitchell, Phys. Rev., 96, 1488 (1954).
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acceptor levels will be ionized, because kT =~ 0.025 ev, which is larger
than the binding energy of donor electrons and acceptor holes. Also, the
ionization energy decreases with increasing concentration, as may be seen
from Fig. 13-4.1° Thus, even at low temperatures the fraction of ionized
donors or acceptors may be rather large.

Cond. band 08
1 .
-l - -2_Donors
04
>7 -5~ Acceptors 02
JL 0 1 1 L
7 Z 1016 1017 1018 109
Valence band -
— ng (em™3)
Fig. 13-3. Energy level scheme for Fig. 13-4. lonization energy of ac-
donor and acceptor levels. ceptor levels in Si as function of the

acceptor density n,. [After Pearson
and Bardeen, ref. 10]

Crystal growth. Single crystals of silicon and germanium, either doped
or not, can be obtained by placing a seed crystal in contact with the melt
and then withdrawing the seed slowly.!* The concentration of a particular
impurity in crystals so obtained is determined by the segregation coefficient
of the impurity under consideration; this quantity is defined as the ratio
of the impurity concentration in the solid phase to that in the melt in
thermal equilibrium. For most impurities the segregation coefficient is
<, except for boron, which has a coefficient larger than unity in
germanium. It will be evident that in general, therefore, the concentration
of impurities in the melt increases as the crystal is withdrawn, so that the
impurities are concentrated at the end of the crystal. Based on this prin-
ciple is the so-called zone-refining technique by which crystals of high
purity may be obtained: when one moves a heating coil slowly along a
crystal, the impurities are swept towards one end of the crystal; this
process may of course be repeated many times.’? In this way it is now
possible to produce single crystals of Ge and Si with impurity concentra-
tions as small as one part in 10'° or 10°, at least if one considers the

'® For p-type Si, see G. L. Pearson and J. Bardeen, Phys. Rev., 75, 865 (1949); for
n-type Ge, see P. P. Debye and E. M. Conwell, Phys. Rev., 93, 693 (1954).

' G. K. Teal and J. B. Little, Phys. Rev., 78, €47 (1950); see also G. K. Teal and
E. Buehler, Phys. Rev., 87, 190 (1952).

' W. G. Pfann, J. Metals, 4, 747 (1952); W. G. Pfann and K. M. Olsen, Phys. Rev.,
89, 322 (1953).
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electrical resistivity a measure for the purity. It should be mentioned in this
connection that the use of crucibles and the contamination resulting from
the crucible material may be avoided by employing the so-called floating
zone technique.’® In this technique one produces a molten section in a
polycrystalline rod of the material (which is held vertically) by induction
heating. One end of the material is in contact with a single crystal seed
and the molten zone is moved slowly from that end to the other, leading
to recrystallization of the polycrystalline material.

Diffusion of impurities. We mentioned above that elements of the third
and fifth columns in the periodic system, used as doping material in Si and
Ge, are believed to be incorporated substitutionally in the lattice. This
belief is supported by the fact that the diffusion coefficients of these
elements lie in the same range as those for self-diffusion, i.e., the elements
probably diffuse by a vacancy mechanism.* There are, however, some
notable exceptions, viz., copper, nickel, and lithium. The diffusion co-
efficients of these elements in silicon and germanium are very high
(~10-% cm?/sec at temperatures of 700° or 800°C) and it seems likely that
the diffusion process in these cases involves the migration of interstitials.
It is believed that copper migrates through germanium in the form of
positive ions.!® At normal temperatures there is strong evidence that
copper acts as an acceptor for electrons, i.e., it should then be negatively
charged.

Influence of lattice defects. When a germanium crystal, doped with
donor impurities, is irradiated with high-energy particles, the conductivity
initially decreases. Upon further irradiation with a sufficiently large flux it
may convert from n type (electron carriers) to p type (hole carriers) and the
conductivity may then increase. Irradiation effects of this type are evidently
associated with the formation of vacancies and interstitial atoms in the
lattice; in fact, when the crystals are annealed, the changes essentially
disappear. Itis not unlikely that the interstitials correspond to donor levels
and the vacancies to acceptor levels, although several details of the
interpretation of irradiation effects are not yet settled.

Dislocations produced by plastic deformation of silicon and germanium
also produce pronounced effects on the electrical conductivity. In n-type
Ge, for example, plastic deformation leads to a reduction in the con-
ductivity, i.e., the deformation introduces acceptor levels.!® The physical

13 P. H. Keck and M. J. E. Golay, Phys. Rev., 89, 1297 (1953).

14 See, for example, H. Letaw, L. M. Slifkin, and W. M. Portnoy, Phys. Rev., 93, 892
(1954); W. C. Dunlap, Phys. Rev., 94, 1531 (1954).

15 C. S. Fuller, J. D. Struthers, J. A. Ditzenberger, and K. B. Wolfstlrn Phys. Rev.,
93, 1182 (1954); F. van der Maesen and J. A. Brenkman, J. Electrochem. Soc., 102, 229
(1955).

16 C. J. Gallagher, Phys. Rev., 88, 721 (1952).
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picture of the acceptor levels according to Shockley and Read is the
following. Slip in these crystals takes place along the {111} planes and
along a (110) direction. The extra half plane associated with an edge
dislocation leads to a row of “dangling”” bonds since the atoms of this row
have no neighbors on one side. An electron paired with one of those
dangling bonds would not be as “free” as an electron in the conduction
band, so that the corresponding level should lie below the bottom of the
conduction band. On the other hand, the paired electron is not as strongly
bound as one corresponding to a normal electron pair bond between two
neighboring atoms, i.e.; the level associated with the dangling bond should
lie above the filled band. Consequently, an edge dislocation corresponds
to a row of acceptor levels lying in the forbidden energy region. Fora
detailed discussion of the implications of this model for the electrical
properties of these materials we refer the reader to a series of three papers
by Read.l”

13-3. Conductivity and Hall effect in semiconductors with a single type of
charge carrier

Before discussing the electrical properties of Si and Ge, some remarks
on the conductivity and Hall eftect of semiconductors should be made.
In this section we shall limit ourselves to the case of a single type of charge
carrier. The conductivity of such a material is given by

o = neu (13-2)

where n is the density of carriers and u is their mobility (drift velocity per
unit field). It is observed that measurements of o(7") provide information
only about the product n(T)u(T), and in general do not allow one to deter-
mine these quantities separately. However, if we assume for the moment
that the Hall coefficient for a semiconductor is given by the formula
applicable to metals we would have (see 11-65),

Ry = l/nec and coRy = u (13-3)

Thus Ry(T) would provide information about n(T), and combined
measurements of Ry; and o thus permit determination of n and u separately.
Although this type of analysis is indeed applied to semiconductors, there
are some modifications in the formula for Ry which will be discussed below.
Also, the temperature-dependence of u is different from that for metals.

We shall give here a simple theory for n-type material based on the
assumption that the electrons in the conduction band behave as nearly
free electrons with an effective mass m*; this implies that constant-energy
surfaces in momentum space are assumed to be spheres. There exists at

" W. T. Read, Phil. Mag., 45, 775 (1954); 45, 1119 (1954); 46, 111 (1955).
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present a great deal of evidence (see Sec. 13-6) that this is not correct, but
in many instances the simple theory still gives rather good agreement with
the experiments. It is also assumed that the electron gas in the conduction
band is nondegenerate, and thus that it has a Maxwellian distribution.

As an example, consider a semiconductor in which the current is
carried only by electrons in the conduction band. Suppose an electric
field E, and a magnetic field H, are applied to the material as indicated in
Fig. 13-5. The current density /I, along the x-direction may then be obtained
from the Boltzmann transport equation in the same way as for metals.
Thus from (11-28) it follows that

_ &E, 1« 0F,
=3 Jo 9E

V2 r(E)8n/h®)pdp
(13-9)

The relaxation time 7 is assumed to

be a function only of the energy of

the electrons, not of their direction

of motion. Now it can readily be —
shown that the Fermi function Fy(E)

satisfies the relation

—(8F,|0E) = Fo(1 — Fo)[kT ~ Fo[kT
(13-5)

The last approximation is valid
only if the density of the electrons Fig. 13-5. Showing the Hall effect; the
in the conduction band is small current J, flows only if front and back

en o that F 1, i.e., if the faces are connected; non:nally, this is
ough s o<1, not the case and an electric field in the

sy SFem is nondegenerate. Recog- y-direction is set up. The electrons
nizing that 8mp® dp Fo/h® equals crually flow in the direction opposite
the number of electrons with momen- to the current vectors.

tum in the range dp, it follows that

H,

ne’E,
I —_

s = 57 (%) = oF, = neE, (13-6)

Here (v?7) is the average value of v?7(E), the average being taken over the
Maxwellian distribution of the conduction electrons. Since 3kT = m*(v?),
one may also express the mobility as

e (v®1)

m* ()

(13-7)

Note that if = were independent of the velocity of the electrons, this would
reduce simply to u = er/m*, as in the simplified model discussed in Sec.
11-2. We shall return to this expression in the next section.
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The Hall effect may be discussed by considering the case for which the
front and back faces in Fig. 13-5 are short-circuited, allowing the flow of
a current along the y-direction. An electron of velocity v, under influence
of the magnetic field H, will develop a velocity along the y-direction such
that

(0v,/ct)y, = ev,H [m*c = wv, (13-8)
On the other hand, due to collisions with the lattice,
(avv/dt)coll = —"UV/T

Hence, in the steady state,
v, = ev H,r[m*c = w7, (13-9)

In analogy, one may thus obtain the current along the y-axis by multiplying
the integrand of (13-4) by wr. This finally leads to

I, = (né2E, w[3kT)v*?%) (13-10)

Thus, although the electric field is applied along the x-direction, the
resultant current has a y-component due to the magnetic field. In fact, it
is convenient to define the Hall angle 6y (see Fig. 13-5), where

(%)
(v*7)
If the Hall contacts are not short-circuited, a field E, is set up to counteract

the influence of the magnetic field. The Hall coefficient then becomes

_ _ R Rl
RH - Ev/lx Hz_ Iv/alez - E W

tan GH: 0}{ :Iy/lm=w (13'11)

(13-12)

where o has been substituted from (13-6). Note that the sign of the carrier
in the above derivation is contained in e; for electrons Ry is negative,
for holes it is positive. It should be mentioned that one frequently employs
the Hall mobility uy defined in analogy with (13-3) by

(13-13)

Comparing this with the ‘““normal”” mobility given by (13-7), it is observed
that in general uy is not equal to u.

From the foregoing discussion it is evident that the relaxation time =
plays an essential role in the interpretation of conductivity and Hall effect
data. The relaxation time in general is determined by collisions of the
carriers with
- (i) Lattice vibrations

(ii) Tonized impurities

(iii) Neutral impurities, dislocations, vacancies, and interstitials.
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13-4. Mobility and Hall effect as determined by different scattering processes

(i) Scattering by lattice vibrations. From the theory of interaction of
thermal electrons with lattice vibrations in nonpolar solids,® it follows that

(a) The scattering is isotropic.
(b) The mean free path A is independent of the velocity of the carriers.

(c) The mean free path is inversely proportional to T, down to tem-
peratures of the order of 1°K.

The selection rules for electron-phonon interaction mentioned in
Sec. 11-7 play an essential role in arriving at these conclusions. For a given
temperature it thus follows from (a) and (b) that one may write!®

= Al (13-14)

Substituting 7 into the results obtained in the preceding section, one is
thus left with the simple problem of finding averages over a Maxwellian
distribution of quantities on the type v®. Thus, if only lattice scattering is
present, (13-7) and (13-13) give

p=4%eA [QemkT)V? and puy = (37/8)u (13-15)

Combining this result with (c) above, one concludes that the mobility u
should be proportional to 7-%2 in this case. Bardeen and Shockley?® find
from their calculation of A,

er (8m)12h4c

r—n—*= yzmzconst. T-32 (13-16)
Here, ¢, is_the average longitudinal elastic constant, and E, is the shift of
the edge of the conduction band per unit dilation; the temperature-
dependence of both these quantities may be neglected. For holes, E;
represents the shift of the edge of the valence band per unit dilation.
Experiments indicate that E; ~ 10ev for germanium. The formula
obtained by Seitz!® is written in terms of the Debye temperature 6, the
mass M of the atoms, and their number per unit volume N,

21/2 X 61/3 N1/3eﬁ2k262M

4.”5/6 ) m*5/2c2(kT)3/2
The constant C has the dimensions of an energy and is of the same order of
magnitude as E, in the Bardeen-Shockley formula; it is a measure for the

electron-phonon interaction. The mebility determined by lattice scattering
alone is usually referred to as the “lattice mobility.”

(13-16a)

18 F. Seitz, Phys. Rev., 73, 549 (1948); J. Bardeen and W. Shockley, Phys. Rev., 80,
72 (1950).

19 Compare expression (11-11) for the relation between collision time, relaxation
time, and scattering angle.
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The Hall coefficient as determined by lattice scattering for semicon-
ductors containing one or two types of carriers is given, respectively, by
37 3 muui — nul

Ry=+— and Ry = _—— "1 ¢ 13-17

n=* nec U 8ec (mup, + nop,)? ( )

where the subscripts e and 4 in the last formula refer to electrons and holes,
respectively. The conductivity for two types of carriers is of course equal

to (n.ep, + nyep,).

(i) fonic scattering predominates. When the concentration of ionized
donors is high, the charge carriers suffer Rutherford scattering due to the
presence of ions, as illustrated in
Fig. 13-6. If one assumes that the
ions are distributed throughout the
lattice in a regular fashion, the
average distance between the ions a;
is given by a} = 1/N,, where N, is the
number of ions per unit volume.

v Thus if v is the velocity of an electron,
. . the mean free time between collisions
Fig. 13-6. Rutherford scattering of an . . .
- is 7.~ a;/v. The relaxation time
electron by an ionized donpr. It can L O
be shown that tan (6/2) = e*/empv®, according to (I11-11) is in general
where ¢ is the dielectric constant of the given by

material. 7 =71/(1 — (cos B))

where (cos B) is the average of the cosine of the scattering angle. Making
use of the Rutherford scattering formula, Conwell and Weisskopf have
calculated an approximate expression for = with the result that

er Ezm*vﬁi €2m*204 —1
_r_my 142 13-18
m* 27N, [log ( K 4e4N?’3)] (13-18)

where e is the dielectric constant.® Itis observed that this type of scattering
leads to a mobility which varies aporoximately as 7%2, in contrast with the
T-372 law for lattice scattering.

The Hall coefficient and Hall mobility associated with ionic scattering
are found to be 2!

Ry = +1.93/nec,  py = 193 (13-19)

(iii) Neutral impurity scattering. The scattering of charge carriers by
neutral impurities is quite similar to the scattering of electrons by hydrogen

20 E. M. Conwell and V. F. Weisskopf, Phys. Rev., 77, 388 (1950); see also W.
Shockley, Electrons and Holes, Van Nostrand, New York, 1950, pp- 258 ff.; for a
quantum mechanical treatment, see H. Brooks, Phys. Rev., 83, 879 (1951).

! W. Shockley, op. cit., p. 279.
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atoms. Thus, by suitably modifying the theory of the latter, Erginsoy has
calculated the mobility associated with this type of scattering alone.??
He finds

m*e3

* — T ee—
eTim* = 1 = SoNe

(13-20)

where N is the density of neutral impurities and e is the dielectric constant.
The relaxation time is independent of the velocity in this case, so that the
Hall coefficient is the same as that for metals, viz., Ry = +1/nec, as can
readily be seen from (13-12).

Dislocations are also scattering centers for charge carriers as a result
of the dilation they produce in the lattice. According to calculations by
Dexter and Seitz the probability for scattering is proportional to the number
of dislocation lines per cm? and proportional to the temperature 7.2

Scattering of charge carriers by vacancies and interstitials is used in
studying radiation effects in solids by resistivity measurements.

In general, lattice scattering, ionic scattering, and scattering by neutral
impurities are all present. The relaxation time for a given velocity of the
charge carriers may then be obtained from

1/7 = ]/Tlattice -+ I/Tionic + 1/"’neutral (13-21)

because the probabilities for scattering are additive, each of them being
proportional to the reciprocal of the corresponding relaxation time.

13-5. Comparison with experiment

The first extensive investigation of the electrical properties of the
elements of the fourth group was carried out by Pearson and Bardeen on
silicon and silicon alloys containing boron and phosphorus.?* In these
experiments polycrystalline materials were used. More recently, the
electrical conductivity and Hall effect of single crystals of silicon containing
arsenic (n type) and boron (p type) have been studied by Morin and Maita
over a temperature range between 10°K and 1100°K.2% The mobilities in
single crystals are appreciably larger than those in polycrystalline materials
(see Table 13-3). Similar measurements on germanium crystals containing
arsenic have been reported by Debye and Conwell; these extend over the
temperature range between 11°K and 300°K.2¢

22 C. Erginsoy, Phys. Rev., 79, 1013 (1950).

3 D. L. Dexter and F. Seitz, Phys. Rev., 86, 964 (1952).

% G. L. Pearson and J. Bardeen, Phys. Rev., 75, 865 (1949).
% F. J. Morin and J. P. Maita, Phys. Rev., 96, 28 (1954).

2 P. P. Debye and E. M. Conwell, Phys. Rev., 93, 693 (1954).
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As an example we reproduce in Fig. 13-7 and 13-8 the resistivity and
Hall coefficient for some of the samples measured by Debye and Conwell,
(they actually measured eleven samples). The intrinsic resistivity is indi-
cated by the dashed line in Fig. 13-7. Sample 55 is nearly pure, whereas
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Fig. 13-7. The specific resistivity

in ohms cm for n-type germanium

samples (doped with arsenic), as

function of T-!. [After Debye and
Conwell, ref. 26]

Fig. 13-8. Hall coefficient (cm3/
coulomb) versus T-! for arsenic
doped germanium samples; the
numbers refer to the same samples
as in Fig. 13-7. [After Debye and

Conwell, ref. 26]

sample 58 contains encugh arsenic to make the electron gas in the con-
duction band degenerate over most of the temperature range. The other
samples have intermediate impurity densities.

In accordance with (13-13), the Hall mobility may be obtained from
the relation uy = cRy/p; the results are given in Fig. 13-9. It is observed
that the nearly pure sample 55 follows closely the 7-32 Jaw down to the
lowest temperatures. The reason for this is that neutral impurity scattering
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and ionic scattering are negligible for low impurity concentrations. As
the impurity concentration increases, ionized donors become important as
scattering centers at lower temperatures where the amplitude of the lattice
vibrations becomes small. Sample 61 contains a sufficient number of
ionized donors at low temperatures to give a positive slope for the u(T)
curves. In most of the samples,
however, the slope gets steeper again
after the initial flattening resulting “H
from ionic scattering; the reason
for this is that electrons fall back 108
into donor levels at low temperatures,
thus reducing the influence of ionic
scattering. 108
A quantitative analysis of these
results shows that in the range where
scattering of electrons by the lattice
is predominant, the mobility varies
as T-1% rather than as 7-15. This 10°
deviation from the simple theory is
probably in part due to the fact that

104

1 L1 Ll 1 1

the constant energy surfaces in the 10 20 304050 100 200 300
momentum space are not spheres. — T(K)
We shall return to this in Sec. 13-6.

-y . Fig. 139. Hall mobility for some
Similar deviations have been ob- ... -doped germanium samples as

served by Morin and Maita for function of T; the sample numbers are

silicon. A summary of mobility data the same as those in Figs. 13-7 and 13-8.
is given in Table 13-3. [After Debye and Conwell, ref. 26]

Table 13-3. Mobilities in cm? volt~! sec?

Room temp. Mattice (arbitrary temp.)

C (diamond), electrons® 900

Si (polycryst.) electrons 300

Si (polycryst.) holes 100

Si (single cryst.) electrons 1450 4.0 x 10°T-2*

Si (single cryst.) holes 500 2.5 x 10°T-23
Ge (single cryst.) electrons 3600 4.9 x 10'T-1-¢¢
Ge (single cryst.) holes 1700 1.05 x 10°T-%33
Sn (grey) electrons® 3000

@ C. C. Klick and J. Maurer, Phys, Rev. 81, 124 (1951).
® G. Busch, 1. Wieland, and H. Zoller, Helvetia Phys. Acta, 24, 49 (1951).

Debye and Conwell conclude from their measurements that the
mobility associated with ionic scattering increases with a power of T
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between 1.0 and 1.5, i.e., less rapidly than predicted by the Conwell-
Weisskopf formula. The Erginsoy formula for neutral impurity scattering
fits their data well for an effective electron mass equal to about m/3. They
find scattering by dislocations negligible in their samples.

13-6. Constant-energy surfaces and effective mass in silicon and germanium

The theory developed in Sec. 13-3 and 13-4 was based on the -assump-
tion that the energy of electrons near the bottom of the conduction band
or of holes near the top in the valence band could be represented by
1?k%[2m*. This implies that constant-energy surfaces in k-space are spheres
and that m* is a constant independent of the direction of motion of the
carriers. It is presently believed that the discrepancies between theory and
experiment cited above are, at least in part, due to the fact that this
assumption is incorrect. Thus values of the effective mass calculated
indirectly from the electrical properties must be considered unreliable.
Measurements of the influence of a magnetic field on the resistivity of
single crystals of germanium also drew attention to the fact that the
constang-energy surfaces cannot be spheres.??

If the constant-energy surfaces are spheres, the effective mass is,
according to (10-38),

m* = R2/(d2E|dk?)

However, if the energy is a function also of the direction of the wave
vector k, the effective mass is a tensor rather than a scalar, as was mentioned
in Sec. 10-4. By a suitable choice of axes, this tensor may be diagonalized
in such a way that along the three principal axes the effective mass is
given by

m?* = h*/(d?E(k)|dk}) where i=x,y,z (13-22)

For example, for motion along the x-axis, the electron behaves as a particle
of effective mass hz/(d2E/a'k§), etc. Until recently, experimental information
about the effective mass, and hence about the curvature of constant-energy
surfaces in the k-space, could be obtained only indirectly, viz., from
experimental results for transport phenomena in which m* occurs.
However, cyclotron resonance experiments of electrons and holes have
made it possible for the first time to measure m* directly.2® In this type
of experiment, electrons in the conduction band and holes in the valence
band describe spiral orbits about the axis of a constant magnetic field H.

*” G. L. Pearson and H. Suhl, Phys. Rev., 83, 768 (1951).

*® Dresselhaus, Kip, and Kittel, Phys. Rev., 92, 827 (1953); Lax, Zeiger, Dexter, and
Rosenblum, Phys. Rev., 93, 1418 (1954); Dexter, Zeiger, and Lax, Phys. Rev., 95, 557
(1954).
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The angular frequency of rotation w, can be obtained immediately from
the equality of the centrifugal force and the force due to the magnetic field:

m*vfr = + Hev[c or w,= +eH|/m*c (13-23)

where r is the radius of the orbit; the plus or minus sign indicates the
opposite senses of rotation for electrons and holes. Resonant absorption
of energy from a radio-frequency electric field perpendicular to the static

—> Absorption
T
Electrons
Electrons

‘ 1 L 1 !
0 1000 2000 3000 4000 5000 6000

—> H (oersteds)

Fig. 13-10. Typical cyclotron resonance absorption (arbitrary

units) for silicon near 24,000 mc/sec at 4°K; static magnetic field

in a (110) plane, 30° from an [001] axis. [After Dresselhaus, Kip,
and Kittel, Phys. Rev., 98, 368 (1955)]

magnetic field occurs when the frequency of the radio-frequency field is
equal to that determined by (13-23). Evidently, by measuring w, for
different directions of H relative to the crystal axes, one measures essentially
the effective mass as function of direction. Usually, one employs a constant
frequency of the radio-frequency field and then varies H until resonance
is observed. A typical result is reproduced in Fig. 13-10 for an angular
frequency w, ~ 1.5 X 10" radians per sec for silicon at 4°K. The assign-
ment of a given peak to electrons or holes may be made on the basis of
a circularly polarized radio-frequency field or by using n- or p-type
material and exciting a particular type of carrier. The width of the lines
is determined by the relaxation time = of the electrons or holes. In order
to obtain distinct resonance peaks, it is necessary that w,7 > 1. Thus the
mean free path of the carriers should be large enough so that they can
cover at least one radian of a circle between successive collisions. Since
the relaxation times 7 are of the order of 10~ or 10 second at room
temperature, it is necessary to work with high-purity samples at liquid
nitrogen or helium temperatures if one employs frequencies w ~ 101
radians per second.

Since it is not possible to enter into a detailed discussion of this subject,
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it may suffice here to mention some of the results obtained for silicon
and germanium.?® As an example of the band structures obtained, we
give in Fig. 13-11 the energy as function of the wave vector along the
(100) direction for silicon. It is observed that the minimum energy in the
conduction band does not correspond to k = 0 but that there are in all
six minima located somewhere along the six (100) axes. In the vicinity
of these minima, the constant energy surfaces are prolate ellipsoids of

' ,%L%

Fig. 13-11. Schematic representation of the energy band structure
in Si along a (100) axis. [After F. ilerman, Proc. IRE, 43,
1703 (1955)]

revolution. Similar minima occur for the conduction band in germanium
along the (111) axes. Choosing one of these minima as origin, the surfaces
of constant energy may thus be represented by an expression of the form

k:+kE  kZ )

oy = (215
(k) 2m, 2m,

(13-24)

where m, and m, are called, respectively, the transverse and longitudinal
electron mass. For Si and Ge the cyclotron resonance experiments lead
to the following results at 4°K::

Silicon: m, = 0.19m; m, = 0.98m
Germanium: m, = 0.082m; m, = 1.5Tm

where m is the free electron mass.

%% The energy band structure of Si and Ge derived from cyclotron experiments was,
at least in part, predicted by a theoretical study of F. Herman, Physica, 20, 801 (1954);
Phys. Rev., 95, 847 (1954). See also his excellent review in Proc. IRE, 43, 1703-1732
(1955) (solid state issue).
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The maximum energy for the valence band in both silicon and
germanium occurs for k=0, according to the results of cyclotron
resonance experiments; furthermore, this maximum is common to two
bands which meet at K = 0. The constant-energy surfaces near k = 0 for
these two bands are warped and are given by the expression

2
E) = — oo (4K + VB T O T KIS K (13:25)

where 4, B, and C are constants. The negative and positive roots corre-
spond, respectively, to the highest (¥;) and second highest (¥,) valence
band. If one approximates the warped surfaces by spheres, one may
determine the average hole mass in the two bands from the experimental
values of 4, B, and C. In this approximation, one obtains

Silicon: my = 0.49m; mj = 0.16m
Germanium:  mj = 0.28m; mj, = 0.044m

We should note here that the form of expression (13-25) was indicated by
the theory of spin-orbit splitting for these crystals.3¢

It is observed from Fig. 13-11 that there is a third valence band V,
which is separated from the ¥V, and V, bands as a result of spin-orbit
interaction. The maximum of the ¥; band lies slightly below that of the
two other bands. Near the maximum of the V; band, the constant energy
surfaces are spherical; the effective masses are:

Silicon: my,_ = 0.24m
Germanium: my, = 0.077m

The energy difference between the top of the V; band and the common
maximum of the ¥, and V, bands has been estimated to be 0.035 ev for
Si and 0.28 ev for Ge. It will be evident that the relative hole populations
of the V; and V;, V, bands is a function of temperature.

The energy gap. A few remarks may be made here about the conse-
quences of the above results for the concept of the forbidden energy gap
and its experimental determination. When an electron is thermally excited
from the. valence band into the conduction band, the electron absorbs a
phonon. This process is governed by the selection rules corresponding to
conservation of momentum and energy:

kK=k+ q+ 2mn
E(k') = E(k) 4 ho,

(13-26)

30 G. Dresselhaus, A. F. Kip, and C. Kittel, Phys. Rev., 95, 568 (1954); 98, 368
(1955); R. J. Elliott, Phys. Rev., 96, 266 (1954); 96, 280 (1954).
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Here k' and k are, respectively, the final and the initial wave vector of the
electron; q is the wave vector of the absorbed phonon, and /4w, is the
energy of the phonon; n is a vector in the reciprocal lattice, and 27n in
(13-26) guarantees that k' is a vector in the reduced zone. The “cheapest”
thermal excitation of an electron from the valence band to the conduction
band evidently involves a phonon of energy /iw, = E, where E, is the
energy difference between the highest electronic level in the valence band
and the lowest level in the conduction band (see Fig. 13-11). Thus E,
may be obtained from the variation of the carrier concentration with
temperature, We should note here that E, itself is a function of temperature
(resulting from the expansion of the lattice).

Let us now consider what one measures if one determines the long
wavelength threshold for optical excitation of an electron from the valence
band into the conduction band in substances such as Si and Ge. If one
considers the optical excitation as a collision between an electron of wave
vector k and a photon of wave vector o the selection rules require

kK =k + o6 and E(k')= E(k)+ hv (13-27)

where hv is the energy of the photon. Now, the wavelength of a photon
corresponding to infrared or visible radiation is large compared to a lattice
constant. Hence o may in general be neglected in comparison with the
electron wave vector k. In other words, optical transitions of this kind.
occur “‘vertically” in the reduced zone scheme because we then have
k' = k. Ttis evident from Fig. 13-11 that the “‘cheapest’ vertical transition
involves always more energy than E, because the minimum of the conduc-
tion band occurs for a different k-value than the maximum of the valence
band. In other words, the optical threshold energy should be larger than
E,.,. However, the observed threshold photon energies correspond closely
to the energy gap E, determined from the variation of carrier concentration
with temperature. Hall, Bardeen, and Blatt have therefore suggested that
the observed optical threshold is determined by an indirect or nonvertical
transition in which the absorption of a photon is accompanied by the
absorption or emission of a phonon.3! Under these circumstances the
momentum and energy conservation laws for an optical transition are:

kKk=k+o+q+2rn=~k+q+ 27n

(13-28)
E(k') = E(k) + hv + koo,

where the symbols have the same meaning as above. The presence of the
phonon momentum q thus makes it possible for the transition to be non-
vertical. The + and — signs refer, respectively, to absorption and
emission of a phonon. It is of interest to recognize that at very low

3 L. H. Hall, J. Bardeen, and F. J. Blatt, Phys. Rev., 95, 559 (1954).
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temperatures few phonons are present and thus absorption of a phonon
becomes improbable. Thus at 7= 0 we shall have an optical threshold
frequency », such that

hy, = E,.p + Ao,

At high temperatures, on the other hand, there are sufficient phonons
present to make optical transitions possible at a threshold frequency ¥,
such that

hvt =F ?'gap — }iwa

In other words, the optical threshold frequency will vary with temperature.

Transport phenomena. It will be evident that the above results for the
energy-band structure have an important bearing on the theory of electrical
conductivity, Hall effect, magneto resistance, infrared absorption, etc. In
fact, the resulting energy-band scheme and the numerical values for the
effective mass parameters are consistent with magneto resistance measure-
ments on n-type germanium and silicon.3 Deviations from the 7~ law for
the mobility may also be explained as a result of the nonisotropic mass..

Infrared absorption. A few remarks may be made here about the
infrared absorption of charge carriers in Ge and Si. For the moment,
consider a charge carrier with an isotropic mass m* under influence of an
electromagnetic field. Suppose the electric field is along the x-direction
and let the magnetic field be neglected. The velocity component v, of the
charge carriers then varies with time according to

dux/dt = (avx/at)ﬂeld + (auz/at)coll = (e/m*)EOeim - vx/f
The stationary solution of this equation is

: 1
v, = (e-r/m"‘)Eoe""' m (13-29)

As long as the angular frequency of the field w < 1/, v, varies in phase
with the external field, and the conductivity of the material containing N
carriers per unit volume is equal to the static conductivity o,, where

gy, = Nev,[E, = Ne?r/m* (w7 L)

In the general case, however, it follows from (13-29) that the conductivity
is complex; the real part varies with frequency as
o' = Netrim*(1 + w*r®) = o,/(1 + w?7?)

32 8. Meiboom and B. Abeles, Phys. Rev., 95, 31 (1954); 1. Estermann and A. Foner,
Phys. Rev., 79, 365 (1950); G. L. Pearson and C. Herring, Physica, 20, 975 (1954).
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The absorption coefficient of the radiation X is of course proportional to
the real part of the conductivity, and in fact equal to

K= (4n|nc)o’ = 4nNetr[ncm*(1 + w??)

where 7 is the index of refraction and c is the velocity of light. When
o7>> 1, this may be written approximately as

K~ 4nNed[nc(m*)2w?u (13-30)

where u is the mobility of the carriers. Now if the constant-energy surfaces
are prolate spheroids, one can use

100 (13-30) by replacing m* by an average
50 effective mass m®, given by

- e 1, = ¥(1m,+2jm)  (13-31)

E 57 where m, and m, are the longitudi-

~ p=02Qcm nal and transversal mass parameters.

t b Thus by measuring K as function

5 p=.01Qcm of w, m}, may be determined from

known values of u. In Fig. 13-12

L p=50 2 cm we have represented the absorption

o . 4 4 44 .4 4 4] coefficients of n-type germanium

15 2 3 4 56 8 1012 samples in the infrared, as deter-

—>\inp mined by Fan and Becker.3® The

Fig. 13-12. The absorption coefficient resistivity of the samples at room
of n-type Ge. [After Fan and- Becker, temperature is indicated. The sharp
ref. 33] rise in the K versus wavelength curves
is associated with transitions of
electrons from the valence band to the conduction band. For wave-
lengths > 6 micron (w < 3 X 10 radians per second), K varies
approximately as 1/w? in accordance with (13-30). From the four
curves given in Fig. 13-12, Kahn finds by applying (13-30) for the
average effective mass of the electrons, 0.11, 0.12, 0.20, and 0.14, taking
the mass of a free electron as unit.3 Using the values for m, and m, for
electrons in Ge as determined from the cyclotron resonance experiments,
one finds from (13-31) that m}, = 0.14m, in reasonable agreement with
the experimental values. The infrared absorption bands observed in p-type
Ge can be interpreted in terms of transitions of holes between the three
energy bands lying near the top of the valence band, as suggested by the
cyclotron resonance experiments.

3 H. Y. Fan and M. Becker, Proc. Reading Conference, Butterworths Scientific
Publications, London, 1951, pp. 132-147.
¥ A. H. Kahn, Phys. Rev., 97, 1647 (1955).
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13-7. The lifetime and diffusion of minority carriers

Consider a semiconductor containing a relatively high concentration
of donor levels so that the conductivity is essentially due to electrons in
the conduction band (n-type). The electrons are then called the majority
carriers. There are, of course, always some holes in the valence band as a
result of thermal excitation of electrons from<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>