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PREFACE An Introduction to Mechanics grew out of a one-semester course at the
Massachusetts Institute of Technology—Physics 8.012—intended for
students who seek to understand physics more deeply than the usual
freshman level. In the four decades since this text was written physics
has moved forward on many fronts but mechanics continues to be a
bedrock for concepts such as inertia, momentum, and energy; fluency
in the physicist’s approach to problem-solving—an underlying theme of
this book—remains priceless. The positive comments we have received
over the years from students, some of whom are now well advanced in
their careers, as well as from faculty at M.I.T. and elsewhere, reassures
us that the approach of the text is fundamentally sound. We have received
many suggestions from colleagues and we have taken this opportunity to
incorporate their ideas and to update some of the discussions.

We assume that our readers know enough elementary calculus to dif-
ferentiate and integrate simple polynomials and trigonometric functions.
We do not assume any familiarity with differential equations. Our expe-
rience is that the principal challenge for most students is not with un-
derstanding mathematical concepts but in learning how to apply them to
physical problems. This comes with practice and there is no substitute
for solving challenging problems. Consequently problem-solving takes
high priority. We have provided numerous worked examples to help pro-
vide guidance. Where possible we try to tie the examples to interesting
physical phenomena but we are unapologetic about totally pedagogical
problems. A block sliding down a plane is sometimes mocked as the
quintessentially dull physics problem but if one allows the plane to ac-
celerate, the system takes on a new complexion.
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The problems in the first edition have challenged, instructed, and occa-
sionally frustrated generations of physicists. Some former students have
volunteered that working these problems gave them the confidence to
pursue careers in science. Consequently, most of the problems in the
first edition have been retained and a number of new problems have been
added. We continue to respect the wisdom of Piet Hein’s aphoristic ditty1

Problems worthy of attack,
Prove their worth by hitting back.

In addition to this inspirational thought, we offer students a few prac-
tical suggestions: The problems are meant to be worked with pencil and
paper. They generally require symbolic solutions: numerical values, if
needed, come last. Only by looking at a symbolic solution can one de-
cide if an answer is reasonable. Diagrams are helpful. Hints and answers
are given for some of the problems. We have not included solutions in
the book because checking one’s approach before making the maximum
effort is often irresistible. Working in groups can be instructional for all
parties. A separate solutions manual with restricted distribution is how-
ever available from Cambridge University Press.

Two revolutionary advances in physics that postdate the first edition
deserve mention. The first is the discovery, more accurately the rediscov-
ery, of chaos in the 1970’s and the subsequent emergence of chaos the-
ory as a vital branch of dynamics. Because we could not discuss chaos
meaningfully within a manageable length, we have not attempted to deal
with it. On the other hand, it would have been intellectually dishonest to
present evidence for the astounding accuracy of Kepler’s laws without
mentioning that the solar system is chaotic, though with a time-scale too
long to be observable, and so we have duly noted the existence of chaos.
The second revolutionary advance is the electronic computer. Compu-
tational physics is now a well-established discipline and some level of
computational fluency is among the physicist’s standard tools. Never-
theless, we have elected not to include computational problems because
they are not essential for understanding the concepts of the book, and
because they have a seductive way of consuming time.

Here is a summary of the second edition: The first chapter is a math-
ematical introduction to vectors and kinematics. Vector notation is stan-
dard not only in the text but throughout physics and so we take some
care to explain it. Translational motion is naturally described using fa-
miliar Cartesian coordinates. Rotational motion is equally important but
its natural coordinates are not nearly as familiar. Consequently, we put
special emphasis on kinematics using polar coordinates. Chapter 2 in-
troduces Newton’s laws starting with the decidedly non-trivial concept
of inertial systems. This chapter has been converted into two, the first
(Chapter 2) discussing principles and the second (Chapter 3) devoted
to applying these to various physical systems. Chapter 4 introduces
the concepts of momentum, momentum flux, and the conservation of

1 From Grooks 1 by Piet Hein, copyrighted 1966, The M.I.T. Press.
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momentum. Chapter 5 introduces the concepts of kinetic energy, po-
tential energy, and the conservation of energy, including heat and other
forms. Chapter 6 applies the preceding ideas to phenomena of general in-
terest in mechanics: small oscillations, stability, coupled oscillators and
normal modes, and collisions. In Chapter 7 the ideas are extended to ro-
tational motion. Fixed axis rotation is treated in this chapter, followed by
the more general situation of rigid body motion in Chapter 8. Chapter 9
returns to the subject of inertial systems, in particular how to understand
observations made in non-inertial systems. Chapters 10 and 11 present
two topics that are of general interest in physics: central force motion and
the damped and forced harmonic oscillator, respectively. Chapters 12–14
provide an introduction to non-Newtonian physics: the special theory of
relativity.

When we created Physics 8.012 the M.I.T. semester was longer than
it is today and there is usually not enough class time to cover all the ma-
terial. Chapters 1–9 constitute the intellectual core of the course. Some
combination of Chapters 9–14 is generally presented, depending on the
instructor’s interest.

We wish to acknowledge contributions to the book made over
the years by colleagues at M.I.T. These include R. Aggarwal, G. B.
Benedek, A. Burgasser, S. Burles, D. Chakrabarty, L. Dreher, T. J.
Greytak, H. T. Imai, H. J. Kendall (deceased), W. Ketterle, S. Mochrie,
D. E. Pritchard, P. Rebusco, S. W. Stahler, J. W. Whitaker, F. A. Wilczek,
and M. Zwierlein. We particularly thank P. Dourmashkin for his help.

Daniel Kleppner
Robert J. Kolenkow





TO THE
TEACHER

This edition of An Introduction to Mechanics, like the first edition, is
intended for a one-semester course. Like the first edition, there are 14
chapters, though much of the material has been rewritten and two chap-
ters are new. The discussion of Newton’s laws, which sets the tone for the
course, is now presented in two chapters. Also, the discussion of energy
and energy conservation has been augmented and divided into two chap-
ters. Chapter 5 on vector calculus from the first edition has been omitted
because the material was not essential and its presence seemed to gen-
erate some math anxiety. A portion of the material is in an appendix to
Chapter 5.

The discussion of energy has been extended. The idea of heat has been
introduced by relating the ideal gas law to the concept of momentum
flux. This simultaneously incorporates heat into the principle of energy
conservation, and illustrates the fundamental distinction between heat
and kinetic energy. At the practical end, some statistics are presented on
international energy consumption, a topic that might stimulate thinking
about the role of physics in society,

The only other substantive change has been a recasting of the dis-
cussion of relativity with more emphasis on the spacetime description.
Throughout the book we have attempted to make the math more user
friendly by solving problems from a physical point of view before pre-
senting a mathematical solution. In addition, a number of new examples
have been provided.

The course is roughly paced to a chapter a week. The first nine chap-
ters are vital for a strong foundation in mechanics: the remainder covers
material that can be picked up in the future. The first chapter introduces
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the language of vectors and provides a background in kinematics that is
used throughout the text. Students are likely to return to Chapter 1, using
it as a resource for later chapters.

On a few occasions we have been able to illustrate concepts by ex-
amples based on relatively recent advances in physics, for instance exo-
planets, laser-slowing of atoms, the solar powered space kite, and stars
orbiting around the cosmic black hole at the center of our galaxy.

The question of student preparation for Physics 8.012 at M.I.T. comes
up regularly. We have found that the most reliable predictor of per-
formance is a quiz on elementary calculus. At the other extreme, oc-
casionally a student takes Physics 8.012 having already completed an
AP physics course. Taking a third introductory physics course might be
viewed as cruel and unusual, but to our knowledge, these students all felt
that the experience was worthwhile.



LIST OF
EXAMPLES

Chapter 1 VECTORS AND KINEMATICS
1.1 The Law of Cosines 5; 1.2 Work and the Dot Product 5; 1.3 Ex-
amples of the Vector Product in Physics 7; 1.4 Area as a Vector 8;
1.5 Vector Algebra 10; 1.6 Constructing a Vector Perpendicular to a
Given Vector 10; 1.7 Finding Velocity from Position 17; 1.8 Uniform
Circular Motion 18; 1.9 Finding Velocity from Acceleration 19; 1.10
Motion in a Uniform Gravitational Field 21; 1.11 The Effect of Radio
Waves on an Ionospheric Electron 21 1.12 Circular Motion and Rotat-
ing Vectors 24; 1.13 Geometric Derivation of dr̂/dt and dθ̂/dt 30; 1.14
Circular Motion in Polar Coordinates 31; 1.15 Straight Line Motion in
Polar Coordinates 32; 1.16 Velocity of a Bead on a Spoke 33; 1.17
Motion on an Off-center Circle 33; 1.18 Acceleration of a Bead on a
Spoke 34; 1.19 Radial Motion without Acceleration 35

Chapter 2 NEWTON’S LAWS
2.1 Inertial and Non-inertial Systems 55; 2.2 Converting Units 63;
2.3 Astronauts’ Tug-of-War 67; 2.4 Multiple Masses: a Freight Train
69; 2.5 Examples of Constrained Motion 70; 2.6 Masses and Pulley
71; 2.7 Block and String 1 73; 2.8 Block and String 2 73; 2.9 The
Whirling Block 74; 2.10 The Conical Pendulum 75

Chapter 3 FORCES AND EQUATIONS OF MOTION
3.1 Turtle in an Elevator 87; 3.2 Block and String 89; 3.3 Dangling
Rope 90; 3.4 Block and Wedge with Friction 93; 3.5 The Spinning



xviii LIST OF EXAMPLES

Terror 94; 3.6 Whirling Rope 95; 3.7 Pulleys 97; 3.8 Terminal Veloc-
ity 99; 3.9 Falling Raindrop 101; 3.10 Pendulum Motion 104; 3.11
Spring Gun and Initial Conditions 106

Chapter 4 MOMENTUM
4.1 The Bola 118; 4.2 Drum Major’s Baton 120; 4.3 Center of Mass
of a Non-uniform Rod 122; 4.4 Center of Mass of a Triangular Plate
123; 4.5 Center of Mass Motion 124; 4.6 Exoplanets 125; 4.7 The
Push Me–Pull You 128; 4.8 Spring Gun Recoil 130; 4.9 Measuring the
Speed of a Bullet 132; 4.10 Rubber Ball Rebound 133; 4.11 How to
Avoid Broken Ankles 135 4.12 Mass Flow and Momentum 136; 4.13
Freight Car and Hopper 138; 4.14 Leaky Freight Car 138; 4.15 Center
of Mass and the Rocket Equation 139; 4.16 Rocket in Free Space 140;
4.17 Rocket in a Constant Gravitational Field 141; 4.18 Saturn V 142;
4.19 Slowing Atoms with Laser Light 144; 4.20 Reflection from an
Irregular Object 147; 4.21 Solar Sail Spacecraft 148; 4.22 Pressure of
a Gas 149; 4.23 Dike at the Bend of a River 150

Chapter 5 ENERGY
5.1 Mass Thrown Upward Under Constant Gravity 163; 5.2 Solving the
Equation for Simple Harmonic Motion 164; 5.3 Vertical Motion in an
Inverse Square Field 166; 5.4 The Conical Pendulum 171; 5.5 Escape
Velocity—the General Case 171; 5.6 Empire State Building Run-Up
173; 5.7 The Inverted Pendulum 174; 5.8 Work by a Uniform Force
175; 5.9 Work by a Central Force 176; 5.10 A Path-dependent Line
Integral 177; 5.11 Parametric Evaluation of a Line Integral 179 5.12
Energy Solution to a Dynamical Problem 180; 5.13 Potential Energy
of a Uniform Force Field 182; 5.14 Potential Energy of a Central Force
183; 5.15 Potential Energy of the Three-Dimensional Spring Force 183;
5.16 Bead, Hoop, and Spring 184; 5.17 Block Sliding Down an Inclined
Plane 188; 5.18 Heat Capacity of a Gas 191; 5.19 Conservation Laws
and the Neutrino 193; 5.20 Energy and Water Flow from Hoover Dam
195

Chapter 6 TOPICS IN DYNAMICS
6.1 Molecular Vibrations 213; 6.2 Lennard-Jones Potential 214; 6.3
Small Oscillations of a Teeter Toy 216; 6.4 Stability of the Teeter Toy
218; 6.5 Energy Transfer Between Coupled Oscillators 221; 6.6 Nor-
mal Modes of a Diatomic Molecule 222; 6.7 Linear Vibrations of Car-
bon Dioxide 224; 6.8 Elastic Collision of Two Balls 228; 6.9 Limita-
tions on Laboratory Scattering Angle 231



LIST OF EXAMPLES xix

Chapter 7 ANGULAR MOMENTUM AND FIXED AXIS
ROTATION
7.1 Angular Momentum of a Sliding Block 1 243; 7.2 Angular Mo-
mentum of the Conical Pendulum 244; 7.3 Moments of Inertia of Some
Simple Objects 247; 7.4 Torque due to Gravity 251; 7.5 Torque and
Force in Equilibrium 252; 7.6 Central Force Motion and the Law of
Equal Areas 253; 7.7 Capture Cross-section of a Planet 254; 7.8 An-
gular Momentum of a Sliding Block 2 257; 7.9 Dynamics of the Coni-
cal Pendulum 258; 7.10 Atwood’s Machine with a Massive Pulley 261;
7.11 Kater’s Pendulum 264; 7.12 Crossing Gate 265; 7.13 Angular
Momentum of a Rolling Wheel 269; 7.14 Disk on Ice 271; 7.15 Drum
Rolling down a Plane 272; 7.16 Drum Rolling down a Plane: Energy
Method 275; 7.17 The Falling Stick 276

Chapter 8 RIGID BODY MOTION
8.1 Rotations through Finite Angles 292; 8.2 Rotation in the x−y Plane
295; 8.3 The Vector Nature of Angular Velocity 295; 8.4 Angular Mo-
mentum of Masses on a Rotating Skew Rod 296; 8.5 Torque on the Ro-
tating Skew Rod 298; 8.6 Torque on the Rotating Skew Rod (Geometric
Method) 299; 8.7 Gyroscope Precession 302; 8.8 Why a Gyroscope
Precesses 303; 8.9 Precession of the Equinoxes 304; 8.10 The Gyro-
compass 305; 8.11 Gyrocompass Motion 307; 8.12 The Stability of
Spinning Objects 309; 8.13 Rotating Dumbbell 314; 8.14 The Tensor
of Inertia for a Rotating Skew Rod 316; 8.15 Why A Flying Saucer
Is Better Than A Flying Cigar 318; 8.16 Dynamical Stability of Rigid
Body Motion 325; 8.17 The Rotating Rod 327; 8.18 Euler’s Equations
and Torque-free Precession 327

Chapter 9 NON-INERTIAL SYSTEMS AND
FICTITIOUS FORCES
9.1 The Apparent Force of Gravity 345; 9.2 Cylinder on an Accelerating
Plank 346; 9.3 Pendulum in an Accelerating Car 347; 9.4 The Driving
Force of the Tides 349; 9.5 Equilibrium Height of the Tides 351; 9.6
Surface of a Rotating Liquid 360; 9.7 A Sliding Bead and the Coriolis
Force 361; 9.8 Deflection of a Falling Mass 361; 9.9 Motion on the
Rotating Earth 363; 9.10 Weather Systems 364; 9.11 The Foucault
Pendulum 366

Chapter 10 CENTRAL FORCE MOTION
10.1 Central Force Description of Free-particle Motion 380; 10.2 How
the Solar System Captures Comets 382; 10.3 Perturbed Circular Orbit
384; 10.4 Rutherford (Coulomb) Scattering 389; 10.5 Geostationary
Orbit 394; 10.6 Satellite Orbit Transfer 1 395; 10.7 Satellite Orbit



xx LIST OF EXAMPLES

Transfer 2 397; 10.8 Trojan Asteroids and Lagrange Points 398; 10.9
Cosmic Keplerian Orbits and the Mass of a Black Hole 400

Chapter 11 THE HARMONIC OSCILLATOR
11.1 Incorporating Initial Conditions 413; 11.2 Physical Limitations to
Damped Motion 417; 11.3 The Q of Two Simple Oscillators 419; 11.4
Graphical Analysis of a Damped Oscillator 420; 11.5 Driven Harmonic
Oscillator Demonstration 423; 11.6 Harmonic Analyzer 426; 11.7 Vi-
bration Attenuator 427

Chapter 12 THE SPECIAL THEORY OF RELATIVITY
12.1 Applying the Galilean Transformation 448; 12.2 Describing a
Light Pulse by the Galilean Transformation 449; 12.3 Simultaneity 451;
12.4 The Role of Time Dilation in an Atomic Clock 456; 12.5 Time Di-
lation, Length Contraction, and Muon Decay 460; 12.6 An Application
of the Lorentz Transformation 461; 12.7 The Order of Events: Time-
like and Spacelike Intervals 462; 12.8 The Speed of Light in a Moving
Medium 465; 12.9 Doppler Navigation 468

Chapter 13 RELATIVISTIC DYNAMICS
13.1 Speed Dependence of the Electron’s Mass 480; 13.2 Relativistic
Energy and Momentum in an Inelastic Collision 483; 13.3 The Equiva-
lence of Mass and Energy 485; 13.4 The Photoelectric Effect 490; 13.5
The Pressure of Light 491; 13.6 The Compton Effect 492; 13.7 Pair
Production 495; 13.8 The Photon Picture of the Doppler Effect 496;
13.9 The Photon Picture of the Gravitational Red Shift 497

Chapter 14 SPACETIME PHYSICS
14.1 Relativistic Addition of Velocities 511



VECTORS
AND
KINEMATICS1

1.1 Introduction 2
1.2 Vectors 2

1.2.1 Definition of a Vector 2
1.3 The Algebra of Vectors 3

1.3.1 Multiplying a Vector by a Scalar 3
1.3.2 Adding Vectors 3
1.3.3 Subtracting Vectors 3
1.3.4 Algebraic Properties of Vectors 4

1.4 Multiplying Vectors 4
1.4.1 Scalar Product (“Dot Product”) 4
1.4.2 Vector Product (“Cross Product”) 6

1.5 Components of a Vector 8
1.6 Base Vectors 11
1.7 The Position Vector r and Displacement 12
1.8 Velocity and Acceleration 14

1.8.1 Motion in One Dimension 14
1.8.2 Motion in Several Dimensions 15

1.9 Formal Solution of Kinematical Equations 19
1.10 More about the Time Derivative of a Vector 22

1.10.1 Rotating Vectors 23
1.11 Motion in Plane Polar Coordinates 26

1.11.1 Polar Coordinates 27
1.11.2 dr̂/dt and dθ̂/dt in Polar Coordinates 29
1.11.3 Velocity in Polar Coordinates 31
1.11.4 Acceleration in Polar Coordinates 34

Note 1.1 Approximation Methods 36
Note 1.2 The Taylor Series 37
Note 1.3 Series Expansions of Some Common Functions 38
Note 1.4 Differentials 39
Note 1.5 Significant Figures and Experimental Uncertainty 40
Problems 41



2 VECTORS AND KINEMATICS

1.1 Introduction
Mechanics is at the heart of physics; its concepts are essential for under-
standing the world around us and phenomena on scales from atomic to
cosmic. Concepts such as momentum, angular momentum, and energy
play roles in practically every area of physics. The goal of this book is to
help you acquire a deep understanding of the principles of mechanics.

The reason we start by discussing vectors and kinematics rather than
plunging into dynamics is that we want to use these tools freely in dis-
cussing physical principles. Rather than interrupt the flow of discussion
later, we are taking time now to ensure they are on hand when required.

1.2 Vectors
The topic of vectors provides a natural introduction to the role of math-
ematics in physics. By using vector notation, physical laws can often
be written in compact and simple form. Modern vector notation was
invented by a physicist, Willard Gibbs of Yale University, primarily to
simplify the appearance of equations. For example, here is how New-
ton’s second law appears in nineteenth century notation:

Fx = max

Fy = may

Fz = maz.

In vector notation, one simply writes

F = ma,

where the bold face symbols F and a stand for vectors.
Our principal motivation for introducing vectors is to simplify the

form of equations. However, as we shall see in Chapter 14, vectors have
a much deeper significance. Vectors are closely related to the fundamen-
tal ideas of symmetry and their use can lead to valuable insights into the
possible forms of unknown laws.

1.2.1 Definition of a Vector
Mathematicians think of a vector as a set of numbers accompanied by
rules for how they change when the coordinate system is changed. For
our purposes, a down to earth geometric definition will do: we can think
of a vector as a directed line segment. We can represent a vector graphi-
cally by an arrow, showing both its scale length and its direction. Vectors
are sometimes labeled by letters capped by an arrow, for instance �A, but
we shall use the convention that a bold face letter, such as A, stands for
a vector.

To describe a vector we must specify both its length and its direction.
Unless indicated otherwise, we shall assume that parallel translation does
not change a vector. Thus the arrows in the sketch all represent the same
vector.
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If two vectors have the same length and the same direction they are
equal. The vectors B and C are equal:

B = C.

The magnitude or size of a vector is indicated by vertical bars or, if no
confusion will occur, by using italics. For example, the magnitude of A
is written |A|, or simply A. If the length of A is

√
2, then |A| = A =

√
2.

Vectors can have physical dimensions, for example distance, velocity,
acceleration, force, and momentum.

C

B

If the length of a vector is one unit, we call it a unit vector. A unit
vector is labeled by a caret; the vector of unit length parallel to A is Â. It
follows that

Â =
A
A

and conversely

A = AÂ.

The physical dimension of a vector is carried by its magnitude. Unit
vectors are dimensionless.

1.3 The Algebra of Vectors
We will need to add, subtract, and multiply two vectors, and carry out
some related operations. We will not attempt to divide two vectors since
the need never arises, but to compensate for this omission, we will define
two types of vector multiplication, both of which turn out to be quite
useful. Here is a summary of the basic algebra of vectors.

1.3.1 Multiplying a Vector by a Scalar
If we multiply A by a simple scalar, that is, by a simple number b, the
result is a new vector C = bA. If b > 0 the vector C is parallel to A, and
its magnitude is b times greater. Thus Ĉ = Â, and C = bA.A

−A

C = bA

If b < 0, then C = bA is opposite in direction (antiparallel) to A, and
its magnitude is C = |b| A.

1.3.2 Adding Vectors
Addition of two vectors has the simple geometrical interpretation shown
by the drawing. The rule is: to add B to A, place the tail of B at the head
of A by parallel translation of B. The sum is a vector from the tail of A
to the head of B.

A + B B

A
1.3.3 Subtracting Vectors
Because A − B = A + (−B), to subtract B from A we can simply multi-
ply B by –1 and then add. The sketch shows how.
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A

B

A

A + (−B) = A − B A − B

A B−B −B

An equivalent way to construct A − B is to place the head of B at the
head of A. Then A − B extends from the tail of A to the tail of B, as
shown in the drawing.

1.3.4 Algebraic Properties of Vectors
It is not difficult to prove the following:

Commutative law

A + B = B + A.

Associative law

A + (B + C) = (A + B) + C
c(dA) = (cd)A.

Distributive law

c(A + B) = cA + cB
(c + d)A = cA + dA.

A

B
B B

A

A + B = B + A

A

B

A

B + A

A + B

The sketch shows a geometrical proof of the commutative law A + B =
B + A; try to cook up your own proofs of the others.

1.4 Multiplying Vectors
Multiplying one vector by another could produce a vector, a scalar, or
some other quantity. The choice is up to us. It turns out that two types of
vector multiplication are useful in physics.

1.4.1 Scalar Product (“Dot Product”)
The first type of multiplication is called the scalar product because the
result of the multiplication is a scalar. The scalar product is an operation
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that combines vectors to form a scalar. The scalar product of A and B is
written as A ·B, therefore often called the dot product. A ·B (referred to
as “A dot B”) is defined by

A · B ≡ AB cos θ.
A

B

θ

B

A

Projection of
B on A

θ

Here θ is the angle between A and B when they are drawn tail to tail.
Because B cos θ is the projection of B along the direction of A, it follows
that

A · B = A times the projection of B on A
= B times the projection of A on B.

Note that A · A = |A|2 = A2. Also, A · B = B · A; the order does not
change the value. We say that the dot product is commutative.

If either A or B is zero, their dot product is zero. However, because
cos π/2 = 0 the dot product of two non-zero vectors is nevertheless zero
if the vectors happen to be perpendicular.

A great deal of elementary trigonometry follows from the properties
of vectors. Here is an almost trivial proof of the law of cosines using the
dot product.

A

B

C φ

θ

Example 1.1 The Law of Cosines
The law of cosines relates the lengths of three sides of a triangle to the
cosine of one of its angles. Following the notation of the drawing, the
law of cosines is

C2 = A2 + B2 − 2AB cos φ.

The law can be proved by a variety of trigonometric or geometric con-
structions, but none is so simple and elegant as the vector proof, which
merely involves squaring the sum of two vectors.

C = A + B
C · C = (A + B) · (A + B)

= A · A + B · B + 2(A · B)

C2 = A2 + B2 + 2AB cos θ.

Recognizing that cos φ = − cos θ completes the proof.

F

d

θ

Example 1.2 Work and the Dot Product
The dot product has an important physical application in describing
the work done by a force. As you may already know, the work W done
on an object by a force F is defined to be the product of the length
of the displacement d and the component of F along the direction of
displacement. If the force is applied at an angle θ with respect to the
displacement, as shown in the sketch,
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then

W = (F cos θ)d.

Assuming that force and displacement can both be written as vectors,
then

W = F · d.

1.4.2 Vector Product (“Cross Product”)
The second type of product useful in physics is the vector product, in
which two vectors A and B are combined to form a third vector C.
The symbol for vector product is a cross, so it is often called the cross
product:

C = A × B.

The vector product is more complicated than the scalar product be-
cause we have to specify both the magnitude and direction of the vec-
tor A × B (called “A cross B”). The magnitude is defined as follows:
if

C = A × B

then

C = AB sin θ

where θ is the angle between A and B when they are drawn tail to tail.

A

B

θ

To eliminate ambiguity, θ is always taken as the angle smaller than
π. Even if neither vector is zero, their vector product is zero if θ = 0 or
π, the situation where the vectors are parallel or antiparallel. It follows
that

A × A = 0

for any vector A.
Two vectors A and B drawn tail to tail determine a plane. Any plane

can be drawn through A. Simply rotate it until it also contains B.

A
B

C

z

y

x

We define the direction of C to be perpendicular to the plane of A and
B. The three vectors A, B, and C form what is called a right-hand triple.
Imagine a right-hand coordinate system with A and B in the x−y plane
as shown in the sketch.

A lies on the x axis and B lies toward the y axis. When A, B, and C
form a right-hand triple, then C lies along the positive z axis. We shall
always use right-hand coordinate systems such as the one shown.

Here is another way to determine the direction of the cross product.
Think of a right-hand screw with the axis perpendicular to A and B.
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If we rotate it in the direction that swings A into B, then C lies in the
direction the screw advances. (Warning: be sure not to use a left-hand
screw. Fortunately, they are rare, with hot water faucets among the chief
offenders. Your honest everyday wood screw is right-handed.)

A
(A is into paper)

B

C = A × B

A result of our definition of the cross product is that

B × A = −A × B.

Here we have a case in which the order of multiplication is important.
The vector product is not commutative. Since reversing the order re-
verses the sign, it is anticommutative.

F

B

v

Top view

F

F

r

r

q

τ = r × F

θ

θ

F sin θ 

Example 1.3 Examples of the Vector Product in Physics
The vector product has a multitude of applications in physics. For
instance, if you have learned about the interaction of a charged particle
with a magnetic field, you know that the force is proportional to
the charge q, the magnetic field B, and the velocity of the particle
v. The force varies as the sine of the angle between v and B, and
is perpendicular to the plane formed by v and B, in the direction
indicated.

All these rules are combined in the one equation

F = qv × B.

Another application is the definition of torque, which we shall develop
in Chapter 7. For now we simply mention in passing that the torque
vector τ is defined by

τ = r × F,

where r is a vector from the axis about which the torque is evaluated to
the point of application of the force F. This definition is consistent with
the familiar idea that torque is a measure of the ability of an applied
force to produce a twist. Note that a large force directed parallel to r
produces no twist; it merely pulls. Only F sin θ, the component of force
perpendicular to r, produces a torque.

Imagine that we are pushing open a garden gate, where the axis of rota-
tion is a vertical line through the hinges. When we push the gate open,
we instinctively apply force in such a way as to make F closely perpen-
dicular to r , to maximize the torque. Because the torque increases as
the lever arm gets larger, we push at the edge of the gate, as far from
the hinge line as possible.

As you will see in Chapter 7, the natural direction of τ is along the
axis of the rotation that the torque tends to produce. All these ideas are
summarized in a nutshell by the simple equation τ = r × F.
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C

C

n

A

D

D sin θ 

D

θ

ˆ

Example 1.4 Area as a Vector
We can use the cross product to describe an area. Usually one thinks
of area in terms of magnitude only. However, many applications in
physics require that we also specify the orientation of the area. For
example, if we wish to calculate the rate at which water in a stream
flows through a wire loop of given area, it obviously makes a difference
whether the plane of the loop is perpendicular or parallel to the flow.
(If parallel, the flow through the loop is zero.) Here is how the vector
product accomplishes this:

Consider the area of a quadrilateral formed by two vectors C and D.
The area A of the parallelogram is given by

A = base × height
= CD sin θ
= |C × D| .

The magnitude of the cross product gives us the area of the parallel-
ogram, but how can we assign a direction to the area? In the plane of
the parallelogram we can draw an infinite number of vectors pointing
every which-way, so none of these vectors stands out uniquely. The
only unique preferred direction is the normal to the plane, specified by
a unit vector n̂. We therefore take the vector A describing the area as
parallel to n̂. The magnitude and direction of A are then given com-
pactly by the cross product

A = C × D.

A minor ambiguity remains, because n̂ can point out from either side of
the area. We could just as well have defined the area by A = D × C =
−C × D, as long as we are consistent once the choice is made.

1.5 Components of a Vector
The fact that we have discussed vectors without introducing a particular
coordinate system shows why vectors are so useful; vector operations
are defined independently of any particular coordinate system. However,
eventually we have to translate our results from the abstract to the con-
crete, and at this point we have to choose a coordinate system in which
to work.

The combination of algebra and geometry, called analytic geometry, is
a powerful tool that we shall use in many calculations. Analytic geometry
has a consistent procedure for describing geometrical objects by a set of
numbers, greatly easing the task of performing quantitative calculations.
With its aid, students still in school can routinely solve problems that
would have taxed the ancient Greek geometer Euclid. Analytic geometry
was developed as a complete subject in the first half of the seventeenth
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century by the French mathematician René Descartes, and independently
by his contemporary Pierre Fermat.

For simplicity, let us first restrict ourselves to a two-dimensional sys-
tem, the familiar x−y plane. The diagram shows a vector A in the x−y
plane.

θ

Ax

Ay

x

y

A The projections of A along the x and y coordinate axes are called the
components of A, Ax and Ay, respectively. The magnitude of A is A =√

Ax
2 + Ay

2, and the direction of A makes an angle θ = arctan (Ay/Ax)
with the x axis.

Since its components define a vector, we can specify a vector entirely
by its components. Thus

A = (Ax, Ay)

or, more generally, in three dimensions,

A = (Ax, Ay, Az).

Prove for yourself that A =
√

Ax
2 + Ay

2 + Az
2.

If two vectors are equal A = B, then in the same coordinate system
their corresponding components are equal.

Ax = Bx Ay = By Az = Bz.

The single vector equation A = B symbolically represents three scalar
equations.

The vector A has a meaning independent of any coordinate system.
However, the components of A depend on the coordinate system being
used. To illustrate this, here is a vector A drawn in two different coordi-
nate systems.A

x

x ′

y ′

y

A

In the first case,

A = (A, 0) (x, y system),

while in the second

A = (0,−A) (x′, y′ system).

All vector operations can be written as equations for components. For
instance, multiplication by a scalar is written

cA = (cAx, cAy, cAz).

The law for vector addition is

A + B = (Ax + Bx, Ay + By, Az + Bz).

By writing A and B as the sums of vectors along each of the coordinate
axes, you can verify that

A · B = AxBx + AyBy + AzBz.

We shall defer evaluating the cross product until the next section.
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Example 1.5 Vector Algebra
Let

A = (3, 5, −7)
B = (2, 7, 1).

Find A + B, A − B, A, B, A · B, and the cosine of the angle between A
and B.

A + B = (3 + 2, 5 + 7, −7 + 1)
= (5, 12, −6)

A − B = (3 − 2, 5 − 7, −7 − 1)
= (1, −2, −8)

A =
√

(32 + 52 + 72)

=
√

83
≈ 9.11

B =
√

(22 + 72 + 12)

=
√

54
≈ 7.35

A · B = 3 × 2 + 5 × 7 − 7 × 1
= 34

cos(A,B) =
A · B
AB

≈ 34
(9.11)(7.35)

≈ 0.508.

Example 1.6 Constructing a Vector Perpendicular to a Given
Vector
The problem is to find a unit vector lying in the x−y plane that is
perpendicular to the vector A = (3, 5, 1).

A vector B in the x−y plane has components (Bx, By). For B to be
perpendicular to A, we must have A · B = 0:

A · B = 3Bx + 5By

= 0.

Hence By = − 3
5 Bx. For B to be a unit vector, Bx

2 +By
2 = 1. Combining

these gives

Bx
2 +

9
25

Bx
2 = 1,

or

Bx =

√
25
34

≈ ±0.858
By = − 3

5 Bx

≈ ∓0.515.
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There are two solutions, given by the upper and lower signs. Each vec-
tor is the negative of the other, so they are equal in magnitude but point
in opposite directions.

1.6 Base Vectors
Base vectors are a set of orthogonal (mutually perpendicular) unit vec-
tors, one for each dimension. For example, if we are dealing with the
familiar Cartesian coordinate system of three dimensions, the base vec-
tors lie along the x, y, and z axes. We shall designate the x unit vector
by î, the y unit vector by ĵ, and the z unit vector by k̂. (Sometimes the
symbols x̂, ŷ, and ẑ are used.)

x

y
j

i

z

k

ˆ

ˆ
The base vectors have the following properties, as you can readily

verify:

î · î = ĵ · ĵ = k̂ · k̂ = 1

î · ĵ = ĵ · k̂ = k̂ · î = 0

î × ĵ = k̂

ĵ × k̂ = î

k̂ × î = ĵ.

A

z

x

y

Azk̂

Ay ĵ

ˆAxi

As shown in the drawing, we can write any three-dimensional vector
in terms of its components and the base vectors:

A = Ax î + Ay ĵ + Azk̂

To find the component of a vector in any direction, take the dot product
with a unit vector in that direction. For instance, the z component of
vector A is

Az = A · k̂.
The base vectors are particularly useful in deriving the general rule for
evaluating the cross product of two vectors in terms of their components:

A × B = (Ax î + Ay ĵ + Az k̂) × (Bx î + By ĵ + Bz k̂).

Consider the first term:

Ax î × B = AxBx (î × î) + AxBy (î × ĵ) + AxBz (î × k̂).

(The associative law holds here.) Because î × î = 0, î × ĵ = k̂, and
î × k̂ = −ĵ, we find

Ax î × B = Ax(By k̂ − Bz ĵ).

The same argument applied to the y and z components gives

Ay ĵ × B = Ay(Bz î − Bx k̂)

Az k̂ × B = Az(Bx ĵ − By î).



12 VECTORS AND KINEMATICS

A quick way to derive these relations is to work out the first and then
to obtain the others by cyclically permuting x, y, z, and î, ĵ, k̂ (that is,
x → y, y → z, z → x, and î → ĵ, ĵ → k̂, k̂ → î). A compact mnemonic
for expressing this result is to write the base vectors and the components
of A and B as three rows of a determinant, like this:

A × B =

∣∣∣∣∣∣∣∣
î ĵ k̂

Ax Ay Az

Bx By Bz

∣∣∣∣∣∣∣∣
= (AyBz − AzBy) î − (AxBz − AzBx) ĵ + (AxBy − AyBx) k̂.

For instance, if A = î + 3 ĵ − k̂ and B = 4 î + ĵ + 3 k̂, then

A × B =

∣∣∣∣∣∣∣∣
î ĵ k̂
1 3 −1
4 1 3

∣∣∣∣∣∣∣∣
= 10 î − 7 ĵ − 11 k̂.

1.7 The Position Vector r and Displacement
So far we have discussed only abstract vectors. However, the reason for
introducing vectors is that many physical quantities are conveniently de-
scribed by vectors, among them velocity, force, momentum, and gravi-
tational and electric fields. In this chapter we shall use vectors to discuss
kinematics, which is the description of motion without regard for the
causes of the motion. Dynamics. which we shall take up in Chapter 2,
looks at the causes of motion.

Kinematics is largely geometric and perfectly suited to characteriza-
tion by vectors. Our first application of vectors will be to the description
of position and motion in familiar three-dimensional space.

5

4

3

2

1

4
3

2
1

0 1 2 3 4
y

x

z

To locate the position of a point in space, we start by setting up a co-
ordinate system. For convenience we choose a three-dimensional Carte-
sian system with axes x, y, and z, as shown. In order to measure position,
the axes must be marked in some convenient unit of length—meters, for
instance. The position of the point of interest is given by listing the val-
ues of its three coordinates, x1, y1, z1, which we can write compactly as
a position vector r(x1, y1, z1) or more generally as r(x, y, z). This nota-
tion can be confusing because we normally label the axes of a Cartesian
coordinate system by x, y, z. However, r(x, y, z) is really shorthand for
r(x-axis, y-axis, z-axis). The components of r are the coordinates of the
point referred to the particular coordinate axes.

The three numbers (x, y, z) do not represent the components of a vec-
tor according to our previous discussion because they specify only the
position of a single point, not a magnitude and direction. Unlike other
physical vectors such as force and velocity, r is tied to a particular coor-
dinate system.
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The position of an arbitrary point P at (x, y, z) is written as

r = (x, y, z) = xî + yĵ + zk̂.

If we move from the point x1, y1, z1 to some new position, x2, y2, z2, then
the displacement defines a true vector S with coordinates S x = x2 −
x1, S y = y2 − y1, S z = z2 − z1.

S

x

y

z

(x2, y2, z2)

(x1, y1, z1)

S is a vector from the initial position to the final position—it defines
the displacement of a point of interest. Note, however, that S contains no
information about the initial and final positions separately—only about
the relative position of each. Thus, S z = z2 − z1 depends on the differ-
ence between the final and initial values of the z coordinates; it does not
specify z2 or z1 separately. Thus S is a true vector: the values of the co-
ordinates of its initial and final points depend on the coordinate system
but S does not, as the sketches indicate.

S

y

z

x

x ′

y ′

(x1′, y1′, z1′)

(x2′, y2′, z2′)

(x2, y2, z2,)

(x1, y1, z1)

z ′

One way in which our displacement vector differs from vectors in pure
mathematics is that in mathematics, vectors are usually pure quantities,
with components described by simple numbers, whereas the magnitude
S has the physical dimension of length associated with it. We will use
the convention that the physical dimension of a vector is attached to its
magnitude, so that the associated unit vector is dimensionless. Thus, a
displacement of 8 m (8 meters) in the x direction is S = (8 m, 0, 0). S =
8 m, and Ŝ = S/S = î.

R

P

r
r ′

x

x ′

y ′

z ′

z

y

The sketch shows position vectors r and r′ indicating the position of
the same point in space but drawn in different coordinate systems. If R
is the vector from the origin of the unprimed coordinate system to the
origin of the primed coordinate system, we have r = R + r′, or alterna-
tively, r′ = r − R.
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We use these results to show that displacement S, a true vector, is
independent of coordinate system. As the sketch indicates,

S = r2 − r1

= (R + r′2) − (R + r′1)
= r′2 − r′1.

1.8 Velocity and Acceleration
1.8.1 Motion in One Dimension
Before employing vectors to describe velocity and acceleration in three
dimensions, it may be helpful to review one-dimensional motion: motion
along a straight line.

S

R

r2

r1

r ′1

r ′2

x ′

y ′

z ′

x

y

z
Let x be the value of the coordinate of a particle moving on a line, with

x measured in some convenient unit such as meters. We assume that we
have a continuous record of position versus time.

The average velocity v of the point between two times t1 and t2 is
defined by

v =
x(t2) − x(t1)

t2 − t1
.

(We shall generally use a bar to indicate the time average of a quantity.)
The instantaneous velocity v is the limit of the average velocity as the

time interval approaches zero:

v = lim
Δt→0

x(t + Δt) − x(t)
Δt

.

The limit we introduced in defining v is exactly the definition of a deriva-
tive in calculus. In the latter half of the seventeenth century Isaac Newton
invented calculus to give him the tools he needed to analyze change and
motion, particularly planetary motion, one of his greatest achievements
in physics. We therefore write

v =
dx
dt
,

using notation due to Gottfried Leibniz, who independently invented
calculus. Newton would have written

v = ẋ

where the dot stands for d/dt. Following a convention frequently used in
physics, we shall use Newton’s notation only for derivatives with respect
to time. The derivative of a function f (x) can also be written f ′(x) ≡
d f (x)/dx.

In a similar fashion, the instantaneous acceleration a is

a = lim
Δt→0

v(t + Δt) − v(t)
Δt

=
dv
dt
= v̇.
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Using v = dx/dt,

a =
d2x
dt2 = ẍ.

Here d2x/dt2 is called the second derivative of x with respect to t.
The concept of speed is sometimes useful. Speed s is simply the mag-

nitude of the velocity: s = |v|. In one dimension, speed and velocity are
synonymous.

1.8.2 Motion in Several Dimensions
Our task now is to extend the ideas of velocity and acceleration to several
dimensions using vector notation. Consider a particle moving in the x−y
plane. As time goes on, the particle traces out a path. We assume that we
know the particle’s coordinates at every value of time. The instantaneous
position of the particle at some time t1 is

r(t1) = (x(t1), y(t1))

or

r(t1) = (x1, y1)

r2

r1 r1

r2

(x2, y2)

(x1, y1)

r2 – r1

Position at
time t2

Position
at time t1

where x1 is the value of x at t = t1, and so forth. At time t2 the position
is similarly r(t2) = (x2, y2).

The displacement of the particle between times t1 and t2 is

r(t2) − r(t1) = (x2 − x1, y2 − y1).

We can generalize our example by considering the position at some
time t and also at some later time t + Δt. We put no restrictions on the
size of Δt—it can be as large or as small as we please.

r(t)

r(t
 + Δt)

Δr

The displacement of the particle during the interval Δt is

Δr = r(t + Δt) − r(t).
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This vector equation is equivalent to the two scalar equations

Δx = x(t + Δt) − x(t)
Δy = y(t + Δt) − y(t).

The velocity v of the particle as it moves along the path is

v = lim
Δt→0

Δr
Δt

=
dr
dt
,

which is equivalent to the two scalar equations

Δr

Δx

Δy

x
x(t)

y(t)

x(t + Δt)

y(t + Δt )

y

vx = lim
Δt→0

Δx
Δt
=

dx
dt

vy = lim
Δt→0

Δy
Δt
=

dy
dt
.

Extension of the argument to three dimensions is trivial. The third com-
ponent of velocity is

vz = lim
Δt→0

z(t + Δt) − z(t)
Δt

=
dz
dt
.

Our definition of velocity as a vector is a straightforward generaliza-
tion of the familiar concept of motion in a straight line. Vector notation
allows us to describe motion in three dimensions with a single equation,
a great economy compared with the three equations we would need oth-
erwise. The equation v = dr/dt expresses concisely the results we have
just found.

An alternative approach to calculating the velocity is to start with the
definition r = x î + y ĵ + z k̂, and then differentiate:

dr
dt
=

d(x î + y ĵ + z k̂)
dt

.

To evaluate this expression, we use a key property of vectors—they can
change with time in magnitude or in direction or in both. But base vectors
are unit vectors and therefore have constant magnitude, so they cannot
change in magnitude. The Cartesian base vectors also have the special
property that they are fixed in direction, and therefore cannot change
direction. Hence we can treat the Cartesian base vectors as constants
when we differentiate:

dr
dt
=

dx
dt

î +
dy
dt

ĵ +
dz
dt

k̂

as before.
Similarly, acceleration a is defined by

a =
dv
dt
=

dvx

dt
î +

dvy

dt
ĵ +

dvz

dt
k̂

=
d2r
dt2 .
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We could continue to form new vectors by taking higher derivatives of
r, but in the study of dynamics it turns out that r, v, and a are of chief
interest.

r(
t +

 Δ
t″

′)

r(t
 + Δt″)

r(t +
 Δt ′)

r(t )

v(t )

Δt″′ > Δt″ > Δt ′

Let the particle undergo a displacement Δr in time Δt. In the limit
Δt → 0, Δr becomes tangent to the trajectory, as the sketch indicates.
The relation

Δr ≈ dr
dt
Δt

= vΔt

becomes exact in the limit Δt → 0, and shows that v is parallel to Δr;
the instantaneous velocity v of a particle is everywhere tangent to the
trajectory.

Example 1.7 Finding Velocity from Position
Suppose that the position of a particle is given by

r = A(eαt î + e−αt ĵ),

where A and α are constants. Find the velocity, and sketch the trajec-
tory.

v =
dr
dt

= A(αeαt î − αe−αt ĵ) or
vx = Aαeαt

vy = −Aαe−αt.

The magnitude of v is

v =
√

vx
2 + vy

2

= Aα
√

e2αt + e−2αt.

To sketch the trajectory it is often helpful to look at limiting cases. At
t = 0, we have

r(0) = A (î + ĵ)

v(0) = αA (î − ĵ).

Note that v(0) is perpendicular to r(0).

v(0)A

A

r(0)

r(t ) v(t )

v(t > 0) x

y

ĵ

î

Trajectory

>
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As t → ∞, eαt → ∞ and e−αt → 0. In this limit r → Aeαt î, which
is a vector along the x axis, and v → αAeαt î; in this unrealistic exam-
ple, the point rushes along the x axis and the speed increases without
limit.

Example 1.8 Uniform Circular Motion
Circular motion plays an important role in physics. Here we look at
the simplest and most important case—uniform circular motion, which
is circular motion at constant speed.

Consider a particle moving in the x−y plane according to r =

r(cosωt î + sinωt ĵ), where r and ω are constants. Find the trajectory,
the velocity, and the acceleration.

ωt

ωt

x = r cos ωt 

y = r sin ωt 

x

x

y

y

r

r

ĵ

î

| r | =
√

r2 cos2 ωt + r2 sin2 ωt.

Using the familiar identity sin2 θ + cos2 θ = 1,

| r | = r = constant.

The trajectory is a circle.

The particle moves counterclockwise around the circle, starting from
(r, 0) at t = 0. It traverses the circle in a time T such that ωT = 2π.
ω is called the angular speed (or less precisely the angular velocity) of
the motion and is measured in radians per second. T, the time required
to execute one complete cycle, is called the period.

v =
dr
dt

= rω(− sinωt î + cosωt ĵ).
ωt

x

y

r

v

ωt
x

y

r a

We can show that v is tangent to the trajectory by calculating v · r:

v · r = r2ω(− sin ωt cos ωt + cos ωt sin ωt)
= 0.

Because v is perpendicular to r, the motion is tangent to the circle, as
we expect. It is easy to show that the speed |v| = rω is constant.

a =
dv
dt

= rω2(− cos ωt î − sin ωt ĵ)

= −ω2 r.

The acceleration is directed radially inward and is known as the
centripetal acceleration. We shall have more to say about it later
in this chapter when we look at how motion is described in polar
coordinates.
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1.9 Formal Solution of Kinematical Equations
Dynamics, which we shall take up in Chapter 2, enables us to find the
acceleration of a body if we know the interactions. Once we have the
acceleration, finding the velocity and position is a simple matter of inte-
gration. Here is the formal integration procedure.

If the acceleration is a known function of time, the velocity can be
found from the defining equation

dv(t)
dt
= a(t)

by integration with respect to time. Writing this equation in more detail,
we have

dvx

dt
î +

dvy

dt
ĵ +

dvz

dt
k̂ = ax î + ay ĵ + azk̂.

We can separate the corresponding components on each side into sepa-
rate equations. (To justify this, take the dot product of all the terms with
î, ĵ, or k̂.) For example, the x component is

dvx

dt
= ax.

If we know the x velocity at an initial time t0, then we can integrate this
equation with respect to time to find the velocity at a later time t1:∫ v1

v0

dvx =

∫ t1

t0
axdt, or

vx(t1) − vx(t0) =
∫ t1

t0
ax(t)dt,

vx(t1) = vx(t0) +
∫ t1

t0
ax(t)dt.

Treating the y and z velocity components similarly, we have

v(t1) = v(t0) +
∫ t1

t0
a(t)dt.

To express the velocity at an arbitrary time t we write

v(t) = v0 +

∫ t

t0
a(t′)dt′.

The dummy variable of integration has been changed from t to t′ to
avoid confusion with the upper limit t. The initial velocity v(t0) has
been written as v0 to make the notation more compact. When t = t0, v(t)
reduces to v0, as we expect.

Example 1.9 Finding Velocity from Acceleration
A table-tennis ball is released near the surface of the (airless) moon
with velocity v0 = (0, 5,−3) m/s. It accelerates (downward) with
acceleration a = (0, 0,−1.6) m/s2. Find its velocity after 5 s.
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The equation

v(t) = v0 +

∫ t1

t0
a(t′)dt′

is equivalent to the three component equations

vx(t) = v0x +

∫ t

0
ax(t′)dt′

vy(t) = v0y +

∫ t

0
ay(t′)dt′

vz(t) = v0z +

∫ t

0
az(t′)dt′.

Taking these equations in turn with the given values of v0 and a, we
obtain at t = 5 s:

vx = 0 m/s
vy = 5 m/s

vz = −3 +
∫ 5

0
(−1.6)dt′ = −11 m/s.

Position is found by a second integration. Starting with
dr(t)

dt
= v(t),

we find, by an argument identical to the above,

r(t) = r0 +

∫ t

0
v(t′)dt′.

A particularly important case is uniform acceleration. If we take a =
constant and t0 = 0, we have

v(t) = v0 + at

r(t) = r0 +

∫ t

0
(v0 + at′)dt′,

or

r(t) = r0 + v0t +
1
2

a t2.

Quite likely you are already familiar with this in its one-dimensional
form. For instance, the x component of this equation is

x = x0 + v0xt +
1
2

axt2,

where v0x is the x component of v0. This expression is so familiar that
you may inadvertently apply it to the general case of varying accelera-
tion. Don’t! It holds only for uniform acceleration. In general, the full
procedure described above must be used.
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Example 1.10 Motion in a Uniform Gravitational Field
Suppose that an object moves freely under the influence of gravity so
that it has a constant downward acceleration g. Choosing the z axis
vertically upward, we have

a = −g k̂.
If the object is released at t = 0 with initial velocity v0, we have

x = x0 + v0xt
y = y0 + v0yt

z = z0 + v0zt − 1
2

g t2.

Without loss of generality, we can let r0 = 0, and assume that v0y = 0.
(The latter assumption simply means that we choose the coordinate
system so that the initial velocity is in the x−z plane.) Then

x = v0xt

z = v0zt − 1
2

gt2.

We can eliminate time from the two equations for x and z to obtain the
trajectory, i.e. the path z(x).

z =
v0z

v0x
x − g

2v2
0x

x2.
v0

x

z

As shown in the sketch, this is the well-known parabola of projectile
motion under constant gravity.

Example 1.11 The Effect of a Radio Wave on an Ionospheric
Electron
The ionosphere is a region of electrically neutral gas, composed of
positively charged ions and negatively charged electrons, that sur-
rounds the Earth at a height of approximately 200 km (120 mi). If a
radio wave passes through the ionosphere, its electric field accelerates
the charged particles. Because the electric field oscillates in time, the
charged particles tend to jiggle back and forth. The problem is to find
the motion of an electron of charge −e and mass m which is initially at
rest, and which is suddenly subjected to an electric field E = E0 sinωt
(ω is the frequency of oscillation in radians/second).

The force F on the electron subject to the electric field is F = −eE,
and by Newton’s second law we have a = F/m = −eE/m. (If the
reasoning behind this is not clear, ignore it for now. It will become
clear in Chapter 2.) We have

a =
−eE

m

=
−eE0

m
sinωt.
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E0 is a constant vector and we shall choose our coordinate system so
that the x axis lies along it. Since there is no acceleration in the y or z
directions, we need consider only the x motion. With this understand-
ing, we can drop subscripts and write a for ax:

a(t) =
−eE0

m
sinωt = a0 sinωt

where

a0 =
−eE0

m
.

Then

v(t) = v0 +

∫ t

0
a(t′)dt′

= v0 +

∫ t

0
a0 sinωt′dt′

= v0 − a0

ω
cosωt′

∣∣∣∣t
0
= v0 − a0

ω
(cosωt − 1)

and

x(t) = x0 +

∫ t

0
v(t′)dt′

= x0 +

∫ t

0

[
v0 − a0

ω
(cosωt′ − 1)

]
dt′

= x0 +

(
v0 +

a0

ω

)
t − a0

ω2 sinωt.

The electron is initially at rest, x0 = v0 = 0, so we have

x(t) =
a0

ω
t − a0

ω2 sinωt.

The result is interesting: the second term oscillates and corresponds to
the jiggling motion of the electron that we predicted. The first term,
however, corresponds to motion with uniform velocity, so in addition
to the jiggling motion the electron starts to drift away. Can you see
why?

1.10 More about the Time Derivative of a Vector
In Section 1.5 we demonstrated how to describe velocity and accelera-
tion by vectors. In particular, we showed how to differentiate the vector
r to obtain a new vector v = dr/dt. We will want to differentiate other
vectors with respect to time on occasion, so it is worthwhile generalizing
our discussion.
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Consider a vector A(t) that changes with time. The change in A(t)
during the interval from t to t + Δt is

ΔA = A(t + Δt) − A(t).

A(t  + Δt )

A(t )

ΔA

In complete analogy to the procedure we followed in differentiating r
in Section 1.6, we define the time derivative of A by

dA
dt
= lim
Δt→0

A(t + Δt) − A(t)
Δt

.

It is important to appreciate that dA/dt is a new vector that can be large
or small, and can point in any direction, depending on the behavior of A.

A + ΔA

A + ΔA

A 

A 

Case 1 

Case 2

ΔA

ΔA

There is one respect in which dA/dt differs from the derivative of a
simple scalar function. A can change in both magnitude and direction—a
scalar function can change only in magnitude. This difference is impor-
tant.

The figures illustrate the addition of an increment ΔA to A. In the first
case ΔA is parallel to A; this leaves the direction unaltered but changes
the magnitude to |A| + |ΔA|.

In the second case, ΔA is perpendicular to A. This causes a change of
direction but leaves the magnitude practically unaltered if ΔA is small.

ΔA

A

ΔA⊥

ΔA ||

In general, A will change with time both in magnitude and in direction.
It is useful to visualize both types of change taking place simultaneously.
In the sketch we show a small increment ΔA resolved into a component
ΔA‖ parallel to A and a component ΔA⊥ perpendicular to A. In the limit
ΔA→ 0, as when we take the derivative, ΔA‖ changes the magnitude of
A but not its direction, while ΔA⊥ changes the direction of A but not its
magnitude.

Without a clear understanding of the two ways a vector can change it
is easy to make an error by neglecting one of them.

1.10.1 Rotating Vectors
If dA/dt is always perpendicular to A, A must rotate. Because its mag-
nitude cannot change, its time dependence arises solely from change in
direction.

The illustrations show how rotation occurs when ΔA is always perpen-
dicular to A. The rotational motion is made more apparent by drawing

ΔA

ΔA′

A′

A′

A

ΔA

A″′
A″

A″

the successive vectors at a common origin.
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ΔA′

ΔA

ΔA″
A″′

A″

A′

A

Contrast this with the case where ΔA is always parallel to A.

ΔA ΔA′ ΔA″A′

A′ A″

A

A″′

A″

Drawn from a common origin, the vectors look like this:

A′

A″

A

A″′

Example 1.12 Circular Motion and Rotating Vectors
This example relates the idea of rotating vectors to circular motion. In
Example 1.8 we discussed the motion given by

r = r (cosωt î + sinωt ĵ).

The velocity is

v = rω(− sinωt î + cosωt ĵ).

Because

r · v = r2ω(− cosωt sinωt + sinωt cosωt)
= 0

we see that dr/dt is perpendicular to r. We conclude that the magnitude
of r is constant. Consequently, the only possible change in r is a change
in its direction, which is to say that r must rotate and the trajectory is a
circle, This is precisely the case: r rotates about the origin.r

v

We showed earlier that a = −ω2r. Since r · v = 0, it follows that a · v =
−ω2r · v = 0 and a = dv/dt is perpendicular to v. This means that the
velocity vector has constant magnitude, so that it too changes in time
only by rotation. That v indeed rotates is readily seen from the sketch,
which shows v at various positions along the trajectory.
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v

v
a

a

b

c

d

e

f

g

h

b
c

d

e

f
g

h

In the sketch the same velocity vectors are drawn from a common ori-
gin. It is apparent that each time the particle completes a traversal, the
velocity vector has swung around through a full circle.

Perhaps you can show that the acceleration vector also undergoes uni-
form rotation.

Suppose a vector A(t) has constant magnitude A. The only way A(t)
can change in time is by rotating, and we shall now develop a useful
expression for the time derivative dA/dt of such a rotating vector. The
direction of dA/dt is always perpendicular to A. The magnitude of dA/dt
can be found by the following geometrical argument.

dA

A(t ), A = constant

dt

The change in A in the time interval t to t + Δt is

ΔA = A(t + Δt) − A(t).

Using the angle Δθ defined in the sketch,
A(t2)

A(t1)
Δθ

ΔA |ΔA| = 2A sin
Δθ

2
.

For Δθ 
 1, sinΔθ/2 ≈ Δθ/2, as discussed in Note 1.2. We have

|ΔA| ≈ 2A
Δθ

2
= AΔθ

and ∣∣∣∣∣ΔA
Δt

∣∣∣∣∣ ≈ A
Δθ

Δt
.

Taking the limit Δt → 0 ∣∣∣∣∣dA
dt

∣∣∣∣∣ = A
dθ
dt
.

dθ/dt is called the angular speed of A.
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For a simple application of this result, let A be the rotating vector r
discussed in Example 1.8.

θ = ωt

v

r
Then θ = ωt and∣∣∣∣∣dr

dt

∣∣∣∣∣ = r
d
dt

(ωt) = rω or v = rω.

Here ω is the angular speed of r.
Returning now to the general case, a change in A is the result of a

rotation and a change in magnitude:

ΔA = ΔA⊥ + ΔA‖.

For Δθ sufficiently small,

| ΔA⊥ | = AΔθ

| ΔA‖ | = ΔA.

Dividing by Δt and taking the limit∣∣∣∣∣dA⊥
dt

∣∣∣∣∣ = A
dθ
dt∣∣∣∣∣dA‖

dt

∣∣∣∣∣ = dA
dt
.

dA⊥/dt vanishes if the direction of A is constant, (dθ/dt = 0), and
dA‖/dt vanishes if the magnitude of A is constant.

A(t + Δt )

A(t) ΔA||

ΔA

ΔA⊥

We conclude this section by stating some formal identities in vector
differentiation, with their proofs left as exercises. Let the scalar c and the
vectors A and B be functions of time. Then

d
dt

(cA) =
dc
dt

A + c
dA
dt

d
dt

(A · B) =
dA
dt
·B + A·dB

dt
d
dt

(A × B) =
dA
dt
×B + A×dB

dt
.

Consider also A2 = A · A. Then

d
dt

(A2) = 2A·dA
dt
,

and we see again that if dA/dt is perpendicular to A, the magnitude of A
is constant, d(A2)/dt = 0.

1.11 Motion in Plane Polar Coordinates
The rectangular, or Cartesian, coordinates we have used so far are well
suited to describing motion in a straight line. For instance, if we orient
the coordinate system so that one axis lies in the direction of motion, then
only a single coordinate changes as the point moves. However, rectangu-
lar coordinates are cumbersome for describing circular motion. Because
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circular motion plays a prominent role in physics, it is worth introducing
a more convenient coordinate system.

We should emphasize that although in physics one is free to choose
any coordinate system one pleases, the proper choice of a coordinate
system can vastly simplify a problem. The material in this section, which
introduces a coordinate system that is beautifully suited for many prob-
lems, is very much in the spirit of more advanced physics. Some of this
material may be new to you. Be patient if it seems strange at first. Once
you have studied the examples and worked a few problems, it will seem
natural.

1.11.1 Polar Coordinates
This two-dimensional coordinate system is based on the three-
dimensional cylindrical coordinate system, much as the x−y plane of the
Cartesian coordinate system is a subset of the three-dimensional x−y− z
system. The z axis of the cylindrical system is identical to that of the
Cartesian system.

x

r
y

z

θ
However, position in the x−y plane is described not by x−y coordi-

nates but by r− θ coordinates where r is the distance from the origin and
θ is the angle between r and the x axis, as shown in the sketch.

We see that

r =
√

x2 + y2

θ = arctan
( y

x

)
.

Since we shall be concerned primarily with motion in a plane, we
neglect the z axis for now and restrict our discussion to two dimensions.
The coordinates r and θ are called plane polar coordinates. In the fol-
lowing sections we shall learn how to describe position, velocity, and
acceleration in these coordinates.

x

y

r

θ

The contrast between Cartesian and plane polar coordinates is readily
seen by comparing drawings of constant coordinate lines for the two
systems.

x x

y y

Cartesian Plane polar

x = constant
y varies

r = constant
θ varies

θ = constant
r varies

y = constant
x varies
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The lines of constant x and of constant y are straight and perpendicu-
lar to each other. Lines of constant θ are also straight, directed radially
outward from the origin. In contrast, lines of constant r are circles con-
centric about the origin. Note, however, that the lines of constant θ and
constant r are perpendicular wherever they intersect; the Cartesian and
plane polar coordinate systems are both orthogonal coordinate systems.
Orthogonality is important because it makes the base vectors indepen-
dent of one another, as we have already seen for the î, ĵ, k̂ triplet in the
Cartesian system. In an orthogonal system no base vector has a compo-
nent along some other base vector.

In Section 1.6 we introduced the base unit vectors î and ĵ which point
in the direction of increasing x and increasing y, respectively. In the same
spirit we now introduce two new base unit vectors, r̂ and θ̂, that point in
the direction of increasing r and increasing θ, respectively.

ĵ

ˆ
ˆ

î

θ

θ

x

y

r

r

There is a fundamental difference between polar and Cartesian base
vectors: the directions of r̂ and θ̂ vary with position, whereas î and ĵ have
fixed directions. The drawing shows this by illustrating both sets of base
vectors at two points in space.

Because r̂ and θ̂ vary with position, kinematical formulas can look
more complicated in polar coordinates than in the Cartesian system.

Although the directions of r̂ and θ̂ vary with position, the directions
depend on θ only, not on r. As a reminder of this θ-dependence, we some-
times show it explicitly by writing r̂(θ) and θ̂(θ).

x

y

θ̂1

θ̂2

ĵ

î

î

r̂2

r̂2

r1

r2 ĵ

The drawing shows the unit vectors (î, ĵ) and also (r̂(θ), θ̂(θ)) at a point
in the x−y plane. We see that

r̂(θ) = cos θ î + sin θ ĵ (1.1)

θ̂(θ) = − sin θ î + cos θ ĵ. (1.2)

It is worth convincing yourself that these expressions are reasonable
by checking them at a few points, such as θ = 0 and π/2. Also, you
can confirm that r̂(θ) and θ̂(θ) are indeed orthogonal by showing that
r̂ · θ̂ = 0.

y

sin θ

θ

θ̂

θ

r

l l
l

r

sin θ

cos θ

r̂

î

cos θ

x

ĵ

It is easy to confirm that the vector r is the same whether we de-
scribe it by Cartesian or polar coordinates. In Cartesian coordinates we
have

r = x î + y ĵ

while in polar coordinates we have

r = r r̂.

If we insert Eq. (1.1) for r̂, we obtain

x î + y ĵ = r (cos θ î + sin θ ĵ).
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By orthogonality (or by taking the dot product of this equation with î and
ĵ, respectively) we have

x = r cos θ
y = r sin θ,

as we expect.
Expressing velocity in polar coordinates requires taking the time

derivative of

r = r r̂(θ),

and this requires care. Using the chain rule, we have

dr
dt
=

dr
dt

r̂(θ) + r
dr̂(θ)

dt
.

The meaning of the first term is transparent: this is the speed in the radial
direction. The second term, however, involves a new concept—taking
the time derivative of a base vector. So, let us investigate how to do this,
both for r̂(θ) and for θ̂(θ).

1.11.2 dr̂/dt and dθ̂/dt in Polar Coordinates
Our goal here is to calculate the time derivatives of r̂ and θ̂. We will need
these results to express velocity v and acceleration a in polar coordinates.

Using Newton’s notation for time derivatives can help make equations
easier to read. For example,

dθ
dt
= θ̇

d2θ

dt2 = θ̈.

Our starting point is Eq. (1.1): r̂ = cos θ î + sin θ ĵ. Differentiating with
respect to time yields

dr̂
dt
=

d
dt

(cos θ) î +
d
dt

(sin θ) ĵ

= − sin θ θ̇ î + cos θ θ̇ ĵ

= (−sin θ î + cos θ ĵ) θ̇.

Recalling from Eq. (1.2) that θ̂ = − sin θ î + cos θ ĵ we see that

dr̂
dt
= θ̇ θ̂.

Similarly, by taking the time derivative of Eq. (1.2), we have

dθ̂
dt
= (− cos θ î − sin θ ĵ) θ̇

= −θ̇ r̂.
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We will need to call on these results and so we summarize them
here:

dr̂
dt
= θ̇ θ̂ (1.3)

dθ̂
dt
= −θ̇ r̂. (1.4)

Example 1.13 Geometric Derivation of dr̂/dt and dθ̂/dt
It is always helpful to have alternative ways to understand new con-
cepts. We derived Eqs. (1.3) and (1.4) algebraically, but we can also
derive them geometrically by invoking the concept of rotating vectors
from Section 1.8.

Because r̂(θ) and θ̂(θ) are unit vectors, their magnitudes are constant
and the only way they can change is by changing their direction, that
is, by rotating.

θ1
ˆ

ˆ ˆ

Δθ

Δr ≈ Δθθr̂2

r̂1

The sketch shows r̂(θ) at time t where it lies at some angle θ and also
r̂(θ + Δθ) at time t + Δt a little later, when the angle is θ + Δθ. The
corresponding change in r̂, denoted by Δr̂, is almost perpendicular to
r̂:

|Δr̂| ≈ |r̂|Δθ = Δθ,
Dividing by Δt gives

|Δr̂|
Δt
≈ Δθ
Δt
,

and taking the limit Δt → 0, we have∣∣∣∣∣dr̂
dt

∣∣∣∣∣ = dθ
dt
= θ̇.

Now that we have both the magnitude and direction, we conclude

dr̂
dt
= θ̇ θ̂,

as we expect.

Δθ  ≈ −Δθr

Δθ

r

ˆ

ˆ

ˆ

ˆ

θ2

θ1

ˆ Similarly, the sketch shows that the change in θ̂, denoted by Δθ̂, points
radially inward along r̂. Thus∣∣∣Δθ̂∣∣∣ ≈ ∣∣∣θ̂∣∣∣Δθ = Δθ,∣∣∣Δθ̂∣∣∣

Δt
≈ Δθ
Δt
.
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Taking the limit, ∣∣∣∣∣∣dθ̂dt

∣∣∣∣∣∣ = dθ
dt
= θ̇,

and combining the results gives

dθ̂
dt
= −θ̇ r̂,

as we expect.

1.11.3 Velocity in Polar Coordinates
We now have the means for evaluating velocity using polar coordinates:

v =
d
dt

(r r̂) = ṙ r̂ + r
d r̂
dt
.

Using Eq. (1.3), we obtain

v = ṙ r̂ + rθ̇ θ̂.

We can get insight into the meaning of each term by considering cases
where only one component varies at a time.

Case 1

Case 2

r r

v = r θ θ̂

v = r r̂
.

.

Case 1: Radial velocity (θ = constant, r varies). If θ is a constant, θ̇ = 0,
and v = ṙr̂. We have one-dimensional motion in a fixed radial direction.

Case 2: Tangential velocity (r = constant, θ varies). In this case v =
rθ̇ θ̂. Since r is fixed, the motion lies on the arc of a circle, that is, in
the tangential direction. The speed of the point on the circle is rθ̇, and it
follows that v = rθ̇ θ̂.

If r and θ both change, the velocity is a combination of radial and
tangential motion.

The next four examples illustrate the use of polar coordinates to
describe velocity.

Example 1.14 Circular Motion in Polar Coordinates
A particle moves in a circle of radius b with angular velocity θ̇ = αt,
where α is a constant. (α has the units rad/s2.) Describe the particle’s
velocity in polar coordinates.



32 VECTORS AND KINEMATICS

v

b b

t = t2t = t1

v

θ
θ

θ̂1

θ̂2

r̂1 r̂2

Since r = b = constant, v is purely tangential and v = bα t θ̂. The
sketches show r̂, θ̂, and v at a time t1 and at a later time t2.

The particle is located at the position

r = b, θ = θ0 +

∫ t

0
θ̇dt = θ0 +

1
2αt2.

If the particle is on the x axis at t = 0, then θ0 = 0. The particle’s
position vector is r = br̂, but as the sketches indicate, θ must be given
to specify the direction of r̂.

Example 1.15 Straight Line Motion in Polar Coordinates
Consider a particle moving with constant velocity v = uî along the line
y = 2. Describe v in polar coordinates:

v = vr r̂ + vθθ̂.

y

2

1
u sin θ u cos θ

x

r̂
v = u î

r

θ

θ

θ̂

From the sketch,

vr = u cos θ
vθ = −u sin θ

v = u cos θ r̂ − u sin θ θ̂.

As the particle moves to the right, θ decreases and r̂ and θ̂ change
direction. Ordinarily, of course, we try to use coordinates that make
the problem as simple as possible; polar coordinates can be used here,
but they are not well suited to this problem.

y

2

1

x

v v

r1

θ1

θ2

r̂1 r̂2

r̂2

θ̂2θ̂1
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Example 1.16 Velocity of a Bead on a Spoke
A bead moves along the spoke of a wheel at constant speed u meters
per second. The wheel rotates with uniform angular velocity θ̇ = ω
radians per second about an axis fixed in space.

y

x

u

ω

At t = 0 the spoke is along the x axis, and the bead is at the origin. Find
the bead’s velocity at time t (a) in polar coordinates; (b) in Cartesian
coordinates.

(a) In polar coordinates, r = ut, ṙ = u, θ̇ = ω. Hence

v = ṙ r̂ + rθ̇ θ̂ = u r̂ + uωt θ̂.

At time t, the bead is at radius ut on the spoke, and the spoke makes
angle ωt with the x axis.

(b) In Cartesian coordinates, we have

vx = vr cos θ − vθ sin θ
vy = vr sin θ + vθ cos θ.

Since vr = u, vθ = rω = uωt, θ = ωt, we obtain

v = (u cosωt − uωt sinωt) î + (u sinωt + uωt cosωt) ĵ.

Note how much simpler the result is in plane polar coordinates.
(Incidentally, the trajectory of the bead is a figure known as the
Archimedean spiral.)

Example 1.17 Motion on an Off-center Circle
A particle moves with constant speed v around a circle of radius b,
with the circle offset from the origin of coordinates by distance b so
that it is tangential to the y axis. Find the particle’s velocity vector in
polar coordinates.

y

xb

r

v

θ
β

β

θ̂

r̂

With this origin, v is no longer purely parallel to θ̂, as the sketch
indicates:

v = −v sin β r̂ + v cos β θ̂

= −v sin θ r̂ + v cos θ θ̂.

The last step follows because β and θ are the base angles of an isosceles
triangle and are therefore equal.

To complete the calculation, we must find θ as a function of time. By
geometry, 2θ = ωt or θ = ωt/2, where ω = v/b. Hence

v = −v sin(vt/2b)r̂ + v cos(vt/2b)θ̂.
2θ

br

b
θ

β = θ
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1.11.4 Acceleration in Polar Coordinates
Our remaining task is to express acceleration in polar coordinates. We
differentiate v to obtain

a =
dv
dt

=
d
dt

(ṙ r̂ + rθ̇ θ̂)

= r̈ r̂ + ṙ
d
dt

r̂ + ṙθ̇ θ̂ + rθ̈ θ̂ + rθ̇
d
dt
θ̂.

Using Eqs. (1.3) and (1.4) for dr̂/dt and dθ̂/dt, we obtain

r +
 Δ

r

vr + Δvr
vt + Δvt

Δθ

r

vr

vt

a = r̈ r̂ + ṙθ̇ θ̂ + ṙθ̇ θ̂ + rθ̈ θ̂ − rθ̇2 r̂

= (r̈ − rθ̇2) r̂ + (rθ̈ + 2ṙθ̇) θ̂.

This is quite a string of terms, but they will seem more understandable
when we give them physical and geometrical interpretations.

Case 1: Radial acceleration. The term r̈ r̂ is the acceleration due to a
change in radial speed. The second term −rθ̇2 r̂ is the centripetal acceler-
ation that we encountered earlier. The diagram shows how it results from
a change in the direction of the tangential velocity vt. From the diagram,
Δvt ≈ vtΔθ. In the limit, dvt/dt = vtθ̇ = rθ̇2. The direction is radially
inward.

vt + Δvt

Δvt

vt

Δθ

Case 2: Tangential acceleration. The term rθ̈ θ̂ is the acceleration that
arises from the changing tangential speed. The next term, 2ṙθ̇ θ̂, may not
be so familiar. This is known as the Coriolis acceleration. Perhaps you
have heard of the Coriolis force. This is a fictitious force that appears
to act in a rotating coordinate system, as we shall study in Chapter 9.
In contrast, the Coriolis acceleration that we are discussing here is a real
acceleration that is present whenever r and θ both change with time. Half
of the Coriolis acceleration is due to the change in direction of the radial
velocity.

vr + Δvr

Δvr

Δθ

vr

From the diagram, it is evident that the change in time Δt is
Δvr ≈ vrΔθ, and in the limit, dvr/dt = vr θ̇. To see how the other
half arises, consider the tangential speed vθ = rθ̇. If r changes by
Δr, then vθ changes by Δvθ = Δrθ̇, and the contribution to the tan-
gential acceleration is therefore ṙθ̇, the other half of the Coriolis
acceleration.

Example 1.18 Acceleration of a Bead on a Spoke
A bead moves outward with constant speed u along the spoke of a
wheel. It starts from the center at t = 0. The angular position of the
spoke is given by θ = ωt, where ω is a constant. Find the velocity and
acceleration.

v = ṙ r̂ + rθ̇ θ̂.
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We are given that ṙ = u and θ = ωt, so that θ̇ = ω. The radial position
is given by r = ut, and as in Example 1.16 we have

v = u r̂ + uωt θ̂.

The acceleration is

a = (r̈ − rθ̇2) r̂ + (rθ̈ + 2ṙθ̇) θ̂

= −uω2t r̂ + 2uω θ̂.

The velocity is shown in the sketch for several different positions of the
wheel.

v

v

v

v

v

υθ

θ

υθ

υθ

υθ

υθ

υr

υr

υrυr

υr

3π
4

π
2

π
3

π
= 6

(The trajectory is again an Archimedean spiral.) Note that the radial
velocity is constant. The tangential acceleration is also constant—can
you visualize this?

Example 1.19 Radial Motion without Acceleration
A particle moves with θ̇ = ω = constant and r = r0eβt, where r0 and β
are constants. We shall show that for certain values of β, the particle
moves with ar = 0.

a = (r̈ − rθ̇2) r̂ + (rθ̈ + 2ṙθ̇) θ̂

= (β2r0eβt − r0eβtω2) r̂ + 2βr0eβtω θ̂.

If β = ±ω, the radial part of a vanishes.

It is very surprising at first that when r = r0eβt the particle moves with
zero radial acceleration. The error is in thinking that r̈ makes the only
contribution to ar; the term −rθ̇2 is also part of the radial acceleration,
and cannot be neglected.
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The paradox is that even though ar = 0, the radial velocity vr = ṙ =
r0ωeβt is increasing rapidly with time. The answer is that we can be
misled by the special case of Cartesian coordinates; in polar coordi-
nates,

vr �
∫

ar(t) dt,

because
∫

ar(t)dt does not take into account the fact that the unit vectors
r̂ and θ̂ are functions of time.

Note 1.1 Approximation Methods
Occasionally in the course of solving a physics problem you might sud-
denly realize that you have become so involved with the mathematics
that the physics is largely obscured. In such a case, it is worth stepping
back for a moment to see if you can reduce the complexity, for instance
by using simple approximate expressions instead of exact formulas.You
might feel that there is something essentially wrong with substituting in-
exact results for exact ones but this is not really the case, as the following
example illustrates.

The period of a simple pendulum of length L is T0 = 2π
√

g/L,
where g is the acceleration of gravity. (This result will be derived in
Chapter 3.) The accuracy of a clock driven by the pendulum depends
on L remaining constant, but L can change due to thermal expansion
and possibly aging effects. The problem is to find how sensitive the
period is to small changes in length. If the length changes by some
amount l, the new period is T = 2π

√
g/(L + l). The change in the period

is

ΔT = T − T0 = 2π
(√

g
(L + l)

−
√

g
L

)
.

This equation is exact but not particularly informative. It gives little in-
sight as to how ΔT depends on the change in length l. Also, if l 
 L,
which is generally the case of interest, ΔT is the small difference of two
large numbers, which makes the result very sensitive to numerical errors.
However, by recasting the form of ΔT , both of these problems can be
solved. The trick is to write ΔT as a power series in the small parameter
x = l/L. We have

ΔT = T − T0 = 2π

⎛⎜⎜⎜⎜⎜⎜⎜⎝
√

g
L

(
1

1 + l/L

)
−
√

g
L

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= T0

⎛⎜⎜⎜⎜⎜⎝
√

1
1 + x

− 1

⎞⎟⎟⎟⎟⎟⎠ . (1)
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Next, we make use of the following identity, which will be derived in the
following section:√

1
1 + x

= 1 − 1
2

x +
3
8

x2 − 1
16

x3 + · · · (2)

This expansion is valid provided x < 1. Inserting this in Eq. (1) gives

ΔT = T0

(
−1

2
x +

3
8

x2 − 1
16

x3 + · · ·
)
. (3)

Note that in the limit that l→ 0, ΔT → 0, as we expect. For x 
 1, only
the first term on the right may be important, in which case

ΔT ≈ −T0x = −1
2

T0
l
L
.

For instance, if l/L = 0.01, the period is increased by about 5 × 10−3 T0.
Although the result is approximate, we can estimate how good it is.
The error is less than the first neglected term, which in this case is
(3/8)T0(l/L)2 ≈ 4× 10−5T0. If higher accuracy is required, further terms
can be included.

Equations in the form of Eqs. (2) and (3) are known as power series
expansions. Such expansions can be enormously helpful both for finding
symbolic solutions to problems, and for calculating numerical results.
Here is how they are generated, with some useful examples.

Note 1.2 The Taylor Series
The general form for expressing a function f (x) as a power series in x is

f (x) = a0 + a1x + a2x2 + · · · =
∞∑

k=0

ak xk, (1)

where a0, a1, a2, . . . are constants that we find as follows. Evaluating the
series at x = 0 yields

a0 = f (0).

We now differentiate the series, assuming that f (x) is well behaved, in
other words, that it is differentiable. This gives

d f
dx
= f ′(x) = a1 + 2a2x + 3a3x3 + · · ·

We once again evaluate the series at x = 0, yielding

a1 = f ′(x)
∣∣∣
x=0 · · ·

If we differentiate the series k times, we find

ak =
1
k!

f (k)(x)
∣∣∣
x=0

where f (k)(x) is the kth derivative of f (x). The symbol k!, called “k fac-
torial”, stands for k × (k − 1)× (k − 2)× · · · × 1. To simplify the notation,
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we often write f (k)(x)
∣∣∣
x=0 as f (k)(0), bearing in mind that f (k)(0) means

that first we differentiate f (x) k times and only then set x equal to 0.
Combining these results, Eq. (1) becomes

f (x) = f (0) + f ′(0)x + f ′′(0)
x2

2!
+ f ′′′(0)

x3

3!
+ · · · (2)

This expansion is known as the Taylor series. There is no guarantee that
the series converges, but if it does it provides good approximations to
f (x) in the vicinity of x = 0.

The Taylor series is easily generalized to permit expansion of f (x) as
a power series about some other origin, for instance x = a:

f (a + x) = f (a) + f ′(a)x + f ′′(a)
x2

2!
+ · · ·

This power series expansion is known as the MacLaurin series.
For some functions the Taylor series converges for all values of x;

for others the range may be limited. We shall simply assume that we
are dealing with functions for which the range of convergence is either
infinite or is readily apparent.

Note 1.3 Series Expansions of Some Common Functions
A. Trigonometric functions
Using d sin x/dx = cos x and d cos x/dx = − sin x, and the values

sin(0) = 0 and cos(0) = 1, Eq. (2) yields

sin x = x − 1
3!

x3 +
1
5!

x5 − 1
7!

x7 + · · ·

cos x = 1 − 1
2!

x2 +
1
4!

x4 − 1
6!

x6 + · · ·

These series converge for all values of x. For small values of x we have

sin x ≈ x

cos x ≈ 1 − 1
2

x2.

These expressions, which are sometimes called the small angle approxi-
mation, are valid up to terms of order x3, denoted by O(x3).

B. The exponential function
The exponential function is ex, where e = 2.71828 · · · is the base of

the natural logarithms. The fundamental properties of the exponential are
that dex/dx = ex and e0 = 1. The Taylor series is

ex = 1 + x +
1
2

x2 +
1

3 × 2
x2 + · · · + 1

n!
xn + · · ·

This series converges for all values of x.
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C. Some algebraic functions

1.
1

1 ± x
= 1 ∓ x + x2 ∓ x3 + · · · − 1 < x < 1

2.
1

1 − x
= 1 + x + x2 + x3 + · · · − 1 < x < 1

3.
1√

1 + x
= 1 − 1

2
x +

1
8

x2 + · · · − 1 < x < 1

D. The binomial series
The expression (1 + x)n occurs in many contexts. Its power series ex-

pansion, known as the binomial series, is easily found as a Taylor series.
(If n is an integer, the power series can also be found by direct algebraic
expansion.)

(1 + x)n = 1 + nx +
n(n − 1)

2!
x2 +

n(n − 1)(n − 2)
3!

x3 + · · ·

+
n(n − 1) · · · (n − k + 1)

k!
xk + · · ·

This result is valid for −1 < x < 1, and for both integral and fractional
values of n. If n is an integer, the series terminates, the last term being
xn.

In the introduction to this section the expression f (x) = 1/
√

1 + x =
(1 + x)−1/2 arose. This is given by the binomial series with n = 1/2:

(1 + x)−
1
2 = 1 − 1

2
x +

3
8

x2 − 5
16

x3 + · · ·
The binomial series can also be employed even if |x| > 1 by the following
procedure:

(1 + x)n = xn
(
1 +

1
x

)n

= xn

⎡⎢⎢⎢⎢⎢⎣1 + n
1
x
+

n(n − 1)
2!

(
1
x

)2
+ · · ·

⎤⎥⎥⎥⎥⎥⎦ .
Note 1.4 Differentials
Often we need a simple approximation for the change in some function
f (x) when x is changed to x + Δx. We shall denote the change by Δ f =
f (x + Δx) − f (x). The Taylor series for f (x) about the point x gives

f (x + Δx) = f (x) + f ′(x)Δx +
1
2!

f ′′(x)Δx2 + · · ·
Omitting terms of order (Δx)2 and higher yields the simple linear
approximation

Δ f = f (x + Δx) − f (x) ≈ f ′(x)Δx.

This approximation becomes increasingly accurate the smaller the size
of Δx, but for finite values of Δx, the expression

Δ f ≈ f ′(x)Δx
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is only an approximation. The sketch shows a comparison of Δ f ≡ f (x+
Δx) − f (x) with the linear extrapolation f ′(x)Δx. It is apparent that Δ f ,
the actual change in f (x) as x is changed, is generally not exactly equal
to Δ f for finite Δx.

Δf
f ′(x) Δx

x + Δxx x

f (x)

Δf
df

x + dxx x

f (x)

We shall use the symbol dx, called the differential of x, to stand for Δx.
The differential of x can be as large or small as we please. We define d f ,
the differential of f , by

d f ≡ f ′(x)dx.

This notation is illustrated in the sketches.
The symbols dx and Δx are used interchangeably but d f and Δ f are

different quantities: d f is a differential defined by d f = f ′(x)dx,whereas
Δ f is the actual change f (x + dx) − f (x). Put another way, if we write

d f
dx
≈ Δ f
Δx

the term d f /dx on the left is the result of taking the limit Δx → 0, but
the term Δ f /Δx on the right is the ratio of two finite (possibly small)
quantities. Nevertheless, when the linear approximation is justified in a
calculation, we often use d f and dx to represent finite quantities Δ f and
Δx. We can always do this when a limit will eventually be taken.

Among their uses, differentials provide a shorthand method for chang-
ing a variable of integration. Consider the integral∫ b

a
xex2

dx.

The exponential is simplified if we introduce the variable t = x2. The
procedure is first to solve for x in terms of t,

x =
√

t,

and then to take differentials:

dx =
1
2

1√
t
dt.

This result is exact, since we are effectively taking the limit. The original
integral can now be written in terms of t:∫ b

a
xex2

dx =
∫ t2

t1

√
t et
(

1
2

1√
t
dt
)
=

1
2

∫ t2

t1
etdt

=
1
2

(et2 − et1 ),

where t1 = a2 and t2 = b2.

Note 1.5 Significant Figures and Experimental Uncertainty
When performing a numerical calculation, it is helpful to have a clear
guideline as to the accuracy with which the calculation should be car-
ried out. In other words, we should retain only the number of non-trivial
digits, or significant figures.
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Examples of significant figures are: 3.1415 (five significant figures); 9
(one significant figure); 0.00021 (two significant figures); .000210 (three
significant figures). Leading zeros don’t count, but trailing zeros do.

A useful rule-of-thumb is that the number of significant figures re-
tained in the result of a calculation should equal the smallest number of
significant figures of any number in the calculation. For instance, if the
acceleration of gravity in a calculation is taken to be 9.8 m/s2, the re-
sult of the calculation should be quoted to no more than two significant
figures.

Experimental uncertainty can be expressed in several ways, for exam-
ple as 72.53±0.20 or concisely as 72.53(20). Another way is the parts-
per notation based on fractional error. The fractional error in our exam-
ple is 0.20/72.53 = 2.8×10−3, and the error can be stated as 2.8 parts per
thousand, alternatively as 2.8 parts in 103.

Problems
For problems marked *, refer to page 519 for a hint, clue, or answer.

1.1 Vector algebra 1*
Given two vectors A = (2î − 3ĵ + 7k̂) and B = (5î + ĵ + 2k̂) find:
(a) A + B; (b) A − B; (c) A · B; (d) A × B.

1.2 Vector algebra 2*
Given two vectors A = (3î − 2ĵ + 5k̂) and B = (6î − 7ĵ + 4k̂) find:
(a) A2; (b) B2; (c) (A · B)2.

1.3 Cosine and sine by vector algebra*
Find the cosine and the sine of the angle between A = (3î + ĵ + k̂)
and B = (−2î + ĵ + k̂).

1.4 Direction cosines
The direction cosines of a vector are the cosines of the angles it
makes with the coordinate axes. The cosines of the angles between
the vector and the x, y, and z axes are usually called, in turn, α, β,
and γ. Prove that α2 + β2 + γ2 = 1, using either geometry or vector
algebra.

1.5 Perpendicular vectors
Show that if |A − B| = |A + B|, then A and B are perpendicular.

1.6 Diagonals of a parallelogram
Show that the diagonals of an equilateral parallelogram are
perpendicular.

1.7 Law of sines*
Prove the law of sines using the cross product. It should only take
a couple of lines.
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1.8 Vector proof of a trigonometric identity
Let â and b̂ be unit vectors in the x−y plane making angles θ and
φ with the x axis, respectively. Show that â = cos θî + sin θĵ, b̂ =
cos φî + sin φĵ, and using vector algebra prove that

cos(θ − φ) = cos θ cos φ + sin θ sin φ.

1.9 Perpendicular unit vector*
Find a unit vector perpendicular to A = (î + ĵ − k̂) and B = (2î +
ĵ − 3k̂).

1.10 Perpendicular unit vectors*
Given vector A = 3î + 4ĵ − 4k̂,

(a) find a unit vector B̂ that lies in the x−y plane and is perpen-
dicular to A.

(b) find a unit vector Ĉ that is perpendicular to both A and B̂.
(c) Show that A is perpendicular to the plane defined by B̂ and

Ĉ.

1.11 Volume of a parallelepiped
Show that the volume of a parallelepiped with edges A, B, and C
is given by A · (B × C).

1.12 Constructing a vector to a point
Consider two points located at r1 and r2, separated by distance
r = |r1 − r2| . Find a vector A from the origin to a point on the line
between r1 and r2 at distance xr from the point at r1 where x is
some number.

1.13 Expressing one vector in terms of another
Let A be an arbitrary vector and let n̂ be a unit vector in some fixed
direction. Show that A = (A · n̂)n̂ + (n̂ × A) × n̂.

1.14 Two points
Consider two points located at r1 and r2, and separated by distance
r = |r1−r2|. Find a time-dependent vector A(t) from the origin that
is at r1 at time t1 and at r2 at time t2 = t1 + T . Assume that A(t)
moves uniformly along the straight line between the two points.

1.15 Great circle*
The shortest distance between two points on the Earth (considered
to be a perfect sphere of radius R) is the distance along a great
circle — the arc of a circle formed where a plane passing through
the two points and the center of the Earth intersects the Earth’s
surface.

The position of a point on the Earth is specified by the point’s
longitude φ and latitude λ. Longitude is the angle between the
meridian (a line from pole to pole) passing through the point and
the “prime” meridian passing through Greenwich U.K. Longitude
is taken to be positive to the east and negative to the west. Latitude
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is the angle from the Equator along the point’s meridian, taken
positive to the north.

Let the vectors from the center of the Earth to the two points
be r1 and r2. The cosine of the angle θ between them can be found
from their dot product, so that the great circle distance between the
points is Rθ.

z

x

y

R

East
West

North

South

λ

φ

Find an expression for θ in terms of the coordinates of the two
points. Use a coordinate system with the x axis in the equatorial
plane and passing through the prime meridian; let the z axis be
on the polar axis, positive toward the north pole, as shown in the
sketch.

1.16 Measuring g
The acceleration of gravity can be measured by projecting a body
upward and measuring the time that it takes to pass two given
points in both directions.

α

a

R

h

TB

TA

B

A

Time

Height

Show that if the time the body takes to pass a horizontal line A in
both directions is TA, and the time to go by a second line B in both
directions is TB, then, assuming that the acceleration is constant,
its magnitude is

g =
8h

TA
2 − TB

2 ,

where h is the height of line B above line A.

1.17 Rolling drum
A drum of radius R rolls down a slope without slipping. Its axis
has acceleration a parallel to the slope. What is the drum’s angular
acceleration α?

1.18 Elevator and falling marble*
At t = 0, an elevator departs from the ground with uniform speed.
At time T1 a child drops a marble through the floor. The marble
falls with uniform acceleration g = 9.8 m/s2, and hits the ground
T2 seconds later. Find the height of the elevator at time T1.

b a

l l

i

ĵ

ˆ

ωω

1.19 Relative velocity*
By relative velocity we mean velocity with respect to a specified
coordinate system. (The term velocity, alone, is understood to be
relative to the observer’s coordinate system.)

(a) A point is observed to have velocity vA relative to coordi-
nate system A. What is its velocity relative to coordinate system B,
which is displaced from system A by distance R? (R can change
in time.)

(b) Particles a and b move in opposite directions around a circle
with angular speed ω, as shown. At t = 0 they are both at the point
r = lĵ, where l is the radius of the circle.

Find the velocity of a relative to b.
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1.20 Sportscar
A sportscar, Electro-Fiasco I, can accelerate uniformly to 100 km/h
in 3.5 s. Its maximum braking rate cannot exceed 0.7g. What is the
minimum time required to go 1.0 km, assuming it begins and ends
at rest?

1.21 Particle with constant radial velocity*
A particle moves in a plane with constant radial velocity ṙ = 4 m/s,
starting from the origin. The angular velocity is constant and has
magnitude θ̇ = 2 rad/s. When the particle is 3 m from the origin,
find the magnitude of (a) the velocity and (b) the acceleration.

1.22 Jerk
The rate of change of acceleration is known as “jerk.” Find the
direction and magnitude of jerk for a particle moving in a circle of
radius R at angular velocity ω. Draw a vector diagram showing the
instantaneous position, velocity, acceleration, and jerk.

1.23 Smooth elevator ride*
For a smooth (“low jerk”) ride, an elevator is programmed to start
from rest and accelerate according to

a(t) = (am/2)[1 − cos(2πt/T )] 0 ≤ t ≤ T
a(t) = −(am/2[(1 − cos(2πt/T )] T ≤ t ≤ 2T

where am is the maximum acceleration and 2T is the total time for
the trip.

(a) Draw sketches of a(t) and the jerk as functions of time.
(b) What is the elevator’s maximum speed?
(c) Find an approximate expression for the speed at short times

near the start of the ride, t 
 T .
(d) What is the time required for a trip of distance D?

1.24 Rolling tire
A tire of radius R rolls in a straight line without slipping. Its center
moves with constant speed V. A small pebble lodged in the tread
of the tire touches the road at t = 0. Find the pebble’s position,
velocity, and acceleration as functions of time.
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υ

1.25 Spiraling particle
A particle moves outward along a spiral. Its trajectory is given by
r = Aθ, where A is a constant. A = (1/π) m/rad. θ increases in time
according to θ = αt2/2, where α is a constant.

(a) Sketch the motion, and indicate the approximate velocity and
acceleration at a few points.

(b) Show that the radial acceleration is zero when θ = 1/
√

2 rad.
(c) At what angles do the radial and tangential accelerations

have equal magnitude?
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1.26 Range on a hill*
An athlete stands at the peak of a hill that slopes downward uni-
formly at angle φ. At what angle θ from the horizontal should they
throw a rock so that it has the greatest range?

θ

φ

h

h

1.27 Peaked roof*
A peaked roof is symmetrical and subtends a right angle, as shown.
Standing at a height of distance h below the peak, with what initial
speed must a ball be thrown so that it just clears the peak and hits
the other side of the roof at the same height?
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2.1 Introduction
Our goal in this chapter is to understand Newton’s laws of motion. New-
ton’s laws are simple to state and they are not mathematically complex,
so at first glance the task looks modest. As we shall see, Newton’s laws
combine definitions, observations from nature, partly intuitive concepts,
and some unexamined assumptions about space and time. Newton’s pre-
sentation of his laws of motion in his monumental Principia (1687) left
some of these points unclear. However, his methods were so successful
that it was not until two hundred years later that the foundations of New-
tonian mechanics were carefully examined, principally by the Viennese
physicist Ernst Mach. Our treatment is very much in the spirit of Mach.

Newton’s laws of motion are by no means self-evident. According to
Aristotle, the natural state of bodies is rest: bodies move only when a
force is applied. Aristotelian mechanics was accepted for two thousand
years because it seemed intuitively correct. Careful reasoning from ob-
servation and a great leap of imagination were needed to break out of the
Aristotelian mold.

Analyzing physical systems from the Newtonian point of view re-
quires effort, but the payoff is handsome. To launch the effort, this chap-
ter is devoted to presenting Newton’s laws and showing how to apply
them to elementary problems. In addition to deepening our understand-
ing of dynamics, there is an immediate reward for these exercises—
the power to analyze physical phenomena that at first sight might seem
incomprehensible.

There are alternative approaches to the Newtonian formulation of me-
chanics. Among these are the formulations of Lagrange and Hamilton,
which take energy rather than force as the fundamental concept. How-
ever, these formulations are physically equivalent to Newtonian physics.
Consequently, a deep understanding of Newton’s laws is an invaluable
asset to understanding any systematic treatment of mechanics.

2.2 Newtonian Mechanics and Modern Physics
A word about the validity of Newtonian mechanics: Possibly you have
had some contact with modern physics—the developments early in the
last century of Einstein’s theory of relativity and of quantum mechanics.
If so, you know that there are important areas of physics where Newton-
ian mechanics fails while relativity and quantum mechanics succeed.
Briefly, Newtonian mechanics breaks down for systems moving with a
speed comparable to the speed of light, 3 × 108 m/s, and also for sys-
tems of atomic dimensions or smaller where quantum effects are signif-
icant. The failure arises because of limitations to the classical concepts
of space, time, and the nature of measurement. As you dig deeper into
physics, you will learn the boundaries of Newtonian mechanics. Nev-
ertheless, keep in mind that where Newtonian mechanics is valid, it is
stunningly successful.
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The terms Newtonian mechanics and classical physics are often
used interchangeably, except that classical physics is taken to include
Maxwell’s theory of electromagnetism. The term modern physics typ-
ically describes developments in physics after relativity and quan-
tum mechanics appeared on the scene. A natural impulse might be to
ignore Newtonian physics and proceed directly to modern theories. This
would be a serious error because in major areas of the natural world
Newtonian physics works brilliantly while modern theories are of lit-
tle use. For example, attempting to describe planetary motion using the
language of quantum mechanics would lead to a quagmire of impene-
trable equations. Analyzing a game of billiards according to the rules
of special relativity would quickly lead back to the Newtonian equa-
tions as excellent approximations. Rather than make a blanket statement
about whether Newtonian physics is right or wrong, we recognize that
Newtonian mechanics is exceptionally useful in many areas of physics
but is inappropriate in other areas. Newtonian physics enables us to pre-
dict eclipses centuries in advance, but it is inadequate for predicting the
motions of electrons in atoms. In any case, because classical physics
explains so many everyday phenomena, and because many of its funda-
mental concepts such as momentum, energy, and conservation laws lie
at the heart of more advanced formulations, it is an essential tool for all
practicing scientists and engineers.

2.3 Newton’s Laws
Newton’s laws are based on a series of definitions and observations and
it is important to understand just which is which. In discussing the laws
we must also learn how to apply them, not only because this is the bread
and butter of physics but also because this is the only way to obtain a
deep understanding of the underlying concepts.

We start by appealing directly to experiment. Unfortunately, simple
mechanical experiments can be difficult to carry out because motion in
our everyday surroundings is complicated by forces such as gravity and
friction. To see the physical essentials, we would like to eliminate all
disturbances and examine very simple systems. One way to eliminate
the effects of gravity and friction would be to construct a space station
laboratory, because in the environment of free fall in space most of the
everyday disturbances are negligible. However, lacking the resources to
put ourselves in orbit, we settle for second best, a device known as a
linear air track, which approximates ideal conditions but only in one
dimension. (It is not obvious that we can learn about three-dimensional
motion from studying motion in one dimension, but happily it turns out
that we can.)

The linear air track is a hollow triangular beam, perhaps 2 m long,
pierced by many small holes that emit gentle streams of air from a
blower. A rider rests on the beam. When the blower is turned on, the
rider floats on a thin cushion of air. The friction effects of air are
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Compressed air

extremely small, typically 5000 times less than for a film of oil, so that
friction is negligible compared to the much larger forces we might be
applying. If the track is leveled carefully, and if we eliminate stray air
currents, the rider moves along the track essentially free of gravity, fric-
tion, or any other detectable influences.

Now let’s observe how the rider behaves. (It is well worth trying these
experiments yourself, if possible.) Suppose that we place the rider on the
track and carefully release it from rest. As we might expect, the rider
stays at rest, at least until a draft hits it or somebody bumps the appara-
tus. (This is hardly surprising since we leveled the track until the rider
stayed put when left at rest.) Next, we give the rider a slight shove and
let it move freely. The motion seems uncanny, for the rider continues to
move along slowly and evenly, neither gaining nor losing speed. This is
contrary to our everyday experience (not to mention Aristotle’s dictum
that moving bodies stop moving unless we push them). The rider’s be-
havior seems uncanny because frictionless motion is alien to our normal
experience. If the air flow is interrupted, the rider comes to a grinding
halt. Evidently friction stops the motion. But we are getting ahead of
ourselves; let us return to the properly functioning air track and try to
generalize from our experience.

It is possible to make a two-dimensional air table analogous to the
one-dimensional air track. (A smooth sheet of glass with a flat piece of
dry ice on it does pretty well; the evaporating dry ice provides the gas
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cushion.) We find again that the undisturbed rider moves with uniform
speed. Three-dimensional isolated motion is difficult to observe, short of
going into space, but let us for the moment assume that our experience
in one and two dimensions also holds in three dimensions. We there-
fore surmise that an object moves uniformly in space provided external
influences are negligible.

2.4 Newton’s First Law and Inertial Systems
In describing the air track experiments, we glossed over a fundamental
issue. Motion has meaning only when measured with respect to a partic-
ular coordinate system. Thus, to describe motion it is essential to specify
a coordinate system. For motion along the air track we implicitly used
a coordinate system fixed to the track, perhaps with its origin at one
end. However, we are free to choose any coordinate systems we please,
including systems that are moving with respect to the track. In a coordi-
nate system moving uniformly with respect to the track, the undisturbed
rider again moves with constant speed, though a speed different from
the one fixed to the track. Such coordinate systems are called inertial
systems. Not all coordinate systems are inertial. For instance, if viewed
from a coordinate system that is accelerating with respect to the track,
the speed of the rider would appear to change in time. However, it is al-
ways possible to find a coordinate system in which isolated bodies move
uniformly. We will return to this subject in Chapter 9.

This is the essence of Newton’s first law of motion. The law is often
stated in words such as “A uniformly moving body continues to move
uniformly unless acted on by a force,” but the underlying concept is re-
ally the idea of an isolated body. Because all interactions decrease with
distance, we can take “isolated” to mean a body that has been removed
so far from other bodies that interactions are negligible. A coordinate
system can always be found in which the body moves uniformly. From
this point of view we can state Newton’s first law as follows:

Newton’s first law of motion is the assertion that inertial systems exist.

Newton’s first law is part definition and part experimental fact. Iso-
lated bodies move uniformly in inertial systems by virtue of the defini-
tion of an inertial system. In contrast, the assertion that inertial systems
exist is a statement about the physical world. Newton’s first law raises a
number of questions such as what we really mean by an “isolated body,”
but we defer these for the present.

2.5 Newton’s Second Law
We now turn to how the rider on the air track behaves when it is no longer
isolated. Suppose that we pull the rider with a rubber band. When we
start to stretch the rubber band, the rider starts to move. If we move our
hand ahead of the rider so that the rubber band’s stretch is constant, we
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find that the rider moves in a wonderfully simple way; its speed increases
uniformly with time. The rider moves with constant acceleration.

Now suppose that we repeat the experiment but with a different rider,
perhaps one a good deal bigger than the first. If the same rubber band
is stretched to the same length as before, it causes a constant accelera-
tion, but the acceleration differs from the previous case. Apparently the
acceleration depends not only on what we do to the object, since pre-
sumably we do the same thing in each case, but also on some property
of the object. This property is called mass.

2.5.1 Mass
We will use our rubber band experiment to define what we mean by
mass. We start by arbitrarily asserting that the first body has mass m1.
We can define m1 to be one unit of mass or x units of mass, where x is
any number that is convenient. We then define the mass of the second
body to be

m2 ≡ m1
a1

a2
,

where a1 is the acceleration of the first body in our rubber band exper-
iment and a2 is the acceleration of the second body. In our usage here,
the symbol ≡ means “defined to be.”

Continuing this procedure, we can assign masses to other objects by
measuring their accelerations with the standard stretched rubber band.
Thus

m3 ≡ m1
a1

a3

m4 ≡ m1
a1

a4
,

etc.

This procedure is straightforward but we have yet to show that it is use-
ful. We could define some other property, call it property Z, such that
Z2 ≡ Z1(a1/a2)2. However, we shall soon see that mass turns out to be
useful but property Z (and most other quantities you might try) does
not.

By carrying out further experiments with the air track, for instance
causing motion using springs or magnets instead of rubber bands, we
find that the ratios of accelerations, hence the mass ratios, are identical no
matter how we produce the accelerations, provided that we do the same
thing to each body. Thus, mass so defined turns out to be independent of
the source of acceleration but appears to be an inherent property of the
body. Of course, the particular numerical value of mass that we assign to
the body depends on our choice of mass unit. The important thing is that
any two bodies have a unique mass ratio.

Our definition of mass is an example of an operational definition.
By operational we mean that the definition is dominantly in terms of
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experiments we perform and not in terms of abstract concepts, such as
“mass is a measure of the resistance of bodies to a change in motion.” Of
course, there can be many abstract concepts hidden in apparently simple
operations. For instance, when we measure acceleration, we tacitly as-
sume that we have a clear understanding not only of inertial systems but
also of space and time. Although our intuitive ideas are adequate for our
purposes here, we shall see when we discuss relativity that the behavior
of measuring rods and clocks is itself a matter for experiment, and the
concept of mass itself needs to be broadened.

Operational definitions may be satisfying theoretically, but they can
be useless in practice because in principle they are limited to situations
in which the operations can be carried out. However, this is not usually
a problem; physics proceeds by constructing a chain of theory and ex-
periment that allows us to employ convenient methods of measurement
but that are ultimately based on the operational definitions. For example,
the gravitational force on an object turns out to be proportional to its
mass. Because weight is proportional to mass, one can compare masses
simply by comparing weights. The most practical way to find the mass
of a mountain, for instance, is to observe its gravitational pull on a test
body, such as a hanging plumb bob, essentially comparing the mass of
the mountain to the mass of the Earth. If we had to employ the opera-
tional definition of mass, we would need to apply a standard force and
measure the mountain’s acceleration. This would be impractical, to say
the least. Fortunately, the two methods are directly related conceptually.

We defined mass by experiments on laboratory objects; we cannot say
a priori whether the results are consistent on a much larger or smaller
scale. In fact, one of the goals of physics is to find the limitations of such
definitions, for the limitations normally reveal new physical laws. Nev-
ertheless, for an operational definition to be useful, it must have a wide
field of applications. For instance, our definition of mass holds not only
for everyday objects on the Earth but also for planetary, and even galac-
tic, motions on enormously larger scales. It should not surprise us, how-
ever, if eventually we find situations in which the operations no longer
give the expected results.

Now that we have defined mass, let us turn our attention to force.

2.5.2 Force
We describe the operation of acting on the test mass with a stretched
rubber band as “applying” a force. Once again we have an operational
definition that sidesteps the question of what a force is, limiting ourselves
to describing how it is produced—namely, by stretching a rubber band
a given amount. When we apply the force, the test mass accelerates at
some rate a. If we apply two standard stretched rubber bands, side by
side, we find that the mass accelerates at the rate 2a, and if we apply the
forces in opposite directions, the acceleration is zero. Thus, the effects of
the rubber bands add algebraically, at least for motion in a straight line.
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We can establish a force scale by defining the unit force as the force
that produces unit acceleration when applied to the unit mass. It follows
from our experiments that F units of force accelerate the unit mass by F
units of acceleration. From our definition of mass, the force will produce
F × (1/m) units of acceleration when acting on mass m. Hence, the ac-
celeration produced by force F acting on mass m is a = F/m. In a more
familiar order we write this as F = ma.

In the International System of units (SI), the unit of force is the newton
(N) and the unit of mass is the kilogram (kg). There is no special unit for
acceleration, which is quoted in units of meters per second per second
(m/s2). Units are discussed in greater detail in Section 2.7.

We have focused our discussion on one-dimensional motion. It is natu-
ral to assume that for three-dimensional motion, force, like acceleration,
behaves like a vector. Although this turns out to be the case, it is not ob-
viously true. For instance, if mass were different in different directions,
acceleration would not be parallel to force and force and acceleration
could not be related by a simple vector equation. Although the concept
of mass having different values in different directions might sound ab-
surd, it is not impossible. In fact, physicists have carried out very sen-
sitive tests of this hypothesis, without finding any variation. So, we can
treat mass as a scalar, i.e. a simple number, and write

F = ma.

This is Newton’s second law of motion, which will underlie much of our
subsequent discussion.

It is worth emphasizing that force is not merely a matter of definition.
For instance, if we observe that an air track rider of mass m starts to
accelerate at rate a, it might be tempting to conclude that we have just
observed a force F = ma. Tempting, but wrong. The reason is that forces
always arise from real physical interactions between systems. Interac-
tions are scientifically significant: accelerations are merely their conse-
quence. Consequently, if we eliminate all interactions by isolating a body
sufficiently from its surroundings—an inertial system—we expect it to
move uniformly.

You might question whether it is really possible to totally isolate a
body from its surroundings. Fortunately, as far as we know, the answer
is yes. Because interactions decrease with distance, all that is required to
make interactions negligible is to move everything else far away. The
forces that extend over the greatest distance are the familiar gravita-
tional and Coulomb electric forces. These decrease as 1/r2, where r is
the distance. Most forces decrease much more rapidly. For example, the
force between separated atoms decreases as 1/r7. By moving bodies suf-
ficiently far apart, the interactions can be reduced as much as desired.

2.6 Newton’s Third Law
That force is necessarily the result of an interaction is made explicit by
Newton’s third law. The third law states that forces always appear in
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pairs that are equal in magnitude and opposite in direction: if body b
exerts force Fa on body a, then there must be a force Fb acting on body
b, due to body a, such that Fb = −Fa. There is never a lone force without
a partner. As we shall see in Chapter 4, the third law leads directly to a
powerful conservation law: the conservation of momentum.

Newton’s third law is essential if the second law is to be meaningful:
without it, there would be no way to know whether an acceleration re-
sults from a real force, or is merely an artifact of being in a non-inertial
system. If the acceleration is due to a force, then somewhere in the uni-
verse there must be an equal and opposite force acting on some other
body.

Example 2.1 Inertial and Non-inertial Systems
Newton’s second law F = ma holds true only in inertial systems. The
concept of inertial systems might seem almost trivial because the Earth
provides a reasonably good inertial reference frame, and non-inertial
effects are not readily visible on the small scale. However, there is
nothing trivial about the concept of an inertial system, as we shall now
illustrate.

Aliens infiltrated the intergalactic space police, pilfered a space shuttle,
and are making a getaway. Two spaceships set out in pursuit: spaceship
A, led by Commander Earhart, and spaceship B, led by Commander
Wright. To intercept the shuttle, the commanders must decide whether
the shuttle is accelerating or coasting in free flight. For simplicity, we
assume that A, B, and the shuttle all move along a straight line.

Commander Earhart measures the distance to the shuttle at a series of
times using her super-LIDAR (“Light Detection And Ranging”) capa-
bilities. To plot an intercepting course, she sets up a coordinate system
along the line of motion with her ship as origin and measures the dis-
tance to the space shuttle xA(t) at a series of times. From xA(t) she
calculates the shuttle’s velocity vA = ẋA and its acceleration aA = ẍA.
The results, shown in the sketches, are unambiguous: the distance ap-
pears to be varying quadratically in time. She infers that the velocity of
the stolen shuttle is varying linearly in time, and that its acceleration is
therefore constant.

xA

t

υA

t

aA

t

Earhart calculates from her data that the shuttle is accelerating at the
rate of aA = 1000 m/s2. She concludes that the shuttle’s rocket engine
must be on and that the force on the shuttle due to the engine is

FA = aAMs

= 1000 (m/s2) × Ms(kg),

where Ms is the mass of the shuttle. (Note that the right-hand side of the
equation has units kg·m/s2, exactly as we expect for a force in newtons.)
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Commander Wright follows the same procedure but finds a different
acceleration: aB = 950 m/s2. He concludes that the force on the shuttle
is

FB = aBMs

= 950 (m/s2) × Ms(kg).

The disagreement is serious because if different observers obtain dif-
ferent values for the force on a system, at least one of them must be
mistaken. Fortunately, both commanders have studied physics, so with
confidence in the laws of mechanics they set to work to resolve the
discrepancy.

Wright and Earhart recall that Newton’s laws hold only in inertial sys-
tems. How can they decide whether or not their systems are inertial?
Earhart confirms that none of her engines are running and that there are
no nearby bodies that could exert a force. She concludes that she is in
an isolated system and that it should therefore be inertial. To confirm,
she executes a simple but sensitive experiment. She carefully releases
her peanut butter sandwich, and observes that it floats in front of her
face without motion. Because the sandwich’s acceleration is negligible,
she concludes that she is indeed in an inertial system. The argument is
as follows: as long as Earhart holds the sandwich, it must have the
same instantaneous velocity and acceleration as her spaceship. How-
ever, once the sandwich is released, no forces act on it, assuming that
we can neglect gravitational or electrical interactions with the space-
ship, air currents, etc. The sandwich, then, represents an isolated body.
If the spaceship were itself accelerating the sandwich would appear
to accelerate relative to the cabin. Because the sandwich does not, the
spaceship must also define an inertial system.

Earhart’s measurement of the force on the shuttle must be correct be-
cause she has measured it in an inertial system. But what can we say
about measurements made by Commander Wright? To answer this
question, we look at the relation between xA and xB.

xB

xA

B

A
X

From the sketch,

xA(t) = xB(t) + X(t),

where X(t) is the position of B relative to A. Differentiating twice with
respect to time, we have

ẍA = ẍB + Ẍ. (1)
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Because system A is inertial, Newton’s second law applied to the shut-
tle is

Ftrue = MẍA (2)

where Ftrue is the true force on the shuttle.

The apparent force observed by B is

FB, apparent = MsẍB.

Using the results of Eqs. (1) and (2), we have

FB, apparent = MsẍA − MsẌ

= Ftrue − MsẌ.

Wright can measure the true force only if Ẍ = 0. However, Ẍ = 0 only
if B moves uniformly with respect to A. Wright suspects that perhaps
this is not the case and tries the floating sandwich test. To his embar-
rassment, he finds that the sandwich will not stay at rest. A check of
the ship reveals that an assistant engineer has carelessly left a rocket
engine running. Consequently, Wright’s system is not inertial but is ac-
celerating with respect to A (and presumably with respect to the rest of
the universe) at 50 m/s2. When he turns off the engine, Wright finds the
same value for the force on the shuttle as Earhart.

The last example dealt with motion in a straight line, but the results
are easily generalized to three dimensions. If R is the vector from the
origin of an inertial system with coordinates (x, y, z) to the origin of
another coordinate system (x′, y′, z′), then from the sketch, we see that
r′ = r − R. If an acceleration in the (x, y, z) system is r̈, the force F on
mass M is

Fapparent = Ftrue − MsR̈.

If R̈ = 0, then Fapparent = Ftrue, which means that the second coordinate
system is also inertial. In fact, we have merely proven what we asserted
earlier, namely, that any system moving uniformly with respect to an
inertial system is also inertial.

z

x

R

r′
r

y

z′ y′

x′

2.6.1 Fictitious Forces
Sometimes it is convenient, or possibly essential, to carry out measure-
ments in a non-inertial system. The Earth provides a notable example;
the surface of the Earth constitutes a reasonably good inertial system for
many purposes, but it is not strictly inertial because of the Earth’s rota-
tion. One consequence, to be explained in Chapter 9, is the Coriolis force
that causes large weather systems to rotate. Another is the precession of
the Foucault pendulum—a circular acceleration with no obvious driving
force—on display in many science museums.
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What can we do to obtain the correct equations of motion from ob-
servations in a non-inertial system? The answer lies in the relation
Fapparent = Ftrue −MR̈. We can treat the last term like an additional force.
Because it is not really a force—no interaction is involved—we shall
refer to it as a fictitious force. We then have

Fapparent = Ftrue + Ffictitious,

where Ffictitious = −MR̈. Here M is the mass of the particle and R̈ is
the acceleration of the non-inertial system with respect to any inertial
system.

Fictitious forces are useful in solving certain problems, but they must
be treated with care. They generally cause more confusion than they are
worth at this stage of study, and for that reason we shall avoid them for
the present and agree to use inertial systems only. Later on, in Chapter 9,
we shall discuss fictitious forces rigorously and learn how to deal with
them.

Some Cautions
Newton’s laws can be stated in a clear and consistent fashion but it should
be realized that there are fundamental difficulties that cannot be argued
away. We shall return to these in later chapters after we have had a chance
to become better acquainted with the concepts of Newtonian physics.
Some points, however, are well to bear in mind now.

1. You have had to take our word that the experiments we used to de-
fine mass and to develop the second law of motion really give the results
claimed. It should come as no surprise (although it was a considerable
shock when it was first discovered) that this is not always so. For in-
stance, the mass-scale we have set up is no longer consistent when the
particles are moving at high speeds where effects predicted by Einstein’s
special theory of relativity become important. It turns out that instead of
the mass we defined, now called the rest mass m0, a more useful quantity
is m = m0/

√
1 − v2/c2, where c is the speed of light and v is the speed

of the particle. For the case v 
 c,m and m0 differ negligibly. The rea-
son that our table-top experiments did not lead us to the more general
expression for mass is that even for the largest everyday velocities, say
the velocity of a spacecraft going around the Earth, v/c ≈ 3 × 10−5 and
m and m0 differ by only a few parts in 1010.

2. Newton’s laws describe the behavior of point masses. If the size
of a body is small compared with the interaction distance, this offers no
problem. For instance, the Earth and Sun are so small compared with
the distance between them that for many purposes their motion can be
adequately described by considering the motion of point masses located
at the center of each. However, the approximation that we are dealing
with ideal point masses is fortunately not essential, and if we wish to
describe the motion of large bodies, we can readily generalize Newton’s
laws, as we shall do in Chapter 4. It turns out to be not much more



2.7 BASE UNITS AND PHYSICAL STANDARDS 59

difficult to discuss the motion of a rigid body composed of 1024 atoms
than the motion of a single point mass.

3. Newton’s laws deal with particles and are poorly suited for describ-
ing a continuous system such as a fluid. We cannot directly apply F = ma
to a fluid, for both the force and the mass are continuously distributed.
However, Newtonian mechanics can be generalized to deal with fluids
and provides the underlying principles of fluid mechanics.

One system that is particularly troublesome for our present formu-
lation of Newtonian mechanics is the electromagnetic field. Paradoxes
can arise when such a field is present. For instance, two charged bodies
which interact electrically actually interact via the electric fields they cre-
ate. The interaction is not instantaneously transmitted from one particle
to the other but propagates at the speed of light. During the propagation
time there is an apparent breakdown of Newton’s third law; the forces on
the particles are not equal and opposite. Similar problems arise in con-
sidering gravitational and other interactions. However, the problem lies
not so much with Newtonian mechanics as with its misapplication. Sim-
ply put, fields possess mechanical properties like momentum and energy
that must be included in the analysis. From this point of view there is no
such thing as a simple two-particle system. However, for many systems
the fields can be taken into account and the paradoxes can be resolved
within the Newtonian framework.

2.7 Base Units and Physical Standards
The concepts of length, time, and mass are fundamental to every branch
of physics. The units of length, time, and mass are known as the base
units of physics, and are defined by a set of physical standards that are
augmented by descriptions of the procedures for employing them. Base
units are not mere matters of practical convenience: because they em-
body the underlying concepts, they are foundations of physical science.
This section presents a brief description of the base units and the systems
of units derived from them that are universally used in physics.

The base units play two roles. The precision with which the base units
can be defined and reproduced sets a limit to the accuracy of all other
metrological standards. In some cases the precision is incredibly high—
time, for instance, can be measured to a few parts in 1017. At a deeper
level, agreeing to a standard for a physical quantity implies acceptance
of an operational definition for that quantity. For example, the modern
view of time is that time is what is measured by clocks. Consequently,
the properties of time can be understood only by studying the proper-
ties of clocks. This is not a trivial point; the rates of all clocks are af-
fected by gravity and by motion (as we shall discuss in Chapters 9 and
12), and unless we are willing to accept the fact that time itself is al-
tered by motion and gravity, we will become enmeshed in conceptual
dilemmas and possibly serious practical problems. The global position-
ing system (GPS), for instance, would not work if relativistic effects were
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overlooked. Furthermore, nobody knows how clocks work in ultra-
intense gravitational fields, for instance in a black hole where the prop-
erties of space and time are yet to be understood.

Once a physical quantity has been defined in terms of a measurement
procedure, we must appeal to experiment, not to preconceived notions,
to understand its properties. To contrast this operational viewpoint with
a non-operational approach, consider, for example, Newton’s definition
of time: “Absolute, true, and mathematical time, of itself, and from its
own nature, flows equally without relation to anything external.” This
may be philosophically and psychologically appealing, but it is difficult
to see how to make use of such a definition. Newton’s idea of time is
metaphysical (beyond physics).

After the operation underlying a physical quantity is agreed upon, the
task is to construct the most precise practical standard for defining it. In
the past, physical standards were usually particular objects—artifacts—
to which all other measurements had to be referred. Thus, the unit of
length, the meter, was the distance between two scratches on a platinum-
iridium bar, and the unit of mass was a cylinder of platinum-iridium.
Such artifacts share some serious disadvantages. Because the standard
must be carefully preserved, actual measurements are often done with
secondary standards, which causes a loss of accuracy. The precision of
an artifact is intrinsically limited. In the case of the standard meter, for
example, precision was limited by fuzziness in the scratches that de-
fined the meter interval. Finally, an artifact standard cannot be widely
available to the scientific community because it must reside in a single
metrological laboratory.

Most physical standards today are not based on artifacts but on atoms
and atomic phenomena. These so-called natural or atomic units can be
reproduced by anyone with the required apparatus. Such units are of-
ten directly connected to fundamental experiments. As the experimental
technique improves, the accuracy of the standard increases. Length be-
came the first atomic base unit when it was defined as a specified num-
ber of wavelengths of a particular spectral line emitted by a particular
atom. The unit of time, the second, became an atomic unit when it was
defined as the time for a specified number of oscillations within a par-
ticular atom. Mass is the last holdout to natural units. As of 2013, the
legal definition of the kilogram is the mass of a platinum-iridium artifact
preserved at BIPM (French abbreviation for the International Bureau of
Weights and Measures) in Sèvres near Paris. However, this is expected to
change in the near future and the kilogram will then be defined in terms
of electrical and quantum measurements.

Here is a brief account of the standards of time, length, and mass.

2.7.1 Time
Historically, time was measured in terms of the Earth’s rotation. Until
1956 the basic unit, the second, was defined as 1/86 400 of the mean
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solar day. However, the period of rotation of the Earth turned out to be
not as uniform as expected. Variations of up to 1 part in 107 per day
occur due to atmospheric tides and motions in the Earth’s core. Because
the movement of the Earth around the Sun is not influenced by these per-
turbations, in the early 1960’s the second was redefined in terms of the
mean solar year, which provided accuracy of a few parts in 109. How-
ever, in the 1950’s atomic clocks were developed that made it possible
to measure time in terms of a natural microwave frequency in an atom.
In 1967 the second was defined to be the time required for 9192 637 770
cycles of a hyperfine transition in cesium-133. The initial accuracy was
about 1 part in 1011 and over the years this has been improved to about 1
part in 1015. A new generation of atomic clocks based on optical transi-
tions promises to provide precision of a few parts in 1017 or higher. Time
is by far the most accurately determined fundamental quantity.

2.7.2 Length
When the metric system was created in 1795, it was agreed that the
meter—the unit of length—should be defined not by an artifact pos-
sessed by a single nation but by a standard available to all: the Earth. The
meter was defined to be one ten-millionth of the distance from the equa-
tor to the pole along the Dunkirk–Barcelona line. Such a distance cannot
be measured accurately (in fact it changes due to distortions of the Earth),
and in 1889 the meter was redefined to be the separation between two
scratches in a platinum-iridium bar that is preserved at the International
Bureau of Weights and Measures. However, at about the same time, the
physicist Albert A. Michelson devised a method for measuring distance
accurately in terms of the wavelength of light, that is, for creating an
atomic unit. About seventy years had to pass before the meter was legally
adopted as an atomic unit: the distance for 1650 763.73 wavelengths of
the orange-red line of krypton-86. The accuracy of this standard was
a few parts in 108. The advent of lasers and laser spectroscopy soon
rendered this definition obsolete. In measuring the speed of light c, the
limiting factor turned out to be the accuracy with which distance can be
measured, or, specifically, the accuracy with which wavelengths can be
compared. Consequently, the reasoning was turned around, and the speed
of light in vacuum was given the assigned value c = 299 792 458 m/s.
The meter was then redefined as the distance traveled by light in 1/c
seconds. Hence, the meter is now a derived, rather than primary, unit.

2.7.3 Mass
Of the three base units, mass is the only one still defined by an artifact (as
of 2013), but it is hoped that this defect will eventually be remedied. The
kilogram is the mass of the International Prototype (“le grand K”), a
platinum-iridium cylinder that is maintained at the International Bureau
of Weights and Measures. Secondary standards can be compared with
it to an accuracy of about a part in 109 but both the prototype and the
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secondary masses are known to drift in time relative to each other by as
much as a part in 106. Plans have been advanced to define the kilogram
in terms of atomic constants in a system called the Quantum SI System.
This will not only avoid the ambiguities of a mass prototype, but provide
higher accuracy for a number of the fundamental constants of physics.

2.7.4 Systems of Units
Although the standards that define mass, length, and time are accepted by
the entire scientific community, a variety of systems of units are in use.
The system most widely employed in science, and essentially universally
used in physics, is the International System, abbreviated SI (for Système
International d’Unités). This is the legal system in most countries with
the notable exception of the United States. The SI base units of length,
mass, and time are the meter, kilogram, and second. A related system,
the CGS system (for centimeter, gram, second), differs from SI only in
scaling factors. CGS units appear in older databases and are sometimes
used in chemical and biological research. Yet another system of units, the
English system, is used for non-scientific measurements in Britain and
North America, although Britain also uses the SI system. English units
are related to SI units by legally agreed scaling factors; for example, the
inch is legally defined as 2.54 cm. We shall work chiefly with SI units
with occasional lapses into the English system.

The table lists some principal units in the SI, CGS, and English
systems.

SI CGS English

Length 1 meter (m) 1 centimeter (cm) 1 inch (in)
Mass 1 kilogram (kg) 1 gram (g) 1 slug
Time 1 second (s) 1 second (s) 1 second (s)
Acceleration 1 m/s2 1 cm/s2 1 ft/s2

Force 1 newton (N) 1 dyne 1 pound (lb)
= 1 kg·m/s2 = 1 g·cm/s2 = 1 slug·ft/s2

Here are some useful relations between these units systems.

1 m = 100 cm 1 m≈ 39.4 in
1 ft = 12 in 1 mile = 5280 ft
1 kg = 1000 g 1 slug ≈ 14.6 kg
1 N = 105 dyne 1 N ≈ 0.224 lb

The unit of mass in the English system, the slug, is the mass that a
1-pound force causes to accelerate at a rate of 1 ft/second2. This unit is
archaic. The weight of a slug is about 32 pounds. The word “pound” is
sometimes used (incorrectly) as a unit of mass. In this usage it is the mass
that experiences a gravitational force of one pound at the surface of the
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Earth, a mass of approximately 0.454 kg. We shall avoid this confusing
usage.

We often need to deal with quantities that are much larger or much
smaller than the base units, so the SI system provides prefixes based on
powers of 10 (positive or negative) that can multiply the base units. The
most common prefixes are listed in Appendix C.

2.8 The Algebra of Dimensions
Equations in physics are not meaningful unless they are dimensionally
consistent. In this context, the term dimension refers to the type of phys-
ical quantity (ultimately expressed in units of mass, length, and time), in
contrast to usage in mathematics, where dimension refers to the number
of coordinates needed to specify a point.

A useful check on a calculation is to see whether the units agree on
both sides of the final result. If they don’t, there is evidently an error
somewhere. Sometimes equations may look inconsistent, even though
they are physically meaningful, merely because the units need to be rec-
onciled. For instance, the left-hand side of an equation might be in meters
and the right-hand side in kilometers.

Fortunately, the units of physics have the pleasing property that they
can be treated as algebraic quantities. For example, the relation

1 kilometer = 1000 meters

can equally well be written as

1 =
1 kilometer
1000 meters

.

The expression on the right, known as a conversion factor, can be ma-
nipulated as an ordinary algebraic quantity.

Various units can enter into the solution of a problem and to minimize
error it is helpful to have a systematic procedure for reconciling them.
Suppose, for instance, that we want to express a length of 3.5 m in cm.
We start with the known relation 1 m = 100 cm. The idea is to treat the
conversion factor as an algebraic relation in which the numbers and the
units both act like algebraic quantities. Writing the conversion factor as
a ratio with “unit” value we have

(3.5 m)
(

100 cm
1 m

)
= 350 cm.

The units “cancel” symbolically. If we had wanted to change a length in
cm to m, we would have written the conversion factor as 1 m/100 cm.

Example 2.2 Converting Units
The mean distance of the Earth from the Sun is 93 million miles.
Express this distance in meters, using the conversion factors 1 mile =
5280 feet, 1 foot = 12 inches, 1 inch = 2.54 cm, 100 cm = 1 m.
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We can combine the conversion factors to find the answer in one step:

(9.3 × 107 miles)
(

5280 feet
1 mile

) (
12 inches

1 foot

) (
2.54 cm
1 inch

) (
1 m

100 cm

)
= 1.5 × 1011 m.

The units “cancel” to give the desired units in the result. Note that the
result is expressed to the same number of significant figures as the given
data.

We have seen that quantities in mechanics such as velocity and force
are measured in units constructed from the base units of mass, length,
and time. Regardless of the system of units we use, in Newtonian me-
chanics every quantity depends on mass, length, and time in a unique
way. For example, the units of velocity are m/s in the SI system and cm/s
in the CGS system, but both have dimensions length/time.

In analyzing the consistency of units in an equation, the dimension
of mass is abbreviated M, the dimension of length is L, and the dimen-
sion of time is T. James Clerk Maxwell, who developed the theory of
electromagnetism, was the first to use the convenient notation of square
brackets to stand for the dimensions of a quantity.

[mass] = M [length] = L [time] = T.

The dimensions of quantities in mechanics can always be expressed in
terms of powers of M, L, and T. For instance,

[velocity] = LT−1 [force] = MLT−2.

Units must agree on both sides of an equation and this is only possible
if the underlying dimensions also agree. Note that M, L, and T are inde-
pendent quantities; we cannot express mass in terms of time, or length
in terms of mass. Consequently, for an equation to be valid, the powers
of M, L, and T must separately agree no matter what system of units we
choose to employ. To take an example, in Chapter 5 we shall encounter
the work–energy theorem, which essentially states that for a body start-
ing from rest,

force × distance = kinetic energy = 1
2 mv2.

We can check this dimensionally: [force] = [mass][acceleration] =
MLT−2 so that the left-hand side has dimensions ML2T−2. Kinetic en-
ergy has dimensions M(LT−1)2 = ML2T−2. Thus the equation is dimen-
sionally consistent.

2.9 Applying Newton’s Laws
Newton’s laws are simple to state but become meaningful only when you
have learned how to use them. In the remainder of this chapter we shall
launch this quest by considering a few problems in which the forces are
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known and the masses can be treated as particles, rather than as real ex-
tended objects. We shall describe a series of steps that, once learned, will
seem so natural that the procedure becomes intuitive. A note of reassur-
ance lest you feel that matters are presented too dogmatically: there are
different ways to attack most problems, and the procedure described here
is certainly not unique. In fact, no cut-and-dried procedure can ever sub-
stitute for intelligent analytical thinking. However, the method is worth
mastering even if you should later resort to shortcuts or a different ap-
proach. Here are the steps for attacking mechanical problems involving
systems of a small number of masses acted on by simple forces.

1. Isolate the masses
Mentally divide the system into smaller systems that each contain a sin-
gle mass. Each mass will be treated as if were a tiny particle. Later, we
will generalize the method to real extended bodies.

2. Draw a force diagram for each mass
Force diagrams describe all the important physics in the problem and are
the key to understanding. To draw a force diagram:

(a) Represent each body by a point or simple symbol, and label it.
(b) For each mass, draw a force vector starting on the mass, one vector

for each force acting on it, and label each vector.
This can be tricky. Draw only forces acting on the body, not forces

exerted by the body. The body might be pulled by strings, pushed by
other bodies, experiencing the force of gravity or an electric field, etc.
In any case, be sure not to omit any. Caution: use symbols on the force
diagram, never numerical values. The procedure is to obtain a symbolic
solution to the problem before introducing numerical values. Without a
symbolic solution, there is no reliable method for determining whether
an answer is reasonable.

3. Show a coordinate system on the force diagram
Take the axes along a convenient direction, perhaps along the assumed
direction of motion or along an applied force. In any case, the coordinate
system must be inertial—that is, it must be fixed to an inertial frame of
reference.

4. Write the equations of motion
By equation of motion we mean an equation of the form of Newton’s
second law, but with the forces and acceleration shown explicitly. Thus,
it is of the form F1x + F2x + · · · = Max, where the x component of each
force on the body is represented by a term on the left-hand side of the
equation. Because force and acceleration are vectors, a separate equation
of motion is required for each dimension of interest. The algebraic sign
of each force component must be consistent with the force diagram and
with the coordinate system. Even if a body is at rest and its acceleration
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vanishes, it is good practice to write the complete equations of motion
before inserting known quantities.

5. Write the constraint equations
In many problems, bodies are constrained to move along certain paths.
A pendulum bob, for instance, moves in a circle, and a block sliding
on a tabletop is constrained to move in a plane. Each constraint can be
described by a geometric equation, known as a constraint equation. Fur-
thermore, if two bodies in the same system interact, the forces between
them are constrained by Newton’s third law to be equal and opposite.
Write each constraint equation. Sometimes the constraints are implicit in
the statement of the problem. For instance, for a block on a table there is
no vertical acceleration av, and the constraint equation is simply av = 0.

6. Solve!
The equations of motion and the constraint equations should provide
enough relations to allow every unknown to be found. If an equation is
overlooked, however, there will be too few equations for a solution. This
is a signal that you need to look further.

Sometimes mechanics is subdivided into statics—the analysis of
forces on bodies in equilibrium—and dynamics—the study of motion
due to applied forces. However, the distinction is unimportant here: stat-
ics can be regarded as a special case of dynamics with vanishing accel-
eration. This requires that the net force on each body also vanishes.

A

B g

MA

F1

F2

y

x

WA

MB

N

WB

To illustrate our procedure, consider two blocks, A and B, resting on a
table, as in the drawing. Force diagrams are shown for each block. The
direction of gravity and the coordinate axes are shown by arrows.

aA

y

x
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i

A

F1

WA

ˆ

ˆ

The problem is to find all the forces.
Because the forces are vertical, we consider only components along

the y axis. The force diagrams show the weights WA and WB of the
blocks, directed down. F1 is the force of block B on block A, while F2
is the force of A on B. We shall refer to such a contact force between
two bodies, directed perpendicular to the surface, as a normal force. The
normal force of the table on B is denoted by N. We have assumed direc-
tions for the forces. If we guessed wrong and a force is actually in the
opposite direction, it will simply turn out to be negative when we solve.

The equation of motion for block A is

F1 −WA = mAaA

and the equation of motion for B is

N − F2 −WB = mBaB.

By Newton’s third law we have F1 = F2, according to the directions
assumed in the force diagram. Because the system is at rest, aA = aB = 0.
Hence

F1 = WA,
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and the equation of motion for B is

N = WB + F2.

The final step in solving a problem is to assure yourself that your answer
is reasonable. Here, the normal force N, of the table on block B, is ac-
companied by an equal and opposite force of the block on the table (not
shown). Since N = WB + F2 = WB + WA, the force on the table is the
weight of the two blocks, as we expect.

The purpose of this example is to illustrate the difference between the
force we apply to an object and the force the object exerts on us. For
instance, the gravitational force—the weight WA—acts on block A only,
not on the table or on block B. Of course, the weight of A has an effect
on both those objects, but it is through the contact or normal forces that
arise to keep the system in equilibrium. Physiologically, forces are easy
to confuse. If you push a book across a table, the force you feel is not the
force that makes the book move; it is the force the book exerts on you.
According to Newton’s third law, these two forces are always equal and
opposite.

If one of a pair of forces is limited, the other must be limited also, as
the following example illustrates.

Example 2.3 Astronauts’ Tug-of-War
Two astronauts on a space walk decide to play tug-of-war by pulling
on either end of a rope.

Astronaut Alice, who was a star on her college crew, happens to be
much stronger than astronaut Bob, whose passion was video games.
As a result, the maximum force FA with which Alice can pull is much
larger than the maximum force FB with which Bob can pull. The astro-
nauts’ masses are MA and MB, and the mass of the rope Mr is assumed
to be negligible. The problem is to find the motion if each astronaut
pulls on the rope as hard as possible.

The figure shows the force diagrams.

FB

aBaraA

F′B

MB

FAF′A

MA Mr

Note that the forces FA and FB are exerted by the astronauts on the rope,
not on themselves. The forces exerted by the rope on the astronauts are
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FA
′ and FB

′. The diagram shows the directions of the forces and the
sign convention we have adopted: acceleration to the right is positive.

Only motion along the direction of the rope is of interest. There are no
constraints and we proceed to the solution.

With the directions shown in the force diagram, we have from Newton’s
third law

F′A = FA

F′B = FB. (1)

The equation of motion for the rope is

FB − FA = Mrar. (2)

The mass of the rope, Mr, is negligible and so we will take Mr = 0 in
Eq. (2). This gives FB − FA = 0 or

FB = FA.

This illustrates a general principle: because a finite force acting on zero
mass would produce an infinite acceleration, the total force on any body
of negligible mass must be vanishingly small.

Since FB = FA, Eq. (1) gives F′A = FA = FB = F′B. Hence

F′A = F′B.

Consequently, the astronauts must pull with the same force. No matter
how much stronger Alice is than Bob, she is unable to pull harder than
he can pull. Physically, if Alice pulls too hard, Bob cannot hold on and
the rope slips. Thus the force Alice can exert is limited by the strength
of Bob’s grip.

The accelerations of the astronauts are

aA =
F′A
MA

aB =
−F′B
MB

=
−F′A
MB

.

The negative sign means that aB is to the left. Often the direction of
an acceleration or force component is initially unknown. In writing the
equations of motion, any choice of direction is valid, as long as it is
consistent with the directions shown in the force diagram. If the solu-
tion yields a negative sign, the acceleration or force is opposite to the
direction assumed.
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The next example shows that for a system of several masses (a com-
pound system) to accelerate, there must be a net force on each mass in
the system.

Example 2.4 Multiple Masses: a Freight Train
Three freight cars each of mass M are pulled with force F by a loco-
motive. Friction is negligible. Find the forces on each car.

F
MMM

3 2 1

a

Before drawing the force diagram, it is worth thinking about the sys-
tem as a whole. The cars are joined and are thus constrained to have
the same acceleration. Because the total mass is 3M, their acceleration
is

a =
F

3M
.

The force diagram for the end car, #3, is shown, where W is the weight,
N is the upward force exerted by the track, and F3 is the force exerted
on car #3 by car #2.
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F3

a

N

M

3

W

F2

a
M

2

F′2 F
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M

1

The vertical acceleration is zero, so that N = W. The horizontal equa-
tion of motion is

F3 = Ma

= M
( F
3M

)
=

F
3
.

Now let us consider the middle car, #2. The vertical forces are as before,
and we omit them. F′3 is the force exerted by the last car, and F2 is the
force exerted by car #1.

The equation of motion is

F2 − F′3 = Ma.

By Newton’s third law, F′3 = F3, so that F′3 = F/3. Since a = F/3M,
we have

F2 = M
( F
3M

)
+

F
3

=
2F
3
.
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The horizontal forces on the first car, #1, are F, to the right, and

F′2 = F2 =
2F
3
,

to the left. Each car experiences a net force F/3 to the right.

Here is a more general way to look at the problem. Consider a string
of N cars, each of mass M, pulled by a force F. The acceleration is
a = F/(NM).

F

N (N − 1) (N − 2) 12

Fn

To find the force Fn pulling the last n cars, note that Fn must give the
mass nM an acceleration F/(NM). Hence

Fn = nM
( F

NM

)
=

n
N

F.

The force by which one car pulls another, in other words, the force
between the cars, is proportional to the number of cars pulled.

Let us turn now to systems more complicated than single bodies at
rest. An apple falling under the force of gravity is the archetype for New-
tonian dynamics, and whether or not the legend is true, the system en-
compasses the law of universal gravitation and must be counted among
the greatest intellectual syntheses in the history of science. We shall get
to that later but start here with a system that some cynics view as the
dullest problem in all of physics: a block sliding on a plane.

h
x

X
y

θ

However, we shall permit the plane to slide, which makes the problem
more interesting. As a first look at that system, let us investigate how
the acceleration of the block and the plane are related by the constraint
that the block must stay on the plane. Their accelerations are related by
a geometrical constraint equation, and we shall look at two examples of
these as a prelude to attacking some real dynamical problems.

Example 2.5 Examples of Constrained Motion
1. wedge and block
A block slides on a wedge (a planar surface) which in turns slides on
a horizontal table, as shown in the sketch. The angle of the wedge is
θ and its height is h. How are the accelerations of the block and the
wedge related? Neglect friction.
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Because the wedge is in contact with the table, we have the trivial
constraint that the vertical acceleration of the wedge is zero. To find
the less obvious constraint that the block slides on the wedge, let X be
the horizontal coordinate of the end of the wedge and let x and y be the
horizontal and vertical coordinates of the block, as shown.

θ

x − X

h − y

From the geometry, we see that

h − y
x − X

= tan θ

h − y = (x − X) tan θ.

Differentiating twice with respect to time and rearranging, we obtain
the constraint equation for the accelerations:

ÿ = (Ẍ − ẍ) tan θ. (1)

A few comments: Note that the coordinates are inertial. We would have
trouble using Newton’s second law if we measured the position of the
block with respect to the wedge, because the wedge is accelerating and
cannot specify an inertial system. Second, unimportant geometric pa-
rameters, like the height of the wedge, disappear when we take time
derivatives, but they can be useful in setting up the geometry. Finally,
constraint equations are independent of applied forces. For example,
even if friction between the block and wedge affects their accelera-
tions, the constraint equation (1) is still valid (but only as long as the
bodies remain in contact).

x
X

h

2. pulley system
The pulley system shown is used to hoist a block. How does the
acceleration of the end of the rope relate to the acceleration of the
block?

Using the coordinates indicated, the length of the rope is given by

l = X + πR + (X − h) + πR + (x − h),

where R is the radius of each pulley. Hence

Ẍ = −1
2

ẍ.

The block accelerates half as fast as the hand, and in the opposite
direction.

Example 2.6 Masses and Pulley
Two masses, M1 and M2, are connected by a string that passes over
a pulley. The pulley is accelerating upward at rate A, as shown, and
the gravitational force on each mass is Wi = Mi g. The problem is to
find the rate at which the masses accelerate and the tension T in the
string.
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From the force diagrams, we haveA

T

xp

y1
y2 W1

R

1 1

T

W2

2

2

T −W1 = M1 ÿ1 (1)
T −W2 = M2 ÿ2. (2)

We have two equations but three unknowns: y1, y2, and T . We need a
third equation, which is the constraint equation that relates the acceler-
ations. The coordinates are shown in the drawing. If yp is measured to
the center of the pulley of radius R, then if l is the length of the string,
we have

l = (yp − y1) + πR + (yp − y2).

Differentiating twice with respect to time, we find

0 = 2ÿp − ÿ1 − ÿ2.

Using A = ÿp, we have the constraint condition

ÿ1 + ÿ2 = 2A. (3)

Equations (1)–(3) are easily solved:

T = 2(A + g)
M1M2

M1 + M2

ÿ1 =
(2A + g)M2 − M1 g

M1 + M2

ÿ2 =
(2A + g)M1 − M2 g

M1 + M2
.

Note that the result is reasonable. If the masses are identical, they ac-
celerate equally and the tension is M(A + g). If either mass vanishes,
the other mass falls freely under gravity. If A = 0, the apparatus is
known as “Atwood’s machine,” a standby in lecture demonstrations
and elementary labs. The purpose of Atwood’s machine is to “decrease
gravity”—the larger mass descends more slowly than if it were in free
fall.

Our examples so far have involved only linear motion. Let us look at
the dynamics of rotational motion.

2.10 Dynamics Using Polar Coordinates
To set the stage for understanding dynamics using polar coordinates, we
start with the simple example of circular motion. The basic feature of
circular motion is that it undergoes radial acceleration. This elemen-
tary property is often a source of confusion because our intuitive idea
of acceleration usually relates to a change in speed whereas in circu-
lar motion radial acceleration arises from a change in the direction of
motion.
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Example 2.7 Block and String 1
A mass m on the end of a string of length R whirls in free space in a
horizontal plane, with constant speed v. Find the force on m.

υ

m

R

Tθ
.

rθ̂ ˆ

The only force on m is the string force T , which acts toward the center,
as shown in the diagram. It is natural to use polar coordinates. Accord-
ing to the derivation in Section 1.11, radial acceleration is ar = r̈ − rθ̇2

where θ̇ is the angular velocity. (ar is positive outward.)

Since T is directed toward the origin, T = −T r̂, and the radial equation
of motion is

−T = m ar

= m(r̈ − rθ̇2).

The constraint equation is that r = R, so that r̈ = R̈ = 0. Because
θ̇ = v/R, we obtain

ar = −R (v/R)2 = −v2/R

T =
mv2

R
.

Note that T is directed toward the origin; there is no outward force on
m. If you whirl a pebble at the end of a string, you feel an outward
force. However, the force you feel does not act on the pebble, it acts on
you. This force is equal in magnitude and opposite in direction to the
force with which you pull the pebble, assuming the string’s mass to be
negligible.

In the next example both radial and tangential motion play a role in
circular motion.

Example 2.8 Block and String 2
Mass m is whirled at instantaneous speed v on the end of a string of
length R. The motion is in a vertical plane in the gravitational field
of the Earth. The forces on m are the weight W = mg down and the
string force T toward the center. The string makes instantaneous angle
θ with the horizontal. Find T and the tangential acceleration at any
instant.

υ

m

g
R

θ

The diagram shows the forces and unit vectors r̂ and θ̂.

g
W

T

θ

θ

rθ̂ ˆ

The radial force is −T −W sin θ, so the radial equation of motion is

−(T +W sin θ) = m ar

= m(r̈ − rθ̇2). (1)
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The tangential force is −W cos θ. Hence

−W cos θ = m aθ
= m(rθ̈ + 2ṙθ̇). (2)

Since r = R = constant, ar = −R(θ̇2) = −v2/R, and Eq. (1) gives

T =
mv2

R
−W sin θ = m

v2

R

(
1 − gR

v2 sin θ
)
.

A string can pull but not push, so that T cannot be negative. This re-
quires that mv2/R ≥ W sin θ. The maximum value of W sin θ occurs
when the mass is vertically up; in this case mv2/R > W. If this condi-
tion is not satisfied, the mass does not follow a circular path but starts
to fall; r̈ is no longer zero.

The tangential acceleration is given by Eq. (2). Since ṙ = 0 we have

aθ = Rθ̈

= −W cos θ
m

= −g cos θ.

The whirling block has tangential acceleration that varies between +g
and −g, no matter what the value of v. On the downswing the tangential
speed increases, on the upswing it decreases. If we wanted to swing the
mass with constant velocity, we would need to make aθ = 0 by giving
T a tangential component W cos θ.

The next example involves rotational motion, translational motion,
and constraints.

Example 2.9 The Whirling Block
A horizontal frictionless table has a small hole in its center. Block A
on the table is connected to block B hanging beneath by a string of
negligible mass which passes through the hole.

A

B

z
Initially, B is held stationary and A rotates at constant radius r0 with
steady angular velocity ω0. If B is released at t = 0, what is its acceler-
ation immediately afterward?

The force diagrams for A and B after the moment of release are shown
in the sketches.

For the block on the table we need consider only horizontal forces. The
only such force acting on A is the string force T . The forces on B are
the string force T and its weight WB.
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For A it is natural to use polar coordinates r, θ, while for B the linear
coordinate z is sufficient, as shown in the force diagrams.

T

T

MA

MB

WB

θ

z

r̂

As usual, the unit vector r̂ is radially outward. For convenience, we
have taken z to be positive in the downward direction. The equations of
motion are

−T = MA(r̈ − rθ̇2) radial, A (1)
0 = MA(rθ̈ + 2ṙθ̇) tangential, A (2)

WB − T = MBz̈ vertical, B. (3)

Because the length of the string, l, is constant, we have

r + z = l. (4)

Differentiating Eq. (4) twice with respect to time gives the constraint
equation

r̈ = −z̈. (5)

The negative sign means that if mass A moves outward, mass B would
rise. Combining Eqs. (1), (3), and (5), we find

z̈ =
WB − MArθ̇2

MA + MB
.

Immediately after B is released, r = r0 and θ̇ = ω0. Hence

z̈(0) =
WB − MAr0ω0

2

MA + MB
. (6)

z̈(0) can be positive, negative, or zero depending on the value of the
numerator in Eq. (6); if ω0 is large enough, block B will begin to rise
after release. Before release, r̈ = 0, but immediately after, the acceler-
ation has a finite value. It is evident that because forces can be applied
suddenly, acceleration can change abruptly—acceleration can be dis-
continuous in time. In contrast, position and velocity are time integrals
of acceleration and are therefore continuous in time.

The apparently simple problem in the next example has some unex-
pected subtleties.

Example 2.10 The Conical Pendulum
Mass M is fixed to the end of a rod of length l and negligible mass
that is pivoted to swing from the end of a hub that rotates at constant
angular frequency ω, as shown in the drawing. The mass moves with
steady speed in a circular path of constant radius. The problem is to
find α, the angle the rod makes with the vertical.

Tl

Mr

W

α

α

ω

r

y

We start with the force diagram. T is the tension with which the rod
pulls the mass and W is the weight of the mass. Note that there are no



76 NEWTON’S LAWS

other forces on M. If this is not clear, you are most likely confusing an
acceleration with a force—a serious error. Because y is constant and ÿ
is zero, the vertical equation of motion is

T cosα −W = 0. (1)

To find the horizontal equation of motion note that the bob is acceler-
ating in the r̂ direction at rate ar = −ω2r. Then

−T sinα = −Mrω2. (2)

Because r = l sinα we have

T sinα = Mlω2 sinα (3)

which gives
T = Mlω2. (4)

Combining Eqs. (1) and (3) gives

Mlω2 cosα = W. (5)

The weight is W = Mg. Consequently, Eq. (5) gives

cosα =
g

lω2 .

As ω → ∞, cosα → 0 and α → π/2. This is reasonable because at
high speeds we expect the bob to fly outward, which is equivalent to
expecting that α → π/2. However, at low speeds the solution becomes
unreasonable. As ω → 0, our solution predicts cosα → ∞, which is
nonsense because cosα ≤ 1. Something has gone seriously wrong.

Here is the trouble. Our solution predicts cosα > 1 for ω <
√

g/l.
When ω =

√
g/l, cosα = 1 and sinα = 0; the bob simply hangs

vertically. In going from Eq. (2) to Eq. (3) we divided both sides of Eq.
(2) by sinα and, in this case, we divided by 0, which is not permissible.
However, we see that we have overlooked a second possible solution:
sinα = 0, T = W. This solution is true for all values of ω. In this
solution, the bob hangs straight down. The drawing shows a plot of the
complete solution.

1
Unstable

Stable

ω

cos α = 1

cos α = g/(l ω2)

ω = �g/l

cos α Physically, for ω ≤ √g/l the only acceptable solution is α = 0, cosα =
1. For ω >

√
g/l there are two possible solutions:

cosα = 1 (A)

cosα =
g

lω2 . (B)

Solution (A) corresponds to the mass rotating rapidly but hanging ver-
tically. Solution (B) corresponds to the mass flying in a circular path
with the rod at an angle with the vertical. For ω >

√
g/l, solution (A)

is unstable—if the system is in that state and is slightly perturbed, it
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will jump outward. We expect the bifurcation point, the point where
the equation of motion suddenly has two solutions, has some special
significance. As we shall see in Example 3.10, ω =

√
g/l is the oscilla-

tion frequency, in radians per second, of a simple pendulum of length l.
If the rotation frequency is less than this value, the pendulum can hang
vertically. (It could also swing back and forth, executing pendulum mo-
tion.) However, for a rotation frequency higher than the pendulum fre-
quency, the pendulum will fly outward, unless it is precisely vertical.
Can you see why this is so?

The moral of this example is that it is important to check that a mathe-
matical solution makes good physical sense.

Problems
For problems marked *, refer to page 520 for a hint, clue, or answer.

2.1 Time-dependent force*
A 5-kg mass moves under the influence of a force F = (4t2 î−3tĵ) N,
where t is the time in seconds (1 N = 1 newton). It starts at rest
from the origin at t = 0. Find: (a) its velocity; (b) its position; and
(c) r × v, for any later time.

2.2 Two blocks and string*
The two blocks M1 and M2 shown in the sketch are connected by
a string of negligible mass. If the system is released from rest, find
how far block M1 slides in time t. Neglect friction.

M1

M2

g

x

2.3 Two blocks on table
Two blocks m1 and m2 are in contact on a horizontal table. A hor-
izontal force is applied to one of the blocks, as shown in the draw-
ing. If m1 = 2 kg, m2 = 1 kg, and F = 3 N, find the force of contact
between the two blocks.

m2
m1

F

2.4 Circling particle and force
Two particles of mass m and M undergo uniform circular motion
about each other at a separation R under the influence of an attrac-
tive constant force F. The angular velocity is ω radians per second.
Show that R = (F/ω2)(1/m + 1/M).

2.5 Concrete mixer*
In a concrete mixer, cement, gravel, and water are mixed by tum-
bling action in a slowly rotating drum. If the drum spins too fast
the ingredients stick to the drum wall instead of mixing.

Assume that the drum of a mixer has radius R = 0.5 m and that
it is mounted with its axle horizontal. What is the fastest the drum
can rotate without the ingredients sticking to the wall all the time?
Assume g = 9.8 m/s2.
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2.6 Mass in cone
A particle of mass m slides without friction on the inside of a cone.
The axis of the cone is vertical, and gravity is directed downward.
The apex half-angle of the cone is θ, as shown.

The path of the particle happens to be a circle in a horizontal
plane. The speed of the particle is v0. Draw a force diagram and
find the radius of the circular path in terms of v0, g, and θ.

mυ0

θ

2.7 Leaning pole
A pole of negligible mass leans against a wall, at angle θ with the
horizontal. Gravity is directed down.

L

y

b

x

M

M

(a) Find the constraint relating the vertical acceleration of one
end to the horizontal acceleration of the other.

(b) Now suppose that each end carries a pivoted mass M. Find
the initial vertical and horizontal components of acceleration as the
pole just begins to slide on the frictionless wall and floor. Assume
that at the beginning of the motion the forces exerted by the rod
are along the line of the rod. (As the motion progresses, the system
rotates and the rod exerts sidewise forces.)

2.8 Two masses and two pulleys*
Masses M1 and M2 are connected to a system of strings and pul-
leys as shown. The strings are massless and inextensible, and the
pulleys are massless and frictionless. Find the acceleration of M1.

M1

M2

2.9 Masses on table
Two masses, A and B, lie on a frictionless table, as shown.

They are attached to either end of a light rope of length l which
passes around a pulley of negligible mass. The pulley is attached
to a rope connected to a hanging mass, C. Find the acceleration of
each mass. (You can check whether or not your answer is reason-
able by considering special cases—for instance, the cases MA = 0,
or MA = MB = Mc.)

MC

MA

MB

M1 M2

M3

2.10 Three masses
The system of masses M1,M2, and M3 in the sketch uses massless
pulleys and ropes. The horizontal table is frictionless. Gravity is
directed downward.
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(a) Draw force diagrams, and show all relevant coordinates.
(b) How are the accelerations related?

2.11 Mass on wedge*
A 45◦ wedge is pushed along a table with constant acceleration A.
A block of mass m slides without friction on the wedge. Find the
block’s acceleration. Gravity is directed down.

2.12 Painter on scaffold*
A painter of mass M stands on a scaffold of mass m and pulls
himself up by two ropes which hang over pulleys, as shown.

m

A
x

y

He pulls each rope with force F and accelerates upward with
a uniform acceleration a. Find a—neglecting the fact that no one
could do this for long.

2.13 Pedagogical machine*
A “pedagogical machine” is illustrated in the sketch. All surfaces
are frictionless. What force F must be applied to M1 to keep M3
from rising or falling?

M1

M2

M3
F

2.14 Pedagogical machine 2*
Consider the “pedagogical machine” of the previous problem in
the case where F is zero. Find the acceleration of M1.

2.15 Disk with catch
A disk rotates with constant angular velocity ω, as shown. Two
masses, mA and mB, slide without friction in a groove passing
through the center of the disk. They are connected by a light string
of length l, and are initially held in position by a catch, with mass
mA at distance rA from the center. Neglect gravity. At t = 0 the
catch is removed and the masses are free to slide.

Find r̈a immediately after the catch is removed, in terms of mA,
mB, l, rA, and ω.

mB

mA

w

lra

2.16 Planck units*
Max Planck introduced a constant h, now called Planck’s constant,
to relate the energy of an oscillator to its frequency. h = 6.6 ×
10−34 J · s, where 1 joule (J) = 1 newton-meter. (h is engraved on
Planck’s tombstone in Göttingen, Germany.)
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Planck pointed out that if one takes h and Newton’s gravitational
constant G = 6.7×10−11 m3kg−1s−2 and the speed of light c = 3.0×
108 m/s as fundamental quantities, it is possible to combine them
to form three new independent quantities to replace the customary
units of mass, length, and time. The three new quantities are called
the Planck units.

(a) Planck length Lp

(b) Planck mass Mp

(c) Planck time Tp.
The Planck units have a natural role in modern cosmology, par-

ticularly the cosmology of the early universe.
Find the SI values of the Planck units, as for example 1 Lp =

(?) m. (Note: published results may differ from yours because they
are often evaluated using � = h/2π.)

2.17 Block on accelerating wedge
A block rests on a wedge on a horizontal surface. The coefficient of
friction of the block on the wedge is μ. Gravity is directed down.
The wedge angle θ obeys tan θ < μ. The wedge is accelerated
horizontally at rate a. Find the maximum and minimum values of
a for the block to stay fixed on the plane.
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3.1 Introduction
The concept of force is central in Newtonian physics. This chapter de-
scribes the gravitational force and the electrostatic force, two of the fun-
damental forces of nature. We also discuss several phenomenological
forces, for example friction. Such forces are commonly encountered in
“everyday” physics and are approximately described by empirical equa-
tions. Because the concept of force is meaningful only if one knows how
to solve problems involving forces, this chapter includes many examples
in which Newton’s laws are put into practice.

The problem of calculating motion from known forces frequently oc-
curs in physics. For instance, a physicist who sets out to design a particle
accelerator employs the laws of mechanics and knowledge of electric and
magnetic forces to calculate how the particles will move in the accelera-
tor. Equally important, however, is the converse process of deducing the
physical interaction from observations of the motion, which is how new
laws are discovered. The classic example is Newton’s deduction of the
inverse-square law of gravitation from Kepler’s laws of planetary mo-
tion. A contemporary example is the effort to elucidate the interactions
between elementary particles from high energy scattering experiments at
the Large Hadron Collider at CERN in Geneva and at other high energy
laboratories.

Unscrambling experimental observations to find the underlying forces
can be complicated. In a facetious mood, the British cosmologist Arthur
Eddington once said that force is the mathematical expression we put
into the left-hand side of Newton’s second law to obtain results that agree
with observed motions. Fortunately, force has a more concrete physical
reality.

Much of our effort in the following chapters will be to understand
how systems behave under applied forces. The task would be hopeless
if every pair of particles in the universe had their own unique interac-
tion. Fortunately, nature is kinder than this. As far as we know, there are
only four fundamentally different types of interactions in the universe:
gravity, electromagnetic interactions, the so-called weak interaction, and
the strong interaction. At one time electricity and magnetism were re-
garded as different forces but the work of James Clerk Maxwell in the
1870’s unified them, revealing them to be different aspects of a single
force field, called the electromagnetic field. In another great synthesis,
the weak interaction and the electromagnetic interaction were unified in
the 1970’s by Steven Weinberg, Sheldon Glashow, and Abdus Salaam,
for which they received the Nobel Prize in 1979.

3.2 The Fundamental Forces of Physics
The most familiar fundamental forces are gravity and electromag-
netic forces, both of which act over a long range. Their strengths de-
crease only as the inverse square of the distance between particles. In
spite of this similarity, they play totally different roles in nature. The
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gravitational force always attracts, whereas electrical forces can either
attract or repel. However, the major difference is that gravity is incred-
ibly weak compared to electromagnetic interactions. For instance, the
gravitational force between an electron and a proton in a hydrogen atom
is smaller than the electric force by a factor of about 10−30. In large sys-
tems, however, electrical attraction and repulsion cancel to a high degree,
and gravity alone is left. Gravitational forces therefore dominate the cos-
mic scale of our universe. In contrast, the world immediately around us is
dominated by electrical forces, which are far stronger than gravity on the
atomic scale. Electrical forces are responsible for the structure of atoms,
molecules, and more complex forms of matter, as well as the existence
of light.

There are two other fundamental forces: the weak and the strong in-
teractions. They have such a short range that they are important only at
nuclear distances, typically 10−15 m. These interactions are negligible
even at atomic distances, 10−10 m. As its name implies, the strong in-
teraction is very strong, much stronger than the electromagnetic force
at nuclear distances. It is the “glue” that binds protons and neutrons to-
gether in the atomic nucleus, but aside from this it has little effect in the
everyday world. The weak interaction plays a less dramatic role; it medi-
ates in the creation and destruction of neutrinos—particles of no charge
and almost no mass that are essential to our understanding of matter but
that can be detected only by the most arduous experiments.

The forces of gravity and electromagnetism are regarded as funda-
mental because they cannot easily be explained in simpler terms. The
phenomenological forces that we shall discuss, such as friction, the con-
tact force, and the viscous force, can be described by relatively simple
empirical mathematical expressions, but when examined in detail they
can be explained as the macroscopic manifestation of complicated inter-
atomic forces.

3.3 Gravity
Gravity, the most familiar of the fundamental forces, played an honored
role in the development of mechanics; Newton discovered the law of uni-
versal gravitation in 1666, the same year that he formulated his laws of
motion. By calculating the motion of two gravitating particles, Newton
was able to derive Kepler’s empirical laws of planetary motion. (And by
accomplishing all this by age 26, Newton established a tradition that still
maintains—that great advances are often made by young physicists.)

According to Newton’s law of gravitation, two particles attract each
other with a force that is proportional to the product of their masses
and inversely proportional to the square of the distance between them.
Gravity is always attractive.

This verbal description of the gravitational force is essentially correct
but not useful for solving problems, for which we need a mathematical
expression. Consider two particles, a and b, with masses Ma and Mb,
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respectively, separated by distance r. Let Fb,a be the force exerted on
particle b by particle a. Our verbal description of the magnitude of the
gravitational force can be expressed mathematically as

|Fb,a| = GMaMb

r2 .

G is known as the gravitational constant. The value of G can be found by
measuring the force between masses in a known geometry, a procedure
first carried out by Henry Cavendish in 1771 using a torsion balance. The
mass of the Earth can be found from G, the acceleration due to gravity g,
and the radius of the Earth, as we shall see in a later section. Cavendish
became famous as the scientist who “weighed the Earth.”

Ma Mb
   Fa Fba b

r

The value of G is 6.673(10) × 10−11m3kg−1s−2. G is difficult to mea-
sure because of the weakness of gravity, and at a relative uncertainty of
10−4, it is the least accurately known of the “fundamental” constants in
physics. In contrast, other constants are typically known with a relative
uncertainty of 10−8 or better.

rba

a b
rbaˆ

The gravitational force between two particles is a central force be-
cause it is directed along the line joining them. Vector notation is ideally
suited for describing these properties mathematically. By convention, we
introduce the vector rb,a that extends from the particle exerting the force,
particle a in this case, to the particle experiencing the force, particle b.
It is evident that rb,a = −ra,b. Note that |rb,a| = r. Introducing the unit
vector r̂b,a = rb,a/r, we have

Fb,a = −GMaMb

r2 r̂b,a.

The negative sign indicates that the force on particle b is directed toward
particle a, that is, the force is attractive. The force on a due to b is

Fa,b = −GMaMb

r2 r̂b,a = +
GMaMb

r2 r̂a,b = −Fb,a

where we have used r̂b,a = −r̂a,b. Thus the forces on the two particles are
equal and opposite, as Newton’s third law requires.

3.3.1 The Gravitational Force of a Sphere
Newton’s law of gravitation describes the interaction between point par-
ticles. How can we find the gravitational force on a particle due to a real
extended body like the Earth? Because force obeys the law of superpo-
sition, the force due to a collection of particles is the vector sum of the
forces exerted by the particles individually. This allows us to mentally
divide the body into a collection of small elements that can be treated
as particles. We can then sum the forces from all the particles using
standard methods from integral calculus. This approach is applied in
Note 3.1 to calculate the force between a particle of mass m and a
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uniform thin spherical shell of mass M and radius R. The result is

F = −G
Mm
r2 r̂ r > R

F = 0 r < R,

where r is the distance from the center of the shell to the particle. If the
particle lies outside the shell r > R, the force is the same as if all the mass
of the shell were concentrated at its center. If the particle lies inside, the
force vanishes.

F
m

R

M r
r̂

The reason why gravitational force vanishes inside a spherical shell
can be seen by a simple argument due to Newton. Consider the two small
mass elements marked out by a conical surface with its apex at m.

m

The amount of mass in each element is proportional to its surface
area. The area increases as (distance)2. However, the strength of the force
varies as l/(distance)2, where the distance is measured from the apex to
the shell. Thus the forces of the two mass elements are equal and oppo-
site, and cancel. We can pair up all the elements of the shell this way and
so the total force on m is zero.

A uniform solid sphere can be regarded as a succession of thin spher-
ical shells, so for particles outside the sphere, the sphere behaves grav-
itationally as if its mass were concentrated at its center. This result also
holds if the density of the sphere varies with radius, provided the mass
distribution is spherically symmetric.

For example, although the Earth has a dense core, the mass distri-
bution is nearly spherically symmetric, so to good approximation the
gravitational force of the Earth on a mass m at distance r is

F = −GMem
r2 r̂ r ≥ Re

where Me is the mass of the Earth and Re its radius.

m
r

Me Re

r̂

3.3.2 The Acceleration Due to Gravity
At the surface of the Earth, the gravitational force on mass m is

F = −GMem
Re

2 r̂,

and the acceleration due to gravity is

a =
F
m

= −GMe

Re
2 r̂.

As we expect, the acceleration is independent of m. The acceleration due
to the Earth’s gravity, GMe/Re

2, is universally designated by g. When g
is written as a vector, the vector is directed “down” toward the center of
the Earth:

g = −GMe

Re
2 r̂.
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This result justifies our earlier claim that Me can be found from G, g, and
Re.

The value of g varies slightly over the surface of the Earth, but if
high accuracy is not required it can be taken to have a nominal value
of 9.80 m/s2 = 980 cm/s2 ≈ 32 ft/s2.

By convention, g stands for the acceleration of an object mea-
sured with respect to the Earth’s surface. This differs slightly from the
true gravitational acceleration—the acceleration measured in an inertial
system—due to the rotation of the Earth, a point to which we shall re-
turn in Chapter 9. Furthermore, g increases by about 5 parts per thou-
sand from the Equator to the poles. About half this variation is due to the
slight flattening of the Earth, and the remainder arises from the Earth’s
rotation. Local mass concentrations, for instance ocean and atmospheric
tides, affect g; a variation in g of 10 parts per million is typical.

The acceleration of gravity also varies with altitude h. This effect is
easily calculated for values of h that are small compared to the Earth’s
radius. We can write

Δg = g(Re + h) − g(Re) ≈ h
dg
dr

where the derivative is evaluated at Re. The result is

Δg ≈ −2GMe
h

Re
3 = −2g

h
Re
.

It is good practice in physics to express the variation of some variable as
a fractional change, since this immediately sets the scale for the size of
effects. The fractional change in g with altitude is

Δg
g
= −2h

Re
.

The Earth’s radius is approximately 6 × 106 m and so g decreases by
roughly 1 part per million for each increase in altitude of 3 m.

3.3.3 Weight
The weight of a body is the gravitational force exerted on it by the Earth.
At the surface of the Earth the weight of a mass m is

W = −G
Mem
Re

2 r̂

= mg.

The unit of weight is the newton (SI), dyne (CGS), or, in the United
States and a few other countries, the pound (English). In everyday affairs,
“weight” and “mass” are used interchangeably, for the most part with-
out ambiguity. Thus one hears such statements as “1 kg equals 2.2 lbs,”
which strictly speaking means that the weight of a 1 kg mass is 2.2 lbs.
Similarly, reference to a “10-lb mass” means a mass that weighs 10 lbs.

Our definition of weight is unambiguous. According to this definition,
the weight of a body is not affected by its motion. However, weight is
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often used in another sense in which it is taken to be the magnitude
of the force on a body that must be exerted by its surroundings to support
the body under the influence of gravity. The following example illustrates
the difference between these two definitions.

Example 3.1 Turtle in an Elevator
An amiable turtle of mass M stands in an elevator accelerating up
at rate a. Find N, the force exerted on the turtle by the floor of the
elevator.

N

W

The forces acting on the turtle are the normal force N and the weight,
the true gravitational force W = Mg. Taking the positive direction to
be up, we have

N −W = Ma

N = Mg + Ma

= M(g + a).

This result illustrates the two senses in which weight is used. In the
sense that weight is the gravitational force, the weight of the turtle, Mg,
is independent of the motion of the elevator. However, if the weight is
taken to be the magnitude of the force exerted by the elevator on the tur-
tle, for example the reading on a scale on which the turtle is standing,
then the scale would indicate weight N = M(g+a). With this definition,
the turtle’s weight increases when the elevator accelerates up and de-
creases if the elevator accelerates down. If the downward acceleration
equals g, N becomes zero, and the turtle “floats” in the elevator. The
turtle is then said to be in a state of weightlessness.

Although the two definitions of weight in the previous example are
both commonly used and are both acceptable, we shall generally con-
sider weight to mean the true gravitational force on mass m : W = mg,
as measured in an inertial system. This is consistent with our resolve to
refer all motion to inertial systems and helps us to keep the real forces
on a body distinct.

Our definition of weight has one minor drawback. As we saw in the
last example, a scale does not read mg in an accelerating system. As
we have pointed out, systems at rest on the Earth’s surface have a small
acceleration due to the Earth’s rotation, so that the reading of a scale
fixed to the Earth’s surface is not the true gravitational force on a mass.
However, the effect is small and we shall treat the surface of the Earth as
if it were an inertial system for the present.

3.3.4 The Principle of Equivalence
The gravitational force displays a profoundly mysterious behavior.
Consider the equation of motion of particle b under the gravitational
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attraction of particle a. Let ab denote the acceleration of particle b. Then

Fb = −GMbMa

r2 r̂b,a (3.1)

= Mb ab (3.2)

or

ab = −GMa

r2 r̂a,b.

The acceleration of a particle under gravity is independent of its mass!
This is why all bodies fall with the same acceleration, in the absence of
friction. We have, however, glossed over a subtle point in canceling Mb

on both sides when combining Eqs. (3.1) and (3.2). The “mass” in the
law of gravitation (gravitational mass) measures the strength of gravita-
tional interaction and is operationally distinct from the “mass” (inertial
mass) that characterizes inertia in Newton’s second law. Why gravita-
tional mass is proportional to inertial mass is a deep mystery. Newton
recognized the mystery and confirmed the fact experimentally to an ac-
curacy of about 1% by observing that the period of a pendulum does not
depend on the material of the pendulum.

3.3.5 The Electrostatic Force
We discuss the electrostatic force only briefly because its full descrip-
tion is better left to a systematic study of electricity and magnetism. The
salient feature of the electrostatic force between two particles is that the
force, like gravity, is an inverse-square central force. The force depends
upon a fundamental property of the particle called its electric charge q.
There are two types of electric charge: experimentally, like charges repel,
unlike charges attract.

The electrostatic force Fb,a on charge qb due to charge qa is given by
Coulomb’s law:

Fb,a = k
qaqb

r2 r̂b,a.

k is a constant of proportionality and r̂b,a is a unit vector that points from
a to b. Following an inspired idea of Benjamin Franklin, we distinguish
the two types of charge by assigning an algebraic sign to q, either positive
or negative. If qa and qb are both negative or both positive, the force is
repulsive, but if the charges have different signs, Fb,a is attractive.

In the SI system the unit of charge is the coulomb (C), which is defined
in terms of electric currents and magnetic forces. In this system, k is now
a defined quantity

k = 10−7c2 ≈ 8.99 × 109 N·m2/C2,

where c is the defined speed of light.
The concept of the electric field is fundamental in electromagnetic

theory. For our present purposes, we shall simply define the electric field
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E to be the electric force on a body divided by its charge. The electric
field at r due to a charge q at the origin is

E = k
q
r2 r̂.

3.4 Some Phenomenological Forces
3.4.1 Contact Forces
Contact forces are forces transmitted between bodies by short-range
atomic or molecular interactions. Examples include the pull of a string,
friction, and the force of viscosity between a moving body and a fluid.
When examined on the atomic or molecular scale, such forces are
found to originate primarily in electrostatic interactions between parti-
cles. However, our interest here is in the dynamics of particles subject to
applied forces, so we will treat these forces phenomenologically by de-
scribing them with approximate empirical formulas, generally ignoring
their microscopic origins.

3.4.2 Tension—The Force of a String
We usually take the “string” force for granted, having some primitive
idea of how it behaves. The following example is intended to bring this
force into sharper focus.

Example 3.2 Block and String
A string of mass m attached to a block of mass M is pulled with force
F. Neglect gravity. What is the force F1 on the block due to the string?M

m

aM aS
F1 F ′1 F

F

M

The sketch shows the force diagrams. F1 is the force of the string on the
block and F′1 is the force of the block on the string, The acceleration of
the block is aM and the acceleration of the string is as. The equations
of motion are

F1 = MaM

F − F′1 = mas.

Assuming that the string doesn’t stretch, the string must accelerate at
the same rate as the block so the constraint equation is as = aM . Fur-
thermore, F1 = F′1 by Newton’s third law. Solving for the acceleration
a = aM = as, we find that

a =
F

M + m
,

as we expect, and

F1 = F′1

=
M

M + m
F.
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The force on the block is less than F; the string does not transmit the
full applied force. The solution is reasonable because we expect that if
m 
 M, then F1 ≈ F. In the opposite extreme M 
 m, we expect
F1 ≈ 0, since there is practically no load for the string to pull.

F F F ′ F ′

A

A

B

B

We can think of a string as composed of short sections interacting by
contact forces. Each section pulls the sections to either side of it, and by
Newton’s third law, it is pulled by the adjacent sections. The magnitude
of the force acting between adjacent sections is called tension. There is
no direction associated with tension. In the sketch, the tension at A is F
and the tension at B is F′.

Although a string may be under considerable tension, for example
a string on a guitar, the net string force on each small section is zero
if the tension is uniform, and the section remains at rest unless exter-
nal forces act on it. If there are external forces on the section, or if the
string is accelerating, the tension varies along the string, as Example 3.3
shows.

Example 3.3 Dangling Rope
A uniform rope of mass M and length L hangs from the limb of a tree.
Find the tension in the rope at distance x from the bottom.

T(x)

W

L

x

x

(The force diagram for the section of length x of the rope is shown
in the sketch.) The section is pulled up by a force of magnitude T (x),
where T (x) is the tension at x. The downward force on the section is its
weight W = Mg(x/L). The total force on the section is zero since it is
at rest. Hence

T (x) =
Mg
L

x.

At the bottom of the rope the tension is zero, while at the top where
x = L the tension equals the total weight of the rope Mg.

Tension and Atomic Forces
The total force on each segment of a string in equilibrium must be zero.
Nevertheless, the string will break if the tension is too large. We can un-
derstand this qualitatively by looking at a string from the atomic view-
point. An idealized model of a string is a single long chain of molecules
bound together by intermolecular forces. Suppose that force F is applied
to molecule 1 at the end of the string. The force diagrams for molecules
1, 2, and 3 are shown in the sketch. In equilibrium, F = F′, F′ = F′′,
and F′′ = F′′′ so that F′′′ = F. We see that the string “transmits” the
force F.F F ́ F ́ F  ́ʹ F ́ʹ F ́ ʹ́

1 2 3
To understand how this comes about, we need to look at the nature of

intermolecular forces.
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Qualitatively, the force between two molecules—which in this model
is the tension in the string—depends on the distance R between them
as shown in the drawing. At large distances, all molecules attract each
other with a force known as the van der Waals force. The intermolecular
force is repulsive at small distances, vanishes at some separation R0, and
is attractive for R > R0. For large values of R the force must fall to
zero because molecules do not interact over long distances. There are no
scales on the sketch, but R0 is typically a few angstroms (1 Å = 0.1 nm =
10−10 m).

R

F Fmax

R0

R1

R2

A
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In the absence of an applied force, the separation between adjacent
molecules must be R0; otherwise the intermolecular forces would cause
the string to contract or expand. As we pull on the string, the molecules
move apart slightly, say to R = R2, where the intermolecular attrac-
tive force just balances the applied force so that the total force on each
molecule is zero. If the string were stiff like a metal rod, we could push
as well as pull. A push makes the molecules move slightly together, say
to R = R1, where the intermolecular repulsive force balances the applied
force. The change in the length depends on the slope of the interatomic
force curve at r0. The steeper the curve, the less the stretch for a given
pull.

The attractive intermolecular force has a maximum value Fmax, as
shown in the sketch. If the applied pull is greater than Fmax, the inter-
molecular force is too weak to restore balance—the molecules continue
to separate and the string breaks.

For a real string or rod, the intermolecular forces act on a three-
dimensional lattice of atoms. The breaking strength of most materials
is considerably less than the limit set by Fmax. Breaks occur at points of
weakness, or “defects,” in the lattice, where the molecular arrangement
departs from regularity. Microscopically thin metal “whiskers” and car-
bon “nanotubes” seem to be nearly free from defects, and they exhibit
breaking strengths close to the theoretical maximum.

3.4.3 The Normal Force
If a body is in contact with a surface, the force on the body due to the
surface can be resolved into two components, one perpendicular and the
other tangential to the surface. The perpendicular component is called
the normal force; the tangential component is called friction.

The origin of the normal force is similar to the origin of tension in a
string. When we put a book on a table, the molecules of the book ex-
ert downward forces on the molecules of the table. The tabletop moves
downward until the repulsion of the molecules in the table balances
the force applied by the book. The more rigid the surface, the smaller
the deflection. Because no surface is perfectly rigid, compression al-
ways occurs. However, the compression is usually too slight to notice
and for most purposes we can assume ideal surfaces that are perfectly
rigid.
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In equilibrium, the normal force N exerted on a body by a surface is
equal and opposite to the resultant of all other forces that act on the body
in the perpendicular direction. When you stand, the normal force exerted
by the ground is equal to your weight. When you walk, the normal force
fluctuates as the surface accelerates up and down.

3.4.4 Friction
Friction is a force that opposes the relative motion of bodies in contact.
In mechanical design friction is usually regarded as a problem but in
fact life without friction would be hopeless: we could not walk and cars
could not drive. Astronauts on a space walk, for instance, move in a
frictionless environment. To return to the space ship they must rely on
contact forces by pulling a tether line or perhaps by employing the rocket
force produced by a jet pack.

Friction arises when the surface of one body moves, or tries to move,
along the surface of a second body. Friction depends on detailed struc-
ture at the molecular level and is generally too complicated to be ana-
lyzed from basic principles. Consequently, friction must be treated phe-
nomenologically, described by empirical rules. The magnitude of the
force of friction varies in a complicated way with the nature of the sur-
faces and their relative velocity. In fact, the only thing we can always
say about friction is that it opposes the motion that would occur in its
absence. For instance, suppose that we try to push a book across a ta-
ble. If we push gently, the book does not move and the force of friction
assumes whatever value is needed to keep the book at rest. However,
this force cannot increase indefinitely. If we push hard enough, the book
starts to slide. Once the book is sliding, the friction force is approxi-
mately constant at low speeds.

In many cases the maximum value of the friction between two sur-
faces is found to be essentially independent of the area of contact, which
may seem strange. The reason is that the actual area of contact on an
atomic scale is a minute fraction of the total surface area. This fraction
is proportional to the pressure, that is, the force per unit area. If the area
is doubled while the normal force is held constant, then the pressure is
halved. Thus there is twice as much contact area, but only half as much
microscopic force on each. The resultant total friction force, the product
of contact area and microscopic force, is unchanged. This is an oversim-
plified explanation and non-rigid bodies like automobile tires are more
complicated. A wide tire is generally better than a narrow one for good
acceleration and braking.

Empirically, the friction force f is proportional to the normal force
N, which we express as f = μN, where μ is an empirical dimensionless
constant called the coefficient of friction. Typical values of μ are in the
range of 0.3 to 0.6. For Teflon R©, which is exceptionally slippery, μ =
0.04, and for some surfaces μ can exceed 1.
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When a body slides on a surface, the friction force has its maximum
value μN and is directed so as to oppose the motion. Experimentally,
the force of friction decreases slightly when the body begins to slide.
The terms “static friction” and “kinetic friction” (or “sliding friction”)
are sometimes employed to distinguish the cases of rest and motion,
but we shall generally neglect any difference between the coefficients
of static and kinetic friction.

In summary, we take f to behave as follows:

1. For bodies not in relative motion (static friction),
0 ≤ f ≤ μN.
f opposes the motion that would occur in its absence.

2. For bodies in relative motion (kinetic friction),
f = μN.
f is directed opposite to the relative velocity.

Example 3.4 Block and Wedge with Friction
A block of mass m rests on a fixed wedge of angle θ. The coefficient
of friction is μ. (For wooden blocks, μ is typically in the range of 0.2
to 0.5.) Find the value of θ at which the block starts to slide, and the
acceleration ẍ when it slides.

f
N

m

W

y

x

θ
θ

In the absence of friction, the block would slide down the plane; hence
the friction force f points up the plane. With the coordinates shown,
we have

mẍ = W sin θ − f

and

mÿ = N −W cos θ
= 0.

When sliding is just about to start, f has its maximum value μN and
ẍ = 0. The equations then give

W sin θmax = μN

W cos θmax = N.

Hence

tan θmax = μ.

As the wedge angle is gradually increased from zero, the friction force
grows in magnitude from zero to its maximum value μN, since before
the block begins to slide we have

f = W sin θ θ ≤ θmax.



94 FORCES AND EQUATIONS OF MOTION

Once the block is sliding, its acceleration is given by

mẍ = W sin θ − μW cos θ
ẍ = g(sin θ − μ cos θ).

The physical dimension of the right-hand side is that of g, acceleration,
while on the left it is ẍ, which is also acceleration, so the equation is
dimensionally correct. However, it is good practice to look at the be-
havior for various values of the parameters, in this case, for various
values of μ. When μ is small, the acceleration is somewhat less than in
the absence of friction, which is to be expected. However, if μ is large
enough for the expression sin θ − μ cos θ to become negative, then ẍ
is negative, indicating that the block is sliding uphill, contrary to the
assumption that it starts from rest. The contradiction between the so-
lution and reality arises because if the block were to slide uphill, the
friction force would actually point downhill, contrary to the force di-
agram. The dilemma arises because of the assumption in the analysis
that friction has its maximum value. This, however, is true only if the
block is sliding. In the case that μ > tan θ, the block never starts to
slide.

Example 3.5 The Spinning Terror
The Spinning Terror is an amusement park ride—a large vertical drum
that spins so fast that everyone inside stays pinned against the wall
when the floor drops away. What is the minimum steady angular
velocity ω that allows the floor to be dropped safely?

M N

R

f

ω

ω

W = Mg

Suppose that the radius of the drum is R and the mass of the body is
M. Let μ be the coefficient of friction between the drum and the body.
The forces on M are the weight W, the friction force f , and the normal
force exerted by the wall, N, as shown.

The radial acceleration is Rω2 toward the axis, and the radial equation
of motion is

N = MRω2.

For M to be in vertical equilibrium

f = Mg.

By the law of static friction,

f ≤ μN = μMRω2,

and we have

Mg ≤ μMRω2
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or

ω2 ≥ g
μR

.

Consequently, the smallest value of ω for safety is

ωmin =

√
g
μR

.

As installed in amusement parks under names like “Gravitron” and
“Starship 2000”, the drum’s radius is R ≈ 7 m, large enough to hold
more than 40 people at a time. The coefficient of friction between cloth-
ing and the padded cloth backing in the drum is at least 0.5. Then
ωmin =

√
9.8 m/s2/(0.5 × 7 m) = 1.7 rad/s. The drum must rotate

≥ ω/2π = 0.27 turns per second = 16 rpm (revolutions per minute).
In practice, the drum usually spins at 24 rpm.

3.5 A Digression on Differential Equations
Differential equations frequently arise in the course of solving physical
problems. Often we can analyze how a system behaves in a short time
interval or are able to write all the forces acting on a small element of a
system. Finding the behavior at all times or the behavior of the whole
system then comes down to an integration, or, essentially, solving a
differential equation.

The term differential equation can create anxiety because differential
equations can be mathematically challenging. The study of differential
equations constitutes a lively branch of applied mathematics, but the sys-
tems of interest in this book are usually described by simple equations
that lead to physically intuitive solutions. These same equations arise in
many different contexts and are an essential part of the “working vocab-
ulary” of physics, so it is worth making their acquaintance.

There are two aspects to dealing with differential equations in mechan-
ics. First, framing the differential equation, which requires application of
physical laws. Second, solving the differential equation, which requires
mathematics.

If different parts of a system accelerate at different rates, Newton’s
laws still hold true but they must be applied with care. The next example
deals with such a system. By considering each small section of a rope
separately, we can obtain a simple differential equation from which the
tension can be found at any point along the rope.

Example 3.6 Whirling Rope
A uniform rope of mass M and length L is pivoted at one end and
whirls in a horizontal plane with constant angular speed ω. What is the
tension in the rope at distance r from the pivot? Neglect gravity.
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r
r + Δr

T(r + Δr )T(r )

r̂

ω

L

Let’s find the equation of motion for a small section of rope between
r and r + Δr. The length of the section is Δr and its mass is Δm =
MΔr/L. Because the motion is circular, the section is undergoing radial
acceleration. This requires a net radial force, which is possible only if
the forces pulling the ends of the section are not equal. Consequently,
the tension must vary with r, so we write the tension as T (r).

The inward force on the section at distance r from the center is T (r)
while the outward force is T (r + Δr). If we treat the small section as a
particle of mass Δm, its inward radial acceleration is rω2. (This point
could be confusing; it would be just as reasonable to take the acceler-
ation to be (r + Δr)ω2. However, when we take the limit Δr → 0 the
two expressions give the same result.)

The equation of motion for the section is

T (r + Δr) − T (r) = −(Δm) rω2

ΔT = −M rω2Δr
L

.

Dividing the last equation by Δr gives ΔT/Δr, which is the rate of
change of T with r. Strictly speaking, this result is only approximate,
but it becomes exact when we take the limit Δr → 0 to give dT/dr:

dT
dr
= lim
Δr→0

T (r + Δr) − T (r)
Δr

dT
dr
= −Mrω2

L
.

This is a differential equation, an equation that gives us not the tension
but only how tension varies with position. Because the right-hand side
is < 0, the tension decreases as r increases, a reasonable behavior.

To find the tension as a function of r, we integrate:

dT = −Mω2

L
rdr∫ T (r)

T0

dT = −
∫ r

0

Mω2

L
r dr,

where T0, the tension at r = 0, is a constant that remains to be deter-
mined.

T (r) − T0 = −Mω2

L
r2

2
or

T (r) = T0 − Mω2

2L
r2.
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To evaluate T0 we need an additional piece of information called a
boundary condition. Because the end of the rope at r = L is free, the
tension there must be zero. Consequently

T (L) = 0 = T0 − 1
2 Mω2L.

Hence T0 =
1
2 Mω2L, and the final result can be written

T (r) =
Mω2

2L
(L2 − r2).

The result is reasonable: the tension Mω2L/2 at the origin is the same
as if the mass of the rope were concentrated at a point whirling in a
circle of radius half the length of the rope.

Next we consider a rope in equilibrium, but in a situation where the
forces on the rope lie in different directions. The problem is to find the
force when a pulley is used to change the direction of a rope. As every
sailor knows, this force depends on the tension T and also the angle 2θ0
through which the rope is deflected. It may be obvious from the diagram
that the total force on the pulley is 2T sin θ0. This is the correct solution,
but it is instructive to derive the result from first principles by finding the
forces due to each element of the rope and then adding them vectorially.

Example 3.7 Pulleys
A string with constant tension T is deflected through angle 2θ0 by a
smooth fixed pulley. What is the force on the pulley?

T

T

θ0

 T sin θ0

 T sin θ0

θ0

Consider a short segment of string between angles θ and θ + Δθ. Let
ΔF be the outward force on the segment due to the pulley.

We shall shortly take the limit Δθ → 0, so we can treat the segment
like a particle. The total force on the segment is zero at equilibrium.
We have

ΔF − 2T sin
Δθ

2
= 0.

Δθ

ΔF ΔF

Δθ Δθ / 2

Δθ / 2
θ

T T

T
T

For small Δθ, sin(Δθ/2) ≈ Δθ/2 and therefore

ΔF = 2T
Δθ

2
= TΔθ.

Thus the segment exerts an inward radial force TΔθ on the pulley.
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Finding the total force on the pulley requires adding (integrating) the
contribution from each segment. It might be tempting to simply inte-
grate each side of the equation by writing∫

dF = T
∫

dθ

but blindly plugging in symbols would give the absurd answer F = Tθ.
Although the force would vanish as the deflection angle θ is decreased,
it would increase without limit as the angle is made larger.

y

x

T Δθ

θ

The essential point is that the forces at either end of the segment are
not parallel and the force on the pulley due to each segment must be
added vectorially. By symmetry, the net force F lies in the x direction,
so we only need to calculate its x component. Using ΔFx = TΔθ cos θ,
the sum of contributions from each segment becomes an integral in the
limit Δθ → 0. We have

Fx =

∫
dFx = T

∫ θ0

−θ0

cos θ dθ = 2T sin θ0,

as we expect.

3.6 Viscosity
A body moving through a liquid or gas is retarded by viscosity—a force
due to the fluid. Viscosity arises because a body moving through a
medium exerts forces that set the nearby fluid into motion. By Newton’s
third law the fluid exerts a reaction force on the body. The viscous force
Fv is along the line of motion, opposes the motion, and is proportional to
the velocity, so we can write it in the vector form

Fv = −Cv,

where C is a constant that depends on the fluid and the geometry of
the body. For objects of simple shape moving slowly through a gas at
low pressure, C can be calculated from first principles. For a sphere of
radius r moving at low speed through a common fluid like water or air,
C = 6πη r, where η is called the dynamic viscosity of the fluid. Checking
dimensions, it is easy to show that [η] = M L−1 T−1, so that in the SI
system the units of η are kg/(m · s). The relation F = 6πη r v is called
Stokes’ law.

At high speeds other forces due to turbulence occur and the total fric-
tion force, often called the drag force, can have a more complicated
velocity dependence. (Sports car designers assume a force proportional
to the square of the speed to account for the drag forces.) However, in
many practical cases at low speeds viscosity is the only important drag
force.



3.6 VISCOSITY 99

Example 3.8 Terminal Velocity
The Earth’s atmosphere normally contains a large number of very
small particles, for instance water droplets and carbon soot, generally
called aerosols. Consider a spherical water droplet in still air falling
under gravity. If the radius of the droplet is 5 microns, what is its
maximum speed of fall (the terminal velocity)? The density of water
is ρw = 1000 kg/m3 and the dynamic viscosity of air at 20 ◦C is
1.8 × 10−5 kg/m · s.

If m is the mass of the droplet and v its instantaneous speed, the equa-
tion for vertical motion is

m
dv
dt
= −6πη r v + mg

or

dv
dt
= −6πη r v

m
+ g

where positive is downward.

Using m = (4/3)πr3ρw gives a differential equation for the speed:

dv
dt
= −9

2

(
η v
ρwr2

)
+ g.

If the droplet starts from rest with v = 0 the droplet initially begins to
fall downward with acceleration g. But as the droplet accelerates, the
viscous retarding force increases until finally the acceleration becomes
0. From then on the droplet falls at the constant terminal velocity vt,

0 = −9
2

(
η vt

ρwr2

)
+ g

which gives

vt =
2
9

(
gρwr2

η

)

=
2
9

(
(9.8 m/s2) (1000 kg/m3) (5 × 10−6m)2

1.8 × 10−5 kg/m · s
)

= 3 × 10−3 m/s.

The very small droplet practically floats in the air. For a larger droplet,
such as a raindrop with r = 1 mm = 10−3 m, the terminal velocity is
much higher, 120 m/s.

If the only force on a body is the viscous retarding force, the equation of
motion is

m
dv
dt
= −Cv.
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Once again we have a differential equation, in this case an equation for
the variable v. Because the force is along the line of motion, only the
magnitude of v changes and the vector equation reduces to the scalar
equation

m
dv
dt
= −Cv.

We can rewrite this in an even simpler form:

dv
dt
= −1

τ
v

where we have introduced the parameter τ = m/C.
A few differential equations, such as this, are so simple and occur

so frequently that it is worth becoming thoroughly familiar with their
solutions whatever the context or the symbols. For instance, the same
form of equation governs the loss of a nuclear species due to radioactive
decay, the temperature of a body coming into thermal equilibrium, and
the decrease of charge of an electrical capacitor attached to a resistor.

The equation dv/dt = −v/τ tells us that the velocity decreases at a
rate proportional to its value. If you are familiar with the exponential
function ex, then you know that this is actually its fundamental prop-
erty: (d/dx)ex = ex. This suggests that we try a solution of the form
v = ebt, where b is a constant that is required to make the argument bt
dimensionless. However, there is an obvious defect in this trial solution:
it is dimensionally impossible. The left-hand side has the dimension of
velocity, LT−1, but the right-hand side is dimensionless. To repair this
defect we can try a solution of the form v = Bebt where B is a constant
that has the dimensions of velocity. This trial solution yields

dv
dt
= bBebt,

or

dv
dt
= bv.

This agrees with dv/dt = −v/τ provided that b = −1/τ, so that our
solution takes the form

v = Be−t/τ.

B could be any value, but this presents a dilemma because we would like
a solution that has no arbitrary constant. To evaluate B we make use of
what is called an initial condition, that is, a specific piece of information
known about the motion at some particular time. The problem stated that
at t = 0 the body had speed v = v0. Hence

v(t = 0) = v0 = Be0.

Because e0 = 1, it follows that B = v0, and the full solution is

v = v0e−t/τ.
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We solved our equation by simply guessing the form of the solution. This
common sense approach can be a good way to solve such a problem, but
the equation can also be solved formally:

dv
dt
= − v

τ
dv
v
= −dt

τ∫ v

v0

dv
v
= −

∫ t

0

1
τ

dt.

Note the correspondence between the limits: v is the velocity at time t
and v0 is the velocity at time 0. The initial condition is built into the
limits.

ln
(

v
v0

)
= −1

τ
t

v
v0
= e−t/τ

v = v0e−t/τ.

Before leaving this problem, let us look at the solution in a little more
detail. We introduced the parameter τ = m/C, which has the physical
dimension of time. The velocity decreases exponentially in time and
τ is a characteristic time for the system; it is the time for the veloc-
ity to drop by a factor of e−1 ≈ 0.37 of its original velocity. Math-
ematical parameters that arise in the solution to a physical problem
generally have a physical meaning. It is not difficult to show that al-
though the body theoretically never comes to rest, it travels only a finite
distance voτ.

0.37 υ0

τ

υ0

υ

0
0 t

Initial slope = − τ
υ0

Example 3.9 Falling Raindrop
In Example 3.8 we found the terminal velocity of a droplet falling
under gravity with a viscous retarding force. Here we shall solve the
equation of motion to find the speed at any time after the droplet is
released from rest.

Taking the coordinate system as positive downwards, the equation of
motion can be written

dv
dt
= −1

τ
v + g. (1)

In this notation, the terminal velocity vt is

vt = τ g. (2)

To solve Eq. (1), we convert it to the form we have studied by changing
the dependent variable from v to u = v+αwhere α is a constant we shall
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determine. Because the derivative of a constant is zero, the left-hand
side of Eq. (1) is then dv/dt = du/dt. In terms of u, Eq. (1) becomes

du
dt
= −1

τ
u +

α

τ
+ g. (3)

Taking α = −τ g puts Eq. (3) in the recognizable form

du
dt
= −1

τ
u

which has the general solution

u = B e−t/τ.

Thus

v = u + τ g = τ g + B e−t/τ.

Using the initial condition v = 0 at t = 0, we find B = −τ g and the
solution becomes

v = τ g
(
1 − e−t/τ

)
= vt

(
1 − e−t/τ

)
from Eq. (2). If t � τ, the droplet falls at essentially its terminal veloc-
ity. For a 2 mm diameter raindrop in air, τ ≈ 12 s.

Spring force

FS

FS

FS < 0 Fa

Fa

Applied force

x > 0

x < 0  x = 0     x > 0

FS > 0

x < 0

3.7 Hooke’s Law and Simple Harmonic Motion
In the mid-seventeenth century Robert Hooke (a contemporary of New-
ton) discovered that the extension of a spring is proportional to the ap-
plied force, for both positive and negative displacements. The force FS

exerted by a spring is given by Hooke’s law

FS = −k(x − x0),

where k is a constant called the spring constant and x − x0 is the dis-
placement of the end of the spring from its equilibrium position x0.

The important features of Hooke’s law are that the force varies linearly
with the displacement and that it is always directed toward the equilib-
rium position. When the spring is stretched, x > x0 and FS is negative,
directed toward x0. When the spring is compressed, x < x0 and FS is
positive, once again directed toward x0. For this reason, a Hooke’s law
force is sometimes called a linear restoring force.

Hooke’s law is essentially empirical and breaks down for large
displacements. Taking a frivolous view of affairs, we could rephrase
Hooke’s law as “extension is proportional to force, as long as it is.”
However, for sufficiently small displacements Hooke’s law is remarkably
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accurate, not only for springs but also for practically every system near
equilibrium. A look at the intermolecular force curve again tells why the
spring force is so common in nature.
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If the force curve is linear in the neighborhood of the equilibrium
point, then the force is proportional to the displacement from equilib-
rium. This is almost always the case in physics: a sufficiently short seg-
ment of force vs. displacement is generally linear to a good approxi-
mation. Only in pathological cases does a force near equilibrium lack a
linear component. It is to be expected, however, that the linear approxi-
mation will inevitably break down for a large displacement.

The motion of a mass on a spring that is displaced from equilibrium
and released is called simple harmonic motion (SHM). This behavior is
ubiquitous in physics, arising in all sorts of mechanical and electromag-
netic contexts, in all wave phenomena, and in phenomena ranging down
to the atomic scale, such as the vibration of nuclei in a molecule.

To derive the equation for simple harmonic motion, consider the mo-
tion of a block of mass M attached to one end of a spring, the other end
of which is fixed.

x
k

M The block rests on a horizontal frictionless surface. We will take the
zero of the coordinate system to lie at the equilibrium position. The equa-
tion of motion is

M
d2x
dt2 = −kx

or

d2x
dt2 +

k
M

x = 0.

Introducing the variable ω =
√

k/M puts the equation for SHM in the
standard form

d2x
dt2 + ω

2x = 0.

Any system that obeys an equation of this form is called a harmonic os-
cillator. Before looking at the solution of the harmonic oscillator equa-
tion, it is useful to see what the equation tells us physically. The dis-
placement and the acceleration always have opposite signs. As the mass
heads outward x > 0, the negative acceleration eventually brings the
mass to rest and accelerates it back toward the equilibrium position.
After the mass speeds through equilibrium, the acceleration changes sign
and the mass is pulled back. We therefore expect the mass to oscillate
about the equilibrium position.

Motion that repeats regularly is called periodic motion, and we might
guess that simple harmonic motion is periodic. Sine and cosine functions
are periodic, repeating themselves whenever their arguments increase by
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2π radians (360◦). We shall derive the solution to the SHM equation
formally in Example 5.2, but the solution is so straightforward that we
can guess its form:

x = A sinωt + B cosωt,

where A and B are constants, or equivalently

x = C sin(ωt + φ)
= C(cos φ) sinωt +C(sin φ) cosωt.

Our two ways of writing the solution hold at any time t only if A =
C cos φ and B = C sin φ. Conversely, C =

√
A2 + B2 and tan φ = B/A.

It is easy to show that both these solutions satisfy the equation of mo-
tion, where A and B, alternatively C and φ, are constants to be deter-
mined by initial conditions, for instance the position and the velocity at
t = 0.

The motion is periodic in time, going through one cycle in time T
given by ωT = 2π. T (not to be confused with tension) is known as
the period of the motion, and ω is known as the angular frequency of the
motion. The maximum excursion C is called the amplitude of the motion
and the angle φ is called the phase angle.

AMPLITUDE

0

x

PHASE
ANGLE

ωt

PERIOD T

A fundamental property of simple harmonic motion is that the fre-
quency of the motion, and hence the period, does not depend on the
amplitude. If the spring is stretched farther before releasing the mass,
the amplitude of the motion increases, which means that the mass trav-
els farther during each cycle. However, because the force also increases
with amplitude, the acceleration increases, and the mass moves faster as
it passes through the origin. The effect of larger distance is compensated
by the effect of higher acceleration, and the time for a complete cycle
remains constant.

A note of caution: The unit of frequency in cycles per second (some-
times called the circular frequency) is the hertz: one cycle per second is
1 hertz (Hz). Circular frequency is often denoted by the symbol f or ν.
The natural unit of angle in physics (and mathematics) is the radian, and
the natural unit of frequency in physics, sometimes called the angular
frequency, is radians per second. Angular frequency is often denoted by
ω, but the unit has no special name. Circular and angular frequency both
have the same physical dimension [ f ] = T−1 and [ω] = T−1, but the two
quantities differ by a factor of 2π: ω = 2π f .

Example 3.10 Pendulum Motion
We show here that a simple pendulum—a point mass hanging from
a massless string—is among the many physical systems that execute
simple harmonic motion. Later, in Chapter 7, we shall drop the
assumptions that the mass is a particle and the string massless, and
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analyze what is called a physical pendulum. It, too, displays simple
harmonic motion to good approximation if the amplitude of swing is a
small angle.

The sketch shows a simple pendulum of length l, with mass M, and
corresponding weight W = Mg.

θ

θ

l

m
m

W

T

The mass moves in a circular arc in a vertical plane. Denoting the angle
from the vertical by θ, we see that the velocity is l dθ/dt and the accel-
eration is l d2θ/dt2. The tangential force is −W sin θ. Thus the equation
of motion is

Ml
d2θ

dt2 = −Mg sin θ

or

d2θ

dt2 +
g
l

sin θ = 0.

This is not the equation for SHM because of the sine function, and it
cannot be solved in terms of familiar functions. However, if the pendu-
lum never swings far from the vertical so that θ 
 1, we can make the
approximation sin θ ≈ θ, giving

d2θ

dt2 +
g
l
θ = 0.

This is the equation for simple harmonic motion. To put it in standard
form, take ω =

√
g/l:

d2θ

dt2 + ω
2θ = 0.

It is important not to confuse ω, the angular frequency at which the
pendulum oscillates, with dθ/dt, which is the angular speed of the pen-
dulum as it moves.

The solution is θ = A sinωt + B cosωt, where ω =
√

g/l and A and
B are constants. If at time t = 0 the pendulum is released from rest at
angle θ0, the solution is

θ = θ0 cosωt.

The motion is periodic, which means it occurs identically over and
over again. The period T, the time between successive repetitions of
the motion, is given by ωT = 2π, or

T =
2π√
g/l

= 2π

√
l
g
.



106 FORCES AND EQUATIONS OF MOTION

The maximum angle θ0 is the amplitude of this motion. For small an-
gles, the period is nearly independent of the amplitude, which is why
the pendulum is so well suited to regulating the rate of a clock. How-
ever, this feature of the motion is a consequence of the approximation
sin θ ≈ θ. A more accurate solution shows that the period lengthens
slightly with increasing amplitude. Nevertheless, a pendulum clock can
be an adequate timekeeper for household purposes if its mechanism
can hold the amplitude nearly constant. A typical pendulum clock will
not gain or lose more than 5 s/day if the amplitude (assumed to be
5 degrees) can be kept constant to within about 0.3 degree.

The general solution for the motion of a simple pendulum, without
making the small angle approximation, is calculated in Note 5.1 using
energy methods.

Example 3.11 Spring Gun and Initial Conditions
A spring gun fires a marble of mass M by means of a spring and piston
in a barrel, as shown.

L

M
m

x0

x The piston has mass m and is attached to the end of a spring having
spring constant k. The piston and marble are pulled back a distance L
from equilibrium and released. The problem is to find the speed of the
marble just as it loses contact with the piston. Gravity and friction are
neglected.

We take the x axis to be along the direction of motion and the origin to
be at the spring’s unstretched position. The position of the piston obeys
the equation for SHM

(M + m)
d2x
dt2 + kx = 0,

or

d2x
dt2 +

k
M + m

x = 0,

which has the general solution

x(t) = A sinωt + B cosωt (1)

where ω =
√

k/(M + m). The velocity is

v(t) = ẋ(t)
= ωA cosωt − ωB sinωt. (2)

To evaluate the constants A and B we use the initial conditions x(t =
0) = −L and v(t = 0) = 0. Substituting in Eqs. (1) and (2), we have

x(0) = −L = A sin(ω · 0) + B cos(ω · 0) = B

v(0) = 0 = ωA cos(ω · 0) − ωB sin(ω · 0) = A
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so the solution can be written

x(t) = −L cosωt (3)
v(t) = ωL sinωt. (4)

Our solution holds until the marble and piston lose contact. The piston
can only push on the marble, not pull, and when the piston begins to
slow down, contact is lost and the marble moves on at a constant veloc-
ity. From Eq. (4), we see that the time tm at which the velocity reaches
a maximum is given by

ωtm =
π

2
.

Substituting this in Eq. (3), we find

x(tm) = −L cos
π

2
= 0.

The marble loses contact as the spring passes its equilibrium point, as
we expect, since the spring force retards the piston for x > 0.

From Eq. (4), the final speed of the marble is

vmax = v(tm)

= ωL sin
π

2

=

√
k

M + m
L.

For high speed, k and L should be large and M + m should be small.
In other words, to get high speed use a small projectile and pull on the
spring gun as hard as you can. The answer is reasonable.

Note 3.1 The Gravitational Force of a Spherical Shell
In this note we calculate the gravitational force between a uniform thin
spherical shell of mass M and a particle of mass m located a distance r
from its center. We shall show that the magnitude of the force is GMm/r2

if the particle is outside the shell and zero if the particle is inside.
r

m

M

To attack the problem, we divide the shell into narrow rings and add
their forces using integral calculus. Let R be the radius of the shell and
t its thickness, t 
 R. The ring at angle θ, which subtends angle dθ, has
circumference 2πR sin θ, width R dθ, and thickness t.

mr

R sin θ

R dθ

R

θ

Its volume is

dV = 2πR2t sin θ dθ

and its mass is

ρ dV = 2πR2tρ sin θ dθ

=
M
2

sin θ dθ.
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The total volume of the shell is 4πR2t, so its mass density is ρ =
M/(4πR2t).

Each part of the ring is the same distance r′ from m. The force on m
due to a small section of the ring points toward that section. By symme-
try, the transverse force components for the whole ring add vectorially
to zero.α

m
F

r′

Since the angle α between the force vector and the line of centers is
the same for all sections of the ring, the force components along the line
of centers add to give the total force of the ring on the mass:

dF =
Gmρ dV

r′2
cosα

for the whole ring.
The force due to the entire shell is

F =
∫

dF

=

∫
Gmρ dV

r′2
cosα.

The problem now is to express all the quantities in the integrand in terms
of one variable, say the polar angle θ. From the sketch, cosα = (r −
R cos θ)/r′, and r′ =

√
r2 + R2 − 2rR cos θ.

R cos θ r − R cos θ

αθ
R

m

r ʹ

Since

ρ dV = M sin θ dθ/2,

we have

F =
(GMm

2

) ∫ π

0

(r − R cos θ) sin θ dθ
(r2 + R2 − 2rR cos θ)3/2 .

A convenient substitution for evaluating this integral is u = r − R cos θ,
du = R sin θ dθ. Hence

F =
(GMm

2R

) ∫ r+R

r−R

u du
(R2 − r2 + 2ru)3/2 . (1)

This integral is listed in tables, but we can evaluate it directly using inte-
gration by parts. For arbitrary functions f and g, the rule is

d( f g) = f dg + gd f .

Integrating from a to b, we have

f g|ba =
∫ b

a
f dg +

∫ b

a
gd f .

To apply, we choose f and g so that
∫

f dg is the integral we want to
evaluate, and also so that

∫
gd f is simpler to do. A good choice in this
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problem is

f = u

g =
(−1/r)√

R2 − r2 + 2ru

so that ∫
f dg =

∫
udu

(R2 − r2 + 2ru)3/2

and ∫
gd f = −

∫
du/r√

R2 − r2 + 2ru

=
−1
r2

√
R2 − r2 + 2ru.

Combining, the result is

F =
GMm

2R
1
r2

( −ur√
R2 − r2 + 2ru

+
√

R2 − r2 + 2ru
)∣∣∣∣∣∣

r+R

r−R

=
GMm

2R
1
r2

[(−r(r + R)
r + R

+ r + R)
)
−
(−r(r − R)

r − R
+ r − R

)]

=
GMm

r2 r > R.

For r > R, the shell acts gravitationally as though all its mass were con-
centrated at its center.

There is one subtlety in our evaluation of the integral. The
term

√
r2 + R2 − 2rR is inherently positive, and we must take√

r2 + R2 − 2rR = r − R, since r > R. If the particle is inside the shell,
the magnitude of the force is still given by Eq. (1). However, in this case
r < R, so we take

√
r2 + R2 − 2rR = R − r in the evaluation. We find

F =
GMm

2R
1
r2

[(−r(r + R)
r + R

+ r + R)
)
−
(−r(r − R)

R − r
+ R − r

)]
= 0 r < R.

A solid sphere can be thought of as a succession of spherical shells.
It is not hard to extend our results to the case when the density of the
sphere ρ(r′) is a function only of radial distance r′ from the center of
the sphere. The mass of a spherical shell of radius r′ and thickness dr′ is
ρ(r′)4πr′2dr′. The force it exerts on m is

m
r

r ́

dF =
Gm
r2 ρ(r′)4πr′2dr′.

Since the force exerted by every shell is directed toward the center of the
sphere, the total force is

F =
Gm
r2

∫ R

0
ρ(r′)4πr′2dr′.
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However, the integral is simply the total mass of the sphere, and we find
that for r > R, the force between m and the sphere is identical to the
force between two particles m and M separated a distance r.

Problems
For problems marked *, refer to page 520 for a hint, clue, or
answer.

3.1 Leaning pole with friction
Two identical masses M are pivoted at each end of a massless pole
of length L. The pole is held leaning against frictionless surfaces at
angle θ, as shown, and then released. Find the initial acceleration
of each mass.

L

y

b

x

M

M
θ

g

3.2 Sliding blocks with friction*
Mass MA = 4 kg rests on top of mass MB = 5 kg that rests on a fric-
tionless table. The coefficient of friction between the two blocks is
such that the blocks just start to slip when the horizontal force F
applied to the lower block is 27 N. Suppose that now a horizontal
force is applied to the upper block. What is its maximum value for
the blocks to slide without slipping relative to each other?

F5 kg

4 kg

3.3 Stacked blocks and pulley
Mass Ma lies on top of mass Mb, as shown. Assume Mb > Ma.
The two blocks are pulled from rest by a massless rope passing
over a pulley. The pulley is accelerated at rate A. Block Mb slides
on the table without friction, but there is a constant friction force f
between Ma and Mb due to their relative motion. Find the tension
in the rope.

Ma
Mb

g
A

3.4 Synchronous orbit*
Find the radius of the orbit of a synchronous satellite that circles
the Earth. (A synchronous satellite goes around the Earth once ev-
ery 24 h, so that its position appears stationary with respect to a
ground station.) The simplest way to find the answer and give your
results is by expressing all distances in terms of the Earth’s radius
Re.

3.5 Mass and axle*
A mass m is connected to a vertical revolving axle by two strings of
length l, each making an angle of 45◦ with the axle, as shown. Both
the axle and mass are revolving with angular velocity ω. Gravity
is directed downward.

(a) Draw a clear force diagram for m.
(b) Find the tension in the upper string, Tup, and lower string,

Tlow.

ω

l
45°

45°
l

m
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3.6 Tablecloth trick
If you have courage and a tight grip, you can yank a tablecloth out
from under the dishes on a table. What is the longest time in which
the cloth can be pulled out so that a glass 6 in from the edge comes
to rest before falling off the table? Assume that the coefficient of
friction of the glass sliding on the tablecloth or sliding on the table-
top is 0.5. (For the trick to be effective the cloth should be pulled
out so rapidly that the glass does not move appreciably.)

MC

MA

MB

3.7 Pulleys and rope with friction
The system shown uses massless pulleys and rope. The coefficient
of friction between the masses and horizontal surfaces is μ. As-
sume that MA and MB are sliding. Gravity is directed downward.

(a) Draw a force diagram for each mass, showing all relevant
coordinates.

(b) How are the accelerations related?
(c) Find the tension in the rope.

3.8 Block and wedge*
A block rests on a wedge inclined at angle θ. The coefficient of
friction between the block and plane is μ.

(a) Find the maximum value of θ for the block to remain
motionless on the wedge when the wedge is fixed in position.

(b) The wedge is given horizontal acceleration a, as shown.
Assuming that tan θ > μ, find the minimum acceleration for the
block to remain on the wedge without sliding.

a
θ

g

(c) Repeat part (b), but find the maximum value of the accelera-
tion.

3.9 Tension in a rope
A uniform rope of mass m and length l is attached to a block of
mass M. The rope is pulled with force F. Find the tension at dis-
tance x from the end of the rope. Neglect gravity.

θ θ

3.10 Rope and trees*
A uniform rope of weight W hangs between two trees. The ends of
the rope are the same height, and they each make angle θ with the
trees. Find

(a) The tension at either end of the rope.
(b) The tension in the middle of the rope.

3.11 Spinning loop*
A piece of string of length l and mass M is fastened into a circular
loop and set spinning about the center of a circle with uniform an-
gular velocity ω. Find the tension in the string. Suggestion: Draw
a force diagram for a small piece of the loop subtending a small
angle, Δθ.



112 FORCES AND EQUATIONS OF MOTION

3.12 Capstan
A device called a capstan is used aboard ships in order to control
a rope which is under great tension. The rope is wrapped around
a fixed drum, usually for several turns (the drawing shows about a
three-quarter turn). The load on the rope pulls it with a force TA,
and the sailor holds it with a much smaller force TB. Show that
TB = TAe−μθ, where μ is the coefficient of friction and θ is the total
angle subtended by the rope on the drum.TA TB

θ

3.13 Incomplete loop-the-loop
An automobile of mass M drives onto a loop-the-loop, as shown.
The minimum speed for going completely around the loop without
falling off is v0. However, the automobile drives at constant speed
v, where v < v0. The coefficient of friction between the auto and
the track is μ.

Find an equation for the angle θ where the auto starts to slip.
There is no need to solve the equation.

R

g

θ
ν

3.14 Orbiting spheres
Find the shortest possible period of revolution of two identical
gravitating solid spheres that are in circular orbit in free space
about a point midway between them. The spheres are made of plat-
inum, density 21.5 g/cm3.

3.15 Tunnel through the Earth
The gravitational force on a body located at distance R from the
center of a uniform spherical mass is due solely to the mass lying
at distance r ≤ R, measured from the center of the sphere. This
mass exerts a force as if it were a point mass at the origin.

Use the above result to show that if you drill a hole through the
Earth and then fall in, you will execute simple harmonic motion
about the Earth’s center. Find the time it takes you to return to
your point of departure and show that this is the time needed for
a satellite to circle the Earth in a low orbit with r ≈ Re. In deriv-
ing this result, treat the Earth as a uniformly dense sphere, neglect
friction, and neglect any effects due to the Earth’s rotation.

3.16 Off-center tunnel
As a variation of the previous problem, show that you will also
execute simple harmonic motion with the same period even if the
straight hole passes far from the Earth’s center.

3.17 Turning car*
A car enters a turn whose radius is R. The road is banked at angle
θ, and the coefficient of friction between the wheels and the road is
μ. Find the maximum and minimum speeds for the car to stay on
the road without skidding sideways.

R
θ
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3.18 Car on rotating platform
A car is driven on a large revolving platform which rotates with
constant angular speed ω. At t = 0 a driver leaves the origin and
follows a line painted radially outward on the platform with con-
stant speed v0. The total weight of the car is W, and the coefficient
of friction between the car and stage is μ.

(a) Find the acceleration of the car as a function of time using
polar coordinates. Draw a clear vector diagram showing the com-
ponents of acceleration at some time t > 0.

(b) Find the time at which the car just starts to skid.
(c) Find the direction of the friction force with respect to the

instantaneous position vector r just before the car starts to skid.
Show your result on a clear diagram.

3.19 Mass and springs*
Find the frequency of oscillation of mass m suspended by two
springs having constants k1 and k2, in each of the configurations
shown.

m

k2

k2k1 k1

m

(a) (b)

3.20 Wheel and pebble
A wheel of radius R rolls along the ground with velocity V . A
pebble is carefully released on top of the wheel so that it is instan-
taneously at rest on the moving wheel.

(a) Show that the pebble will immediately fly off the wheel if
V >

√
Rg.

(b) Show that in the case where V <
√

Rg, and the coefficient
of friction is μ = 1, the pebble starts to slide when it has rotated
through an angle given by θ = arccos [(1/

√
2)(V2/Rg)] − π/4.

3.21 Bead on rod
A small bead of mass m is free to slide on a thin rod.

r

mω

The rod rotates in a plane about one end at constant angular
velocity ω. Show that the motion is given by r = Ae−γt

+ Be+γ
t
,

where γ is a constant which you must find and A and B are arbitrary
constants. Neglect gravity.

Show that for a particular choice of initial conditions [that is,
r(t = 0) and v(t = 0)] it is possible to obtain a solution such
that r decreases continually in time, but that for any other choice
r will eventually increase. (Exclude cases where the bead hits the
origin.)

3.22 Mass, string, and ring*
A mass m whirls around on a string which passes through a ring,
as shown. Neglect gravity. Initially the mass is distance r0 from
the center and is revolving at angular velocity ω0. The string is
pulled with constant velocity V starting at t = 0 so that the radial
distance to the mass decreases. Draw a force diagram and obtain a
differential equation for ω. This equation is quite simple and can
be solved either by inspection or by formal integration. Find

V
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(a) ω(t).
(b) The force needed to pull the string.

3.23 Mass and ring*
This problem involves solving a simple differential equation.

A block of mass m slides on a frictionless table. It is constrained
to move inside a ring of radius l that is fixed to the table. At t = 0,
the block is moving along the inside of the ring (in the tangential
direction) with velocity v0. The coefficient of friction between the
block and the ring is μ.

l

υ0

(a) Find the velocity of the block at later times.
(b) Find the position of the block at later times.

3.24 Retarding force*
This problem involves a simple differential equation. You should
be able to integrate it after a little “playing around.”

A particle of mass m moving along a straight line is acted on by a
retarding force (one always directed against the motion) F = beav,
where b and a are constants and v is the velocity. At t = 0 it is
moving with velocity v0. Find the velocity at later times.

3.25 Hovercraft
The Eureka Hovercraft Corporation wanted to hold hovercraft
races as an advertising stunt. The hovercraft supports itself by
blowing air downward, and has a big fixed propeller on the top
deck for forward propulsion. Unfortunately, it has no steering
equipment, so that the pilots found that making high speed turns
was very difficult. The company decided to overcome this problem
by designing a bowl-shaped track in which the hovercraft, once up
to speed, would coast along in a circular path with no need to steer.

When the company held their first race, they found to their dis-
may that the craft took exactly the same time T to circle the track,
no matter what its speed. Find the equation for the cross-section of
the bowl in terms of T .

3.26 v2 retarding force
A body of mass m is retarded by a force −Cv2, where C is a con-
stant and v is its speed. Find the time required for it to travel dis-
tance s if it is initially moving with speed v0. Show that the result
is reasonable for short times.
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4.1 Introduction
So far we have viewed nature as if it were composed of ideal particles
rather than real bodies. Sometimes such a simplification is justified—for
instance in the study of planetary motion, where the size of the plan-
ets is of little consequence compared with the vast distances of our solar
system, or in the case of elementary particles moving through an acceler-
ator, where the size of the particles, about 10−15 m, is minute compared
with the size of the machine. However, most of the time we deal with
large bodies that may have elaborate structure. For example, consider the
landing of an explorer vehicle on Mars. Even if we could calculate the
gravitational field of such an irregular and inhomogeneous body as Mars,
the explorer itself hardly resembles a particle—it has wheels, gawky an-
tennas, extended solar panels, and a lumpy body.

Furthermore, the methods of the last chapter fail when we try to ana-
lyze systems such as rockets in which there is a flow of mass. Rockets
accelerate forward by ejecting mass backward; it is not obvious how we
can apply F =Ma to such a system.

In this chapter we shall generalize the laws of motion to overcome
these difficulties. We begin by restating Newton’s second law in a
slightly modified form. In Chapter 2 we wrote the law in the familiar
form

F = Ma.

Newton, however, wrote it in the form

F =
d
dt

(Mv).

In Newtonian mechanics, the mass M of a particle is a constant and
(d/dt)(Mv) = M(dv/dt) = Ma, as before. The quantity Mv plays a
prominent role in mechanics and is called momentum, or sometimes lin-
ear momentum, to distinguish it from angular momentum. Momentum is
a vector because it is the product of a vector v and a scalar M. Denoting
momentum by P, Newton’s second law becomes

F =
dP
dt
.

This form is preferable to F = Ma because it is readily generalized to
complex systems, as we shall soon see, and because momentum turns
out to be more fundamental than mass or velocity separately. The units
of momentum are kg ·m/s in the SI system, and g · cm/s in CGS. There
are no special names for these units.

4.2 Dynamics of a System of Particles
To generalize the laws of motion to extended bodies consider a system
of interacting particles, for instance the Sun and the planets. The bodies
of our solar system are so far apart compared with their diameters that
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they can be treated as particles to an excellent approximation. All parti-
cles in the solar system interact gravitationally. Planets interact primarily
with the Sun, although their interactions with one another also influence
their motion. In addition, the entire solar system is attracted by distant
matter.

On a much smaller scale, the system could be a billiard ball resting on
a table. Here the particles are atoms (disregarding for now that atoms are
not particles but are themselves composed of smaller particles) and the
interactions are primarily interatomic electric forces. The external forces
on the billiard ball include the gravitational force of the Earth and the
contact force of the tabletop.

We shall now prove some simple properties of physical systems. It is
important to be clear about what we mean by “system.” We are free to
choose the boundaries of a system as we please, but once the choice is
made, we must be consistent about which particles are included in the
system and which are not.

We suppose that the particles in the system interact with particles
outside the system as well as with each other. To make the argu-
ment general, consider a system of N interacting particles with masses
m1,m2,m3, · · · ,mN . The position of the jth particle is r j, the force on it
is f j, and its momentum is p j = mjṙ j. The equation of motion for the jth
particle is

f j =
dp j

dt
.

The force on particle j can be split into two terms:

f j = f j
int + f j

ext.

Here f j
int, the internal force on particle j, is the force due to all other par-

ticles in the system, and fext
j , the external force on particle j, is the force

due to sources outside the system. The equation of motion of particle j
can therefore be written

f j
int + f j

ext =
dp j

dt
.

Now let us focus on the system as a whole by the following stratagem:
add the equations of motion of all the particles in the system.

f1
int + f1

ext =
dp1

dt

f2
int + f2

ext =
dp2

dt
· · · · · · · · · · · · · · · · · ·
fN

int + fN
ext =

dpN

dt
.
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The result of adding these equations can be written

N∑
j=1

f j
int +

N∑
j=1

f j
ext =

N∑
j=1

dp j

dt
. (4.1)

The summations extend over all particles, j = 1, . . . ,N.
The first term in Eq. (4.1), Σf j

int, is the sum of all internal forces acting
on all the particles. According to Newton’s third law, the forces between
any two particles are equal and opposite so that their sum is zero. It
follows that the internal forces all cancel in pairs so that the sum of all
the forces between all the particles is also zero. Hence

N∑
j=1

f j
int = 0.

The second term,
∑N

j=1 f j
ext, is the sum of all external forces acting on all

the particles. It is the total external force Fext acting on the system:

N∑
j=1

f j
ext ≡ Fext.

Equation (4.1) then simplifies to

Fext =

N∑
j=1

dp j

dt
.

The right-hand side, Σ(dp j/dt), can be written (d/dt)Σp j, because the
derivative of a sum is the sum of the derivatives. Σp j is the total momen-
tum of the system, which we designate by P:

P ≡
N∑

j=1

p j.

With this substitution, Eq. (4.1) becomes

Fext =
dP
dt
.

In words, the total force applied to a system equals the rate of change
of the system’s momentum. This is true regardless of the details of the
interaction; Fext could be a single force acting on a single particle, or it
could be the resultant of many tiny interactions involving each particle
of the system.

Example 4.1 The Bola
The bola is used by gauchos for entangling their cattle. It consists of
three balls of stone or iron connected by thongs. The gaucho whirls
the bola in the air and hurls it at the animal. What can we say about its
motion?
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Consider a bola with masses m1,m2, and m3. Each ball is pulled by
its binding thong and by gravity. (We neglect air resistance.) Since the
constraining forces depend on the instantaneous positions of all three
balls, it is a real problem even to write the equation of motion of one
ball. However, the total momentum obeys the simple equation

dP
dt
= Fext = f1

ext + f2
ext + f3

ext

= m1g + m2g + m3g

or
dP
dt
= Mg,

where M is the total mass. This equation represents an important first
step in finding the detailed motion. The equation is identical to that of
a single particle of mass M with momentum P. This is instinctively
clear to the gaucho when he hurls the bola; although it is a complicated
system, he need only aim it like a single mass.

4.3 Center of Mass
According to Eq. (4.1),

F =
dP
dt
, (4.2)

where we have dropped the subscript “ext” with the understanding that
F stands for the external force. This result is identical to the equation of
motion of a single particle, although it may in fact refer to a system of
several particles. It is tempting to push the analogy between Eq. (4.2)
and single-particle motion even further by writing

F = MR̈, (4.3)

where M is the total mass of the system and R is a vector yet to be
defined. Because P =

∑N
j=1 mjṙj, Eqs. (4.2) and (4.3) give

MR̈ =
dP
dt
=

N∑
j=1

mjr̈ j,
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which is true if

R =
1
M

N∑
j=1

mjr j. (4.4)

R is a vector from the origin to a point called the center of mass. The
motion of a system’s center of mass behaves as if all the mass were
concentrated there and all the external forces act at that point.

We are often interested in the motion of comparatively rigid bodies
like baseballs or automobiles. Such a body is merely a system of particles
that are fixed relative to each other by strong internal forces. Equation
(4.4) shows that with respect to external forces, the body behaves as if
it were a single particle. In Chapters 2 and 3, we casually treated every
body as if it were a particle; we see now that this is justified provided
that we focus attention on the center of mass.

You may wonder whether this description of center of mass motion
isn’t also an oversimplification—experience tells us that an extended
body like a plank behaves differently from a compact body like a rock,
even if the masses are the same and we apply the same force. Indeed,
center of mass motion is only part of the story. The relation F = MR̈
describes only the translation of the body (the motion of its center of
mass); it does not describe the body’s orientation in space. In Chapters
7 and 8 we shall investigate the rotation of extended bodies. It turns out
that, as we expect, the rotational motion of a body depends on its shape
and where the forces are applied. Nevertheless, as far as translation of the
center of mass is concerned, F = MR̈ is true for any system of particles,
not just for those fixed in rigid objects, as long as the forces between
the particles obey Newton’s third law. It is immaterial whether or not the
particles move relative to each other and whether or not there happens to
be any matter at the center of mass.

Example 4.2 Drum Major’s Baton
A drum major’s baton consists of two masses m1 and m2 separated by
a thin rod of length l. The baton is thrown into the air. Find the baton’s
center of mass and the equation of motion for the center of mass.r1

r1

r1 − r2

R
r2

r2

m2

m1

m1

l

m2

m1

m2

r2′
r1′

Let the position vectors of m1 and m2 be r1 and r2, respectively. The
position vector of the center of mass, measured from the same origin,
is

R =
m1r1 + m2r2

m1 + m2
(1)

where we have neglected the mass of the thin rod. The center of mass
lies on the line joining m1 and m2; the proof is left as a problem.

Assuming that air resistance is negligible, the external force on the
baton is

F = m1g + m2g.
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The equation of motion of the center of mass is

(m1 + m2)R̈ = (m1 + m2)g

or
R̈ = g.

The center of mass follows the parabolic trajectory of a single mass
in a uniform gravitational field. With the methods to be developed in
Chapter 8, we shall be able to find the motion of m1 and m2 about the
center of mass, completing the solution.

Although it is a simple matter of algebra to find the center of mass
of a system of particles, finding the center of mass of an extended body
normally requires integration. We proceed by dividing the body of mass
M into N mass elements. If r j is the position of the jth element, and mj

is the element’s mass, then

R =
1
M

N∑
j=1

mjr j. (4.5)

In the limit where N approaches infinity, the size of each element
approaches zero and the approximation becomes exact:

R = lim
N→∞

1
M

N∑
j=1

mjr j.

This limiting process defines an integral. Formally

lim
N→∞

∞∑
j=1

mjr j =

∫
r dm,

where dm is a differential mass element at position r. Then

R =
1
M

∫
V

r dm.

To visualize this integral, think of dm as the mass in an element of vol-
ume dV located at position r. If the mass density at the element is ρ, then
dm = ρ dV and

R =
1
M

∫
V

rρ dV.dm = ρdV

r
This integral is called a volume integral. It is sometimes written with

three integral signs (a triple integral) to emphasize that the integration
proceeds over all three space coordinates:

R =
1
M

�
V

rρ dV.
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The integral of a sum of terms equals the sum of the integrals over each
term. We can use this fundamental property of integrals to express the
center of mass of several extended bodies in terms of the centers of mass
of the individual bodies. Consider extended body 1 with mass M1 and
body 2 with mass M2. Let R1 and R2 be the position vector of each
center of mass. From Eq. (4.5)

R1 =
1

M1

∫
V1

r1 dm

R2 =
1

M2

∫
V2

r2 dm.

The position vector R of the system’s center of mass can then be
written

(M1 + M2)R =
∫

V1

r1 dm +
∫

V2

r2 dm

= M1 R1 + M2 R2.

In other words, to find the center of mass of a system of several extended
bodies, treat each body as if its mass were concentrated at its center of
mass.

We shall only be concerned with a few simple cases of calculating
the center of mass of extended bodies, as illustrated by the following
examples. Further examples are given in Note 4.1 at the end of the
chapter.

Example 4.3 Center of Mass of a Non-uniform Rod
A rod of length L has a non-uniform density. The mass per unit length
of the rod, λ, varies as λ = λ0(x/L), where λ0 is a constant and x is the
distance from the end marked 0. Find the center of mass.

R
x

L

0

Δx

It is apparent that R lies on the rod. Let the x axis lie along the rod, with
the origin x = 0 at the end of the rod. The mass in an element of length
dx is dm = λdx = λ0x dx/L. The rod extends from x = 0 to x = L and
the total mass is

M =
∫

dm

=

∫ L

0
λ dx

=

∫ L

0

λ0x dx
L

= 1
2λ0L.
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The center of mass is at

R =
1
M

∫
λ r dx

=
2
λ0L

∫ L

0
(xî + 0ĵ + 0k̂)

λ0x dx
L

=
2
L2

x3

3

∣∣∣∣∣∣
L

0
î

=
2
3

Lî.

Example 4.4 Center of Mass of a Triangular Plate
Calculating the center of mass is straightforward if the object can
be subdivided into parts with known centers of mass. Consider the
two-dimensional case of a uniform right triangular plate of mass M,
base b, height h, and small thickness t.

Divide the triangle into strips of width Δx parallel to the y axis, as
shown.

b
0

dm

h

xj

y

x

Δx

rj

The jth strip at x j has its center of mass halfway up, because the plate
is uniform, and the total height of the jth strip is x jh/b by similar tri-
angles. The position vector to the strip’s center of mass is therefore

r j = x j î +
x jh
2b

ĵ.

The center of mass of the plate is located at R, and in the limit of very
narrow strips,

R =
1
M

∫
r dm (1)

where

M = ρAt = ρtbh/2

dm = ρtydx = ρ t
xh
b

dx.

Then Eq. (1) can be written

R =
(

2
ρtbh

) ∫
rρt

xh
b

dx

=
2
b2

∫ b

0
x r dx

=
2
b2

∫ b

0

(
x2 î +

x2h
2b

ĵ
)

dx

= 2
3 bî + 1

3 hĵ.
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To find the center of mass if the plate is not uniform, we would need to
use multiple integrals, as discussed in Note 4.1.

Physical arguments are sometimes able to take the place of compli-
cated calculations. Suppose we want to find the center of mass of a thin
irregular non-uniform plate. Let it hang from a pivot and draw a plumb
line from the pivot. The center of mass will hang directly below the
pivot (this may be intuitively obvious, and can easily be proved with
the methods of Chapter 7), so the center of mass is somewhere on the
plumb line. Repeat the procedure with a different pivot point. The two
lines intersect at the center of mass.

Example 4.5 Center of Mass Motion
A rectangular crate is held with one corner resting on a frictionless
table. The crate is gently released and falls in a complex tumbling
motion. We are not yet prepared to predict the full motion because it
involves rotation, but there is no difficulty in finding the trajectory of
the center of mass.

The external forces acting on the box are gravity and the normal force
of the table. Both of these are vertical, so the center of mass must accel-
erate vertically. If the box is released from rest its center falls straight
down.

N
W

4.4 Center of Mass Coordinates
Often a problem can be simplified by a clever choice of coordinates. The
center of mass coordinate system, in which the origin lies at the center of
mass, is particularly useful. Consider the case of a two-particle system
with masses m1 and m2.

r1

y

x

z

R

r2

m2

m1

In the initial coordinate system x, y, z, the particles are located at r1
and r2 and their center of mass is at

R =
m1r1 + m2r2

m1 + m2
.

We now set up the center of mass coordinate system, x′, y′, z′, with its
origin at the center of mass. The origins of the old and new system are
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displaced by R. The center of mass coordinates of the two particles are

r′1 = r1 − R
r′2 = r2 − R.

Center of mass coordinates are the natural coordinates for an isolated
two-body system. Such a system has no external forces, so the motion
of the center of mass is trivial—it moves uniformly. Furthermore,
m1r′1 + m2r′2 = 0 by the definition of center of mass, so that if the
motion of one particle is known, the motion of the other particle follows
directly. Here are two examples.

r1

y

x

z

R

r2

m2

m1
r1

z ′

y ′
x ′ ′

r2′

Example 4.6 Exoplanets
For many centuries people have wondered if there might be life on
other planets. Searching for life on the other planets and moons of our
solar system is an active field of inquiry, and has been extended to
other stars to discover orbiting planets that might be able to sustain life.
Planets not members of our own solar system are called exoplanets
(Greek εχo, “outside of”). In a few favorable cases, telescopes have
seen planets orbiting a nearby star, but for distant stars, a small
dark planet is undetectable in the star’s bright glare. This example
shows how exoplanets can be detected using the concept of center of
mass.

Newton was the first to calculate the motion of two gravitating bodies.
As we shall show in Chapter 10, two bodies bound by gravity move so
that the vector joining them traces out an ellipse with its focus at the
center of mass. Consider a single planet of mass m orbiting a star of
mass M. Let rp and rs be the position vectors of the planet and star,
respectively. Taking the origin at the center of mass,

mrp + Mrs = 0

which gives

rs = −
( m

M

)
rp. (1)

As the planet swings around the star, Eq. (1) shows that the center of the
star also moves in an orbit, but a much smaller one, because m 
 M,
as shown schematically in the sketch. The line joining the star and the
planet always passes through the center of mass as they orbit. As seen
edge on to the orbits, the star is advancing toward the observer as the
planet completes half its revolution, and the star is receding the other
half.

cm

Another relation comes from considering the dynamics. The Earth’s
orbit is very nearly circular, only modestly elliptical, probably a good
situation for life because the temperature on such a planet would not
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vary greatly. A highly elliptical elongated orbit could lead to large tem-
perature swings, with water going between freezing and boiling.

Assuming a circular orbit, the angular velocity θ̇ is constant, and

mrpθ̇
2 =

GmM
(rp + rs)2

rpθ̇
2 ≈ GM

rp
2

θ̇ =

√
GM
rp

3 . (2)

Integrating,

θ =

√
GM
rp

3 t.

The planet makes a complete orbit as θ goes from 0 to 2π, so the time
T for a complete orbit (the planet’s “year”) is

T = 2π

√
rp

3

GM
.

Incidentally, this result is a special case of one of the seventeenth-
century astronomer Johannes Kepler’s laws of planetary motion, that
the square of the “year” is proportional to the cube of the orbital ra-
dius. We shall derive the general case in Chapter 10. One consequence
of this law is that a planet orbiting close to a star has a much shorter
period than a planet farther away.

Ever since large telescopes became available in the late eighteenth cen-
tury, astronomers have attempted to observe the “wobble” of stars as
a means of detecting exoplanets. Although the wobble is typically too
small to detect directly, many exoplanets have been discovered from
the effect of the wobble on a star’s spectrum.

The Kepler space satellite telescope has detected hundreds of exoplan-
ets using a different, but related, technique. If the planet’s orbit is nearly
edge-on as seen from the Earth, the wobbling star will move periodi-
cally toward and away from the Earth. The velocity of this motion can
be detected by the Doppler shift of the star’s light, using the same prin-
ciple underlying police or baseball radar guns. (We shall discuss the
Doppler shift in Chapter 12.) For the edge-on case, Eq. (2) gives the
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variation in velocity of the star’s center as

rsθ̇ = ±
√

GMrs
2

rp
3

= ±
√

Gm2

Mrp

where the last step follows from Eq. (1). For the Earth–Sun system,
this is ± 0.09 m/s. With the method’s sensitivity of a few m/s, our Earth
would not be readily detectable from a distant solar system, but a planet
as massive as Jupiter or Saturn could be. A planet of moderate mass
could be detected if it orbits close to the star, but then it might be too
hot to support life as we know it.
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The exoplanet Gliese 876d (upper
figure) has a period of 1.9 Earth
days, and Gliese 876b (lower
figure) has a period of 61 days.
The figures are from NSF press
release 05-097 (2005), based on
data published by Eugenio Rivera
et al., The Astrophysical J.
634(1):625–640 (2005).

The figures show measured radial speeds inferred from the Doppler
shift for two different exoplanets orbiting the same star “Gliese 876”
located 15.3 light years = 1.4 × 1017 m from Earth. The upper figure is
for exoplanet “d” close to the star; we see that the “year” for this planet
is only a few days, and the “wobble” it induces in the star gives a radial
speed variation of only a few m/s. The lower figure is for exoplanet “b”
farther from the star. It has a much longer “year” than exoplanet “d” but
it induces a much larger “wobble” because of its much greater mass.

We would like to know the exoplanet’s mass and orbital radius to see if
it might be suitable for sustaining life. We have three unknowns, m, M,
and rp (or rs) but only two measured values, the Doppler shift velocity,
and the period T from the time variation of the Doppler shift.
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The third quantity we need comes from estimating the star’s mass M
using stellar models based on color and brightness.

One weakness of this approach is its lack of sensitivity to planets of
smaller mass, such as the Earth. Another weakness is our incomplete
understanding of the different forms life might take. Even on the Earth
life takes on unexpected forms. For instance, tube worms live with-
out light near thermal vents in the deep ocean, sustained by chemicals
from the vent, with the help of bacteria. The field of astrobiology is
concerned with expanding our conception of life that might exist on
exoplanets.

Example 4.7 The Push Me–Pull You
Two identical blocks a and b each of mass m slide without friction on
a straight track. They are attached by a spring with unstretched length
l and spring constant k; the mass of the spring is negligible compared
to the mass of the blocks. Initially the system is at rest. At t = 0, block
a is hit sharply, giving it an instantaneous velocity v0 to the right. Find
the velocity of each block at later times. (Try this yourself if there is a
linear air track available—the motion is unexpected.)

υb(0) = 0 υa(0) = υ0

b a

ra

rb

Since the system slides freely after the collision, the center of mass
moves uniformly and therefore defines an inertial frame.

Let us transform to center of mass coordinates. The center of mass lies
at

R =
mra + mrb

m + m

=
1
2

(ra + rb).

R always lies halfway between a and b, which is hardly surprising. The
center of mass coordinates of a and b are

r′a = ra − R

= 1
2 (ra − rb)

r′b = rb − R

= − 1
2 (ra − rb)

= −r′a.

The sketch shows these coordinates.
b a

ra

R

0

Laboratory
coordinates

Center of mass
coordinates

rb

ra − rb 

r ′b r ′a The instantaneous length of the spring is ra − rb = r′a − r′b. The in-
stantaneous departure of the spring from its equilibrium length l is
ra − rb − l = r′a − r′b − l. The equations of motion in the center of



4.4 CENTER OF MASS COORDINATES 129

mass system are

mr̈′a = −k(r′a − r′b − l)
mr̈′b = +k(r′a − r′b − l).

The form of these equations suggests that we subtract them, obtaining

m(r̈′a − r̈′b) = −2k(r′a − r′b − l).

It is natural to introduce the departure of the spring from its equilibrium
length as a variable. Letting u = r′a − r′b − l, we have

mü + 2ku = 0.

This is the equation for simple harmonic motion that we discussed in
Chapter 3. The general solution is

u = A sinωt + B cosωt,

where ω =
√

2k/m. Since the spring is unstretched at t = 0, u(0) = 0,
which requires B = 0. Then u = A sinωt so that u̇ = Aω cosωt. At
t = 0

u̇(0) = Aω cos(0)

and since u = r′a − r′b − l = ra − rb − l

u̇(0) = va(0) − vb(0)
= v0,

so that

A = v0/ω.

Therefore

u = (v0/ω) sinωt

and

u̇ = v0 cosωt.

Since v′a − v′b = u̇, and v′a = −v′b, we have

v′a = −v′b =
1
2 v0 cos ωt.

The laboratory velocities are

va = Ṙ + v′a
vb = Ṙ + v′b.

Since Ṙ is constant, it is always equal to its initial value

Ṙ = 1
2 (va(0) + vb(0))

= 1
2 v0.
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Putting these results together gives

va =
v0

2
(1 + cosωt)

vb =
v0

2
(1 − cosωt).

The masses move to the right on the average, but they alternately come
to rest in a push me–pull you fashion.

4.5 Conservation of Momentum
In Section 4.2, we found that the total external force F acting on a system
is related to the total momentum P of the system by

F =
dP
dt
.

Consider the implications of this for an isolated system. In this case
F = 0, and dP/dt = 0. The total momentum of an isolated system is
constant, no matter how strong the interactions among its constituents,
and no matter how complicated the motions. This is the law of conser-
vation of momentum. As we shall show, this apparently simple law can
provide powerful insights into complex systems.

Example 4.8 Spring Gun Recoil
A loaded spring gun, initially at rest on a horizontal frictionless sur-
face, fires a marble at angle of elevation θ. The mass of the gun is M,
the mass of the marble is m, and the muzzle velocity of the marble (the
speed with which the marble is ejected, relative to the muzzle) is v0.
What is the final motion of the gun?

M

y
m

υ0

x

θ

Take the physical system to be the gun and marble. Gravity and the
normal force of the table act on the system. These external forces are
both vertical. Because there are no horizontal external forces, the x
component of the vector equation F = dP/dt is

0 =
dPx

dt
. (1)

According to Eq. (1), Px is conserved:

P x,initial = P x,final. (2)

Let the initial time be prior to firing the gun. Because the system is ini-
tially at rest, Px,initial = 0, After the marble has left the muzzle, the gun
recoils to the left with some speed Vf , and its final horizontal momen-
tum is −MVf .

Finding the final velocity of the marble involves a subtle point, how-
ever. Physically, the marble’s acceleration is due to the force of the gun,
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and the gun’s recoil is due to the reaction force of the marble. The gun
stops accelerating once the marble leaves the barrel, so at the instant
the marble and the gun part company, the gun has its final speed −Vf .
At that same instant the speed of the marble relative to the gun is v0.
Hence, the final horizontal speed of the marble relative to the table is
v0 cos θ − Vf . By conservation of horizontal momentum, we therefore
have

0 = m(v0 cos θ − Vf ) − MVf

or

Vf =
mv0 cos θ

M + m
.

Vf

υ0 cos θ − Vf

υ0 sin θ

θ

The law of conservation of momentum follows directly from Newton’s
third law, so that the conservation of momentum appears to be a natural
consequence of Newtonian mechanics. However, conservation of mo-
mentum turns out to hold true even in the realms of quantum mechanics
and relativity where Newtonian mechanics proves inadequate. Conser-
vation of momentum can also be generalized to apply to light, because
light can be thought of as a stream of particles called photons that are
massless but nevertheless possess momentum. For these reasons, the law
of conservation of momentum is generally regarded as being more fun-
damental than the laws of Newtonian mechanics. In this view, Newton’s
third law is a simple consequence of the conservation of momentum for
interacting particles. For our present purposes it is purely a matter of
taste whether we wish to regard Newton’s third law or conservation of
momentum as more fundamental.

4.6 Impulse and a Restatement of the
Momentum Relation

The relation between force and momentum is

F =
dP
dt
. (4.6)

As a general rule, any law of physics that can be expressed in terms of
derivatives can also be written in an integral form. The integral form of
the force–momentum relationship is∫ t

0
F dt = P(t) − P(0). (4.7)

The change in momentum of a system is given by the integral of force
with respect to time. Equation (4.7) contains essentially the same phys-
ical information as Eq. (4.6), but it gives a new way of looking at the
effect of a force: the change in momentum is the time integral of the
force. To produce a given change in the momentum in time interval t
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requires only that
∫ t

0 F dt have the appropriate value; we can use a small
force acting for much of the time or a large force acting for only part of
the interval.

The integral
∫ t

0 F dt is called the impulse. The word impulse calls to
mind a short, sharp shock, as in Example 4.7, where a blow to a mass
at rest gave it a velocity v0. However, the physical definition of impulse
can just as well apply to a weak force acting for a long time. Change
of momentum depends only on

∫
Fdt, independent of the detailed time

dependence of the force.
Here are three examples involving impulse and momentum.

Example 4.9 Measuring the Speed of a Bullet
Faced with the problem of measuring the speed of a bullet, our first
thought might be to turn to a raft of high-tech equipment—fast
photodetectors, fancy electronics, whatever. In this example we show
that a simple mechanical system can make the measurement, with the
aid of conservation of momentum.

We take a simplified model to emphasize the fundamental principles.
Consider a block of soft wood on a horizontal frictionless surface. A
compression spring with spring constant k and uncompressed length l
connects the block to a wall. The block has mass M, and the spring has
negligible mass.

x

k

ν0

0

M
m

At t = 0 a gun fires a bullet of mass m and speed v0 into the block,
which moves back at initial speed Vi due to the impulse. Our system is
the bullet and the block, and by conservation of momentum applied at
very short times after the collision

mv0 = (M + m)Vi. (1)

Conservation of momentum is accurate here, because during the very
short time of the collision the horizontal force of the spring has very
little time to act. During the ensuing time, however, the spring force
has plenty of time to act—it brings the system momentarily to rest.
Measuring how far the system moves can tell us the speed of the
bullet.

After the initial impulse, the equation of motion of the system is

(M + m)ẍ = −kx.

The spring length does not appear in the equation of motion because
we have taken a coordinate system with x = 0 when the spring is un-
compressed. We recognize the equation for simple harmonic motion,
which has the general solution

x = A sinωt + B cosωt (2)
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where

ω =

√
k

M + m
.

Using the initial conditions x(0) = 0, ẋ(0) = Vi in Eq. (2) we find
A = Vi/ω and B = 0. The position and speed of the system are then

x =
Vi

ω
sinωt (3)

ẋ = Vi cosωt.

The system first comes to rest at t = t f when ωt f = π/2. Using Eqs.
(1), (2), and (3),

x(t f ) =
Vi

ω

=
mv0√

k(M + m)

so that

v0 =

√
k(M + m)

m
x(t f ).

Example 4.10 Rubber Ball Rebound
A rubber ball of mass 0.2 kg falls to the floor. The ball hits with a
speed of 8 m/s and rebounds with approximately the same speed. High
speed photographs show that the ball is in contact with the floor for
Δt = 10−3 s. What can we say about the force exerted on the ball by
the floor?

Δt
ta tb

t

z

Fav

Fpeak

F

The momentum of the ball just before it hits the floor is Pa = −1.6 k̂
kg · m/s and its momentum 10−3 s later is Pb = +1.6 k̂ kg · m/s. Using∫ tb

ta
F dt = Pb − Pa gives

∫ tb
ta

F dt = 1.6 k̂ − (−1.6 k̂) = 3.2 k̂ kg · m/s.

Although the exact variation of F with time is not known, it is easy to
find the average force. If the collision time is Δt = tb − ta, the average
force Fav acting during the collision is

FavΔt =
∫ ta+Δt

ta
F dt.

Since Δt = 10−3 s,

Fav =
3.2 k̂ kg · m/s

10−3 s
= 3200 k̂ N.

The average force is directed upward, as we expect. In English units,
3200 N ≈ 720 lb—a sizable force. The instantaneous force on the ball
is even larger at the peak, as the sketch implies.



134 MOMENTUM

If the ball hits a softer surface the collision time is longer, and the peak
and average forces are less.

Actually, there is a weakness in our treatment of the rubber ball re-
bound. In calculating the impulse

∫
F dt,F is the total force. This in-

cludes the gravitational force, which we have neglected. Proceeding
more carefully, we write

F = Ffloor + Fgrav

= Ffloor − Mgk̂.

The impulse equation then becomes∫ 10−3

0
Ffloor dt −

∫ 10−3

0
Mg k̂ dt = 3.2 k̂ kg ·m/s.

The impulse due to the gravitational force is

−
∫ 10−3

0
Mg k̂ dt = −Mg k̂

∫ 10−3

0
dt = −(0.2)(9.8)(10−3) k̂

= −1.96 × 10−3 k̂ kg ·m/s.
This is less than one-thousandth of the total impulse, and we can ne-
glect it with little error. Over a long period of time, gravity can produce
a large change in the ball’s momentum (the ball gains speed as it falls,
for example). In the short time of contact, however, gravity contributes
little momentum change compared with the tremendous force exerted
by the floor. Contact forces during a short collision are generally so
huge that we can neglect the impulse due to other forces of moderate
strength, such as gravity or friction.

The rubber ball rebound example shows why a quick collision is more
violent than a slow collision, even when the initial and final velocities are
identical. This is the reason that a hammer can produce a force far greater
than the carpenter could produce on his own; the hard steel hammerhead
rebounds in a time short compared to the time of the hammer swing, and
the force driving the hammer is correspondingly amplified. Contrariwise,
pounding a nail into a tall fence picket can be difficult, because the thin
picket can spring back under the blow, increasing the collision time and
therefore decreasing the force of the hammer.

Many devices to prevent bodily injury in accidents are based on pro-
longing the time of the collision, which is the design basis for bicycle
helmets and automobile airbags. The following example shows what
can happen in even a relatively mild collision, as when you jump to the
ground.
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Example 4.11 How to Avoid Broken Ankles
Animals, including humans, instinctively reduce the force of impact
with the ground by flexing while running or jumping. Consider what
happens to someone who hits the ground with legs rigid.

Suppose a person of mass M jumps to the ground from height h, and
that their center of mass moves downward a distance s during the time
of collision with the ground. The average force during the collision is

F =
Mv0

Δt
, (1)

where Δt is the collision time and v0 is the velocity with which they
hit the ground. As a reasonable approximation, we can take the ac-
celeration due to the force of impact to be constant, so that the per-
son comes uniformly to rest. In this case the collision time is given by
v0 = 2s/Δt, or

Δt =
2s
v0
.

Inserting this in Eq. (1) gives

F =
Mv0

2

2s
. (2)

For a body in free fall under gravity through height h, v0
2 = 2gh.

Inserting this in Eq. (2) gives

F = Mg
h
s
.

If the person hits the ground rigidly in a vertical position, their center
of mass will not move far during the collision. Suppose that the center
of mass moves downward by only 1 cm. If they jump from a height of
2 m, the force is 200 times their weight! If this person has mass 90 kg
(≈ 200 lb), the force on them is

F = 90 kg × 9.8 m/s2 × 200

= 1.8 × 105 N.

Where is a bone fracture most likely to occur? Because the mass above
a horizontal plane through the body decreases with height, the force is
maximum at the feet. Thus the ankles will break, not the neck. If the
area of contact of bone at each ankle is 5 cm2, then the force per unit
area is

F
A
=

1.8 × 105 N
10 cm2

= 1.8 × 104 N/cm2.

This is approximately the compressive strength of human bone, and so
there is a good probability that the ankles will snap.
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Of course, no one would be so rash as to jump rigidly. We instinctively
cushion the impact when jumping by flexing as we hit the ground, in
the extreme case collapsing to the ground. If the center of mass drops
50 cm instead of 1 cm during the collision, the force is only four times
their weight, and there is no danger of compressive fracture.

4.7 Momentum and the Flow of Mass
Analyzing the forces on a system in which there is a flow of mass can
be totally confusing if you try to apply Newton’s laws blindly. A rocket
provides the most dramatic example of such a system, although there are
many other everyday problems where the same considerations apply—
for instance, the problem of calculating the reaction force on a fire
hose.

There is no fundamental difficulty in handling any of these problems
provided that we keep clearly in mind exactly what is included in the
system. Recall that F = dP/dt was established for a system composed of
a certain set of particles. When we apply this equation in integral form,∫ tb

ta
F dt = P(tb) − P(ta),

it is essential to deal with the same set of particles throughout the
time interval ta to tb; we must keep track of all the particles that
were originally in the system. Consequently, the integral form applies
correctly only to systems defined so that the system’s mass does not
change during the time of interest.

Example 4.12 Mass Flow and Momentum
A spacecraft moves through space with constant velocity v. The space-
craft encounters a stream of dust particles that embed themselves in
the hull at rate dm/dt. The dust has velocity u just before it hits.

v

F

u

At time t the total mass of the spacecraft is M(t). The problem is to
find the external force F necessary to keep the spacecraft moving uni-
formly. (In practice, F would most likely come from the spacecraft’s
own rocket engines. Until we discuss rocket motion in Section 4.8, we
can for simplicity visualize the source F to be completely external—an
“invisible hand”.)

Let us focus on the short time interval between t and t + Δt. The draw-
ings show the system at the beginning and end of the interval. The
system consists of M(t) and the mass increment Δm added to the craft
during Δt. The initial momentum is

P(t) = M(t)v + (Δm)u.
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u

Δm to be
added in time Δt

v

F F

Time t Time t + Δt

System boundary;
mass of system = M (t)  + Δm

v

M (t ) M (t )  + Δm

System boundary;
mass of system = M (t)  + Δm

The final momentum is

P(t + Δt) = M(t)v + (Δm)v.

The change in momentum is

ΔP = P(t + Δt) − P(t)
= (v − u)Δm.

The rate of change of momentum is approximately

ΔP
Δt
= (v − u)

Δm
Δt

.

In the limit Δt → 0, the result is exact:

dP
dt
= (v − u)

dm
dt
.

Since F = dP/dt, the required external force is

F = (v − u)
dm
dt
.

Note that F can be either positive or negative, depending on the direc-
tion of the stream of mass. If u = v, the momentum of the system is
constant, and F = 0.

The procedure of isolating the system, focusing on differentials, and
taking the limit may appear a trifle formal but it helps to avoid errors in
a subject where it is easy to become confused. For instance, a common
mistake is to argue that F = (d/dt)(mv) = m(dv/dt) + v(dm/dt).
In the last example this would have led to the incorrect result that
F = v(dm/dt) rather than (v − u)(dm/dt). The origin of the error is that
the expression for the momentum of a single particle p = mv cannot be
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applied blindly to a system of many particles. The limiting procedure
used in Example 4.12 expresses the physical situation correctly.

Example 4.13 Freight Car and Hopper
Sand falls from a stationary hopper onto a freight car that moves with
uniform velocity v. The sand falls at the rate dm/dt. What force is
needed to keep the freight car moving at the speed v?

v

F

The system is the loaded freight car of mass M and the incoming mass
increment Δm added in time Δt. The initial horizontal speed of the sand
is v = 0, so taking horizontal components of momentum we have

P(t) = Mv + 0
P(t + Δt) = (M + Δm)v

P(t + Δt) − P(t) = vΔm.

Dividing by Δt and taking the limit Δt → 0, the required force is F =
dP/dt = v dm/dt.

Example 4.14 Leaky Freight Car
Now consider a case related to Example 4.13. A freight car leaks sand
at the rate dm/dt. What force is needed to keep the freight car moving
uniformly with speed v?

Here the mass is decreasing. However, the velocity of the sand just
after leaving the freight car is identical to its initial velocity, and its
momentum does not change

P(t) = (M + Δm)v
P(t + Δt) = Mv + vΔm.

Since dP/dt = 0, no force is required.

4.8 Rocket Motion
We can readily explain the principle of rocket motion by focusing on
momentum. During a time interval Δt the engine exerts a force that ac-
celerates some of the fuel Δm, expelling it from the rocket with exhaust
velocity u. By Newton’s third law, there is an equal and opposite force
on the rocket, propelling the rocket in the opposite direction. Another
way to look at this is that the center of mass of the expelled mass and the
rocket moves at constant velocity. Hence, if Δm is accelerated backward,
the rocket must be accelerated forward.

Suppose that a rocket coasts in deep space with its engines turned
off and that external forces are negligible. Let the mass of the rocket
be M + Δm, and let the rocket coast at velocity v with respect to our
coordinate system. At time t a thruster engine fires and expels mass Δm
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in the time interval Δt. What is the velocity v + Δv of the rocket body at
time t + Δt?

v + Δv + u

v + Δv

Time t + ΔtTime t 

v

M MΔmΔm

Comparing the momentum at the initial time t and at a slightly later
time t+Δt, when massΔm has been expelled with velocity u with respect
to the rocket, we have

P(t) = (M + Δm)v
P(t + Δt) = M(v + Δv) + Δm(v + Δv + u)

ΔP = MΔv + Δm (Δv + u).

Hence the rate of change of the system’s momentum is

dP
dt
= lim
Δt→0

(
M
Δv
Δt
+
Δm
Δt

(Δv + u)
)

= M
dv
dt
+ u

dm
dt

= M
dv
dt
− u

dM
dt

.

In this last equation we used the identity dm/dt = −dM/dt, because the
expelled mass decreases the total mass of the rocket. The equation of
rocket motion in free space is therefore

M
dv
dt
− u

dM
dt
= 0.

If an external force F such as gravity acts on the system, the general
equation for rocket motion becomes

F = M
dv
dt
− u

dM
dt

.

Example 4.15 Center of Mass and the Rocket Equation
In this example we shall derive the rocket equation using center of
mass considerations. The general expression for the velocity Ṙ of the
center of mass of a system of two masses m1 and m2 is

Ṙ =
m1ṙ1 + m2ṙ2

(m1 + m2)
.
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If no external forces act on the system, R̈ = 0, so the center of mass
moves with constant velocity. In the inertial frame moving along with
the rocket, Ṙ = 0.

Using the same notation as in our previous derivation (Example 4.14),

Ṙ =
MΔv + Δm(u + Δv)

M + Δm
= 0.

Hence

MΔv + Δm(u + Δv) = 0.

Dividing by Δt and taking the limit Δt → 0 gives

M
dv
dt
+ u

dm
dt
= 0.

The second-order term ΔmΔv does not contribute in the limit. Then,
with the identity dm/dt = −dM/dt,

M
dv
dt
− u

dM
dt
= 0

as before.

Our approach to rocket motion illustrates a powerful method for an-
alyzing physical problems. It is easy to become confused trying to take
into account the detailed acceleration of Δm and the rocket body while
they separate. But these details vanish when taking the limit; their effect
is actually included in the final equation of motion. The correct equa-
tion of motion results from taking the limit and including only the non-
vanishing “first-order” terms. Terms beyond first order, such as ΔmΔv,
vanish in the limit Δt → 0.

Here are three examples on rocket motion.

Example 4.16 Rocket in Free Space
If there is no external force on a rocket, F = 0, and the rocket’s motion
is given by

M
dv
dt
= u

dM
dt

or

dv
dt
=

u
M

dM
dt

.

Checking signs—always useful—we expect the rocket to accelerate
(dv/dt > 0) while its mass decreases (dM/dt < 0). To make both
sides of the last equation positive, u < 0, which means that the mass is
expelled in the backward direction, as expected.
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The exhaust velocity u is usually constant, in which case it is easy to
integrate the equation of motion:∫ t f

t0

dv
dt

dt = u
∫ t f

t0

1
M

dM
dt

dt

∫ v f

v0

dv = u
∫ M f

M0

dM
M

or

v f − v0 = u ln
Mf

M0

= −u ln
M0

Mf
.

If v0 = 0, then

v f = −u ln
M0

Mf
.

The final velocity is independent of how the mass is released—the fuel
can be expended rapidly or slowly without affecting v f . The only im-
portant quantities are the exhaust velocity and the ratio of initial to final
mass.

The situation is quite different if a gravitational field is present, as
shown by the next example.

Example 4.17 Rocket in a Constant Gravitational Field
If a rocket takes off in a constant gravitational field F = Mg, the equa-
tion for rocket motion becomes

Mg = M
dv
dt
− u

dM
dt

,

where u and g are directed down and are assumed to be constant

dv
dt
=

u
M

dM
dt
+ g.

Integrating with respect to time we obtain

v f − v0 = u ln
(

Mf

M0

)
+ g(t f − t0).

Let v0 = 0 and t0 = 0, with velocity v positive upward:

v f = −u ln
(

M0

Mf

)
− gt f .

Now there is a premium attached to burning the fuel rapidly. The
shorter the burn time, the greater the final velocity. This is why the
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takeoff of a large rocket is so spectacular—it is essential to burn the
fuel as quickly as possible.

Example 4.18 Saturn V
The Saturn V (“Five”) three-stage rocket, one of the most powerful
expendable launch vehicles ever constructed, fulfilled its purpose
by sending Apollo astronauts to land on the Moon on six different
missions. The first stage was powered by five enormous F-1 rocket
engines (each nearly 6 m tall and 4 m diameter at the outlet). The F-1
engines burned a hydrocarbon similar to kerosene, with liquid oxygen
as the oxidizer. All of these materials had to be carried by the rocket;
a fully fueled Saturn V had a total mass of 3.0 × 106 kg, of which
2.1 × 106 kg was the fuel for the first stage. All the first-stage fuel was
expended in 168 seconds.

The rocket equation with constant gravity is

M
dv
dt
= u

dM
dt
+ Mg. (1)

The first term on the right-hand side of Eq. (1) is called the “thrust.” The
second term is the weight of the rocket, directed vertically downward.
At launch, the weight was 2.9 × 107 N, but this decreased rapidly as
the first stage burned its fuel. The five F-1 engines in the first stage
produced a total thrust of 3.4× 107 N, somewhat greater than the initial
weight. The initial upward acceleration, as you can easily verify, was
only about 0.17 g.

Where does the thrust come from? Because uΔM is the momentum
carried off by the expelled gases in time Δt, the thrust is the rate at
which momentum is carried off by the burning fuel. Because both u
and dM/dt are negative, the thrust is positive, opposite to g.

Fuel is a precious commodity on rockets. To minimize the fuel mass
required for a given thrust, the exhaust velocity must be as large
as possible. The exhaust velocity for the first stage F-1 engines was
2600 m/s, but the second and third stages used liquid hydrogen and
liquid oxygen, giving an exhaust velocity of 4100 m/s.

Evaluating the right-hand side of Eq. (1) for the first stage gives
(2600 m/s)(2.1× 106 kg)/168 s = 3.4× 107 N, in good agreement with
the thrust.

Rocket data tables often do not list the exhaust velocity but instead a
quantity called the “specific impulse,” which is the exhaust velocity
divided by g. Specific impulse has units of seconds, and is therefore
independent of whether we use SI, CGS, or English units.
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4.9 Momentum Flow and Force
When catching a ball one expects to feel a recoil force or, more precisely,
to experience an impulse. The concepts of momentum and impulse are
reasonably intuitive: the recoil that we experience is merely the reaction
to the impulse we must deliver to the ball to bring it to rest. Closely
related to these concepts, though perhaps less intuitive, is the concept of
momentum flow. Anyone who has been on the receiving end of a stream
of water from a hose knows that a stream can exert a force. If the stream
is intense, as in the case of a fire hose, the push can be dramatic—a jet
of high pressure water can break through the wall of a burning building.

How can a column of water flying through the air exert a force that
is every bit as real as a force transmitted by a rigid steel rod? The ori-
gin of the force can be visualized by picturing the stream as a series of
small uniform droplets each of mass m traveling with velocity v. Let the
droplets be distance l apart. Assume that the drops collide with your hand
without rebounding, with final velocity v f = 0, and then simply fall to
the ground. Consider the force exerted by your hand on the stream. As
each drop hits your hand there is a large force for a short time. Although
we do not know the instantaneous force, we can find the impulse Idroplet
given to each drop by your hand:

ν0

l

Idroplet =

∫ F dt

1 collision

= Δp

= m(v f − v)
= −mv.

By Newton’s third law, the impulse delivered to your hand by the droplet
is equal and opposite to the impulse delivered to the droplet by your
hand:

Ihand = mv.

The positive sign means that the impulse to your hand is in the same
direction as the velocity of the droplet. The impulse equals the area under
one of the peaks of the instantaneous force shown in the drawing.F

or
ce

Area = impulse
Peak
force

Average
force

T t

If there are many collisions per second, you feel the average force Fav
(indicated by the dashed line in the drawing) rather than the shock of
individual drops. If the average time between collisions is T , then the
area under Fav during the time T is identical to the impulse due to one
droplet

FavT =
∫ F dt

1 collision
= mv.

The average distance between droplets is l = vT and so the average force
exerted by the stream can be written

Fav =
mv
T
=

mv2

l
. (4.8)
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Momentum transfer by a stream is the physics underlying the force on a
wind turbine blade and the lift on an airplane wing.

This description of successive collisions generating an average force
employed an idealized model of a stream of water, but the model is pretty
accurate for a related scenario: laser slowing of atoms. Just as a stream of
water can exert a force on a hand, a stream of light can exert a force on an
atom. The force can be so large that atoms are brought to near rest almost
instantaneously. This process is the first step in the creation of ultra-
cold atomic gases, in which atoms are cooled into the sub-microkelvin
temperature regime using laser light.

Example 4.19 Slowing Atoms with Laser Light
Understanding how laser light can slow atoms requires a few facts
from quantum physics that we will simply state without stopping to
explain them.

The starting point is the classical description of light. According to
the electromagnetic theory of James Clerk Maxwell, light is a wave of
oscillating electric and magnetic fields that carries energy. The speed
of a light wave, c, its wavelength λ, and its frequency ν are related by
the familiar wave condition c = λν.

Einstein put forth an alternate picture of light that seems at first sight
to be totally incompatible with Maxwell’s: light energy is received in
discrete bundles or quanta, now called photons, with particle-like prop-
erties. Einstein argued that the energy of a photon associated with light
of frequency ν is hν, where the constant h, known as Planck’s constant,
has the numerical value of 6.63 × 10−34 kg ·m2/s. Einstein also argued
that each photon carries momentum hν/c or, equivalently, h/λ.

If a gas of atoms is heated or excited by an electrical discharge, the
atoms radiate light at characteristic wavelengths. They can also ab-
sorb light at those wavelengths. Niels Bohr proposed that the energy
of atoms cannot vary arbitrarily, as we expect in classical physics, but
that atoms exist only in certain states that he called stationary states.
If the lowest-lying state, called the ground state, has energy Ea and
an excited state has energy Eb, then an excited atom can get rid of
its energy by creating a photon. Conservation of energy requires that
hν = Eb − Ea. Thus, the different colors radiated by atoms reflect their
particular stationary states.

An excited atom rapidly jumps back to its ground state by emitting a
photon, a process called spontaneous emission. The process is similar
to radioactive decay with a characteristic decay time τ that is typically
tens of nanoseconds. To complete the description, we need one further
concept, also proposed by Einstein, stimulated emission. An atom in



4.10 MOMENTUM FLUX 145

an excited state will in time spontaneously emit a photon, but if it is
illuminated by that frequency, the emission will occur sooner. Stim-
ulated emission is the fundamental process in the generation of laser
light. (The term “LASER” is an acronym for Light Amplification by
Stimulated Emission of Radiation.)

In a laser-cooling apparatus, a stream of atoms initially in their ground
state flows into a high vacuum through a small aperture. Laser light
tuned to one of the atom’s spectral lines is directed toward the aperture.
Lasers are so intense that their light causes absorption and stimulated
emission in times much shorter than the decay time τ. In such a situa-
tion, the atom can be viewed as being in the ground state half the time,
and in its excited state the other half.

Because the laser light is directed against the motion of the atoms, ev-
ery time an atom absorbs a photon it recoils with a momentum kick, or
impulse, Δp = h/λ. The atom also experiences a momentum kick when
it emits a photon, causing it to recoil in the opposite direction from the
emission. However, spontaneous emission occurs in random directions
and its momentum kicks average out. Consequently, the atom experi-
ences a series of kicks that retard its motion. The time-average force is
given by

Fav =
1
2
Δp
τ
=

1
2

h
λτ
,

where the factor of 1/2 takes into account that the atom is in the excited
state only half the time. If the mass of the atom is M, then the average
acceleration is

aav =
Fav

M
=

1
2M

h
λτ
.

The first experiments in laser slowing were to a stream of sodium
atoms. For sodium, the wavelength of the excited state transition is
λ = 589 × 10−9 m, M = 3.85 × 10−26 kg, and τ = 15 × 10−9 s. Using
h = 6.6 × 10−34 kg ·m2/s,

aav = 9.7 × 105 m/s2.

This acceleration is about 105 times larger than the acceleration of grav-
ity! The average speed of sodium atoms at room temperature is about
560 m/s, and laser slowing can bring them essentially to rest in less
than a meter.

4.10 Momentum Flux
In Section 4.9 we found that the average force on a surface due to a
perpendicular stream of droplets of mass m moving with velocity v and
separated by distance l is given by Eq. (4.8):

Fav =
m
l

v2.
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This expression has a natural interpretation. The quantity mv/l is the av-
erage momentum per unit length in the stream of particles. If we multiply
this by v, the distance per second that the droplets travel, we obtain the
momentum per second carried by the stream past any point, that is, the
rate of momentum transport. Thus, the average force exerted on a surface
is the rate at which the stream transports momentum to the surface.

More realistic than a hypothetical stream of particles is a real stream
of matter, for instance a stream of water in a hose with cross-section
A, flowing with speed v in the direction given by the unit vector v̂. If
the water has mass density ρm(kg/m3), then the mass per unit length in
the stream is ρmA and the momentum per unit length is ρmvA. The rate at
which momentum flows through a hypothetical surface across the stream
is

Ṗ = ρmv2A v̂.

If the stream is brought to a halt by striking a solid surface, the force
exerted by the surface must cause the stream to lose momentum at the
same rate the stream transports momentum to the surface. The force of
the surface on the stream is therefore −Ṗ. The reaction force of the stream
on the surface is

Fon surface = +Ṗ = ρmv2A v̂.

As expected, the direction of the force on the surface is in the direc-
tion of flow v̂. If the stream does not come to rest at the surface but is
reflected straight back, then the surface must exert the force needed not
only to cancel the incoming momentum but also to generate the outgo-
ing momentum, doubling the force on the surface. On the other hand, if
the surface is transparent so that the matter simply passes through, then
momentum is carried to and away from the surface at the same rate; the
net rate of momentum transfer to the surface is zero and hence there is
no force.

If the surface is not perpendicular to the flow, but tilted at angle θ as
shown in the drawing, then the momentum flow to the surface is

Ṗ = ρmv2A cos θ

if the momentum is cancelled at the surface.

θ

It is useful to introduce the vector J with magnitude ρmv2, and directed
along the flow v̂:

J = ρmv2v̂.

The vector J is called the flux density of the stream.
It is also useful to describe the area by a vector A. The magnitude

of A is numerically equal to the area and its direction is perpendicular
to the surface, as described by a unit vector n̂ normal to the surface. The
normal vector can lie in either of two directions. We choose the following
convention: in evaluating the momentum transfer through a surface into
a system, n̂ is positive if it points inward.
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Because the momentum transfer by a stream is in the direction of flow
v̂, the rate of momentum transfer to a surface—consequently, the force
on the system—is

Ṗ = (J · A) v̂.

The quantity Ṗ = (J ·A) v̂ is called the flux (or flow) of momentum to the
surface.

Momentum is a vector, so momentum flux is a vector. Flux as a vector
occurs often in physics, particularly in fluid dynamics and electromag-
netic theory.

In situations such as a stream of water rebounding from a surface,
momentum can be transported both to the surface and away from it. Ac-
cording to our convention with n̂ pointing inward through a surface sur-
rounding a system, flux is positive J · A > 0 if the momentum flows in
and negative J · A < 0 if it flows out. The total force on a system due to
a number of sources of momentum flow can be written

Ftot =
∑

k

Ṗk =
∑

(Jk · Ak)v̂k

where the sum is over all the surface elements through which momentum
flows. As the number of elements is increased, the sum becomes what
is called a surface integral. However, there is no need for us to take
that limit now because we shall be concerned here only with surfaces of
simple geometry.

A helpful way to calculate the force on a system in which there are
several sources of momentum flow is to sum the inward flow terms into a
total inward flow Ṗin, and all the outgoing flow terms into a total outward
flow Ṗout. The total force on the system can then be written

Ftot = Ṗin − Ṗout.

Example 4.20 Reflection from an Irregular Object
A stream is reflected from an object, as shown in the drawing.

ΔPf

ΔPi

vf
vi

Pf

.

Pi

. M

The incident momentum flux is Ṗi and the reflected (outgoing) flux is
Ṗo. Hence, the total force on the system is

F = Ṗi − Ṗo.
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Example 4.21 Solar Sail Spacecraft
Interplanetary exploration has many applications for a lightweight
fuel-saving spacecraft capable of carrying a small instrument package
across the solar system. One attractive design is the solar sail craft,
which sports a large sail made of thin plastic sheet; propulsion is the
force exerted by sunlight—the momentum carried by photons.

Pf

.

F−Pf

.

Light from the Sun arrives at the Earth with an energy flux density
called the solar constant, which has the value S sun = 1370 watts/m2.
The solar constant can be viewed as a flux of photons with energies
hν that vary over a wide frequency range. Details of the Sun’s spec-
trum are unimportant because every photon carries momentum hν/c.
Consequently, the momentum flux density of sunlight at the Earth is
simply S sun/c = 1370/(3 × 108) = 4.6 × 10−6 kg/(m s2), where we
have used 1 watt = 1 joule/s = 1 kg m2/s3. This can also be written
S sun/c = 4.6 × 10−6 (kg m/s)/(m2s), showing that it has the units of
momentum per unit area per unit time.

In 2010, Japan launched a solar sail craft called IKAROS (“Interplan-
etary Kite-craft Accelerated by Radiation Of the Sun”). The sail was
very thin polyimide (Kapton R©), only 7.5 × 10−6 m thick. The sail’s
area was A = 150 m2, and the craft’s total mass was M = 1.6 kg. The
craft was lifted by a chemical rocket into space, where the sail unfurled.
Rotation at 25 revolutions/minute about the axis kept the sail flat, elim-
inating the need for struts that would have added to the mass. IKAROS
traveled to the orbit of Venus, the first craft to demonstrate solar sail
technology in deep space.

We shall calculate the initial acceleration of IKAROS when it started
out near the Earth. Suppose that the solar sail is a perfect reflector, and
that all the sunlight is reflected back. The total force on the sail is

F = Ṗin − Ṗout =
2S sunA

c
.

Near Earth orbit, the magnitude of the acceleration aphoton due to pho-
tons is therefore

aphoton =
F
M
=

(
2S sun

c

)
A
M

= 2
(
4.6 × 10−6 kg/(m s2)

) (150 m2

1.6 kg

)
= 8.6 × 10−4 m/s2.

The Sun exerts an inward gravitational acceleration gsun. Near Earth
orbit,

gsun =
GMsun

RE
2
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where RE = 1.50 × 1011 m is the mean distance of the Earth from the
Sun, known as the astronomical unit (AU)

gsun =
(6.7 × 10−11m3/(kg s2))(2.0 × 1030 kg)

(1.5 × 1011 m)2

= 5.9 × 10−3 m/s2.

The net acceleration is

anet = aphoton − gsun

= (0.86 − 5.9) × 10−3 m/s2

= −5.0 × 10−3 m/s2.

The craft falls inward toward the Sun. Because the solar intensity and
the solar gravity both vary as the inverse square, the acceleration in-
creases as the craft moves toward the Sun, but is always directed in-
ward. However, during IKAROS’ flight the radiation force slowed the
craft enough to allow it to come near Venus. A craft with a much larger
sail would be needed to travel outward toward Jupiter.

Example 4.22 Pressure of a Gas
The pressure of a gas arises from momentum flow to and from the
enclosing surfaces due to the random motion of the particles in the gas.
The tiny gas molecules exert a real force, because of their momentum.
Consider a thin aluminum can containing a carbonated beverage.
Before opening, the can feels strong and rigid because of the outward
pressure of the gas on the walls. When the tab is popped and the excess
pressure is released, the can is weak and easily crushed.

Consider a gas of n particles per unit volume, each having mass m. The
mass density is ρ = nm kg/m3. Let us find the momentum transport to
a surface of the container having area A, oriented in the y−z plane, as
shown.

x

y

A

z

Although particles move in all directions, we shall be concerned only
with motion in the x direction. We suppose for the moment that the
particles have only a single x velocity, vx, but they are just as likely
to move in the −x direction as the +x direction. Hence, at any instant
the density of particles moving toward the wall is ρ/2. They transport
momentum in the +x direction at the rate

Ṗx =
ρ

2
v2

xA.

Particles must leave the wall at the same rate as they approach; oth-
erwise, they would accumulate at the surface. Hence, the momentum
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flow away from the wall is

Ṗ−x =
ρ

2
v2

xA

and the total force on the wall is

Fx = Ṗx − Ṗ−x = ρv2
xA.

Let us now drop the simplistic assumption that atoms move only in
the positive or negative x directions, with a single speed vx. We expect
atoms to move in random directions with speeds that change as they
collide. If we calculate the contribution to the pressure for particles
moving in a small range of velocities, we would obtain the above result,
with the understanding that it is for the average force. Hence

Fx = Ṗx − Ṗ−x = ρv2
xA

where the bar indicates an average over all the particles.

The pressure of a gas is the force per unit area on the surface. Conse-
quently, the pressure on the area normal to the x−y plane is

Px = Fx/A = ρv2
x.

(Here we use the symbol P for pressure, to distinguish it from P, the
symbol for total momentum.) Because the pressure of a gas is the same
in all directions, we expect a similar result for pressure on surfaces that
are normal to the y and z axes. This would be the case if

v2
x = v2

y = v2
z =

1
3

v2,

where v2 = v2
x + v2

y + v2
z . Consequently,

P = (1/3)ρv2.

This result provides a crucial link connecting the concepts of heat, en-
ergy, and microscopic motion, topics we shall pursue in Chapter 5.

Example 4.23 Dike at the Bend of a River
The problem is to build a dike at the bend of a river to prevent flooding
when the river rises. The dike must be strong enough to withstand the
static pressure of the river ρgh, where ρ is the density of the water
and h is the height from the base of the dike to the surface of the
water. We can understand from Newton’s laws that the outer bank
and the dike must exert a sideways force on the stream to deflect it
from straight-line flow. The dike must therefore withstand the dynamic
pressure due to the deflection of the flow in addition to the static
pressure. How do the dynamic and static pressures compare?Δθ

Ra

b d

c

h

w

We approximate the bend by a circular curve with radius R, and focus
our attention on a short length of the curve subtending angle Δθ. We
need concern ourselves only with the height h of the river above the
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base of the dike. Let us calculate the momentum flux to the volume
bounded by the river bank a, by the dike b, and by the fictitious surfaces
across the river c and d. The river flows with velocity v; because the
cross-sectional area is constant, the magnitude of v is constant.

Momentum flows through surfaces c and d at rates Ṗin,c = ρv2Av̂c and
Ṗout,d = ρv2Av̂d, respectively. Here A = hw is the cross-sectional area of
the river lying above the base of the dike. The total rate of momentum
transfer to the bounded volume is

Ṗ = Ṗin,c − Ṗout,d = ρv2A(v̂c − v̂d).

From the drawing, the magnitude of the momentum transfer is

Ṗ = ρv2A(2 sinΔθ/2).

The momentum transfer points to the center of the bending circle. The
dike must provide a force to account for this momentum transfer, and
the reaction to that force gives rise to the dynamic pressure on the dike.

Δθ

Δθ

R

c

d

Force on dike = −P

RΔθ

Pc

.

Pd

.

Pd

|P| = PΔθ 

.

. .

.

Pc

.

To calculate the pressure we can take the small angle limit sinΔθ/2 ≈
Δθ/2, and consider the force arising from a section of the dike sub-
tending angle Δθ, with area (RΔθ)h. The dynamic force on the dike is
radially outward, and has magnitude Ṗ ≈ ρv2AΔθ. The force is exerted
over the area (R Δθ)h, and the dynamic pressure is therefore

dynamic pressure =
Ṗ

R Δθ h

=
ρv2AΔθ
R Δθh

=
ρv2A
Rh

=
ρv2w

R
.

The ratio of dynamic to static pressure is

dynamic pressure
static pressure

=
ρv2w

R
1
ρgh
=

w
h

v2

Rg

=
width
height

× centripetal acceleration
g

.

For a river in flood with a speed of 10 mph (approximately 15 ft/s), a
radius of 2000 ft, a flood height of 3 ft, and a width of 200 ft, the ratio
is 0.22, so that the dynamic pressure is by no means negligible.

Note 4.1 Center of Mass of Two- and Three-dimensional
Objects
In this note we shall find the center of mass of some multidimensional
objects. These examples are straightforward if you have had experience
evaluating two- or three-dimensional integrals. Otherwise, read on.
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1. Uniform Triangular Plate
Consider the two-dimensional case of a uniform right triangular plate of
mass M, base b, height h, and small thickness t. We treated this problem
in Example 4.4, reducing it to a single integral. Here we shall treat it in
a more general way using a double integral, an approach that would also
apply to cases where the density is not uniform.

Divide the plate into small rectangular areas of sides Δx and Δy, as
shown. The volume of each element is ΔV = t Δx Δy, and

h

t

x

y

b

Δx

Δy

rj

R ≈ Σmjr j

M

=
Σ ρ j tΔxΔy r j

M
, (1)

where j is the label of a volume element and ρ j is its density. Because
the plate is uniform,

ρ j = constant =
M
V
=

M
At
,

where A = bh/2 is the area of the plate.
We can evaluate the sum in Eq. (1) by summing first over the Δx’s

and then over the Δy’s, instead of over the single index j. This gives a
double sum that can be converted to a double integral by taking the limit,
as follows:

R = lim
Δx→0
Δy→0

(M
At

) ( t
M

)∑∑
r j ΔxΔy

=
1
A

�
r dx dy.

Let r = xî+yĵ be the position vector of the element dx dy. Then, writing
R = X î + Yĵ, we have

R = X î + Y ĵ

=
1
A

�
(xî + yĵ) dx dy

=
1
A

(�
x dx dy

)
î +

1
A

(�
y dx dy

)
ĵ.

Hence the coordinates of the center of mass are

X =
1
A

�
x dx dy

Y =
1
A

�
y dx dy.

The double integrals may look strange, but they are easily evaluated.
Consider first the double integral for X:

X =
1
A

�
x dx dy.
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This integral instructs us to take each element, multiply its area by its x
coordinate, and sum the results. We can do this in stages by first consid-
ering the elements in a strip parallel to the y axis. The strip runs from
y = 0 to y = xh/b. (By similar triangles, any point on the slanted bound-
ary obeys the relation y/x = h/b.)h

dx

y = xh
b

x
b

Each element in the strip has the same x coordinate, and the contribu-
tion of the strip to the double integral is

1
A

x dx
∫ xh/b

0
dy =

h
bA

x2 dx.

Finally, we sum the contributions of all such strips x = 0 to x = b to find

X =
h

bA

∫ b

0
x2 dx =

h
bA

b3

3

=
hb2

3A
.

Since A = 1
2 bh,

X = 2
3 b.

Similarly for Y ,

Y =
1
A

∫ b

0

(∫ xh/b

0
y dy
)

dx

=
h2

2Ab2

∫ b

0
x2 dx =

h2b
6A

= 1
3 h.

Hence

R = 2
3 bî + 1

3 hĵ.

a

R

y

b

h

dy

dx

dM = σ dx dy

x

Although the coordinates of R depend on the particular coordinate
system we choose, the position of the center of mass with respect to the
triangular plate is, of course, independent of the coordinate system.
2. Non-uniform Rectangular Plate
Find the center of mass of a thin non-uniform rectangular plate with sides
of length a and b, whose mass per unit area σ varies as σ = σ0(xy/ab),
where σ0 is a constant.

R =
1
M

�
(xî + yĵ)σ dx dy.

We first find M, the mass of the plate:

M =
∫ b

0

∫ a

0
σ dx dy

=

∫ b

0

∫ a

0
σ0

x
a

y
b

dx dy.
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Integrate over x, treating y as a constant

M =
∫ b

0
σ0

y
b

(∫ a

0

x
a

dx
)

dy

=

∫ b

0
σ0

y
b

(
x2

2a

∣∣∣∣∣∣
x=a

x=0

)
dy

=

∫ b

0
σ0

y
b

a
2

dy.

Then integrate over y

=
σ0a

2
y2

2b

∣∣∣∣∣∣
y=b

y=0
=

1
4
σ0ab.

Using the same approach, the x component of R is

X =
1
M

�
xσ dx dy

=
1
M

∫ b

0

σ0

ab
y
(∫ a

0
x2 dx

)
dy

=
1
M

∫ b

0

σ0

ab
y
(

x3

3

∣∣∣∣∣∣
a

0

)
dy

=
1
M
σ0

ab

∫ b

0

ya3

3
dy

=
1
M
σ0

ab
a3

3
b2

2

=
4

σ0ab
σ0a2b

6

=
2
3

a.

Similarly, Y = 2
3 b.

a

bR

y

x

z

dz

z
3. Uniform Solid Hemisphere
Find the center of mass of a uniform solid hemisphere of radius R and
mass M.

dz

r

From symmetry it is apparent that the center of mass lies on the z axis.
Its height above the equatorial plane is

Z =
1
M

∫
z dM.

The integral is over three dimensions, but the symmetry of the situation
lets us treat it as a one-dimensional integral. We mentally subdivide the
hemisphere into a pile of thin disks. Consider a circular disk of radius r
and thickness dz. Its volume is dV = πr2dz, and its mass is dM = ρ dV =
(M/V)(dV), where V = 2

3πR3.
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Hence

Z =
1
M

∫
M
V

z dV

=
1
V

∫ R

z=0
πr2z dz.

To evaluate the integral we need to find r in terms of z.

r

z
R

R
Z R3

8
=

Since r2 = R2 − z2, we have

Z =
π

V

∫ R

0
z(R2 − z2) dz

=
π

V

(
1
2

z2R2 − 1
4

z4
)∣∣∣∣∣∣

R

0

=
π

V

(
1
2

R4 − 1
4

R4
)

=

1
4πR4

2
3πR3

=
3
8

R.

Problems
For problems marked *, refer to page 521 for a hint, clue, or answer.

4.1 Center of mass of a non-uniform rod*
The mass per unit length of a non-uniform rod of length l is given
by λ = A cos(πx/2l), where x is position along the rod, 0 ≤ x ≤ l.

(a) What is the mass M of the rod?
(b) What is the coordinate X of the center of mass?

4.2 Center of mass of an equilateral triangle
Find the center of mass of a thin uniform plate in the shape of an
equilateral triangle with sides a.

4.3 Center of mass of a water molecule
A water molecule H2O consists of a central oxygen atom bound to
two hydrogen atoms. The two hydrogen–oxygen bonds subtend an
angle of 104.5◦, and each bond has a length of 0.097 nm.

Find the center of mass of the water molecule.

4.4 Failed rocket
An instrument-carrying rocket accidentally explodes at the top of
its trajectory. The horizontal distance between the launch point and
the point of explosion is L. The rocket breaks into two pieces that
fly apart horizontally. The larger piece has three times the mass
of the smaller piece. To the surprise of the scientist in charge, the
smaller piece returns to Earth at the launching station. How far
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away does the larger piece land? Neglect air resistance and effects
due to the Earth’s curvature.

4.5 Acrobat and monkey
A circus acrobat of mass M leaps straight up with initial velocity
v0 from a trampoline. As he rises up, he takes a trained monkey of
mass m off a perch at a height h above the trampoline.

What is the maximum height attained by the pair?

4.6 Emergency landing
A light plane weighing 2500 lb makes an emergency landing on
a short runway. With its engine off, it lands on the runway at
120 ft/s. A hook on the plane snags a cable attached to a 250-lb
sandbag and drags the sandbag along. If the coefficient of fric-
tion between the sandbag and the runway is 0.4, and if the plane’s
brakes give an additional retarding force of 300 lb, how far does
the plane go before it comes to a stop?

4.7 Blocks and compressed spring
A system is composed of two blocks of mass m1 and m2 connected
by a massless spring with spring constant k. The blocks slide on a
frictionless plane. The unstretched length of the spring is l. Initially
m2 is held so that the spring is compressed to l/2 and m1 is forced
against a stop, as shown. m2 is released at t = 0.

m1 m2

x

Find the motion of the center of mass of the system as a function
of time.

4.8 Jumper
A 50 kg woman jumps straight into the air, rising 0.8 m from the
ground. What impulse does she receive from the ground to attain
this height?

4.9 Rocket sled
A rocket sled moves along a horizontal plane, and is retarded by
a friction force ffriction = μW, where μ is constant and W is the
weight of the sled.

The sled’s initial mass is M, and its rocket engine expels mass
at constant rate dM/dt ≡ γ; the expelled mass has constant speed
v0 relative to the rocket.

The rocket sled starts from rest and the engine stops when half
the sled’s total mass is gone. Find an expression for the maximum
speed.

4.10 Rolling freight car with sand
A freight car of mass M contains a mass of sand m. At t = 0 a
constant horizontal force F is applied in the direction of rolling
and at the same time a port in the bottom is opened to let the sand
flow out at constant rate dm/dt. Find the speed of the freight car
when all the sand is gone. Assume the freight car is at rest at t = 0.
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4.11 Freight car and hopper*
An empty freight car of mass M starts from rest under an applied
force F. At the same time, sand begins to run into the car at steady
rate b from a hopper at rest along the track.

Find the speed when a mass of sand m has been transferred.
F

4.12 Two carts and sand
Material is blown into cart A from cart B at a rate b kilograms per
second, as shown. The material leaves the chute vertically down-
ward, so that it has the same horizontal velocity u as cart B. At the
moment of interest, cart A has mass M and velocity v. Find dv/dt,
the instantaneous acceleration of A.

υ u
BA

M

4.13 Sand sprayer
A sand-spraying locomotive sprays sand horizontally into a freight
car as shown in the sketch. The locomotive and freight car are not
attached. The engineer in the locomotive maintains his speed so
that the distance to the freight car is constant. The sand is trans-
ferred at a rate dm/dt = 10 kg/s with a velocity 5 m/s relative to
the locomotive. The freight car starts from rest with an initial mass
of 2000 kg. Find its speed after 100 s.

Constant

4.14 Ski tow
A ski tow consists of a long belt of rope around two pulleys, one
at the bottom of a slope and the other at the top. The pulleys
are driven by a husky electric motor so that the rope moves at a
steady speed of 1.5 m/s. The pulleys are separated by a distance of
100 m, and the angle of the slope is 20◦.

Skiers take hold of the rope and are pulled up to the top, where
they release the rope and glide off. If a skier of mass 70 kg takes
the tow every 5 s on the average, what is the average force required
to pull the rope? Neglect friction between the skis and the snow.

4.15 Men and flatcar
N men, each with mass m, stand on a railway flatcar of mass M.
They jump off one end of the flatcar with velocity u relative to the
car. The car rolls in the opposite direction without friction.

(a) What is the final velocity of the flatcar if all the men jump
off at the same time?

(b) What is the final velocity of the flatcar if they jump off one
at a time? (The answer can be left in the form of a sum of terms.)

(c) Does case (a) or case (b) yield the larger final velocity of
the flatcar? Can you give a simple physical explanation for your
answer?

4.16 Rope on table*
A rope of mass M and length l lies on a frictionless table, with
a short portion, l0, hanging through a hole. Initially the rope is at
rest.
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(a) Find a general equation for x(t), the length of rope through
the hole.

(b) Find the particular solution so that the initial conditions are
satisfied.

4.17 Solar sail 1
With reference to Example 4.21, what is the maximum film thick-
ness for a space sail like IKAROS to be accelerated outward away
from the Sun? Take the density of Kapton R© to be 1.4 g/cm3.

4.18 Solar sail 2
With reference to Example 4.21, consider the design of a solar sail
intended to reach escape velocity from the Earth

√
2gRe = 11.2

km/s using only the pressure due to sunlight. The sail is made of a
Kapton R© film 0.0025 cm thick with a density 1.4 g/cm3. Take the
solar constant to be 1370 watts/m2, assumed to be constant during
the acceleration.

(a) What is the acceleration near the Earth due to sunlight pres-
sure alone?

(b) How far from the Earth, as measured in units of the Earth’s
radius, Re, would the sail have to be launched so that it could es-
cape from the Earth?

(c) What area of sail would be needed to accelerate a 1 kg pay-
load at half the rate of the sail alone?

4.19 Tilted mirror
On the Earth, a mirror of area 1 m2 is held perpendicular to the
Sun’s rays.

(a) What is the force on the mirror due to photons from the Sun,
assuming that the mirror is a perfect reflector? The momentum flux
density from the Sun’s photons is Jsun = 4.6 × 10−6 kg/(m · s2).

(b) Find how the force varies with angle if the mirror is tilted at
angle α from the perpendicular.

4.20 Reflected particle stream*
A one-dimensional stream of particles of mass m with density λ
particles per unit length, moving with speed v, reflects back from a
surface, leaving with a different speed v′, as shown. Find the force
on the surface.

υ

υ′

4.21 Force on a fire truck
A fire truck pumps a stream of water on a burning building at a
rate K kg/s. The stream leaves the truck at angle θ with respect to
the horizontal and strikes the building horizontally at height h
above the nozzle, as shown. What is the magnitude and direction
of the force on the truck due to the ejection of the water stream?

θ
h

4.22 Fire hydrant
Water shoots out of a fire hydrant having nozzle diameter D, with
nozzle speed V0. What is the reaction force on the hydrant?
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4.23 Suspended garbage can*
An inverted garbage can of weight W is suspended in air by water
from a geyser. The water shoots up from the ground with a speed
v0, at a constant rate K kg/s. The problem is to find the maximum
height at which the garbage can rides. Neglect the effect of the
water falling away from the garbage can.

υ0
4.24 Growing raindrop

A raindrop of initial mass M0 starts falling from rest under the
influence of gravity. Assume that the drop gains mass from the
cloud at a rate proportional to the product of its instantaneous mass
and its instantaneous velocity:

dM
dt
= kMV,

where k is a constant.
Show that the speed of the drop eventually becomes effectively

constant, and give an expression for the terminal speed. Neglect
air resistance.

4.25 Bowl of water
A bowl full of water is sitting out in a pouring rainstorm. Its surface
area is 500 cm2. The rain is coming straight down at 5 m/s at a rate
of 10−3g/cm2s. If the excess water drips out of the bowl with neg-
ligible velocity, find the force on the bowl due to the falling rain.

What is the force if the bowl is moving uniformly upward at
2 m/s?

4.26 Rocket in interstellar cloud
A cylindrical rocket of diameter 2R and mass M is coasting
through empty space with speed v0 when it encounters an in-
terstellar cloud. The number density of particles in the cloud is
N particles/m3. Each particle has mass m 
 M, and they are
initially at rest.

(a) Assume that each cloud particle bounces off the rocket
elastically, and that the collisions are so frequent they can be
treated as continuous. Prove that the retarding force has the form
bv2, and determine b. Assume that the front cone of the rocket
subtends angle α = π/2, as shown.

(b) Find the speed of the rocket in the cloud.

v0

∝
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4.27 Exoplanet detection
The data plots in Example 4.6 show that with the methods then
in use, a shift of 1 m/s in radial velocity of a star is just barely
detectable. Could an astronomer on a far-off planet using these
same methods detect that our Sun has a planet? The biggest effect
would be due to Jupiter.

Use only the following data:
mass of the Sun = 1.99 × 1030 kg
mass of Jupiter = 1.90 × 1027 kg
mean radius of Jupiter’s orbit = 7.8 × 108 km
period of Jupiter’s orbit = 4330 days.
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5.1 Introduction
In this chapter we make another attack on the fundamental problem of
classical mechanics—predicting the motion of a system under known
interactions. We shall encounter two important new concepts, energy
and work, which first appear to be mere computational aids, mathemat-
ical crutches so to speak, but which turn out to possess deep physical
significance.

At first glance there seems to be no problem in finding the motion
of a particle if we know the force. Newton’s second law tells us the ac-
celeration, which we can integrate to find the velocity, and we can then
integrate the velocity to find the position. This sounds simple but there
is a problem: to carry out these calculations we need to know the force
as a function of time, but force is usually known as a function of po-
sition as, for example, the spring force or the gravitational force. The
problem is serious because physicists are generally interested in interac-
tions between systems, which means knowing how the force varies with
position, not how it varies with time.

The task, then, is to find v(t) from the equation

dv(t)
dt
= F(r), (5.1)

where the notation emphasizes that F is a known function of position. A
physicist with a penchant for mathematical formalism might stop here
and point out that what we are dealing with is a problem in differen-
tial equations and that what we ought to do now is study the methods
available, including numerical methods, for solving such equations. This
is perfectly reasonable from a calculational point of view but such an
approach is too narrow to give us much physical understanding.

Fortunately, the solution to Eq. (5.1) is simple for the important case
of one-dimensional motion in a single variable. The general case is more
complex, but we shall see that it is nevertheless possible to integrate Eq.
(5.1) for three-dimensional motion provided we are content with less
than a complete solution. This will lead us to a very helpful physical
relation, the work–energy theorem; its generalization, the law of conser-
vation of energy, is one of the most useful conservation laws in physics.

5.2 Integrating Equations of Motion in
One Dimension

A large class of important problems involves only a single variable to de-
scribe the motion, for example the one-dimensional harmonic oscillator.
For such problems the equation of motion reduces to

m
d2x
dt2 = F(x)

or

m
dv
dt
= F(x). (5.2)
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We can solve this equation for v by a mathematical trick. First, formally
integrate m dv/dt = F(x) with respect to x:

m
∫ xb

xa

dv
dt

dx =
∫ xb

xa

F(x) dx. (5.3)

The integral on the right can be evaluated by standard methods since
F(x) is known. The integral on the left is intractable as it stands, but it
can be integrated by changing the variable from x to t, using differentials
as discussed in Note 1.4:

dx =
(

dx
dt

)
dt

= v dt.

Then

m
∫ xb

xa

dv
dt

dx = m
∫ tb

ta

dv
dt

v dt

= m
∫ tb

ta

d
dt

(
1
2

v2
)

dt

= m
∫ tb

ta
d
(

1
2

v2
)

=
1
2

mv2
∣∣∣∣∣tb
ta

= 1
2 mvb

2– 1
2 mva

2,

where xa ≡ x(ta), va ≡ v(ta), etc.
Putting these results in Eq. (5.3) yields

1
2 mvb

2 – 1
2 mva

2 =

∫ xb

xa

F(x) dx. (5.4)

Alternatively, we can use indefinite upper limits in Eq. (5.4):

1
2 mv2 – 1

2 mva
2 =

∫ x

xa

F(x) dx, (5.5)

where v is the speed of the particle when it is at position x. Equation
(5.5) gives us v as a function of x and, as we shall see, this is enough for
finding x as a function of t. Before carrying this through, let us look at
how to solve a familiar problem using Eq. (5.4).

Example 5.1 Mass Thrown Upward Under Constant Gravity
A mass m is thrown vertically upward with initial speed v0. How high
does it rise, assuming the gravitational force to be constant, and
neglecting air friction?
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Taking the z axis to be directed vertically upward, F = – mg, Eq. (5.4)
gives

1
2 mv1

2 − 1
2 mv0

2 =

∫ z1

z0

F dz

= −mg
∫ z1

z0

dz

= −mg(z1 − z0).

At the peak, v1 = 0, so

mg(z1 − z0) = 1
2 mv2

0,

which gives

z1 = z0 +
v0

2

2g
.

Our solution makes no explicit reference to time. Of course, we could
have easily solved the problem by applying Newton’s second law, but
the solution would have been less elegant because we would have had
to eliminate t to obtain the final answer.

Note that the result depends on two initial conditions, v0 at z0 and v1 at
z1. This is a general property of Newton’s second law calculations. In
the language of differential equations, Newton’s second law is a “sec-
ond order” equation in the position; the highest order derivative it in-
volves is the acceleration d2x/dt2. The theory of differential equations
shows that the complete solution of a differential equation of nth order
must involve n initial conditions.

Here is an example that is much simpler to solve by the energy method
than by direct application of Newton’s second law.

Example 5.2 Solving the Equation for Simple Harmonic Motion
In Section 3.7 we discussed the equation of simple harmonic motion
and more or less pulled the solution out of a hat without proof. Now
we shall derive the solution using Eq. (5.5).

Equilibrium
position

M

M
F = −kx

x

Consider a mass M attached to a spring. Using the coordinate x mea-
sured from the equilibrium position, the spring force is F = −kx. Then
Eq. (5.5) becomes

1
2 Mv2 − 1

2 Mv0
2 = −k

∫ x

x0

x dx

= − 1
2 kx2 + 1

2 kx0
2.



5.2 INTEGRATING EQUATIONS OF MOTION IN ONE DIMENSION 165

To complete the solution for x and v, we must specify initial conditions,
because physically the equation of motion by itself cannot completely
specify the motion for any given situation. We are free to choose any
initial conditions we wish (as long as they are independent); a useful
choice here is the position x0 and the velocity v0 at some time t0. Let us
consider the case where at t = 0 the mass is released from rest, so that
v0 = 0. If the mass is released at a distance x0 from the origin,

v2 = − k
M

x2 +
k
M

x0
2.

Because v = dx/dt, we have

dx
dt
=

√
k
M

√
x0

2 − x2.

This equation gives the velocity as a function of position, but what we
really want in this problem is the position as a function of time. To
accomplish this, we rearrange the equation and integrate again∫ x

x0

dx√
x0

2 − x2
=

√
k
M

∫ t

0
dt

=

√
k
M

t.

The integral on the left-hand side is arcsin(x/x0). The integral is listed
in standard tables. It can also be generated by symbolic mathematical
routines, or by the time-honored methods of “guesswork” and “playing
around.” Using these methods is as respectable for a physicist as con-
sulting a dictionary is for a writer. Of course, in both cases one hopes
that experience gradually reduces dependence.

Denoting
√

k/M by ω, we obtain

arcsin
(

x
x0

)∣∣∣∣∣∣
x

x0

= ωt

or

arcsin
(

x
x0

)
− arcsin(1) = ωt.

Because arcsin(1) = π/2, we obtain

x = x0 sin
(
ωt +

π

2

)
= x0 cos ωt.

Note that the solution indeed satisfies the given initial conditions: at
t = 0, x = x0 cos(0) = x0, and v0 = ẋ = x0 ω sin(0) = 0. For these
particular initial conditions our result agrees with the general solution
A sinωt + B cosωt given in Section 3.7.
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5.3 Work and Energy
5.3.1 The Work–Energy Theorem in One Dimension
In Section 5.2 we demonstrated the formal procedure for integrating
Newton’s second law with respect to position. We shall now interpret
the result

1
2 mvb

2 − 1
2 mva

2 =

∫ xb

xa

F(x) dx

in physical terms.
The quantity 1

2 mv2 is called the kinetic energy K, and the left-hand
side can be written Kb − Ka. The integral

∫ xb

xa
F(x) dx is called the work

Wba by the force F on the particle as the particle moves from a to b. Our
relation now takes the form

Wba = Kb − Ka. (5.6)

The result in Eq. (5.6) is known as the work–energy theorem or, more
precisely, the work–energy theorem in one dimension. (We shall gener-
alize to three dimensions shortly.) The unit of work and energy in the SI
system is the joule (J):

1 N ·m = 1 J = 1 kg ·m2/s2.

The unit of work and energy in the CGS system is the erg:

1 dyne · cm = 1 erg = 1 gm · cm2/s
2

= 10−7 J.
The unit of work in the English system is the foot-pound:

1 ft · lb ≈ 1.356 J.

A table of various other units employed to measure energy is given in
Section 5.11.

Example 5.3 Vertical Motion in an Inverse Square Field
A mass m is shot vertically upward from the surface of the Earth
with initial speed v0. Assuming that the only force is gravity, find its
maximum altitude and the minimum value of v0 for the mass to escape
the Earth completely.

r

m

Re

υ

The force on m is

F = −GMem
r2 .

The problem is one dimensional in the variable r, and it is simple to
find the kinetic energy at distance r by the work–energy theorem.

Let the particle start at r = Re with initial velocity v0:

K(r) − K(Re) =
∫ r

Re

F(r) dr

= −GMem
∫ r

Re

dr
r2
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or
1
2 mv(r)2 − 1

2 mv0
2 = GMem

(
1
r
− 1

Re

)
.

We can immediately find the maximum height of m. At the highest
point, v(r) = 0 and we have

v0
2 = 2GMe

(
1
Re
− 1

rmax

)
.

It is good practice to simplify expressions by writing them in terms of
familiar constants whenever possible. Because g = GMe/Re

2, we can
write

v0
2 = 2gRe

2
(

1
Re
− 1

rmax

)

= 2gRe

(
1 − Re

rmax

)
or

rmax =
Re

1 − v0
2/2gRe

. (1)

The escape velocity from the Earth is the minimum initial velocity
needed to move rmax to infinity. The escape velocity is therefore

vescape =
√

2gRe

=
√

(2)(9.8 m/s2)(6.4 × 106 m)

= 1.1 × 104 m/s.

With this expression for vescape, Eq. (1) can be written

rmax =
Re

1 − v0
2/v2

escape
. (2)

For v0 = vescape, rmax → ∞, as we expect. But if v0 > vescape, Eq. (2)
gives rmax < 0. The reason for this absurd result is that we assumed
that the final speed of m is zero. If v0 > vescape, the mass never comes
to rest.

From the work–energy theorem, Eq. (5.6), the minimum energy needed
to send a 50-kg spacecraft from the surface of the Earth to infinity is

W = 1
2 Mv2

escape

= 1
2 (50)(1.1 × 104)2 = 3.0 × 109 J.

5.3.2 Integrating Equations of Motion in
Several Dimensions

Returning to the central problem of this chapter, let us try to integrate
the equation of motion of a particle acted on by a force that depends on
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position

F(r) = m
dv
dt
. (5.7)

In the case of one-dimensional motion we integrated with respect to posi-
tion. To generalize this, consider what happens when the particle moves
a short distance Δr.

We assume that Δr is so small that F is effectively constant over this
displacement. If we take the scalar product of Eq. (5.7) with Δr, we
obtain

F · Δr = m
dv
dt
· Δr. (5.8)F

Δr

θ
The sketch shows the trajectory and the force at some point along the

trajectory. At this point, F · Δr = F Δr cos θ.
Perhaps you are wondering how we know Δr, since this requires

knowing the trajectory, which is what we are trying to find. Let us over-
look this problem for a few moments and pretend we know the trajectory.

In Eq. (5.8) the right-hand side is m(dv/dt) · Δr. We can transform
this by noting that v and Δr are not independent; for a sufficiently short
length of path, v is approximately constant. Hence Δr = v Δt, where Δt
is the time the particle requires to travel Δr. Consequently,

m
dv
dt
· Δr = m

dv
dt
· vΔt. (5.9)

We can transform Eq. (5.9) with the vector identity 2A · dA/dt = dA2/dt
that we proved in Section 1.10:

v · dv
dt
=

1
2

d
dt

(v2).

Equation (5.9) becomes

F · Δr =
m
2

d
dt

(v2)Δt. (5.10)

The next step is to divide the entire trajectory from the initial position
ra to the final position rb into N short segments of length Δr j, where j
is an index numbering the segments. (When we take the limit Δr → 0
it will make no difference whether all the pieces have the same length.)
For each segment we can write a relation similar to Eq. (5.10):

Δr1

Δr2

Δrj

ΔrN

rb

ra F(r j) · Δr j =
m
2

d
dt

(v j
2)Δt j,

where r j is the location of segment j, v j is the velocity the particle has
there, and Δt j is the time it spends in traversing it. If we add together the
equations of all the segments, we have

N∑
j=1

F(r j) · Δr j =

N∑
j=1

m
2

d
dt

(v j
2)Δt j.
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Next we take the limit where the length of each segment approaches
zero, and the number of segments approaches infinity. In the limit the
sums become integrals, and we have∫ rb

ra

F(r) · dr =
∫ tb

ta

m
2

d
dt

(v2) dt, (5.11)

where ta and tb are the times corresponding to ra and rb. In converting
the sum to an integral, we dropped the numerical index j. The location
of the first segment Δr1 is indicated by ra, and the location of the last
section ΔrN by rb.

In Eq. (5.11) we can evaluate the integral on the right by a now-
familiar procedure.∫ rb

ra

F(r) · dr =
∫ tb

ta

m
2

d
dt

(v2) dt,

=
m
2

∫ tb

ta

d
dt

(v2) dt

= 1
2 mv2

∣∣∣tbta
= 1

2 mvb
2 − 1

2 mva
2.

This represents a simple generalization of the result we found for one
dimension, Eq. (5.4). Here, however, v2 = vx

2 + vy
2 + vz

2, while for the
one-dimensional case we had v2 = vx

2.
Equation (5.11) becomes∫ rb

ra

F · dr = 1
2 mvb

2 − 1
2 mva

2. (5.12)

The integral on the left is called a line integral, because the integration
is carried out along a path. We shall see how to evaluate line integrals in
the next two sections, and we shall also see how to interpret Eq. (5.12)
physically. However, before proceeding, let’s pause for a moment to
summarize.

Our starting point was F(r) = m dv/dt. All we have done is to integrate
this equation with respect to distance, but because we described each step
carefully, it looks like many operations are involved. This is not really the
case; the whole argument can be stated in a few lines as follows:

F = m
dv
dt∫ b

a
F · dr =

∫ b

a
m

dv
dt
· dr

=

∫ b

a
m

dv
dt
· v dt

=

∫ b

a

m
2

d
dt

(v2) dt

= 1
2 mvb

2 − 1
2 mva

2.
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5.3.3 The Work–Energy Theorem
We now state Eq. (5.12) in the language of physics. The quantity 1

2 mv2

is called the kinetic energy K, so the right-hand side of Eq. (5.12) can be
written as Kb − Ka. The integral

∫ rb

ra
F · dr is called the work Wba by the

force F on the particle as the particle moves from a to b. Equation (5.12)
now takes the form

Wba = Kb − Ka. (5.13)

This result is the general statement of the work–energy theorem which
we met in restricted form, Eq. (5.6), in our discussion of one dimensional
motion.

Δr

F

F ||

F⊥

θ

Recall that the work ΔW by a force F in a small displacement Δr is

ΔW = F · Δr = F cos θΔr = F‖Δr,

where F‖ = F cos θ is the component of F along the direction of Δr. The
component of F perpendicular to Δr does no work. For a finite displace-
ment from ra to rb, the work on the particle,

∫ b
a F · dr, is the sum of the

contributions ΔW = F‖ Δr from each segment of the path, in the limit
where the size of each segment approaches zero.

In the work–energy theorem Eq. (5.13), Wba is the work on the particle
by the total force F. If F is the sum of several forces F = ΣFi, we can
write

Wba =
∑

i

(Wi)ba

= Kb − Ka,

where

(Wi)ba =

∫ rb

ra

Fi · dr

is the work by the ith force Fi.
Our discussion so far has been restricted to the case of a single particle.

We showed in Section 4.3 that the center of mass of an extended system
moves according to the equation of motion

F = MR̈

= M
dV
dt
, (5.14)

where V = Ṙ is the velocity of the center of mass. Integrating Eq. (5.14)
with respect to position gives∫ Rb

Ra

F · dR = 1
2 MVb

2 − 1
2 MVa

2, (5.15)

where dR = V dt is the displacement of the center of mass in time dt.
Equation (5.15) is the work–energy theorem for the translational mo-

tion of an extended system. Later, we shall see several ways of doing
work on a system, for instance work that causes the system to rotate or
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to get warmer. Nevertheless, Eq. (5.15) always holds for the center of
mass motion.

Example 5.4 The Conical Pendulum
We discussed the motion of the conical pendulum in Example 2.10.
Since the mass moves with constant angular velocity ω in a circle of
constant radius R, the kinetic energy of the mass, 1

2 mRω2, is constant.
The work–energy theorem then tells us that no net work is being done
on the mass.

Analyzing the situation in more detail, the string force and the weight
force both act on m. However, each of these forces is perpendicular to
the circular trajectory, making the integrand of the work integral zero.
Consequently, the total work on m is zero, and the kinetic energy is
constant.

ω

W

T

dr It is important to realize that in the work integral
∫

F · dr, the vector dr
is along the path of the particle. Since v = dr/dt, dr = v dt and dr is
always parallel to v.

Example 5.5 Escape Velocity—the General Case
In Example 5.3 we discussed the one-dimensional motion of a mass
m projected vertically upward from the Earth. We found that if the
initial speed is greater than v0 =

√
2gRe, the mass will escape from the

Earth. Now we look at the problem once again, but allow the mass to
be projected at angle α from the vertical.

v0

α

m

dθ

r dθ

r

drdr

The force on m, neglecting air resistance, is

F = −GMem
r2 r̂

= −mg
Re

2

r2 r̂,

where g = GMe/Re
2 is the acceleration due to gravity at the Earth’s

surface. We do not know the trajectory of the particle without solving
the problem in detail, but for any element of the path the displacement
dr can be written

dr = dr r̂ + r dθ θ̂.

Because r̂ · θ̂ = 0, we have

F · dr = −mg
Re

2

r2 r̂ · (dr r̂ + r dθ θ̂)

= −mg
Re

2

r2 dr.
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The work–energy theorem becomes

1
2 mv2 − 1

2 mv0
2 = −mgRe

2
∫ r

Re

dr
r2

= −mgRe
2
(

1
r
− 1

Re

)
.

The escape velocity is the minimum value of v0 for which v = 0 when
r → ∞. We find

vescape =
√

2gRe

= 1.1 × 104 m/s,

the same result as in Example 5.3. In the absence of air friction, the
escape velocity is independent of the launch direction, a result that may
not be intuitively obvious.

We have neglected the Earth’s rotation in our analysis. In the absence
of air resistance the projectile should be fired horizontally to the east,
since the rotational speed of the Earth’s surface is then added to the
launch velocity. This is the reason satellites in the U.S. are usually
launched in a trajectory toward the east from Florida, the part of the
U.S. nearest the Equator, where the tangential speed is greatest. Sim-
ilarly, European satellites are often launched from French Guiana in
South America, a location only a few degrees north of the Equator.

5.3.4 Power
Power is the rate at which work is done. The work ΔW by force F on a
system as it moves through a short distance Δr is F · Δr. If the displace-
ment takes place during time Δt, then the rate of work is

ΔW
Δt
≈ F · Δr

Δt
.

In the limit Δt → 0, Δr/Δt → v, so we have

dW
dt
= F · v. (5.16)

Power can be either positive or negative depending on whether the
work is on or by the system. The SI unit of power is the watt (W);
1 W = 1 joule/s = 1 kg ·m2/s3. Many other units are used for non-
scientific purposes, for example the horsepower to describe the power
of machinery and automobiles. There are several slightly different def-
initions of the horsepower, depending on the application, but it is gen-
erally taken to be 746 W. Some other units of power are summarized in
Section 5.11.
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Example 5.6 Empire State Building Run-Up
Hundreds of athletes compete in early February to be the fastest climber
up 1576 stairs to the 86th floor deck of the Empire State Building in
New York City, a vertical distance of h = 320 m. In this event, first held
in 1978, the winning time is typically about 10 minutes. Assuming
a body mass m = 75 kg, what is the average power the winner
exerts?

The work W lifting 75 kg through a height of 320 m is

W = mgh = 75 kg × 9.80 m/s2 × 320 m = 2.35 × 105 J

If this work is done in 10 minutes = 600 s, the average power is

power = (2.35 × 105 J)/600 s = 392 J/s = 392 W

The stair climber exerted an average power of 392 W/746 W/hp = 0.53
hp. A human being in good condition can exert close to 1 hp for a short
time, for example racing up a few flights of stairs.

5.3.5 Applying the Work–Energy Theorem
In the last section we derived the work–energy theorem

Wba = Kb − Ka

and applied it to a few simple cases. In this section we shall use it to
tackle more complicated problems. But before we start, a few comments
about the theorem may be helpful.

To begin, we should emphasize that the work–energy theorem is a
mathematical consequence of Newton’s second law; we have introduced
no new physical ideas. The work–energy theorem is merely the state-
ment that the change in kinetic energy is equal to the net work. This
should not be confused with the general law of conservation of energy,
an independent physical law that we shall discuss in Sections 5.9 and
5.10.

Possibly you are troubled by the following problem: to apply the
work–energy theorem, we have to evaluate the work along some pos-
sibly curved path:

Wba = C
∫ b

a
F · dr

Such an integral is known as a line integral, because the integral is
to be evaluated along a specific curve, or path, from a to b. The C
on the integral sign is the symbol for a line integral. But evaluating
this integral requires knowing the path the particle actually follows. We
would seem to need to know the solution in order to apply the theo-
rem, making it difficult to see how the work–energy theorem could be
useful.
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The work–energy theorem is indeed not particularly useful if the work
actually depends on the path. Fortunately, the theorem is extremely use-
ful in two cases that happen to be of considerable importance. For many
forces of interest, the work integral does not depend on the particular
path but only on the end points. Such forces are called conservative
forces; they include many of the important forces in physics. As we shall
see, the work–energy theorem assumes a marvelously simple form when
the forces are conservative.

The work–energy theorem is also useful in cases where the path is
known because the motion is constrained. By constrained motion, we
mean motion in which external constraints act to keep the particle on a
predetermined trajectory. The roller coaster is a perfect example. A roller
coaster follows the track because it is held on by wheels both below and
above the track. There are many other examples of constrained motion—
the conical pendulum, for example, is constrained by the fixed length of
the pendulum—but all have one feature in common—the constraining
force does no work. This is because the effect of the constraint force is
to assure that the direction of the velocity is always tangential to the pre-
determined path. Hence the constraint forces change only the direction
of v. Thus the constraint force Fc is normal to the velocity v. On the other
hand, the displacement Δr is parallel to v. Consequently, F · Δr = 0 and
the constraint force does no work.

Example 5.7 The Inverted Pendulum
A pendulum consists of a light rigid rod of length l, pivoted at one end,
with mass m attached at the other end. The pendulum is released from
rest at angle φ0, as shown. What is the velocity of m when the rod is at
angle φ?

l

m

m
φ0

φ

The work–energy theorem gives
1
2 mv(φ)2 − 1

2 mv0
2 = Wφ,φ0 .

Because v0 = 0, we have

v(φ) =

√
2Wφ,φ0

m
. (1)

To evaluate Wφ,φ0 , the work by gravity as the bob swings from φ0 to φ,
we see that dr lies along the circle of radius l.

dr

mg

N

φ − π
2

The forces acting are gravity, directed down, and the force of the rod,
N. Since N lies along the radius, N · dr = 0, and N does no work. The
work by gravity is

mg · dr = mgl cos
(
φ − π

2

)
dφ

= mgl sin φ dφ
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where we have used |dr| = l dφ

Wφ,φ0 =

∫ φ

φ0

mgl sin φ dφ

= −mgl cos φ|φφ0

= mgl (cos φ0 − cos φ).

From Eq. (1), the speed at φ is therefore

v(φ) =
√

2gl (cos φ0 − cos φ).

The maximum velocity is obtained by letting the pendulum fall from
the top φ0 = 0 to the bottom φ = π:

vmax = 2
√

gl.

This is the same speed attained by a mass falling through the same
vertical distance 2l. However, the mass on the pendulum is traveling
horizontally at the bottom of its path, not vertically.

To convince yourself of the utility of the work–energy theorem, you
might try solving this example by integrating the equation of mo-
tion. You will find that using the work–energy theorem is much
easier.

Example 5.7 illustrates not only the utility but also one of the short-
comings of the method: although we found a simple solution for the
speed of the mass at any point on the circle, we have no information
on when the mass gets there. For instance, if the pendulum is released
at φ0 = 0, in principle the mass balances there forever, never reaching
the bottom. Fortunately, in many problems we are not interested in time.
When time is important, the work–energy theorem can provide a valu-
able first step toward a complete solution, as we shall see in the next
section.

Next we turn to the general problem of evaluating work by a known
force over a given path, which involves evaluating line integrals. We start
by looking at the case of a constant force.

Example 5.8 Work by a Uniform Force
The case of a constant force is particularly simple. Here is how to
find the work by a force F = F0n̂, where F0 is a constant and n̂ is
a unit vector in some given direction, as the particle moves from ra

to rb along an arbitrary path. All the steps are put in to make the
procedure clear, but with any practice this problem can be solved by
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inspection.F0
F0

F0

F0

F0

θrb

ra

rb − ra

Wba = C
∫ rb

ra

F · dr

= C
∫ rb

ra

F0n̂ · dr

= F0n̂ ·C
∫ rb

ra

dr

= F0n̂ ·
(
î
∫ xb,yb,zb

xa,ya,za

dx + ĵ
∫ xb,yb,zb

xa,ya,za

dy + k̂
∫ xb,yb,zb

xa,ya,za

dz
)

= F0n̂ · [î(xb − xa) + ĵ(yb − ya) + k̂(zb − za)]
= F0n̂ · (rb − ra)
= F0 cos θ |rb − ra| .

This result shows that for a constant force the work depends only on
the net displacement, rb − ra, not on the particular path followed. Such
a simple result is not always the case, but it holds true for an important
class of forces, conservative forces.

We can use the results of this example to illustrate a characteristic fea-
ture of conservative forces. Suppose we return from b to a, but along a
different path. The work is Wab, and proceeding as above we find

Wab = F0n̂ · (ra − rb)
= −Wba.

It follows that Wba +Wab = 0; the work by F0 around a closed path is
zero. We shall have more to say about this property later.

As the next example shows, the work by a central force also depends
only on the end points, and not on the particular path followed.

Example 5.9 Work by a Central Force
A central force is a radial force that depends only on the distance from
the origin. Let us find the work by the central force F = f (r)r̂ on a
particle that moves from ra to rb. For simplicity we shall consider
motion in a plane, for which dr = dr r̂ + r dθ θ̂. Then

r

dr = dr r̂ + r dθ θ̂

F = f(r)r̂

Wba = C
∫ b

a
F · dr

= C
∫ b

a
f (r)r̂ · (dr r̂ + r dθ θ̂)

=

∫ b

a
f (r) dr.
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The work is given by a simple one-dimensional integral over the vari-
able r. Because θ has disappeared from the problem, it should be ob-
vious that the work for a given f (r) depends only on the initial and
final radial distances and not on the particular path. It follows that
Wba+Wab = 0; the work by a central force around a closed path is zero.

For some forces, the work depends on the particle’s path between the
initial and final points. A familiar example is work by the force of sliding
friction. Here the force always opposes the motion, so that the work by
friction in moving through distance dS is dW = − f dS , where f is the
magnitude of the friction force. If we assume that f is constant, then the
work by friction in going from ra to rb along some path is

Wba = −C
∫ rb

ra

f dS

= − f S ,

where S is the total length of the path. The work is negative because the
force always retards the particle. Wba is never smaller in magnitude than
f S 0, where S 0 is the straight-line distance between the two points, but
by choosing a sufficiently devious route, S can be made arbitrarily large.

Example 5.10 A Path-dependent Line Integral
Here is a second example of a path-dependent line integral. Let
F = A(xyî + y2 ĵ). The force F has no particular physical significance.

Consider the integral from (0,0) to (0,1), first along path 1 and then
along path 2, as shown in the figure.

c

a

(0, 1)

2 1

(0, 0)
(1, 0)

(1, 1)

x

y

b

The segments of each path lie along a coordinate axis, so evaluating the
integrals is simple. For path 1 we have

C
∫

1
F · dr =

∫
a

F · dr +
∫

b
F · dr +

∫
c

F · dr.

Along segment a, dr = dx î, F · dr = Fx dx = Axy dx. Since y = 0
along the line of this integration,

∫
a F · dr = 0. For path b,∫

b
F · dr = A

∫ x=1,y=1

x=1,y=0
y2 dy

=
A
3
,

while for path c, where y = 1,∫
c

F · dr = A
∫ x=0,y=1

x=1,y=1
xy dx

= A
∫ 0

1
x dx = −A

2
.
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Thus

C
∫

1
F · dr =

A
3
− A

2

= −A
6
.

Along path 2 we have

C
∫

2
F · dr = A

∫ x=0,y=1

x=0,y=0
y2 dy

=
A
3

� C
∫

1
F · dr.

The work by the applied force is different for the two paths.

In the general case, the path of a line integral lies along some ar-
bitrary curve and not conveniently along coordinate axes. The follow-
ing general method of evaluating a line integral can be used if all else
fails.

For simplicity we again consider motion in a plane. Generalization to
three dimensions is straightforward.

The problem is to evaluate C
∫ b

a F · dr along a specified path. The path
can be characterized by an equation of the form g(x, y) = 0. For example,
if the path is a unit circle about the origin, then all points on the path obey
x2 + y2 − 1 = 0.

g(x, y) = 0

y

x

a

b

ds We can characterize every point on the path by a parameter s which
in a practical problem could be for example distance along the path,
or angle—anything just as long as each point on the path is associated
with a value of s so that we can write x = x(s), y = y(s). If we move
along the path a short way, so that s changes by the amount ds, then the
change in x is dx = (dx/ds)ds, and the change in y is dy = (dy/ds)ds.
Since both x and y are determined by s, so are Fx and Fy. Hence we can
write F = Fx(s)î + Fy(s)ĵ, and we have

C
∫ b

a
F · dr =

∫ b

a
(Fxdx + Fy dy)

=

∫ sb

sa

[
Fx(s)

dx
ds
+ Fy(s)

dy
ds

]
ds.

We have reduced the problem to the more familiar problem of evaluating
a one-dimensional definite integral. The calculation is much simpler in
practice than in theory. Here is an example.
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Example 5.11 Parametric Evaluation of a Line Integral
Evaluate the line integral of F = A(x3 î + xy2 ĵ) from (x = 0, y = 0) to
(x = 0, y = 2R) along the semicircle shown.

θ

R

y

x

The natural parameter to use here is θ, since as θ varies from 0 to π, the
radius vector sweeps out the semicircle. We have

x = R sin θ y = R(1 − cos θ)
dx = R cos θ dθ dy = R sin θ dθ
Fx = AR3 sin3 θ Fy = AR3 sin θ(1 − cos θ)2

C
∫

F · dr = AR4
∫ π

0
[(sin3 θ) cos θ + sin θ(1 − cos θ)2 sin θ] dθ.

Evaluation of the integral is straightforward. If you are interested in
carrying it through, try substituting u = cos θ.

5.4 The Conservation of Mechanical Energy
Conservative forces, where the work by the force along a path depends
only on the end points, play a major role in physics. We have seen two
examples of conservative forces: the uniform force (Example 5.8) and
the central force (Example 5.9).

The work by a conservative force along any path from a to b is

C
∫ rb

ra

F · dr = function of (rb) − function of (ra)

or

C
∫ rb

ra

F · dr = −U(rb) + U(ra), (5.17)

where U(r) is a function, defined by the above expression, known as
the potential energy function. (The reason for the sign convention will
be clear in a moment.) We have not proven in general that U(r) exists,
but we have seen examples of forces where the work is indeed path-
independent, so we know that U exists for at least some forces.

For a conservative force, the work–energy theorem Wba = Kb − Ka

becomes

Wba = −Ub + Ua

= Kb − Ka

or, rearranging,
Ka + Ua = Kb + Ub. (5.18)

The left-hand side of this equation, Ka + Ua, depends on the speed of
the particle and its potential energy at ra, without reference to rb. Simi-
larly, the right-hand side depends on the speed and potential energy at rb,
without reference to ra. Because ra and rb are arbitrary and not specially
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chosen points, this can be true only if each side of the equation equals a
constant. Denoting this constant by E, we have

Ka + Ua = Kb + Ub = E. (5.19)

E is called the total mechanical energy of the particle, or, less precisely,
the total energy.

We have shown that if the force is conservative, the total energy is in-
dependent of the position of the particle. In such a case, the total energy
remains constant, or, in the language of physics, the energy is conserved.
Although the conservation of mechanical energy is a derived law, which
means that it has basically no new physical content, it presents such a
different way of looking at a physical process compared with applying
Newton’s laws that we have what amounts to a totally new tool. Further-
more, although the conservation of mechanical energy follows directly
from Newton’s laws, it is an important key to understanding the more
general law of conservation of energy, which is independent of Newton’s
laws and which vastly increases our understanding of nature. When we
discuss this in greater detail in Sections 5.9 and 5.10, we shall see that
the conservation law for mechanical energy turns out to be a special case
of the more general law.

A peculiar property of energy is that the value of E is arbitrary; only
changes in E have physical significance. This comes about because the
equation

Ub − Ua = −C
∫ b

a
F · dr (5.20)

defines only the difference in potential energy between a and b and not
the potential energy itself. We could add an arbitrary constant to Ub and
the same constant to Ua and still satisfy the defining equation. However,
since E = K + U, adding an arbitrary constant to U increases E by the
same amount.

As a corollary, Eq. (5.20) implies that the work by a conservative force
F around a closed path is zero:∮

F · dr = 0. (5.21)

The circle on the integral sign signifies a closed path.
The following example illustrates the new perspective that energy

methods bring to solving dynamical problems.

Example 5.12 Energy Solution to a Dynamical Problem
To illustrate the power of the energy method, we solve an old problem
a new way using energy methods. The problem is the motion of a
pendulum, which we solved using Newton’s laws in Example 3.10.

The work on mass m by the gravitational force −mg as m moves from
y = 0 to y is −mgy, and so U(y) − U(0) = mgy. Consequently, the total



5.4 THE CONSERVATION OF MECHANICAL ENERGY 181

energy of the pendulum shown in the sketch is

E = K + U

= 1
2 ml2θ̇2 + mgy,

where l is the length of the pendulum and y = l(1 − cos θ).

θ
l

m

y

It is easy to evaluate E at the end of the swing because there θ = θ0 and
θ̇ = 0. The total energy is E = mgy = mgl(1 − cos θ0) and the energy
equation becomes

1
2 ml2θ̇2 + mgl(1 − cos θ) = mgl(1 − cos θ0).

Solving for dθ/dt we have

dθ
dt
=

√
2g
l

(cos θ − cos θ0),

which can be rearranged to give

∫
dθ√

cos θ − cos θ0
=

√
2g
l

∫
dt. (1)

Let us look at the solution for the case of small amplitude where we
can make the small-angle approximation cos θ ≈ 1 − 1

2θ
2. We obtain

∫
dθ√

1
2

√
θ0

2 − θ2
=

√
2g
l

∫
dt

which we can rewrite as∫
dθ/θ0√

1 − (θ/θ0)2
= ω

∫
dt

where we have introduced ω =
√

g/l. The integral on the left has the
form

∫
dx/
√

1 − x2 = arcsin x, where x = θ/θ0. We take the lower
limits of the integrals to be (θ = 0, t = 0) and the upper limits to be
(θ, t). The result is

arcsin θ/θ0 − 0 =
√

g
l

(t − 0),

θ = θ0 sinωt.

Note that the energy method does not require finding a general so-
lution for the motion and then fitting it to boundary conditions: the
boundary conditions are built in. More importantly, Eq. (1) is a general
equation that is not limited to the small-angle approximation. It has a
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mathematically exact solution in terms of functions called elliptic in-
tegrals, but without going into that complexity we can use Eq. (1) to
find an important result: the correction to the period of a pendulum due
to its finite amplitude. Such a correction would be very difficult to ex-
tract starting with the Newtonian equation of motion. The correction is
worked out in Note 5.1.

5.5 Potential Energy
The concept of potential energy was introduced in the last section. Its
definition is embodied in Eq. (5.20). Here are examples that illustrate po-
tential energy for three conservative forces: the uniform force, the central
force, and the spring force.

Example 5.13 Potential Energy of a Uniform Force Field
From Example 5.8, the work by a uniform force is Wba = F0 · (rb − ra).
For instance, the force on a particle of mass m due to a uniform
gravitational field is −mgk̂, so if the particle moves from ra to rb, the
change in potential energy is

Ub − Ua = −
∫ zb

za

(−mg) dz

= mg(zb − za).

If we adopt the convention U = 0 at ground level where z = 0, then
U(h) = mgh, where h is the height above the ground. However, a po-
tential energy of the form mgh + C, where C is any constant, is just as
suitable.

As an application, suppose mass m is projected upward with initial ve-
locity v0 = v0x î + v0y ĵ + v0zk̂. Find the speed at height h using conser-
vation of energy.

K0 + U0 = K(h) + U(h)
1
2 mv0

2 + 0 = 1
2 mv2(h) + mgh

or

v(h) =
√

v0
2 − 2gh.

Example 5.13 is trivial because motion in a uniform force field is eas-
ily found from F = ma. Nevertheless, it illustrates the ease with which
the energy method solves the problem, where motion in all three direc-
tions is handled at once. In contrast, Newton’s law involves three equa-
tions, one for each component of motion.
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Example 5.14 Potential Energy of a Central Force
A central force, which is always conservative, has the general form
F = f (r)r̂, where f (r) is some function of the distance to the origin.
The potential energy of a particle in a central force is

Ub − Ua = −
∫ rb

ra

F · dr

= −
∫ rb

ra

f (r) dr.

The inverse square force f (r) = A/r2 is an important example of
a central force. The gravitational force between two masses m1 and
m2, F ∝ (m1m2/r2)r̂, is one instance, and the Coulomb electro-
static force between two charges q1 and q2, F ∝ (q1q2/r2)r̂, is
another.

Ub − Ua = −
∫ rb

ra

A
r2 dr

=
A
rb
− A

ra
.

To obtain the general potential energy function, we replace rb by the
radial variable r. Then

U(r) =
A
r
+

(
Ua − A

ra

)

=
A
r
+C.

The constant C has no physical meaning, because only changes in U
are physically significant, so we are free to give C any value we like.
A convenient choice in this case is C = 0, which corresponds to taking
U(∞) = 0. With this convention we have

U(r) =
A
r
.

Example 5.15 Potential Energy of the Three-dimensional
Spring Force
The linear restoring force, or spring force, is among the important
forces in physics. To show that the spring force is conservative,
consider a spring of equilibrium length r0 with one end attached at the
origin.

F = −k(r − r0)r̂

r̂

If the spring is stretched to length r along direction r̂, it exerts a
force

F(r) = −k(r − r0)r̂.
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Because the force is central, it is conservative. The potential energy is
given by

U(r) − U(a) = −
∫ r

a
(−k)(r − r0) dr

= 1
2 k(r − r0)2

∣∣∣r
a .

= 1
2 k[(r − r0)2 − (ra − r0)2].

Hence

U(r) = 1
2 k(r − r0)2 +C.

Conventionally, we choose the potential energy to be zero at equilib-
rium: U(r0) = 0, which gives

U(r) = 1
2 k(r − r0)2.

When several conservative forces act on a particle, the potential en-
ergy is the sum of the potential energies for each force. In the following
example, two conservative forces act.

Example 5.16 Bead, Hoop, and Spring
A bead of mass m slides without friction on a vertical hoop of radius
R. The bead moves under the combined action of gravity and a spring
attached to the bottom of the hoop. For simplicity, we assume that
the equilibrium length of the spring is zero, so that the force due to
the spring is −kr, where r is the instantaneous length of the spring,
as shown. The bead is released at the top of the hoop with negligible
speed. How fast is the bead moving at the bottom of the hoop?

r

m

−kr

At the top of the hoop, the gravitational potential energy of the bead
is mg(2R) and the potential energy due to the spring is 1

2 k(2R)2 =

2kR2.

2R
Hence the initial potential energy is

Ui = 2mgR + 2kR2.

The total potential energy at the bottom of the hoop is

U f = 0.

Because both forces are conservative, the mechanical energy is con-
stant and we have

Ki + Ui = Kf + U f .

The initial kinetic energy is zero and we obtain

Kf = Ui − U f
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or
1
2 mvf

2 = 2mgR + 2kR2.

Hence

v f = 2

√
gR +

kR2

m
.

5.6 What Potential Energy Tells Us about Force
In many physical problems, it is easier to find the potential energy than
to calculate the force. The procedure for then finding the force from the
potential energy turns out to be straightforward, as we shall show in this
section for a one-dimensional system. The general case of three dimen-
sions is discussed in Note 5.2.

Suppose that we have a one-dimensional system, such as a mass on a
spring, where the force is F(x) and the potential energy is

Ub − Ua = −
∫ xb

xa

F(x) dx.

Consider the change in potential energy ΔU as the particle moves from
some point x to x + Δx:

U(x + Δx) − U(x) ≡ ΔU

= −
∫ x+Δx

x
F(x) dx.

For Δx sufficiently small, F(x) can be considered constant over the range
of integration and we have

ΔU ≈ −F(x)[(x + Δx) − x]
= −F(x)Δx

or

F(x) ≈ −ΔU
Δx

.

In the limit Δx→ 0 we have

F(x) = −dU
dx

. (5.22)

The result is reasonable: potential energy is the negative integral of the
force so it follows that force is the negative derivative of the potential
energy.

5.7 Energy Diagrams
We can often find key features of the motion of a one-dimensional sys-
tem by using an energy diagram, in which the total energy E and the po-
tential energy U are plotted as functions of position. The kinetic energy
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K = E − U is then easily found by inspection. Because kinetic energy
cannot be negative, the motion of the system is constrained to regions
where U ≤ E.

Here is the energy diagram for a harmonic oscillator. The potential
energy U = kx2/2 is a parabola centered at the origin.U

E

E
ne

rg
y

xx1 x2

K =  E − U

Because the total energy is constant for a conservative system, E does
not vary with the position x and is represented by a horizontal straight
line. Motion is limited to the shaded region where E ≥ U; the limits of
the motion, x1 and x2 in the sketch, are called the turning points.

Here is what the diagram tells us. The kinetic energy, K = E − U, is
greatest at the origin and decreases as the particle flies past the origin
in either direction. At a turning point K = 0, and the particle comes
momentarily to rest. The particle then accelerates back toward the origin
with increasing kinetic energy, and the cycle is repeated.

The harmonic oscillator provides a good example of bounded motion.
As E increases, the turning points move farther and farther apart, but
the particle is never free. If E is decreased, the amplitude of motion de-
creases, until finally for E = 0 the particle lies at rest at x = 0.

Quite a different behavior occurs if U does not increase indefinitely
with distance. For instance, consider the case of a particle constrained to
a radial line and acted on by a repulsive inverse-square law force (A/r2)r̂.
Here U = A/r, where A is positive.

U
E

E
ne

rg
y

rmin r

K =  E − U

There is a distance of closest approach, rmin, as shown in the diagram,
but the motion is not bounded for large r because U decreases with dis-
tance while the total energy remains constant. If the particle is shot to-
ward the origin, it gradually loses kinetic energy until it comes momen-
tarily to rest at rmin. The motion then reverses and the particle moves out
toward infinity. The final and initial speeds at any point are identical; the
collision merely reverses the velocity.

With some potentials, either bounded or unbounded motion can occur
depending upon the energy. For instance, consider the interaction be-
tween two atoms. The energy diagram for a typical two-atom system is
shown in the sketch.

U

E > 0, unbounded

E < 0,
bounded

E
ne

rg
y

r
rmin

0 ra rb

At large separations, the atoms attract each other weakly with the van
der Waals force, which varies as 1/r7. As the atoms approach, the elec-
tron clouds begin to overlap, producing strong forces that can be either
attractive or repulsive depending on the details of the electron config-
uration. If the force is attractive, the potential energy decreases with
decreasing r. At very short distances atoms always repel each other
strongly because of the repulsion of the positively charged nuclei, and
U increases rapidly.

For positive energy E > 0, the motion is unbounded and the atoms
are free to fly apart. As the diagram indicates, the distance of closest ap-
proach, rmin, does not change appreciably as E is increased. The steep
slope of the potential energy curve at small r means that the atoms be-
have much like hard spheres—the distance of closest approach rmin is
not sensitive to the energy of collision.
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The situation is quite different for E < 0. Then the motion is bounded
for both small and large separations; the atoms never approach closer
than ra or move farther apart than rb. A bound system of two atoms is, of
course, a molecule, and the sketch represents a typical diatomic molecule
energy diagram.

If two atoms collide with positive energy, they cannot form a molecule
unless some means is available for losing enough energy to make E neg-
ative. In general, a third body is necessary to carry off the excess energy.
Sometimes the third body is a surface, which is the reason surface cata-
lysts are used to speed certain reactions. For instance, atomic hydrogen
is stable in the gas phase even though the hydrogen molecule is tightly
bound. However, if a piece of platinum is inserted in the hydrogen, the
atoms immediately join to form molecules. What happens is that hydro-
gen atoms tightly adhere to the surface of the platinum, and if a collision
occurs between two atoms on the surface, the excess energy is released
to the surface, and the molecule, which is not strongly attracted to the
surface, leaves. The energy delivered to the surface is so large that the
platinum glows brightly. A third atom can also carry off the excess en-
ergy, but for this to happen the two atoms must collide when a third atom
is nearby. This is a rare event at low pressures, but it becomes increas-
ingly important at higher pressures. Another possibility is for the two
atoms to lose energy by the emission of light, but this occurs rarely and
is usually unimportant.

5.8 Non-conservative Forces
We have stressed conservative forces and potential energy in this chapter
because they play an important role in physics, but in many physical
processes non-conservative forces like friction are present. In this section
we shall see how to extend the work–energy theorem to include non-
conservative forces.

Often both conservative and non-conservative forces act on the same
system. For instance, an object falling through the air experiences the
conservative gravitational force and the non-conservative force of air
friction. We can write the total force F as

F = Fc + Fnc

where Fc and Fnc are the conservative and the non-conservative forces,
respectively. Since the work–energy theorem is true whether or not the
forces are conservative, the total work by F as the particle moves from a
to b is

W total
ba = C

∫ b

a
F · dr

= C
∫ b

a
Fc · dr +C

∫ b

a
Fnc · dr

= −Ub + Ua +Wnc
ba .
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Here U is the potential energy associated with the conservative force
and Wnc

ba is the work by the non-conservative force. The work–energy
theorem, W total

ba = Kb − Ka, now has the form

−Ub + Ua +Wnc
ba = Kb − Ka

or

Kb + Ub − (Ka + Ua) = Wnc
ba .

If we define the total mechanical energy by E = K + U, as before, then
E is no longer constant but depends on the state of the system. We have

Eb − Ea = Wnc
ba . (5.23)

This result is a generalization of the statement of conservation of me-
chanical energy that we discussed in Section 5.4. If non-conservative
forces do no work, then Eb = Ea and mechanical energy is conserved.
In general, the effect of non-conservative forces is to alter the mechani-
cal energy. In particular, the work by friction is always negative and the
mechanical energy decreases. Nevertheless, energy methods continue to
be useful; we simply must be careful not to overlook the work by the
non-conservative forces Wnc

ba . Here is an example.

Example 5.17 Block Sliding Down an Inclined Plane
A block of mass M slides down a plane of angle θ. The problem is
to find the speed of the block after it has descended through height h,
assuming that it starts from rest and that the coefficient of friction μ is
constant.

h

s
M

θ

W = Mg

θ

dr

Nf

Initially the block is at rest at height h; finally the block is moving with
speed v at height 0. Hence

Ua = Mgh Ub = 0
Ka = 0 Kb =

1
2 Mv2

Ea = Mgh Eb =
1
2 Mv2.

The non-conservative force is f = μN = μMg cos θ. The non-
conservative work is therefore

Wnc
ba =

∫ b

a
f · dr

= − f s

= −μNs

= −(μMg cos θ)s

where s is the distance the block slides. The negative sign arises be-
cause the direction of f is always opposite to the displacement, so that
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f · dr = − f ds. Using s = h/sin θ, we have

Wnc
ba = −μMg cos θ

h
sin θ

= −μ cot θMgh.

The energy equation Eb − Ea = Wnc
ba becomes

1
2 Mv2 − Mgh = −μ cot θMgh,

which gives

v =
√

2(1 − μ cot θ)gh.

Since all the forces acting on the block are constant, the expression
for v could easily be found by applying our results for motion under
uniform acceleration; the energy method does not represent much of a
shortcut here. The power of the energy method lies in its generality. For
instance, suppose that the coefficient of friction varies along the surface
so that the friction force is f = μ(x)Mg cos θ. The work by friction is

Wnc
ba = −Mg cos θ

∫ b

a
μ(x) dx,

and the final speed is easily found. In contrast, there is no simple way
to find the speed by integrating the acceleration with respect to time.

5.9 Energy Conservation and the Ideal Gas Law
As far as we know, the basic interactions in nature, for instance the force
of gravity and the forces of electric and magnetic interactions, are all
conservative. This leads to a puzzle: if the basic forces are conservative,
how do non-conservative forces arise? The resolution of this problem
lies in the point of view we adopt in describing a physical system, and in
our willingness to broaden the concept of energy.

Consider friction, the most familiar non-conservative force. When a
block slides across a table mechanical energy is lost due to friction, and
the block’s speed decreases. Something else also happens: the block and
the table become warmer. Up to now, our discussion of energy has not
involved the idea of temperature; a block of mass M moving with speed
v possesses kinetic energy 1

2 Mv2 whether the block is hot or cold. Sim-
ilarly, a harmonic oscillator possesses kinetic and potential energy, but
these have nothing to do with temperature. Nevertheless, if we look care-
fully, we find that the heating of the system bears a definite relation to
the mechanical energy that is dissipated.

The British physicist James Prescott Joule was the first to establish a
quantitative relation between heat and energy, although others, notably
Robert Mayer in Germany, had remarked on it qualitatively somewhat
earlier. (Mayer showed that water could be heated just by shaking it.) In
the early 1840’s, Joule carried out a series of meticulous experiments on
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the heating of water by a paddle wheel driven by a falling weight, and
showed that the loss of mechanical energy by friction is accompanied
by a corresponding rise in the temperature of the water. Joule concluded
that heat is a form of energy and that the sum of the mechanical energy
and the heat energy of a system is conserved.

The development of kinetic theory explained Joule’s idea of heat en-
ergy in terms of the atomic picture of matter. Kinetic theory relates the
macroscopic properties of a gas, for instance its pressure and tempera-
ture, to a microscopic model in which the gas consists of many small par-
ticles. In the first approximation, the particles move freely except when
they collide like small hard spheres. An early triumph of kinetic theory
was its application to the ideal gas law. The ideal gas law, sometimes
called the law of Gay-Lussac after the French physicist who established
it experimentally, relates the pressure P, volume V, and temperature T
of a given quantity of gas. The quantity of gas, Nmol, is measured in
units of the gram-mole, where one mole has a mass in grams equal to the
molecular weight of the species.

The ideal gas law is

PV = NmolRT. (5.24)

Here T is the temperature measured in kelvin (K), a temperature scale
whose zero is at approximately −273 ◦C and for which the difference
between the boiling and freezing temperatures of water is 100 K. (The
degrees symbol is not used with K.) R is an empirical constant, the uni-
versal gas constant, which has the value R ≈ 8.314 J/(mol · K).

In Example 4.22 we derived an expression for the pressure of a gas
in terms of its mass density ρ and the mean squared velocity v2 of its
particles in the form P = 1

3ρv2. Multiplying by the volume of the gas
gives

PV = 1
3
ρVv2.

The product ρV is the total mass Mtot of the gas.
The number of particles in a mole of gas is known as Avogadro’s num-

ber, NA ≈ 6.022 × 1023. If the mass of each particle is m, then for a
number of moles Nmol, the total mass is M = NmolNAm and

PV = 1
3

Mv2 =
1
3

NmolNAmv2. (5.25)

Comparing Eqs. (5.24) and (5.25) we see that

1
3

NmolNAmv2 = NmolRT

1
3

mv2 =
R

NA
T. (5.26)

The ratio R/NA plays a fundamental role in statistical physics and is
known as the Boltzmann constant k ≈ 1.380 × 10−23 J/K, named
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after Ludwig Boltzmann, a founder of kinetic theory. We can rewrite
Eq. (5.26) as

1
2

mv2 =
3
2

kT . (5.27)

This simple equation encompasses a great deal of physics. First, it pro-
vides a physical explanation for temperature: temperature is a measure
of the mean kinetic energy of atoms in an ideal gas. Zero temperature,
“absolute zero,” is the temperature at which translational motion ceases.
Second, it reveals that thermal energy is microscopic kinetic energy, but
kinetic energy of a particular kind, involving random motion. Random-
ness was introduced in Example 4.22 when we made the assumption

v2
x = v2

y = v2
z =

1
3

v2.

Without this assumption, pressure would vary with direction, which is
never seen. A consequence of this relation is that

1
2

mv2
x =

1
2

mv2
y =

1
2

mv2
z =

1
2

kT.

The energy is equally divided among the three modes of translational
motion. This is an example of a general theorem called the equipartition
theorem: if the energy of a system can be written as a sum of quadratic
terms such as 1

2 mv2
x, p2

x/2m, or 1
2 kx2, then in thermal equilibrium, the

average energy associated with each term is 1
2 kT . The equipartition the-

orem is derived in texts on statistical mechanics. The theorem is powerful
and very useful, but under some conditions it breaks down. In fact, the
first clues on the quantum nature of matter came from a failure of the
equipartition theorem.

Another feature of thermal energy that distinguishes it from mechan-
ical energy is that heat energy naturally flows from hot systems to cold
systems as soon as they are put in contact, but never in the other direc-
tion. This arises because of the random nature of thermal energy and the
statistical properties that govern its flow. Consequently, heat energy is a
fundamentally new type of energy, but it fits into the larger framework
of Newtonian mechanics.

Example 5.18 Heat Capacity of a Gas
The heat capacity of a system is the amount of energy required to raise
the temperature 1 K. This is proportional to the mass of the system,
so we shall consider the heat capacity of one mole (the molar heat
capacity). The amount of energy required depends on whether or not
the system does work as the heat is added. If a gas expands, it does
work on the container, and so let us consider heat capacity where
the volume is kept constant, conventionally denoted by CV . From
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Eq. (5.27) we see that the energy of one mole of ideal gas is

E = NA
1
2

mv2

=
3
2

NAkT

=
3
2

RT.

If only the three translational modes of motion contribute, the energy
required to increase the temperature 1 K is

CV =
3
2

R = 12.47 J/mol · K.
Gas data tables list the value for CV for the monatomic noble gases
helium and argon as 12.5 J/mol · K, consistent with this result.

5.10 Conservation Laws
We discussed conservation of momentum in Chapter 4 and conservation
of energy in this chapter. They are two of the most fundamental conser-
vation laws in physics, but they are different in character. Consider the
momentum of an isolated system of particles. The ith particle at some
instant has momentum mivi that may, however, change due to collisions.
Nevertheless, the particle’s momentum does not transform into a differ-
ent physical quantity, and the total momentum remains unchanged.

Energy, on the other hand, is a chameleon that can change from one
form to another. A simple example is the interplay of kinetic and poten-
tial energy discussed earlier in this chapter. Conservation of mechanical
energy is simply a consequence of Newton’s laws and tells us nothing
new. We then enlarged our concept of energy to include thermal energy.
There are additional forms of energy beyond mechanical and thermal:
chemical, electromagnetic, and nuclear, to name a few. When all forms
are included, total energy has always been found to be conserved. It is
only when one or more forms are overlooked in the accounting that the
energy of a system seems not to be conserved. When talking about me-
chanical energy, the most common reason that energy conservation ap-
pears to fail is when some mechanical energy is transformed into heat.
Nevertheless, the total energy, mechanical plus thermal, is conserved.

Conservation of energy may look like an act of desperation: when-
ever mechanical energy appears or disappears, we seem to invent some
new kind of energy to balance the energy books. Luckily, only a few
kinds of energy are known, and they have all been verified experimen-
tally. In 1905, Einstein’s “miraculous” year when he published his theory
of special relativity and several other great discoveries, Einstein postu-
lated two new forms of energy. One was associated with the photoelectric
effect, in which the energy of light is carried by discrete packets of en-
ergy (“quanta”) called photons. A photon of frequency ν carries energy
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E = hν, where h is Planck’s constant. This was soon verified by measur-
ing the kinetic energy of electrons ejected from a metal due to incident
light of known frequency.

Einstein’s second idea was much more startling—that mass itself is
a form of energy, according to his famous relation E = mc2. (We shall
show his proof in Chapter 13.) Because the speed of light is so high,
even a small mass is equivalent to a large amount of energy. Chemists
are therefore justified in assuming that mass is conserved in chemical
reactions, because the mass change is very small for chemical energies,
which are in the eV range (1 eV ≈ 1.6 × 10−19 J). A particularly violent
chemical reaction is the reaction of hydrogen gas (H2) with fluorine gas
(F2) to give hydrogen fluoride (HF). If one mole of hydrogen (2.016 g)
reacts with one mole of fluorine (37.996 g), the energy released is ΔE =
6.6 × 105 J, but the mass change is only Δm = ΔE/c2 = 7.3 × 10−9g,
smaller than the masses of the reactants by a factor of nearly 1010.

Many nuclear reactions involve energies millions of times greater than
the energies of chemical reactions. In the 1930s, experimenters were able
to measure nuclear masses with enough accuracy to show that the energy
released in a nuclear reaction agrees with the known mass difference
Δm according to ΔE = Δm c2. For example, an atom of radium-226,
226Ra, spontaneously emits an α-ray (a nucleus of helium-4, 4He) having
a kinetic energy of 4.78 MeV, leaving a residual nucleus of radon-222,
222Rn:

226Ra→ 222Rn + 4He.

(The number at the upper left of the element’s symbol is the mass num-
ber, the total number of protons and neutrons in the nucleus.) The dif-
ference between the initial mass 226Ra and the final masses 222Rn plus
4He is 8.80 × 10−30 kg and the mass energy accounts closely for the ki-
netic energy of the α-ray plus the small kinetic energy of the recoiling
222Rn nucleus. Mass is indeed a form of energy, and can be converted to
mechanical energy.
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Example 5.19 Conservation Laws and the Neutrino
Some unstable nuclei emit an energetic electron, a process called
β-decay. In one form of β-decay, a neutron in the unstable nucleus be-
comes a proton, and a negatively charged electron (a β-ray) is emitted.
Note that there is no change in the net electric charge, either in β-decay
or in α-decay. Conservation of charge appears to be a fundamental
conservation law; no processes have ever been observed where net
charge is created. When it became possible to measure the energy of
β-rays experimentally, physicists were nonplussed. Unlike α-decay,
where the emitted α-rays have definite energies, the β-rays were
found to have a continuous spectrum of energy, from zero energy to
a maximum depending on the nucleus. The graph shows experimental
data. (Source: G. J. Neary, Roy. Phys. Soc. (London) A175, 71 (1940).)
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A widely held opinion at the time was that these poorly understood
β-decay processes did not obey conservation of energy. Wolfgang
Pauli in Germany disagreed. Pauli, an outstanding theorist in an era
of outstanding physicists, remained convinced that conservation of
energy was a fundamental principle of physics, and he postulated that
the missing energy was being carried off by an undetected particle
emitted along with the β-ray.

Several properties of the unknown particle could be inferred from the
β-decay measurements.

(1) The particle is neutral because all charge is already accounted for
and charge is conserved. Furthermore, a charged particle would inter-
act strongly with matter and could be detected. Inability to detect the
particle also implied that it interacts hardly at all with ordinary matter,
(2) The maximum β-ray energy evidently corresponds to the electron
receiving all the available energy, and must therefore be equal to
the decay energy ΔE. The mass difference Δm of the reaction, not
including the mass of the unknown particle, is found to account within
experimental error for the observed energy according to Δm = ΔE/c2.
Hence the unknown particle must have very small mass. The particle
was initially thought to be massless, like a photon, but it has since
been found to have a very small but non-zero mass, less than 10−5 of
the electron mass.

Based on these inferred properties, the unknown particle was named
the neutrino (“little neutral one”). Nuclear reactors produce abundant
amounts of neutrinos, and neutrinos were first detected directly in
1956, using neutrinos from a reactor.

The Sun is a copious source of neutrinos from the nuclear reactions
in its interior, producing a flux of ≈ 1011 neutrinos cm−2 · s−1 at the
Earth’s surface. The interaction of neutrinos with matter is so slight
that almost all of the solar neutrinos pass directly through the Earth.

5.11 World Energy Usage
Energy is unique among the basic concepts of science in the variety of its
uses and the multitude of units that are employed. Energy plays a promi-
nent role in the public agenda, because it is inextricably linked to quality
of life and to concerns about the environment. In dealing with these mat-
ters, a nodding acquaintance with energy units and usage is valuable.
We summarize a few of the facts in this section. Further discussion of
energy in society is given in Physics and Energy, Robert L. Jaffe and
Washington Taylor, Cambridge University Press (2013).
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Although energy takes many forms, all units of energy and power are
defined by conversion factors from the primary SI units, joules (J) and
watts (W), respectively. The calorie (cal) was originally defined as the
energy required to raise the temperature of 1 gram of water by 1 degree
C, but based on experiments initiated by James Prescott Joule, 1 calorie is
now defined as 4.1868 J. The “calorie” employed in nutrition is actually
a kilocalorie (kcal).

Some non-SI units are retained for historical reasons. New units are
generally introduced for practical reasons to avoid using unusually large
or small powers of 10. Scientists and engineers have therefore devised
units appropriate to their particular fields. For example, physicists and
chemists typically express the binding energy of atoms in a molecule
using the unit of electron-volts, because molecular binding energies are
of the order of a few electron-volts. But electron-volts would be very
inconvenient for a petroleum engineer who wanted to express the vastly
greater amount of energy from a barrel of oil.

Table 1 summarizes some of the more commonly used units of energy
and power. Table 2 gives some statistics on global energy production,
Table 3 gives energy production in the United States, and Table 4 gives
energy consumption per capita in selected countries.

Example 5.20 Energy and Water Flow from Hoover Dam
Hoover Dam on the Arizona–Nevada border generates power and
regulates the water flow of the Colorado River by controlling the outlet
of the enormous reservoir of Lake Mead fed by the river. The water
falling through the generator turbines supplies the neighboring states
with a significant fraction of their electric power and the outflow is a
major contributor to irrigation water. Power and irrigation both depend
on the water flow. We can estimate the efficiency by which Hoover
Dam generates energy by comparing the potential energy lost by the
outflowing water to the actual electric energy produced.

According to the U.S. Department of the Interior, the average en-
ergy generation from Hoover Dam for 1999 through 2008 was about
4.2 × 1012 watt-hours annually. The head (height the water falls)
varies between 590 feet and 420 feet, with an average of about 520
feet.

The water transfers momentum to the turbine blades at the bottom of
the penstocks. Assume for simplicity that the water loses all its energy
to the turbines, notwithstanding that a visitor will see water roaring
out from the base of the dam. The maximum energy available is Mgh
where M is the mass of water falling on the turbines, and h is the head.
Given the energy and the head, we can calculate the mass M, and from
this the volume of water, assuming that the energy conversion is 100%
efficient. The only challenging part of the calculation is converting the
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various units to SI for consistency. (Section 2.8 presents a systematic
method for converting units.)

1 ft = 12 inches = 2.54 cm/in × 12 in ≈ 30.5 cm = 0.305 m. The head
in meters is then 520 ft × 0.305 m/ft = 159 m.

Because 1 hour = 3600 s, the annual energy generated in joules/yr
(1 J = 1 W · s) is

E = 3600 s/hr × (4.2 × 1012 W · hr) = 1.51 × 1016J/yr.

Let M be the total mass of water that flows through the dam annually,
and equate its potential energy to the energy produced. We have (using
1 J = 1 kg ·m2/s2)

M =
E
gh
=

1.51 × 1016 kg ·m2/s2

9.80 m/s2 × 159 m
= 9.69 × 1012 kg annually

for the mass of annual water flow. Taking the density of water to be
1000 kg/m3, the total volume is

V = 9.69 × 1012 kg × 1 m3

1000 kg/yr
= 9.69 × 109m3.

Engineers, surveyors, and others involved with major water projects in
the U.S. use a volume unit called the acre-foot rather than the SI unit
m3. An acre is an area of 4047 m2, so that

1 acre-foot ≈ 4047 m2 × 0.305 m = 1234 m3.

The annual volume in acre-feet required to generate the energy would
be

V = 9.69 × 109 m3/yr × 1 acre-foot
1234 m3 = 7.0 × 106 acre-foot/yr.

According to the Colorado River Compact of 1922, the flow to the
states below Lake Mead was to average 7.5 × 106 acre-foot per year. If
these figures are accurate, then the efficiency of the power generation
is estimated to be

efficiency =
energy produced
energy available

=
7.0 × 106 acre-foot/yr
7.5 × 106 acre-foot/yr

= 93%.

Our estimate is not precise, because we do not know the actual condi-
tions of the river flow, dam head, and energy production for a specific
period. Also, we have neglected the energy of the outflow water. Never-
theless, this analysis suggests that the efficiency of hydroelectric power
generation is impressively high.
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Table 1. Energy, power, and related units*

Entries with “=” signs are exact definitions.

Name Symbol SI value Comment

joule J – SI unit of energy
watt W = 1 J/s SI unit of power
erg erg = 10−7 J cgs unit of energy
electron-volt eV ≈ 1.60 × 10−19 J widely used in physics1

photon energy hν – energy of light quantum2

kelvin K – informal energy unit3

calorie cal = 4.1868 J older unit of heat4

Calorie Cal, kcal = 4186.8 J used in nutrition and physiology5

solar constant – ≈ 1.368 × 103 W/m2 mean power/area from the Sun6

kilowatt-hour kWh = 3.6 × 106 J domestic unit of energy
horsepower hp = 746 W engineering unit of power7

British thermal unit Btu ≈ 1.06 × 103 J domestic unit of heat energy8

ton of oil equivalent toe ≈ 4.19 × 1010 J industrial energy unit9

kg of oil equivalent kgoe ≈ 4.19 × 107 J industrial energy unit
therm tm ≈ 1.06 × 108 J industrial energy unit10

quadrillion Btu quad ≈ 1.06 × 1018 J global energy unit
terawatt-years TWyr ≈ 3.15 × 1019 J global energy unit

* Sources: Guide for the Use of the International System of Units (SI), NIST, US Department of Commerce, and Graham
Woan, The Cambridge Handbook of Physics Formulas, Cambridge University Press (2003).

1 The ionization energies of atoms and the reaction energies of molecules are typically in the eV range. Nuclear and
particle physics involve phenomena in the MeV, GeV, and TeV range.

2 h ≈ 6.63 × 10−34 J · s is Planck’s constant, and ν is the frequency of the light. The median energy of photons from the
Sun is about 2.5 J.

3 The mean thermal energy of a system in thermal equilibrium is characterized by the energy kT , where k ≈ 1.38×10−23

J/K is Boltzmann’s constant and T is the absolute temperature in kelvin. Informal usage such as “an energy of 5.0
nanokelvin” is jargon but clear from the context.

4 Before the relation between heat and energy was understood, the calorie was defined as the heat required to raise the
temperature of 1 gram of water 1 degree C. James Prescott Joule measured “the mechanical equivalent of heat” in the
1840s. Today the calorie is defined as 4.1868 J.

5 The calorie is inconveniently small for some purposes, and the kilocalorie (the “large calorie”) is more commonly used
in some fields.

6 At a mean radius of the Earth’s orbit (the mean semi-major axis), and at the top of the Earth’s atmosphere.
7 Horsepower came originally from an estimate of the average power a horse could produce. Horsepower has several

slightly varying definitions; the given value is horsepower (electric), which is defined to be 746 W.
8 The Btu was originally the energy required to heat 1 pound of water 1 degree Fahrenheit.
9 An estimate of the energy released by burning 1000 kg of crude oil.

10 105 btu, approximately the energy of burning 100 cubic feet of natural gas.
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Table 2. Global energy supply (2008)**

Total supply, 12,267 Mtoe (≈ 485 quad)

Source % of total

oil 33.2
coal/peat 27.0
natural gas 21.1
combustibles and waste 10.0
nuclear 5.8
hydro 2.2
other 0.7

**Source: 2010 Key World Energy Statistics,
International Energy Agency, Paris.

Table 3. U.S. energy supply (2009)†
Total use 94.6 quad

Source % of total

petroleum 35.3
natural gas 23.4
coal 19.7
renewable energy 7.7
nuclear electric power 13.9

†Source: U.S. Energy Information Administra-
tion/Annual Energy Review 2009.

Table 4. Per capita energy consumption of selected nations††
Units: kgoe per person

Energy Energy Energy
Country per capita Country per capita Country per capita

Albania 767 Argentina 1058 Australia 5898
Austria 4125 Belgium 5892 Benin 306
Brazil 1124 Bulgaria 2592 Canada 8473
China 1316 Congo 300 Czech Rep. 4419
Denmark 3634 Egypt 828 El Salvador 673
Finland 6555 France 4397 Germany 4187
Iceland 12209 India 491 Indonesia 814
Jordan 1296 Kazakhstan 3462 Kuwait 11102
Mexico 1701 Nepal 338 New Zealand 4218
Norway 7153 Pakistan 490 Poland 2429
Qatar 19456 Russian Fed. 4519 Saudi Arabia 6068
United Kingdom 3895 United States 7886 Yemen 321

††Source: International Energy Administration, Statistics Division, 2007 Energy Balances of OECD Countries (2008
edition) and Energy Balances of Non-OECD countries (2007 edition).
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Note 5.1 Correction to the Period of a Pendulum
To first order, a pendulum displays simple harmonic motion and its pe-
riod does not depend on the amplitude of its swing. However, the motion
of a pendulum is not exactly simple harmonic motion. In this Note we
calculate the correction to the period due to finite amplitude.

Our starting point is the equation for the motion of a pendulum derived
in Example 5.12: ∫

dθ√
cos θ − cos θ0

=

√
2g
l

∫
dt. (1)

This equation is exact. To obtain a more accurate solution for the pe-
riod than given by the small-angle approximation, it is helpful to use the
identity cos θ = 1 − 2 sin2(θ/2). This gives

cos θ − cos θ0 = 2[sin2(θ0/2) − sin2(θ/2)]. (2)

Introducing Eq. (2) in Eq. (1) gives∫
dθ

√
2
√

sin2(θ0/2) − sin2(θ/2)
=

√
2g
l

∫
dt. (3)

Now let us change variables as follows:

sin u =
sin(θ/2)
sin(θ0/2)

. (4)

The motivation for this is that although θ is periodic, as the pendulum
swings through a cycle, θ varies between −θ0 and θ0. On the other hand,
u varies between −π and +π. If we let

K = sin
θ0

2
,

then

sin
θ

2
= K sin u

and

dθ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
√

1 − sin2 u

1 − K2 sin2 u

⎞⎟⎟⎟⎟⎟⎟⎟⎠ 2 K du. (5)

Substituting Eqs. (4) and (5) in Eq. (3) gives∫
du√

1 − K2 sin2 u
=

√
g
l

∫
dt.

Let us take the integral over one period. The limits on u are 0 and 2π,
while t ranges from 0 to T . We have∫ 2π

0

du√
1 − K2 sin2 u

=

√
g
l

T. (6)

The integral on the left is an elliptic integral: specifically, it is a complete
elliptic integral of the first kind. Values for this function are available
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from computed tables. However, for our purposes it is more convenient
to expand the integrand:

1√
(1 − K2 sin2 u)

= 1 + 1
2 K2 sin2 u + · · ·

and

T =

√
l
g

∫ 2π

0
du(1 + 1

2 K2 sin2 u + · · · )

=

√
l
g

(
2π +

2π
4

K2 + · · ·
)

= 2π

√
l
g

(
1 +

1
4

sin2 θ0

2
+ · · ·

)
.

If θ0 
 1, then sin2(θ0/2) ≈ θ0
2/4, and we have

T = 2π

√
l
g

(1 + 1
16θ0

2 + · · · ). (7)

The fractional change in period due to finite amplitude θ0 is

ΔT
T
=

T (θ0) − T (θ0 = 0)
T

=
1
16
θ2

0.

For an amplitude of 0.1 rad, about 6◦, the period is increased by about
1 part in 104, slowing a clock by roughly a minute a day. For larger
amplitudes, higher order terms in Eq. (7) can be introduced, but at that
point it is better to go to the exact solution. Note that as θ0 → π, T → ∞.

Note 5.2 Force, Potential Energy, and the Vector Operator ∇
We have shown that in the case of one dimension, force and potential are
related by the integral relation∫ b

a
F · dr = −[U(b) − U(a)] (1)

and by the differential relation

Fx = −dU
dx

.

In this Note we shall extend the differential relation to the general case
of more than one independent variable.

Working in three-dimensional Cartesian coordinates, Eq. (1) becomes

FxΔx + FyΔy + FzΔz ≈ −ΔU(x, y, z) (2)

for small path increments Δx,Δy,Δz. Now suppose that y = y0 and z =
z0, where y0 and z0 are constants. It follows that Δy = 0 and Δz = 0, so
that Eq. (2) becomes

FxΔx ≈ −ΔU(x, y0, z0)
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or

Fx ≈ −ΔU(x, y0, z0)
Δx

. (3)

Equation (3) looks like a derivative (before we take the limit), but here
U is a function of several independent variables, only one of which is
allowed to vary.

Equation (3) tells us how fast U changes when only one of the inde-
pendent variables, here x, varies. This special type of derivative is called
a partial derivative, and is denoted by the symbol ∂ instead of d when
we take the limit Δx→ 0:

Fx = − lim
Δx→0

ΔU
Δx

= −∂U
∂x

. (4)

Because the partial derivative in Eq. (4) is with respect to x, this tells us
that we need to hold y and z constant when evaluating the derivative.

By the symmetry of Cartesian coordinates, we can write

Fx î + Fy ĵ + Fz k̂ = −
(
î
∂U
∂x
+ ĵ

∂U
∂y
+ k̂

∂U
∂z

)
. (5)

As a simple example, consider the potential energy U = mgz of a mass
m in a downward uniform gravitational field, where z is the height above
the ground. Then Fx = 0, Fy = 0, and Fz = −(∂U/∂z) k̂ = −mg k̂.

∇ and the Gradient
The form

(
î ∂
∂x + ĵ ∂

∂y + k̂ ∂
∂z

)
is called a vector operator, because it has

components like a vector and its partial derivatives operate on a quantity
placed to its right. When operating on a scalar function such as potential
energy, it is also called the gradient operator. To simplify the notation,
we write

∇ ≡
(
î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z

)
where ∇ is called “del” or sometimes “nabla” (after an ancient Hebrew
harp of similar shape).

With this notation, the relation between force and potential energy can
be written

F = −∇U. (6)

When ∇ operates on a scalar to give a vector, as in Eq. (6), the combina-
tion ∇U is called the gradient of U, sometimes written �grad U.

To see where the name gradient comes from, use Eq. (6) in Eq. (1) and
integrate from a = (x1, y1, z1) to b = (x2, y2, z2):∫ b

a
∇U · dr = U(b) − U(a).

This result does not make use of any specific properties of U, so it is a
general property of the gradient and holds for any differentiable function,
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say h(x, y, z), and for any displacement, say ds:∫ b

a
∇h · ds = h(b) − h(a).

The gradient tells how much a function changes due to a given displace-
ment.

Contour Lines and the Gradient
The equation U(x, y, z) = constant = C defines for each value of C a sur-
face known as a constant energy surface. A particle constrained to move
on such a surface has constant potential energy. For example, the grav-
itational potential energy of a particle m at distance r =

√
x2 + y2 + z2

from particle M fixed at the origin is U = −GMm/r, so the surfaces of
constant energy are given by

−GMm
r
= C

or

r = −GMm
C

.

U = −1.00

M

r  = 4 m

r  = 2

r  = 1

U = −0.50
U = −0.25 J

The constant energy surfaces are spheres centered on M, as shown in
the drawing. (We have taken GMm = 1 N·m2 for convenience.) Constant
energy surfaces are usually difficult to draw, and for this reason it is
generally easier to visualize U by considering the lines of intersection of
the constant energy surfaces with a plane.

These lines are sometimes referred to as constant energy lines or, more
simply, contour lines. The contour lines of a function are analogous to
the contours of constant altitude shown on the topographic map of a hilly
countryside.

Consider now ∫ b

a
∇U · ds = U(b) − U(a).

If we take ds to be an arbitrary displacement tangentially along one of
the circular contour lines, then U(b) − U(a) = 0 because the potential
is constant on a contour line. The dot product on the left-hand side is
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accordingly 0, and we conclude that the gradient must be perpendicular
to ds.

This is a fundamental result; the gradient vector of a function is always
perpendicular to the contour lines of the function.

A second fundamental result is that if we make a displacement from
one contour line toward another, the function changes most rapidly along
the direction of the gradient, because if the displacement ds is parallel to
∇U, the dot product is as large as possible. In terms of a hilly country-
side, the gradient is the line of steepest descent down a hill—hence the
origin of the name gradient.

Divergence
We have seen how ∇ operates on a scalar to give the gradient vector. We
now ask, what happens if ∇ operates on a vector? There are two ways
to do this: with the dot product to give a scalar, and with the cross prod-
uct to give a vector. Both methods have important physical applications,
especially in electromagnetism, but we leave proofs and most details to
a more thorough study of mathematical physics.

The dot product of ∇ and a vector F is a scalar called the divergence
of F:

∇ · F = divergence of F = div F.

In Cartesian coordinates, the divergence of a vector F is

∇ · F = ∂Fx

∂x
+
∂Fy

∂y
+
∂Fz

∂z
.

For a more physical interpretation of the divergence, consider a posi-
tive electric charge Q fixed at the origin. By moving a small positive
charge q to various points in space around Q, we can map out the magni-
tude and direction of the electric force F on q, an operation that defines
the electric field E = F/q. The sketch shows the lines of the electric field.
They radiate outward, and give a sense of “divergence.”

In contrast, the lines of a uniform force field give no impression of
divergence. A uniform force field has zero divergence, a self-evident re-
sult, because the partial derivatives of the components are all identically
zero.

We now show that for the electric field E = (kQ/r2)r̂ produced by Q,
the divergence is not identically zero. To avoid the mathematical com-
plexities of dealing with a point charge of zero radius, suppose that Q is
actually a ball of charge having radius a and uniform charge density ρ,

ρ =
Q

(4/3)πa3 .

Because the electric field and the gravitational field are both inverse-
square central forces, we can take over results from Section 3.3.1 whole-
sale, for example that if r ≤ a, only the charge within r contributes to the
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field. The field inside the ball is easily found to be

E =
kQr
a3 r̂

=
kQ
a3 (xî + yĵ + zk̂).

It follows that ∇ · E = 3kQ/a3 � 0 inside the ball. Outside the ball,
∇ · E = 0, but the important feature is that the divergence is not identi-
cally zero everywhere.

If we integrate ∇ · E over any volume V for r ≥ a, we find∫ r

0
∇ · EdV =

∫ r

0

3kQ
a3 dV

=
3kQ
a3

∫ a

0
dV

= 4πkQ.

The result, which is independent of a and therefore also holds for a point
charge, shows that the volume integral of the divergence tells us about
the source of the field, in this case the charge Q.

Curl
The remaining operation with ∇ is to take the cross product with some
vector F to give a new vector called the curl of F:

∇ × F = curl of F = �curl F.

We can calculate the components of �curl F in Cartesian coordinates using
the determinantal form ∣∣∣∣∣∣∣∣∣

î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

Fx Fy Fz

∣∣∣∣∣∣∣∣∣
to give

∇ × F = î
(
∂Fz

∂y
− ∂Fy

∂z

)
+ ĵ
(
∂Fx

∂z
− ∂Fz

∂x

)
+ k̂

(
∂Fy

∂x
− ∂Fx

∂y

)
.

The curl of a force F has an important application in mechanics if we
know the force as a function of position. If F is conservative F = Fc then
its curl is 0 everywhere; if F is non-conservative F = Fnc, its curl is not
zero everywhere.

How the Curl Got Its Name
The curl was invented to help describe the properties of moving fluids.
To see how the curl is connected with “curliness” or rotation, consider an
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idealized whirlpool turning with constant angular velocity ω about the z
axis.

x

z

ω

y

The velocity of the fluid at r is v = rωθ̂, where θ̂ is the unit vector in
the tangential direction. In Cartesian coordinates,

v = rω(−sinωt î + cosωt ĵ)

= rω
(
−y

r
î +

x
r

ĵ
)

= −ωyî + ωxĵ.

y

y

x

x

r

θ

θ = ωt

r

v

v

The curl of v is

∇ × v =

∣∣∣∣∣∣∣∣∣
î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

−ωy ωx 0

∣∣∣∣∣∣∣∣∣
= k̂

[
∂

∂x
(ωx) +

∂

∂y
(ωy)

]
= 2ωk̂
� 0.

If a paddle wheel is placed in the liquid, it will start to rotate. The
rotation will be a maximum when the axis of the wheel points along
the z axis parallel to ∇ × v. In Europe, curl is often called “rot” (for
“rotation”).

Problems
For problems marked *, refer to page 521 for a hint, clue, or answer.

5.1 Loop-the-loop*
A small block of mass m starts from rest and slides along a friction-
less loop-the-loop as shown in the sketch on the next page. What
should be the initial height z, so that m pushes against the top of
the track (at a) with a force equal to its weight?
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z

m

M

x

0

υ0

R

a

5.2 Block, spring, and friction
A block of mass M slides along a horizontal table with speed v0.
At x = 0 it hits a spring with spring constant k and begins to ex-
perience a friction force, as indicated in the right-hand sketch. The
coefficient of friction is variable and is given by μ = bx, where b
is a constant. Find the distance l the block travels before coming to
rest.

5.3 Ballistic pendulum*
A simple way to measure the speed of a bullet is with a ballistic
pendulum. As illustrated, this consists of a wooden block of mass
M into which the bullet is shot. The block is suspended from cables
of length l, and the impact of the bullet causes it to swing through
a maximum angle φ, as shown. The initial speed of the bullet is v,
and its mass is m.

(a) How fast is the block moving immediately after the bullet
comes to rest? (Assume that this happens quickly.)

(b) Show how to find the velocity of the bullet by measuring
m,M, l, and φ.

l

M

φ

5.4 Sliding on a circular path*
A small cube of mass m slides down a circular path of radius R cut
into a large block of mass M, as shown. M rests on a table, and
both blocks move without friction. The blocks are initially at rest,
and m starts from the top of the path.

Find the velocity v of the cube as it leaves the block.

R

5.5 Work on a whirling mass
Mass m whirls on a frictionless table, held to circular motion by a
string which passes through a hole in the table. The string is pulled
so that the radius of the circle changes from ri to r f .

(a) Show that the quantity L = mr2θ̇ remains constant.
(b) Show that the work in pulling the string equals the increase

in kinetic energy of the mass.

5.6 Block sliding on a sphere*
A small block slides from rest from the top of a frictionless sphere
of radius R, as shown on the next page. How far below the top x
does it lose contact with the sphere? The sphere does not move.
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θg
x

R

5.7 Beads on hanging ring*
A ring of mass M hangs from a thread, and two beads of mass
m slide on it without friction, as shown. The beads are released
simultaneously from the top of the ring and slide down opposite
sides. Show that the ring will start to rise if m > 3M/2, and find
the angle at which this occurs.

5.8 Damped oscillation*
The block shown in the drawing is acted on by a spring with spring
constant k and a weak friction force of constant magnitude f . The
block is pulled distance x0 from equilibrium and released. It oscil-
lates many times and eventually comes to rest.

(a) Show that the decrease of amplitude is the same for each
cycle of oscillation.

(b) Find the number of cycles n the mass oscillates before com-
ing to rest.

M
k

5.9 Oscillating block
A block of mass M on a horizontal frictionless table is connected
to a spring (spring constant k). The block is set in motion so that it
oscillates about its equilibrium point with a certain amplitude A0.
The period of motion is T0 = 2π

√
M/k.

(a) A lump of sticky putty of mass m is dropped onto the block.
The putty sticks without bouncing. The putty hits M at the instant
when the velocity of M is zero. Find

(1) The new period.
(2) The new amplitude.
(3) The change in the mechanical energy of the system.

(b) Repeat part (a), but this time assume that the sticky putty
hits M at the instant when M has its maximum velocity.

5.10 Falling chain*
A chain of total mass M and length l is suspended vertically with
its lowest end touching a scale. The chain is released and falls onto
the scale.

What is the reading of the scale when a length of chain, x, has
fallen? (Neglect the size of individual links.)
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5.11 Dropped soldiers
It is told that during World War II the Russians, lacking sufficient
parachutes for airborne operations, occasionally dropped soldiers
inside bales of hay onto snow.

The human body can survive an average pressure on impact of
30 lb/in2. Suppose that the lead plane drops a dummy bale equal
in weight to a loaded one from an altitude of 100 ft, and that the
pilot observes that it sinks about 2 ft into the snow. If the weight of
an average soldier is 180 lb and his effective area is 5 ft2, is it safe
to drop the men?

5.12 Lennard-Jones potential*
A commonly used potential energy function to describe the in-
teraction between two atoms is the Lennard-Jones 6-12 potential
given by

U = ε
[( r0

r

)12
− 2
( r0

r

)6]
.

(a) Find the position of the potential minimum and its value.
(b) Near the minimum the atoms execute simple harmonic mo-

tion. Find the frequency of oscillation.

r0
r

U

ε

5.13 Bead and gravitating masses
A bead of mass m slides without friction on a smooth rod along
the x axis. The rod is equidistant between two spheres of mass M.
The spheres are located at x = 0, y = ± a as shown, and attract the
bead gravitationally.

(a) Find the potential energy of the bead.
(b) The bead is released at x = 3a with velocity vi toward the

origin. Find the speed as it passes the origin.

m

y

M

M

a

x

a

5.14 Particle and two forces
A particle of mass m moves in one dimension along the positive x
axis. It is acted on by a constant force directed toward the origin
with magnitude B, and an inverse-square law repulsive force with
magnitude A/x2.

(a) Find the potential energy function U(x).
(b) Sketch the energy diagram for the system when the maxi-

mum kinetic energy is K0 =
1
2 mv0

2.
(c) Find the equilibrium position, x0.

5.15 Sportscar power
A 1800-lb sportscar accelerates to 60 mi/h in 4 s. What is the aver-
age power that the engine delivers to the car’s motion during this
period? For consistency, we are using the definition 1 hp = 746 W.

5.16 Snowmobile and hill*
A snowmobile climbs a hill at 15 mi/hr. The hill has a grade of
1 ft rise for every 40 ft. The resistive force due to the snow is
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5% of the vehicle’s weight. How fast will the snowmobile move
downhill, assuming its engine delivers the same power?

5.17 Leaper*
A 55-kg athlete leaps into the air from a crouching position. Her
center of mass rises 60 cm as her feet leave the ground and then it
continues another 80 cm to the top of the leap. What is the average
power she develops, assuming the force on the ground is constant?

5.18 Sand and conveyor belt
Sand runs from a hopper at constant rate dm/dt onto a horizontal
conveyor belt driven at constant speed V by a motor.

(a) Find the power needed to drive the belt.
(b) Compare the answer to (a) with the rate of change of kinetic

energy of the sand. Can you account for the difference?

5.19 Coil of rope
A uniform rope of mass density λ per unit length is coiled on a
smooth horizontal table. One end is pulled straight up with con-
stant speed v0, as shown.

(a) Find the force exerted on the end of the rope as a function of
height y.

(b) Compare the power delivered to the rope with the rate of
change of the rope’s total mechanical energy.

y

υ0
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6.1 Introduction
This chapter illustrates applications of Newtonian mechanics and the
conservation laws for momentum and energy that we have already stud-
ied; no new concepts are introduced. We shall apply these ideas to ana-
lyze some phenomena that appear again and again in the broad landscape
of physics: small oscillations, stable and unstable motion, normal modes
of vibration in bound systems, and the general properties of collisions
that follow from the conservation laws.

6.2 Small Oscillations in a Bound System
The interatomic potential we discussed in Section 5.7 illustrates a uni-
versal feature of bound systems: because the potential energy has a min-
imum at equilibrium, nearly every bound system oscillates like a har-
monic oscillator about its equilibrium position if it is slightly perturbed.
This is suggested by the appearance of the energy diagram near the
minimum—U has a nearly parabolic shape much like a harmonic os-
cillator potential. If the total energy is sufficiently low for the motion to
be restricted to the region where the curve is closely parabolic, as illus-
trated in the sketch, the system must behave like a harmonic oscillator,
as we shall now prove.

E
ne

rg
y

Parabola

r0 r

U

As we discussed in Note 1.2, any “well-behaved” differentiable func-
tion can be expanded in a Taylor’s series about a given point. If we ex-
pand U(r) about the position of the potential minimum r0, then

U(r) = U(r0) + (r − r0)
dU
dr

∣∣∣∣∣
r0

+
1
2

(r − r0)2 d2U
dr2

∣∣∣∣∣∣
r0

+ · · · .

Because U has its minimum at r0, its first derivative is dU/dr = 0 at r0.
Furthermore, for sufficiently small displacements, we can neglect terms
beyond the third in the power series. In this case

U(r) ≈ U(r0) +
1
2

(r − r0)2 d2U
dr2

∣∣∣∣∣∣
r0

.

This is the potential energy of a harmonic oscillator,

U(x) = constant +
1
2

k (x − x0)2.

Comparing these two equations, we can identify the effective spring con-
stant in the bound system as

k =
d2U
dr2

∣∣∣∣∣∣
r0

. (6.1)

Because bound systems have a potential energy minimum at equilib-
rium, we naturally expect that they will behave like harmonic oscillators
for small displacements (except for anomalous cases where the second
derivative vanishes at equilibrium). For this reason, the harmonic oscil-
lator approximation is relevant to phenomena ranging from molecular
vibrations to oscillations in the shape of the Earth.
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Example 6.1 Molecular Vibrations
Suppose that two atoms, masses m1 and m2, are bound in a diatomic
molecule with energy so low that their separation is always close to
the equilibrium value r0.

U

E

E
ne

rg
y

r0

r
With the parabola approximation, the molecule can be modeled as
shown, with m1 and m2 connected by a spring of equilibrium length
r0 and spring constant k.

r1

r2

m1 m2

r

The effective spring constant from Eq. (6.1) is k = (d2U/dr2)|r0 . How
can we find the vibration frequency of the molecule?

The equations of motion of the two masses are

m1r̈1 = k(r − r0)
m2r̈2 = −k(r − r0),

where r = r2 − r1 is the instantaneous separation of the atoms. To find
the equation of motion for r, divide the first equation by m1 and the
second by m2, and subtract. The result is

r̈2 − r̈1 = r̈ = −k
(

1
m1
+

1
m2

)
(r − r0)

or

r̈ = − k
μ

(r − r0),

where μ = m1m2/(m1+m2) has the dimension of mass and is called the
reduced mass.

For a harmonic oscillator with equation of motion ẍ = −(k/m)(x − x0)
the frequency of oscillation isω =

√
k/m, so by analogy, the vibrational

frequency of the molecule is

ω =

√
k
μ

=

√
d2U
dr2

∣∣∣∣∣∣
r0

1
μ
.

This vibrational motion, characteristic of all molecules, can be identi-
fied by the light the molecule radiates or absorbs. The vibrational fre-
quencies typically lie in the near-infrared (< 5× 1014 Hz), and by mea-
suring the frequency we can find the value of d2U/dr2 at the potential
energy minimum. For the hydrogen chloride (HCl) molecule, the ef-
fective spring constant turns out to be 4.8 × 105 dynes/cm = 480 N/m
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(≈ 3 lb/in). For the nitric oxide (NO) molecule, k ≈ 1550 N/m. Not sur-
prisingly, the energy to separate the atoms is about three times stronger
in NO than in HCl.

For large amplitudes the higher order terms in the Taylor’s series start
to play a measurable role, and lead to slight departures of the oscillator
from its ideal harmonic behavior. Observing these slight “anharmonic-
ities” gives further details regarding the shape of the potential energy
curve.

Example 6.2 Lennard-Jones potential
The Lennard-Jones 6-12 potential, given by

U = ε
[( r0

r

)12
− 2
( r0

r

)6]
, (1)

is a commonly used potential energy function to describe the inter-
action between two atoms. The figure shows U for the chlorine di-
atomic molecule Cl2, where r0 = 2.98 Å = 2.98 × 10−10 m and ε =
2.48 eV = 3.97 × 10−19 J.

r0

U (eV )

r (Å)

4

2

0
1 2 3 4 5

−2

−4

− ∋

The term (r0/r)12 rises steeply for r < r0, which models the strong
“hard sphere” repulsion between two atoms at close separation. The
term (r0/r)6 decreases slowly for r > r0 to model the long attractive
tail between two atoms at larger separations. The two terms together
produce a potential capable of binding atoms, as indicated in the sketch.

We shall calculate the frequency of small oscillations about equilib-
rium for two identical atoms of mass m bound by the Lennard-Jones
potential.

From Eq. (1) the first derivative of U with respect to r is
dU
dr
=

(
ε

r0

) [(
−12

r0

r

)13
+ 12

( r0

r

)7]
. (2)

From Eq. (2), dU/dr = 0 at r = r0, verifying that the equilibrium radius
is r0. Substituting r = r0 in Eq. (1), the depth of the potential well at
equilibrium is U(r0) = −ε.

The second derivative of U with respect to r is
d2U
dr2 =

(
ε

r0
2

) [
(12)(13)

( r0

r

)1
4 − (12)(7)

( r0

r

)8]
.

According to Eq. (6.1), the effective spring constant is then

k =
d2U
dr2

∣∣∣∣∣∣
r0

=
72ε
r0

2 .
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The reduced mass is μ = m2/2m = m/2 and the vibrational frequency
ω is therefore

ω =
√

k/μ

= 12
√
ε/r0

2m.

Let’s apply this result to a real molecule, for example the chlorine di-
atomic molecule Cl2, for which m = 5.89×10−26 kg, and for which the
calculated values of r0 and ε are r0 = 2.98 × 10−10 m and ε = 3.97 ×
10−19 J. We find ω = 1.05× 1014 rad/s, in excellent agreement with the
experimentally measured vibrational frequency 1.05 × 1014 rad/s.

6.2.1 Quadratic Energy Forms
In many problems it is natural to write the energies using variables other
than linear displacement. The energies in some regimes of motion often
have the quadratic forms

U = 1
2 Aq2 + constant

K = 1
2 Bq̇2, (6.2)

where q represents a variable appropriate to the problem. For the ele-
mentary case of a mass on a spring we have

U = 1
2 kx2

K = 1
2 mẋ2

and

ω =

√
k
m
.

By analogy with a mass on a spring, the angular frequency of the system
described by Eq. (6.2) is

ω =

√
A
B
.

To show explicitly that any system whose energy has the form of
Eq. (6.2) oscillates harmonically with a frequency

√
A/B, note that the

total energy of the system is

E = K + U

= 1
2 Bq̇2 + 1

2 Aq2 + constant.

Because the system is conservative, E is constant. Differentiating the
energy equation with respect to time gives

dE
dt
= Bq̇q̈ + Aqq̇

= 0
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or

q̈ +
A
B

q = 0.

Hence q undergoes harmonic motion with angular frequency
√

A/B.
Once we have identified the kinetic and potential energies of a bound

system, we can find the angular frequency of small oscillations by in-
spection. For instance, the energies of a pendulum are

U = mgl(1 − cos θ) ≈ 1
2 mglθ2

K = 1
2 ml2θ̇2

so that

ω =
√

g/l.

m

l

.l

θ

υ = l θ

l (1 − cos θ)

Example 6.3 Small Oscillations of a Teeter Toy
The teeter toy consists of two identical weights hanging on drooping
arms from a peg, as shown.

m m
L

l l

α α

In this example we find the period of oscillation of the teeter toy when
it is rocking from side to side. For simplicity, we shall consider only
rocking motion in the vertical plane.

Let us evaluate the potential energy when the teeter toy is cocked at
angle θ, as shown in the sketch.

m

m

L

l

l
α

α

θ

s

s

θ

If we take the zero of gravitational potential at the pivot, we have

U(θ) = mg[L cos θ − l cos(α + θ)] + mg[L cos θ − l cos(α − θ)].
Using the identity cos(α ± θ) = cosα cos θ ∓ sinα sin θ, we can rewrite
U(θ) as

U(θ) = 2mg cos θ(L − l cosα)
= −A cos θ,

where A = 2mg(l cosα − L) = constant. Using the small-angle ap-
proximation (or alternatively, expanding U(θ) in a Taylor’s series about
θ = 0), we have

U(θ) = −A
(
1 − θ

2

2
+ · · ·

)
≈ −A + 1

2 Aθ2.

To find the kinetic energy, let s be the distance of each mass from the
pivot, as shown.
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If the toy rocks with angular speed θ̇, the speed of each mass is sθ̇, and
the total kinetic energy is

K = 1
2 (2m)s2θ̇2

= 1
2 Bθ̇2,

where B = 2ms2.

Hence the frequency of oscillation is

ω =

√
A
B

=

√
g(l cosα − L)

s2 .

6.3 Stability
The result F = −dU/dx that we derived in Section 5.6 makes it possible
to calculate the force from a known potential energy function. In addi-
tion, the result is helpful for visualizing the stability of a system from a
diagram of the potential energy.

Consider the case of a harmonic oscillator, where the potential energy
U = kx2/2 is described by a parabola.

U

xc

ab
At point a, dU/dx > 0 and so the force is negative. At point

b, dU/dx < 0 and the force is positive. At c, dU/dx = 0 and the force
is zero. The force is directed toward the origin no matter which way the
particle is displaced, and the force vanishes only when the particle is at
the origin. The minimum of the potential energy curve coincides with
the equilibrium position of the system. Evidently this is a stable equi-
librium, because any displacement of the system produces a force that
tends to push the particle back toward its resting point.

Whenever dU/dx = 0, a system is in equilibrium. If this occurs at a
maximum of U, where d2U/dx2 < 0, the equilibrium is not stable be-
cause a positive displacement would create a positive force, which would
tend to increase the displacement, and a negative displacement would in
this case produce a negative force, again causing the displacement to
become larger. Equilibrium is stable if d2U/dx2 > 0.

l

l

m l(1 − cos θ)
θ

A pendulum consisting of a mass m supported by a rigid rod of length
l and negligible mass offers a good illustration of stability. If we take the
potential energy to be zero at the bottom of its swing, we see that

U(θ) = mgz

= mgl(1 − cos θ).

The pendulum is in equilibrium for θ = 0 and 0 = π. A pendulum
will quite happily hang downward for as long as you please but it will
not hang vertically upward for long. dU/dθ = 0 at θ = π, but U has a
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maximum there (at θ = π, d2U/dθ2 = −mgl < 0) and the equilibrium is
not stable.

U

x

stable

x0

d 2U

dx 2
> 0

U

x

unstable

x0

d 2U

dx 2
< 0

U

x

neutral

x0

d 2U

dx 2
= 0

Example 6.4 Stability of the Teeter Toy
The teeter toy, which we looked at in Example 6.3, is unexpectedly
stable—the toy can be spun or rocked with little danger of toppling
over. We can see why this is so by looking at its potential energy. For
simplicity, we consider only rocking motion in the vertical plane and
assume that all the mass is in the weights.

m m
L

l l

α α Let us evaluate the potential energy when the teeter toy is cocked at
angle θ, as shown in the sketch. If we take the zero of gravitational
potential at the pivot, we have

U(θ) = mg[L cos θ − l cos (α + θ)] + mg[L cos θ − l cos (α − θ)].
Using the identity cos (α ± θ) = cosα cos θ∓ sinα sin θ, we can rewrite
U(θ) as

U(θ) = 2mg cos θ(L − l cosα).

Equilibrium occurs when

dU
dθ
= −2mg sin θ(L − l cosα) = 0.

The solution is θ = 0, as we expect from symmetry. (We reject the
solution θ = π on the grounds that θ must be limited to less than π/2.)

m

m

Ll

l

θ
l cos(α − θ)l cos(α + θ)

+ θ

L cos θ

α − θ

To investigate the stability of the equilibrium position, we must exam-
ine the second derivative of the potential energy. We have

d2U
dθ2 = −2mg cos θ(L − l cosα).

At equilibrium,

d2U
dθ2

∣∣∣∣∣∣
θ=0
= −2mg(L − l cosα).
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For stability, we require the second derivative to be positive, so that
L − l cosα < 0, or L < l cosα. The conclusion is that for the teeter
toy to be stable, the weights must hang below the pivot, as can be seen
from the sketch.

In Example 6.3, we found that the oscillation frequency of the teeter
toy is

ω =

√
g(l cosα − L)

s2 (1)

and in this example we showed that (l cosα − L) > 0 for stability.
Equation (1) shows that as (l cosα − L) → 0, then ω → 0 and the
period of oscillation becomes very long. In the limit (l cosα − L) = 0,
the system is in neutral equilibrium. If (l cosα − L) < 0, the system is
unstable and the teeter toy topples, with θ varying exponentially instead
of harmonically.

As the previous example shows, a low frequency of oscillation is as-
sociated with a system operating near the threshold of stability. This is
a general property of stable systems because a low frequency of oscil-
lation corresponds to a weak restoring force. When a ship rolled by a
wave oscillates about equilibrium, the period of the roll should be long
for comfort. The hull is therefore designed so that its center of gravity
is as high as possible consistent with stability. Lowering the center of
gravity makes the system “stiffer.” The roll becomes quicker and less
comfortable, but the ship becomes intrinsically more stable.

6.4 Normal Modes
A single harmonic oscillator is among the simplest systems in physics.
The next step up in complexity is a system of two harmonic oscillators.
This situation is not particularly interesting if the oscillators are isolated
but if they interact even slightly the system is transformed and acquires
unique properties.

m

s

l

m

k

θ1 θ2

To illustrate what happens, let’s consider a system of two identical
pendulums of length l and mass m, described by angles θ1 and θ2. In the
small-angle approximation, sin θ ≈ θ, the equations of motion are

mlθ̈1 = −lmgθ1, (6.3a)
mlθ̈2 = −lmgθ2. (6.3b)

Taking ω2
0 = g/l, these equations take the standard form θ̈+ω2

0θ = 0 with
solutions θ(t) = A sin(ω0t + φ). The constants A and φ can be chosen to
satisfy the initial conditions.

To create an interaction between the pendulums we couple them with
a weak spring of constant k. The pivots of the pendulums are chosen to
be separated by the length of the spring, so when the pendulums hang
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straight down the spring is unstretched, as shown. The spring is attached
at a short distance s from the pivot points, so that when the pendulums
move the spring is stretched by distance s(θ1 − θ2). The equations of
motion are

mlθ̈1 = −lmgθ1 − ks(θ1 − θ2), (6.4a)
mlθ̈2 = −lmgθ2 + ks(θ1 − θ2). (6.4b)

Dividing these equations by ml, and letting ω2
0 = g/l, κ2 = ks/ml, and

introducing Ω2 = ω2
0 + κ

2, Eqs. (6.4) become

θ̈1 + Ω
2θ1 = κ

2θ2, (6.5a)

θ̈2 + Ω
2θ2 = κ

2θ1. (6.5b)

It is reasonable to guess that the motions are periodic and try solutions
of the form

θ1(t) = A1 sin(ωt + φ), (6.6a)
θ2(t) = A2 sin(ωt + φ). (6.6b)

θ1and θ2 have been given the same time-dependence because if they dif-
fered, Eqs. (6.5) could not be satisfied at all times. Whether a value of
ω can be found that satisfies Eqs. (6.5) remains to be seen. Substituting
Eqs. (6.6) in Eqs. (6.5) gives

(Ω2 − ω2)A = κ2B, (6.7a)

(Ω2 − ω2)B = κ2A, (6.7b)

and substituting Eq. (6.7b) in Eq. (6.7a) leads to

(Ω2 − ω2)2 = κ4 or (6.8a)

Ω2 − ω2 = ±κ2. (6.8b)

Hence we have two possibilities for ω. Recalling that Ω2 = ω2
0 + κ

2, we
have

ω2
0 + κ

2 − ω2 = κ2, (6.9a)

ω2
0 + κ

2 − ω2 = −κ2. (6.9b)

The solutions for ω2 are

ω2
+ = ω

2
0 + 2κ2 A = −B, (6.10a)

ω2
− = ω

2
0 A = B. (6.10b)

Evidently there are two ways for the system to display simple periodic
motion. At frequency ω+, the pendulums swing in opposite directions
with the same amplitude. The frequency is larger than the free pen-
dulum frequency ω0 because the pendulums pull against each other as
they swing apart, or push as they swing together, increasing the restor-
ing force. At frequency ω−, the pendulums swing together with the same
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amplitude. The spring is never stretched and the frequency is the same
as for a free pendulum.

These two motions are known as normal modes of the system.
A normal mode of a coupled oscillator system is a superposition of
amplitudes of the oscillators in which all the motions are at a single
frequency. In a sense, a normal mode is a new oscillator with a unique
frequency. Written out in full, the modes are

Mode 1, frequency ω+ =
√
ω2

0 + 2κ2x, θ1 = −θ2

θ1(t) = A+ sin(ω+t + φ+)
θ2(t) = −A+ sin(ω+t + φ+)

Mode 2, frequency ω− = ω0, θ1 = θ2
θ1(t) = A− sin(ω−t + φ−)
θ2(t) = A− sin(ω−t + φ−)

The equations of motion for the coupled oscillators are linear in the
displacements and so solutions to the equations of motion can be added
to yield new solutions. Any linear combination of the normal modes can
be added, so the most general possible motion of the system is

θ1(t) = A+ sinω+(t + φ+) + A− sinω−(t + φ−) (6.11a)
θ2(t) = −A+ sinω−(t + φ+) + A− sinω−(t + φ−). (6.11b)

We are free to choose the amplitudes A+ and A−. If A− = 0 the pendulums
execute simple harmonic motion at the frequency ω+. The most general
motion of each pendulum has components at both of the system’s normal
mode frequencies.

In the general case of coupled oscillators, a normal mode analysis
yields the frequencies and relative amplitudes of all the normal modes.
The actual motion depends on the initial conditions. If energy is put into
one normal mode, it remains in that mode with the individual oscillators
vibrating with their own particular relative amplitude. If several modes
are excited, the excitations can interfere with each other, causing the en-
ergy to move among the individual oscillators as the following example
shows.

Example 6.5 Energy Transfer Between Coupled Oscillators
Consider again the two-pendulum and spring system we have just
discussed. Suppose that one of the pendulums, called pendulum 1, is
displaced to angle θ0 and released at t = 0. Initially, all of the energy
of the system is in pendulum 1. The problem is to see what happens to
the energy as time goes by.

The initial conditions of the system are θ1(0) = θ0, θ2(0) = 0. Because
the pendulums are initially at rest, the phase angles φ in Eqs. (6.11) are
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π/2. The solutions are of the form cosωt, and Eqs. (6.11) become

θ1(t) = A+ cos (ω+t) + A− cos (ω−t)

θ2(t) = −A+ cos (ω+t) + A− cos (ω−t).

To satisfy the condition θ2(0) = 0, we take A+ = A− = θ0/2. Then

θ1(t) =
θ0

2
[cos (ω+t) + cos (ω−t)] (1a)

θ2(t) =
θ0

2
[− cos (ω+t) + cos (ω−t)]. (1b)

We can write this in a more symmetric form by introducing the average
frequency ω̄ = (ω+ +ω−)/2, and the difference frequency δ = ω+−ω−,
so that ω+ = ω̄ + δ, ω− = ω̄ − δ. Using the identity cos(A + B) =
cos A cos B − sin A sin B, we can write Eqs. (6.13) as

θ1(t) = θ0 cos δt cos ω̄t

θ2(t) = θ0 sin δt cos ω̄t.

The system oscillates at average frequency ω̄, but the amplitude of os-
cillation slowly swings back and forth between the two pendulums at
frequency δ. Initially the energy is in pendulum 1, but when δt = π/x,
the energy has transferred to pendulum 2. The energy eventually re-
turns to pendulum 1. As the coupling is decreased, δ grows smaller
and it takes longer for the energy to transfer. Nonetheless, it will get
there eventually. In the mechanical design of complex systems such as
airplanes, care needs to be taken to avoid accidental resonances in the
system. Even if the coupling between the oscillators is weak, energy
transfer can be large with results that could be calamitous.

Example 6.6 Normal Modes of a Diatomic Molecule
In this example, we shall again analyze the diatomic molecule model
presented in Example 6.1, but from the point of view of normal modes,
a description that can be extended to polyatomic molecules modeled
as several masses connected by springs. The diatomic molecule is
modeled as two masses m1 and m2 connected by a spring of constant
k. We consider only motion along the x axis. with coordinates x1, x2.
The equations of motion are

m1 ẍ1 = k[(x2 − x20) − (x1 − x10)]
m2 ẍ2 = −k[(x2 − x20) − (x1 − x10)],

where x10, x20 are the equilibrium coordinates of the masses. Note
that the forces are equal and opposite, as required by Newton’s third
law.

These equations can be simplified by changing the dependent vari-
able to eliminate the equilibrium coordinates. Let x′i = xi − xi0, where
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i = (1, 2). The equations of motion then become

m1 ẍ′1 = k(x′2 − x′1) (1a)
m2 ẍ′2 = −k(x′2 − x′1). (1b)

To illustrate a general approach to molecular vibrations, suppose
we have a polyatomic molecule model with N masses and several
springs coupling them. We now look for special solutions of the
form

x′i = ai sin(ωt + φ) i = 1, . . . ,N

where ai is the vibration amplitude of the ith mass. Note that in the
special solution we are looking for, each mass vibrates with the same
angular frequency ω. The phase factor φ is also the same for each mass.
We justify the existence of such a solution by arguing that if the masses
were vibrating with different frequencies, it would not be possible to
conserve linear momentum for an isolated molecule.

These special solutions are called the normal modes of the system,
analogous to the normal modes of the two coupled pendulums dis-
cussed in Section 6.4. If there are N′ equations of motion, there are
N′ normal modes, each with its own special frequency. There is always
a normal mode with zero frequency, corresponding to the trivial case
of a stationary system with no vibrations, leaving N′ − 1 non-trivial
frequencies.

To show an example of a normal mode, and to keep the algebra sim-
ple, we go back to the diatomic molecule model with masses m1 and
m2. There are two equations of motion, so we expect one non-trivial
vibration frequency. Using

x′i = ai sin(ωt + φ)

ẍ′i = −ω2 ai sin(ωt + φ)

in Eqs. (1a) and (1b) gives

(k − ω2m1)a1 = ka2 (2a)

(k − ω2m2)a2 = ka1. (2b)

The factor sin(ωt + φ) occurs in every term and cancels throughout.
Solving Eq. (2a) for a2 and substituting in Eq. (2b) gives the following
equation for the amplitude a1, after some simplification:

ω2[ω2m1m2 − k(m1 + m2)]a1 = 0. (3)

There are several possible solutions for Eq. (3). One solution is a1 = 0;
it follows from Eq. (2a) that a2 = 0 also. This is a trivial solution
for a stationary non-vibrating system. Similarly, the solution ω2 = 0
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also corresponds to a non-vibrating system. The interesting non-trivial
solution is

ω2 =
k(m1 + m2)

m1m2

=
k
μ
,

as we expect.

Now that we have the normal mode frequency, we can solve Eq. (2a)
for the relative amplitudes a2/a1:

a2

a1
= −m1

m2
.

The two masses move in opposite directions, with amplitudes that en-
sure conservation of linear momentum. The actual amplitudes depend
on the initial conditions.

Treating a polyatomic molecule model follows the same lines, with
more complicated algebra, as we shall see in the following example.
Nonetheless, the final result is again the normal mode frequencies ωi

in terms of the masses and spring constants. The important point is that
the ωi are the only possible non-trivial vibrational frequencies of the
system, and any possible motion is therefore a linear combination of
the normal modes

N′−1∑
i=1

Ai sin(ωit + φi).

The amplitudes Ai and the phase angles φi depend on the initial con-
ditions. It is easy to show that the total energy in a normal mode is
proportional to Ai

2.

Example 6.7 Linear Vibrations of Carbon Dioxide
CO2 is a linear molecule consisting of a central carbon atom with
an oxygen atom bound on either side. Restricting ourselves to linear
vibrations, a mass-and-spring model has three masses m,M, and m
and two springs in line, as shown. Both springs have the same spring
constant k representing the carbon–oxygen bonds.

m M mkk

x1 x2 x3

Denoting the departures of the atoms from their equilibrium positions
by x1, x2, x3, the equations of motion are

mẍ1 = −k(x1 − x2) (1a)

Mẍ2 = −k(x2 − x1) − k(x2 − x3) (1b)

mẍ3 = −k(x3 − x2). (1c)
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The notation is simplified by defining frequencies ω0 =
√

k/m and
Ω0 =

√
k/M. Equations (6.17) become

ẍ1 + ω
2
0(x1 − x2)) = 0

ẍ2 + Ω
2
0(2x2 − x1 − x2) = 0

ẍ3 + ω
2
0(x3 − x2) = 0.

If we search for solutions of the form x = a sin(ωt + φ), we obtain

ω2a1 − ω2
0(a1 − a2) = 0 (2a)

ω2a2 −Ω2
0(2a2 − a1 − a3) = 0 (2b)

ω2a3 − ω2
0(a3 − a2) = 0. (2c)

There is a general method for finding the values of ω2 that satisfy these
equations, in fact any number of such coupled equations, but we can
find the solutions by straightforward algebra. (The general method in-
volves finding the roots of the determinant of the coefficients, a well-
known result from linear algebra for the solution of homogeneous
equations.)

If a2 � 0, then Eqs. (2a) and (2c) give a1 = a3 = [ω2
0/(ω

2 − ω2
0)]a2.

Substituting these in Eqs. (2b) gives

ω2(ω2 − ω2
0) − 2Ω2

0) = 0. (3)

ω = 0 is a solution but not a normal mode; if ẍ = 0, x = x0 + vt.
This solution describes center of mass motion for a free molecule. The
second root of Eq. (3) is ω =

√
ω2

0 + 2Ω2
0. This is an antisymmetric

mode in which the two oxygen atoms move in one direction while the
carbon atom moves in the opposite direction, as shown in (a). From
Eq. (2a) the relative amplitude of the carbon and oxygen motions is
a1/a2 = −ω0

2/2Ω0
2 = −M/2m, as one expects in order to conserve

total momentum.
(a)

(b)

The remaining solution is for the symmetric case: a2 = 0, a1 = −a3,
and ω = ωo. Here the carbon atom remains at rest while the oxygen
atoms move in opposite directions at frequency ω, as shown in (b).

6.5 Collisions and Conservation Laws
In the early 1900s, Ernest Rutherford and his colleagues at the Univer-
sity of Manchester in England carried out experiments that set physics
on a path that persists to this day. They bombarded thin metal foils with
energetic α-rays (nuclei of 4He) emitted by radioactive elements. Most
of the α-rays were deflected (“scattered”) through relatively small an-
gles, but the experimenters were amazed to find that some of the α-rays
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scattered through very large angles, bouncing back from the foil. Ruther-
ford said that it was as incredible as if an artillery shell bounced back
from a sheet of paper. Interpretation of these experiments led to our
model of the atom: a small dense nucleus containing most of the mass,
surrounded by a cloud of electrons. Ever since this ground-breaking
work physicists have employed collision and scattering experiments to
investigate the properties of particles, for example to map out the forces
particles exert or how their charge or mass is distributed. The Large
Hadron Collider, a circular proton accelerator 8500 m in diameter lo-
cated near Geneva on the French–Swiss border, was built to collide en-
ergetic protons with matter to stimulate reactions that might reveal theo-
retically predicted particles—or possibly some new physics.

In this section, we shall use conservation laws to derive general results
that must hold for any collision, regardless of the nature of the forces in-
volved. We shall use only non-relativistic (“classical”) mechanics here,
leaving the relativistic treatment of collisions until Chapter 13. Rela-
tivistic effects typically depend on the factor

√
1 − v2/c2, where v is the

speed of a particle and c is the speed of light. Classical mechanics there-
fore holds to good accuracy if v2/c2 
 1. Another way of expressing
this criterion is the ratio of the classical kinetic energy of a particle to its
rest mass energy = m0c2:

2 × classical kinetic energy
rest mass energy

=
m0v2

m0c2

=
v2

c2


 1

for classical mechanics to hold accurately.
The rest mass m0 of a particle is its mass when it is at rest. Rest mass is

commonly expressed in energy units using E = m0c2; for an electron m0
is 0.51 MeV, and for a proton it is 938 MeV. The Large Hadron Collider
can accelerate protons to energies as high as 14 TeV. Collisions in this
energy range are strongly relativistic, but conservation laws (appropriate
to relativistic mechanics) still apply.

6.5.1 Stages of a Collision
The drawings show three stages during the collision of two particles.

(a) (b) (c)

m1

m1

m1

v1

v′1

m2

m2
m2v2

v′2
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In (a), long before the collision, each particle is effectively free, since
the interaction forces are generally important only at small separations.
As the particles approach, (b), the momentum and energy of each par-
ticle change due to the interaction forces. Finally, long after the colli-
sion, (c), the particles are again free and move along straight lines with
new directions and velocities. Experimentally, we usually know the ini-
tial velocities v1 and v2; often one particle is initially at rest in a target
and is bombarded by particles of known energy. The experiment might
consist of measuring the final velocities v′1 and v′2 with suitable particle
detectors.

Assuming that external forces are negligible, the total momentum is
conserved and we have

Pi = P f .

For a two-body collision, this becomes

m1v1 + m2v2 = m1v′1 + m2v′2. (6.20)

Equation (6.20) is equivalent to three scalar equations. However, the
components of v′1 and v′2 comprise six unknowns, so a complete solu-
tion requires three more equations. The energy equation provides one
additional relation between the velocities, as we now show.

6.5.2 Elastic and Inelastic Collisions
Consider a collision on a linear air track between two riders of equal
mass M fitted with coil springs.

Before

1M M

v

2

After

1M M

v

2

Suppose that initially rider 1 has speed v and rider 2 is at rest. After
the collision, 1 is at rest and 2 moves to the right with speed v. It is clear
that momentum has been conserved and that the total kinetic energy of
the two bodies, Mv2/2, is the same before and after the collision. A col-
lision in which the total kinetic energy is unchanged is called an elastic
collision. A collision is elastic if the interaction forces are conservative,
like the spring force in this example.

As a second experiment, take the same two riders and replace the
springs with lumps of sticky putty. Let 2 be initially at rest, as before.

After the collision, the riders stick together and move off with speed
v′. By conservation of momentum, Mv = 2Mv′, so that v′ = v/2. The
initial kinetic energy of the system is Mv2/2, but the final kinetic energy
is (2M)v′2/2 = Mv2/4. In this collision, the kinetic energy is only half
as much after the collision as before. The kinetic energy has changed
because the interaction forces were non-conservative; part of the initial
kinetic energy was transformed to random heat energy in the putty dur-
ing the collision. A collision in which the total kinetic energy is not con-
served is called an inelastic collision.

Before

1M M

v

2

After

1M M

v′

2

Although the total energy of any system is always conserved, part of
the kinetic energy in a collision may be converted to some other form.
To take this into account, we write the conservation of energy equation
for collisions as

Ki = Kf + Q, (6.21)
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where Q = Ki − Kf is the amount of kinetic energy converted to another
form. For a two-body collision, Eq. (6.21) becomes

1
2 m1v1

2 + 1
2 m2v2

2 = 1
2 m1v′1

2 + 1
2 m2v′2

2 + Q. (6.22)

In most collisions on the everyday scale, kinetic energy is lost and Q is
positive. However, Q can be negative if internal energy of the system is
converted to kinetic energy in the collision. Such collisions are some-
times called superelastic—the kinetic energy of the outgoing particles is
greater than for the incoming particles. They are important in atomic and
nuclear physics; in many nuclear reactions, the total mass of the products
is less than the total mass of the reactants. According to the special the-
ory of relativity, discussed in Chapter 13, Q = (Mproducts −Mreactants)c2 =

Δmc2 < 0. Superelastic collisions are rarely encountered in the everyday
world, but one example would be the collision of two cocked mouse-
traps, releasing the energy stored in the springs.

6.5.3 Collisions in One Dimension
If we have a two-body collision in which the particles are constrained to
move along a straight line, the conservation laws Eqs. (6.11) and (6.22)
completely determine the final velocities, regardless of the nature of the
interaction forces. With the velocities shown in the sketch, the conserva-
tion laws give

Before

After

m1 m2ν1 ν2

m1 m2ν′1 ν′2

Momentum:

m1v1 + m2v2 = m1v′1 + m2v′2.

Energy:

1
2 m1v1

2 + 1
2 m2v2

2 = 1
2 m1v′1

2 + 1
2 m2v′2

2 + Q.

These equations can be solved for v′1 and v′2 in terms of m1,m2, v1, v2,
and Q. The following example illustrates the process.

Example 6.8 Elastic Collision of Two Balls
Consider the one-dimensional elastic collision of two balls of masses
m1 and m2, with m2 = 3m1. Suppose that the balls have equal and
opposite velocities v before the collision; the problem is to find the
final velocities.

Before

After

m1
3m1ν ν

3m1m1 ν′1 ν′2
The conservation laws yield

m1v − 3m1v = m1v′1 + 3m1v′2 (1)
1
2 m1v2 + 1

2 (3m1)v2 = 1
2 m1v′1

2 + 1
2 (3m1)v′2

2. (2)

We can eliminate v′1 using Eq. (1):

v′1 = −2v − 3v′2. (3)



6.5 COLLISIONS AND CONSERVATION LAWS 229

Inserting this in Eq. (2) gives

4v2 = (−2v − 3v′2)2 + 3v′2
2

= 4v2 + 12vv′2 + 12v′2
2

or

0 = 12vv′2 + 12v′2
2. (4)

Equation (4) has two solutions: v′2 = −v and v′2 = 0. The corresponding
values of v′1 can be found from Eq. (3).

Solution 1:

v′1 = v

v′2 = −v.

Solution 2:

v′1 = −2v

v′2 = 0.

We recognize that solution 1 simply restates the initial conditions: the
particles simply miss each other. We always obtain such a trivial “so-
lution” in this type of problem because the initial velocities evidently
satisfy the conservation law equations.

Solution 2 is the non-trivial one. It shows that after the collision, m1 is
moving to the left with twice its original speed and the heavier ball is
at rest.

6.5.4 Collisions and Center of Mass Coordinates
It is frequently simpler to treat three-dimensional collision problems
in the center of mass (C) coordinate system than in the laboratory (L)
system.

Consider two particles of masses m1 and m2 with velocities v1 and v2,
respectively. The center of mass velocity V is

V =
m1v1 + m2v2

m1 + m2
.

As shown in the velocity diagram, V lies on the line joining v1 and v2.

v2

v1

v

The velocities in the C system are

v1c = v1 − V

=
m2

m1 + m2
(v1 − v2),
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and

v2c = v2 − V

=
−m1

m1 + m2
(v1 − v2).

v2

v2c

v1c

v1

V

v2

v = v1 − v2

v1

v1c and v2c lie back to back along the relative velocity vector v = v1−v2.
The momenta in the C system are

p1c = m1v1c

=
m1m2

m1 + m2
(v1 − v2)

= μv
p2c = m2v2c

=
−m1m2

m1 + m2
(v1 − v2)

= −μv.

Here μ = m1m2/(m1 +m2) is the reduced mass of the system, the natural
unit of mass in a two-particle system. The total momentum in the C
system is zero, as we expect.

The total momentum in the L system is

m1v1 + m2v2 = (m1 + m2)V

and since total momentum is conserved in any collision, V is constant.
We can use this result to help visualize the velocity vectors before and
after the collision.

v1

v2

v′1

(a)
v′2

Sketch (a) shows the trajectories and velocities of two colliding parti-
cles before and after the collision. Sketch (b) shows the initial velocities
in the L and C systems. All the vectors lie in the same plane, and v1c

and v2c must be back to back since the total momentum in the C system
is zero. After the collision, sketch (c), the velocities in the C system are
again back to back. Sketch (c) also shows the final velocities in the lab
system. Note that the plane of sketch (c) is not necessarily the plane of
sketch (a).

Evidently the geometrical relation between initial and final velocities
in the L system is quite complicated. Fortunately, the situation in the C
system is much simpler. The initial and final velocities in the C system
determine a plane known as the plane of scattering. Each particle is de-
flected through the same scattering angle Θ in this plane.

v2c

v′2c

v1c

v′1c

v1
V

V

v2

(b)

(c)

v′1

v′2

The interaction force must be known in order to calculate Θ. Con-
versely, by measuring the deflection we can learn about the interaction
force. However, here we shall simply assume that the interaction has
caused some deflection in the C system.

An important simplification occurs if the collision is elastic. Conser-
vation of energy applied to the C system gives, for elastic collisions,

1
2 m1v1c

2 + 1
2 m2v2c

2 = 1
2 m1v′21c +

1
2 m2v′22c.
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Total momentum is zero in the C system. We therefore have

m1v1c − m2v2c = 0
m1v′1c − m2v′2c = 0.

Using momentum conservation to eliminate v2c and v′2c from the energyv2c

v′2c

v1c

v′1c

Θ

Θ equation gives

1
2

(
m1 +

m1
2

m2

)
v1c

2 =
1
2

(
m1 +

m1
2

m2

)
v′21c

or

v1c = v′1c.

Similarly,

v2c = v′2c.

In an elastic collision, the speed of each particle in the C system is the
same before and after the collision; the velocity vectors simply rotate in
the scattering plane. In many experiments, one of the particles, say m2,
is initially at rest in the laboratory.

v2c

v′2c

v1c

v′1c

Θ

Θ

v2c v1c

v1
m1

V From conditions before the collision we have

V =
m1

m1 + m2
v1

v1c = v1 − V

=
m2

m1 + m2
v1

v2c = −V

= − m1

m1 + m2
v1.

v1c

v1

V

v′1 =
 v′1c +

 V

θ1

v′1c

Θ

The sketches show the trajectories after the collision in the C and L
systems. v′1 makes angle θ1 in L, and v′2 makes angle θ2 in L. Because
these angles are in L, they are in principle measurable in the lab. The
velocity diagrams can be used to relate θ1 and θ2 to the scattering angle
Θ, as we shall see in the following example.

Example 6.9 Limitations on Laboratory Scattering Angle
Consider the elastic scattering of a particle of mass m1 and velocity v1
from a second particle of mass m2 at rest.

The scattering angle Θ in the C system is unrestricted, but the con-
servation laws impose limitations on the laboratory angles, as we now
show.

The center of mass velocity has magnitude

V =
m1v1

m1 + m2
(1)
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and is parallel to v1. The initial velocities in the C system are

v1c =
m2

m1 + m2
v1 (2)

v2c = − m1

m1 + m2
v1.

Suppose m1 is scattered through angle Θ in the C system.

θ1

θ2

v′2

v′1v1m1 m2

m1

m2

From the velocity diagram we see that the laboratory scattering angle
of the incident particle is given by

tan θ1 =
v′1c sinΘ

V + v′1c cosΘ
.

Since the scattering is elastic, v′1c = v1c. Hence

tan θ1 =
v1c sinΘ

V + v1c cosΘ

=
sinΘ

(V/v1c) + cosΘ
.

From Eqs. (1) and (2), V/v1c = m1/m2. Therefore

tan θ1 =
sinΘ

(m1/m2) + cosΘ
. (3)

v1cV

θ1

v′1 v′1c

Θ

The scattering angle Θ depends on the details of the interaction, but in
general it can assume any value. If m1 < m2, it follows from Eq. (3)
or the geometric construction in sketch (a) that θ1 is unrestricted. How-
ever, the situation is quite different if m1 > m2. In this case θ1 is never
greater than a certain angle θ1,max. As sketch (b) shows, the maxi-
mum value of θ1 occurs when v′1 is perpendicular to v′1c. In this case
sin θ1,max = v1c/V = m2/m1. If m1 � m2, θ1,max ≈ m2/m1 and the
maximum scattering angle in L approaches zero.

V V

Increasing Θ

θ1 θ1,max

v′1
v′1v′1c

v′1c

Θ
Θ

(a)
V

υ1c
= < 1

m1
m2

(b)
V

υ1c
= > 1

m1
m2
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As a homely illustration, if m1/m2 < 1 as in (a), this is like a stream
of marbles bouncing off a bowling ball; the marbles scatter in all direc-
tions. On the other hand, if a moving bowling ball scatters off marbles,
then m1/m2 � 1 and the bowling ball is hardly deflected at all, contin-
uing much along its original path.

A special case of Eq. (3) is m1/m2 = 1. Then

tan θ1 =
sinΘ

1 + cosΘ
= tan (Θ/2)

so that

θ1 = Θ/2.

Problems
For problems marked *, refer to page 522 for a hint, clue, or answer.

6.1 Oscillation of bead with gravitating masses
A bead of mass m slides without friction on a smooth rod along
the x axis. The rod is equidistant between two spheres of mass M.
The spheres are located at x = 0, y = ± a as shown, and attract the
bead gravitationally.

Find the frequency of small oscillations of the bead about the
origin.

m

M

M

a

a

y

x

6.2 Oscillation of a particle with two forces
A particle of mass m moves in one dimension along the positive x
axis. It is acted on by a constant force directed toward the origin
with magnitude B, and an inverse-square law repulsive force with
magnitude A/x2.

What is the frequency of small oscillations about the equilib-
rium point x0?

6.3 Normal modes and symmetry
Four identical masses m are joined by three identical springs,
of spring constant k, and are constrained to move on a line, as
shown.

There is a high degree of symmetry in this problem, so that
one can guess the normal mode motions by inspection, without
a lengthy calculation. Once the relative amplitudes of the normal
mode motions are known, the normal mode vibrational frequencies
follow directly.

m k m k m mk

x1 x2 x3 x4
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Because of the symmetry, the normal mode amplitudes must
obey x1 = ±x4 and x2 = ±x3. Another condition is that the center
of mass must remain at rest. The possibilities are:

(x4 = x1) and (x3 = x2)
(x4 = −x1) and (x3 = −x2).
The normal mode equations lead to three possible non-trivial vi-

brational frequencies and three corresponding normal modes. Find
the normal mode frequencies. It is convenient to use the dimen-
sionless parameter β = ω2/ω0

2, whereω is a frequency to be found
and ω0 ≡

√
k/m.

6.4 Bouncing ball*
A ball drops to the floor and bounces, eventually coming to rest.
Collisions between the ball and floor are inelastic; the speed after
each collision is e times the speed before the collision where e < 1
(e is called the coefficient of restitution). If the speed just before
the first bounce is v0, find the time to come to rest.

m

M

6.5 Marble and superball
A small ball of mass m is placed on top of a “superball” of mass
M, and the two balls are dropped to the floor from height h. How
high does the small ball rise after the collision? Assume that col-
lisions with the superball are elastic, and that m 
 M. To help
visualize the problem, assume that the balls are slightly separated
when the superball hits the floor. (If you are surprised by the result,
try demonstrating the problem with a marble and a superball.)

A B C

6.6 Three car collision
Cars B and C are at rest with their brakes off. Car A plows into B
at high speed, pushing B into C. If the collisions are completely
inelastic, what fraction of the initial energy is dissipated when car
C is struck? The cars are identical initially.

6.7 Proton collision
A proton makes a head-on collision with an unknown particle at
rest. The proton rebounds straight back with 4

9 of its initial kinetic
energy.

Find the ratio of the mass of the unknown particle to the mass
of the proton, assuming that the collision is elastic.

6.8 Collision of m and M
A particle of mass m and initial velocity v0 collides elastically with
a particle of unknown mass M coming from the opposite direction
as shown in the left-hand sketch on the next page. After the colli-
sion, m has velocity v0/2 at right angles to the incident direction,
and M moves off in the direction shown in the sketch. Find the
ratio M/m.
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6.9 Collision of m and 2m
Particle A of mass m has initial velocity v0. After colliding with
particle B of mass 2m initially at rest, the particles follow the paths
shown in the right-hand sketch. Find θ.

θv0

Before

After

υ0

υ0/2

m

m
m 2m 45°

45°

2m

2m

A

A

B

B

6.10 Nuclear reaction in the L system
In the L system, a particle of mass m1 with kinetic energy E1
strikes a particle of mass m2 initially at rest. A nuclear reaction
occurs, with the release of a particle of mass m3 at angle θ and
energy E3, and a particle of mass m4 at angle φ and energy E4.
(Angles are measured in L from the incident line.) Neither φ or E4
are measured.

Find an expression for the energy Q released in the reac-
tion in terms of the masses, energies E1 and E3, and the angle
θ.

6.11 Uranium fission
In a nuclear reactor powerplant, a very slow (“thermal”) neutron
has high probability of reacting with the uranium-235 in the fuel
rods. The 235U then fissions asymmetrically into a light fragment
(most likely strontium 97Sr) and a heavy fragment (most likely
xenon 138Xe), releasing energy 170 MeV.

The fission also produces a few fast neutrons. These neutrons
are slowed to thermal speeds by collisions as they pass through a
moderator, possibly helium, graphite, or even ordinary water. Once
slowed, they can induce additional fission events, so that the pro-
cess becomes a self-sustaining chain reaction.

(a) What are the energies of the two fragments (in MeV) im-
mediately after fission? Neglect energy carried off by the fast neu-
trons.

(b) A 1 keV fast neutron (relative mass 1) in a moderator collides
elastically with a helium atom 4He (relative mass 4) at rest. What
is the maximum amount of energy the neutron can lose?
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6.12 Hydrogen fusion
The Sun generates most of its energy from a chain of nuclear reac-
tions, beginning with the fusion of the nuclei of two atoms of ordi-
nary hydrogen 1H. The process in the Sun requires high densities,
about 160 times the density of water on the Earth, and extremely
high temperatures, about 1.5 × 107K. These conditions enable the
nuclei to approach close enough against the repulsive Coulomb
force to allow the nuclei to come within the range of the strong
nuclear force.

Efforts on the Earth to generate energy from fusion have cen-
tered mainly on the reaction between the two heavier isotopes of
hydrogen, deuterium 2D (one proton, one neutron) and tritium 3T
(one proton, two neutrons):

2D+ 3T → 4He+ 1n + 17.6 MeV.

The products are 4He (relative mass 4) and a neutron (relative
mass 1).

What are the energies of the products, in MeV? The deuterium
and tritium are essentially at rest.

6.13 Nuclear reaction of α-rays with lithium*
A thin target of lithium is bombarded by helium nuclei (α-rays) of
energy E0. The lithium nuclei are initially at rest in the target but
are essentially unbound. When an α-ray enters a lithium nucleus,
a nuclear reaction can occur in which the compound nucleus splits
apart into a boron nucleus and a neutron. The collision is inelastic,
and the final kinetic energy is less than E0 by 2.8 MeV. The relative
masses of the particles are: helium, mass 4; lithium, mass 7; boron,
mass 10; neutron, mass 1. The reaction can be symbolized

7Li+ 4He→ 10B+ 1n − 2.8 MeV.

(a) What is E0,threshold, the minimum value of E0 for which neu-
trons can be produced?

(b) Show that if the incident energy falls in the range
E0,threshold < E0 < E0,threshold + 0.27 MeV, the neutrons ejected
in the forward direction do not all have the same energy but must
have either one or the other of two possible energies. (You can un-
derstand the origin of the two groups by looking at the reaction in
the center of mass system.)

6.14 Superball bouncing between walls*
A “superball” of mass m bounces back and forth with speed v be-
tween two parallel walls, as shown. The walls are initially sep-
arated by distance l. Gravity is neglected and the collisions are
perfectly elastic.

(a) Find the time-average force F on each wall.

υV

x

l
(b) If one surface is slowly moved toward the other with speed

V 
 v, the bounce rate will increase due to the shorter distance
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between collisions, and because the ball’s speed increases when it
bounces from the moving surface. Show that

dv
dt
�

vV
x

;
dv
dx
� − v

x
;

and find v(x).
(c) Find the average force at distance x.

6.15 Center of mass energy
Show that the energy of two non-interacting particles with masses
Ma and Mb can be written E = E0 + E′ where E0 =

1
2 MV2 is the

energy of c. of m. motion, E′ = 1
2μV2

r is the energy in the C system
M = Ma + Mb, V is the velocity of the c. of m. in the C system,
and Vr is the relative velocity of the particles.

6.16 Converting between C and L systems*
A particle of mass m and velocity v0 collides elastically with a
particle of mass M initially at rest and is scattered through angle Θ
in the center of mass C system.

(a) Find the final velocity of m in the laboratory L system.
(b) Find the fractional loss of kinetic energy of m.

6.17 Colliding balls
Two balls, of mass m and mass 2m, approach from perpendicular
directions with identical speeds v and collide. After the collision,
the more massive ball moves with the same speed v but downward,
perpendicular to its original direction. The less massive ball moves
with speed U at an angle θ with respect to the horizontal. Assume
that no external forces act during the collision.

(a) Calculate the final speed U of the less massive ball and the
angle θ.

(b) Determine how much kinetic energy is lost or gained by the
two balls during the collision. Is this collision elastic, inelastic, or
superelastic?

θ

ν

ν

U

ν

m

m

2m

2m
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7.1 Introduction
Our discussion of the principles of mechanics has so far neglected an im-
portant issue—the rotational motion of solid bodies. For example, con-
sider the common yo-yo running up and down its string as the spool
winds and unwinds. In principle we can predict the motion because each
particle of the yo-yo moves according to Newton’s laws. The motion is
simple but attempting to analyze it on a particle-by-particle basis would
quickly prove to be hopeless. To treat the rotational motion of extended
bodies as a whole, we need to develop a simple method, which is the
goal of this chapter.

In attacking the problem of translational motion, we introduced the
concepts of force, linear momentum, and center of mass. In this chapter
we introduce precisely analogous concepts for rotational motion: torque,
angular momentum, and moment of inertia.

Our goal, of course, is much more ambitious than merely to under-
stand yo-yo motion; our goal is to find a general way to analyze the
motion of rigid bodies under any combination of applied forces. Hap-
pily, as we shall demonstrate, this problem can be divided into two much
simpler problems—finding the center of mass motion, a problem that we
have already solved, and finding the rotational motion around the center
of mass, the task at hand. The justification for this separation is a the-
orem of rigid body motion, called Chasles’ theorem, which asserts that
any displacement of a rigid body can be decomposed into two indepen-
dent motions: a translation of the center of mass and a rotation around
the center of mass. A few minutes spent playing with a rigid body such as
a book or a chair should convince you that such a separation is plausible.
Note that the theorem does not say that this is the only way to represent
a general displacement—merely that it is one possible way of doing so.
A formal proof of Chasles’ theorem is presented in Note 7.1 at the end
of the chapter, but the proof is not essential at this point in our discus-
sion. What is important is being able to visualize any displacement as
the combination of a single translation and a single rotation.

(a)

(b)

With reference to the sketch, to bring the body from position (a)
to some new position (b), first translate it so that the center of mass
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coincides with the new position of the center of mass, and then rotate
it around the appropriate axis through the center of mass until the body
is in the desired position.

Leaving aside extended bodies for the moment, we start in the great
tradition of physics by considering the simplest possible system—a par-
ticle. Because a particle has no size, its orientation in space is of no
consequence, and it might seem that we need be concerned only with
translational motion. Nevertheless, particle motion is useful for intro-
ducing the concepts of angular momentum and torque. We shall then
move progressively to more complex systems, culminating, in Chapter
8, with a treatment of the general motion of a rigid body.

7.2 Angular Momentum of a Particle
Here is the formal definition of the angular momentum L of a particle
that has momentum p and is at position r with respect to a given coordi-
nate system:

L = r × p. (7.1)

The unit of angular momentum is kg ·m2/s in the SI system or g · cm2/s
in CGS. There are no special names for these units.

Two aspects of angular momentum deserve comment. First, L explic-
itly involves the position vector r. The value of L therefore depends not
only on the motion of the particle, but also on its location with respect
to the origin of a particular coordinate system. This is in contrast to the
situation for linear momentum p, which is independent of the coordi-
nate system. Consequently one cannot meaningfully speak of the angular
momentum of a particle alone; one must always identify the coordinate
system.

The second unusual aspect of angular momentum is that it is the first
physical quantity that we have encountered that involves the cross prod-
uct. You may recall from Chapter 1 that r × p is a vector whose magni-
tude is |r||p| sinα where α is the angle between r and p.

r

p

L

α Probably the least intuitive aspect of angular momentum is its direc-
tion. The vectors r and p determine a plane (sometimes known as the
plane of motion), and by the properties of the cross product, L is per-
pendicular to this plane. Although there is nothing particularly “natural”
about this definition of angular momentum, we will see that L so defined
obeys a simple but important dynamical equation.

The diagram shows the trajectory and instantaneous position and mo-
mentum of a particle. L = r × p is perpendicular to the plane of r and p,
and points in the direction dictated by the right-hand rule for vector mul-
tiplication. (Point the index finger of your right hand along r and orient
your hand so that you can bend the other fingers toward p. Your thumb
then points in the direction of L.)

p

L
r

If r and p lie in the x−y plane, then L lies along the z axis. L points in
the positive z direction if the “sense of rotation” as the point moves with
respect to the origin is counterclockwise, and in the negative z direction
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x

y

Sense of
rotation

Lz > 0

p

r

Sense of
rotation

p

r

x

y

Lz < 0

if the sense of rotation is clockwise. Note that the sense of rotation is
well defined no matter whether the trajectory is curved or straight.

The distinction between positive and negative rotation breaks down if
the trajectory aims at the origin, but in this case r and p are parallel and
L = 0.

It is helpful to be able to visualize angular momentum geometrically
as well as being able to calculate it algebraically. The results, of course,
agree. To be concrete we shall take the motion to lie in the x−y plane so
that L lies along the z axis.

p

r
x

y

π − φ

φ
r⊥

p

r
x

y

r⊥

Lz = r⊥ p

p

r
x

y

p⊥

Lz = rp⊥

To understand L geometrically, let us decompose r into a component
r⊥ that is perpendicular to the trajectory and r‖ that is parallel. The length
of r⊥ is

r⊥ = r sin (π − φ) = r sin φ.
Lz = (r × p)z = rp sin φ = r⊥p.

Alternatively, we can decompose p into a component p‖ parallel to r and
a component p⊥ perpendicular to r. Then

Lz = (r × p)z = rp sin φ = rp⊥.

Another way to find Lz is to calculate r × p algebraically. For motion
in the x−y plane, r = (x, y, 0) and p = m(vx, vy, 0). The cross product
(written in the determinantal form described in Section 1.6) is

L = r × p

= m

∣∣∣∣∣∣∣∣
î ĵ k̂
x y 0
vx vy 0

∣∣∣∣∣∣∣∣
= m(xvy − yvx)k̂.

This algebraic result has a direct geometrical interpretation. The mo-
tion is in the x−y plane; we shall look first at the motion in the y direction,
and then in the x direction. As the drawing on the next page shows, the
motion py in (a) represents a counterclockwise rotation and contributes
angular momentum +mxvy. The motion px in (b) represents a clockwise
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Lz = xpy − ypx

py p

r
px

x
x

y

y

(c)

py

x
x

y

Lz = xpy

(a)

px

x

y

y

Lz = ypx

(b)

rotation and creates angular momentum −myvx around the origin. The
sum of these is m(xvy − yvx), as we found before.

We have illustrated angular momentum using motion in the x−y plane
where the angular momentum lies along the z axis. There is no difficulty
applying these methods to the general case where L has components
along all three axes.

Example 7.1 Angular Momentum of a Sliding Block 1
A block of mass m and negligible dimensions slides freely in the x
direction with velocity v = vî, as shown in the sketch. What is its
angular momentum LA around origin A and its angular momentum LB

around origin B?

v

m
x

z

y

l

B

A As shown in the drawing the vector from origin A to the block is rA =

xî. Since rA is parallel to v, their cross product is zero:

LA = mrA × v
= 0.

v
rA m mx

z

y

A

rB
r⊥

r||

v
x

z

y

l

B

Taking origin B, we can resolve rB into a component r‖ parallel to v
and a component r⊥ perpendicular to v. Then

LB = mrB × v = m(r‖ + r⊥) × v.

With r‖ × v = 0 and |r⊥ × v| = lvk̂ we have

LB = mlvk̂.
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LB lies in the positive z direction because the sense of rotation is coun-
terclockwise around the z axis.

To calculate LB formally we can write rB = xî − lĵ and evaluate rB × v
using the determinantal form

LB = mrB × v

= m

∣∣∣∣∣∣∣∣
î ĵ k̂
x −l 0
v 0 0

∣∣∣∣∣∣∣∣
= mlvk̂

as before.

The following example emphasizes again how L depends on the
choice of origin.

Example 7.2 Angular Momentum of the Conical Pendulum
Let us return to the conical pendulum, which we encountered in Ex-
ample 2.10. Assume that the pendulum is in steady circular motion
with constant angular speed ω.B

z

l

A

M
p

LA

r

ω

α

We begin by evaluating LA, the angular momentum around origin A.
From the sketch we see that LA lies in the positive z direction. LA has
magnitude |r⊥||p| = |r||p| = rp, where r is the radius of the circular
motion. Since

|p| = Mv = Mrω

we have

LA = Mr2ωk̂.

Note that LA is constant, in both magnitude and direction.

Now let us evaluate the angular momentum around the origin B located
at the pivot. The magnitude of LB is

|LB| = |r′ × p|
= |r′||p| = l|p|
= Mlrω,

where |r′| = l, the length of the string. It is again apparent that L
depends on the origin we choose.

z

B

r

r′

p

ω

Unlike LA, the direction of LB is not constant. LB is perpendicular to
both r′ and p. The sketches show LB at different times. Two sketches
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are given, to emphasize that only the magnitude and direction of L are
important, not the position at which we choose to draw it. The mag-
nitude of LB is constant but its direction is obviously not constant; as
the bob swings around, LB sweeps out the shaded cone shown in the
sketch at the right. The z component of LB is constant but the horizon-
tal component travels around the circle with the bob. We shall see the
dynamical consequences of this in Example 7.9.

r′r′

LB LB

z

B

r′r′

LB LB

ω

7.3 Fixed Axis Rotation
The most prominent application of angular momentum in Newtonian
mechanics is to the analysis of the motion of rigid bodies. In general,
rigid body motion involves free rotation around any axis—for instance,
the motion of a stick flung into the air, spinning and tumbling. Analysis
of the general case involves mathematical complexities that we are going
to take up in Chapter 8. In this chapter we restrict ourselves to the spe-
cial, but important, case of rotation around a fixed axis. By fixed axis we
mean that the direction of the axis of rotation is always along the same
line, but the axis itself may translate. For example, a car wheel attached
to an axle undergoes fixed axis rotation as long as the car drives straight
ahead. If the car turns, the wheel must rotate around a vertical axis while
simultaneously spinning on the axle; the motion is no longer fixed axis
rotation. If the wheel flies off the axle and wobbles down the road, the
motion is definitely not rotation around a fixed axis.

We can choose the axis of rotation to be in the z direction without loss
of generality. The rotating object can be a wheel or a stick, or anything
we choose, the only restriction being that it is rigid—which is to say that
its shape does not change as it rotates.

When a rigid body rotates around an axis, every particle in the body
remains at a fixed distance from the axis. If we choose a coordinate
system with its origin on the axis, then for every particle in the body,
|r| = constant. The only way that r can change while |r| remains con-
stant is for the velocity to be perpendicular to r. In this chapter and
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the next we shall use the symbol ρ to denote perpendicular distance to
the axis of rotation. In contrast, r stands for the distance to the origin:
r =

√
x2 + y2 + z2.

Consider a body rotating around the z axis, so that

|v j| = |ṙ j|
= ωρ j (7.2)

where ρ j is the perpendicular distance from the axis of rotation to particle
mj of the rigid body and ω is the rate of rotation (the angular speed).
Because the axis of rotation lies in the z direction, ρ j =

√
x j

2 + y j
2.

The angular momentum of the jth particle, L j, is

L j = r j × mjv j.

y

rj

vj

ρj

mj

x

z

In this chapter we are concerned only with Lz, the component of angu-
lar momentum along the axis of rotation. Since v j lies in the x−y plane,

Lj,z = mjv j × (distance to z axis) = mjv jρ j.

Using Eq. (7.2), v j = ωρ j, we have

Lj,z = mjρ j
2ω.

The z component of the total angular momentum of the body Lz is the
sum of the individual z components:

Lz =
∑

j

L j,z

=
∑

j

m jρ j
2ω, (7.3)

where the sum is over all particles of the body. We have taken ω to be
constant throughout, because the body is rigid.

7.3.1 Moment of Inertia
Equation (7.3) can be written

Lz = Iω, (7.4)

where

I ≡
∑

j

m jρ j
2. (7.5)

I is a geometrical quantity called the moment of inertia. I depends on
the distribution of mass in the body with respect to the axis of rotation.
(We shall give a more general definition for I in Chapter 8 when we talk
about unrestricted rigid body motion.)

Equation (7.4) reveals a close analogy between angular momentum
around an axis and linear momentum along an axis P = Mv. The moment
of inertia plays the same role in rotational motion that mass plays in



7.3 FIXED AXIS ROTATION 247

linear momentum. This is but one of many analogies between rotational
motion and linear motion.

For continuously distributed matter we can replace the sum over par-
ticles in Eq. (7.5) by an integral over differential mass elements. In this
case ∑

j

m jρ j
2 →

∫
ρ2dm,

and

I =
∫

ρ2dm

=

∫
(x2 + y2)dm.

To evaluate such an integral we generally replace the mass element dm
by dm = wdV , the product of the density (mass per unit volume) w
at the position of dm and the volume dV occupied by dm. (Often ρ is
used to denote density, but that would cause confusion here.) We can
write

I =
∫

ρ2dm

=

∫
(x2 + y2)w dV.

Before proceeding to analyze the physics of fixed axis rotation it is useful
to calculate moments of inertia of some simple objects having high de-
grees of symmetry, where calculation of the moment of inertia is straight-
forward.

Example 7.3 Moments of Inertia of Some Simple Objects
(a) Uniform thin ring of mass M and radius R, around the axis of
symmetry of the ring.

R
M ds

dm = λds

The moment of inertia around the axis is given by I =
∫
ρ2dm. Since

the ring is thin, dm = λds, where λ = M/2πR is the mass per unit
length of the ring. All points on the ring are distance R from the axis so
that ρ = R, and we have

Iring =

∫ 2πR

0
R2λ ds

= R2
( M
2πR

)
s
∣∣∣2πR
0

= MR2.

(b) Uniform thin disk of mass M and radius R, around the axis of
symmetry of the disk.
We can subdivide the disk into a series of thin rings with radius ρ, width
dρ, and moment of inertia dI. Then I =

∫
dI.
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The area of one of the thin rings is dA = 2πρ dρ, and its mass is

ρ

dρ

R

M

dm = M
dA
A
=

M2πρ dρ
πR2

=
2Mρ dρ

R2 .

dI = ρ2 dm =
2Mρ3 dρ

R2

I =
∫ R

0

2Mρ3 dρ
R2

=
1
2

MR2.

Let us also solve this problem by double integration to illustrate the
most general approach.

I =
∫

ρ2 dm

=

∫
ρ2σ dS ,

where σ is the mass per unit area and dS is a differential element
of area. For the uniform disk, σ = M/πR2. Polar coordinates are
the obvious choice for this calculation. In plane polar coordinates,
dS = ρ dρ dθ. Then

Idisk =

∫
ρ2 σdS

=

( M
πR2

) ∫
ρ2 dS

=

( M
πR2

) ∫ R

0

∫ 2π

0
ρ2ρ dρ dθ

=

(
2M
R2

) ∫ R

0
ρ3 dρ

=
1
2

MR2,

as before.

dS = ρ dρ dθ

ρdθ

ρ

(c) Uniform thin stick of mass M and length L, around a perpen-
dicular axis through its midpoint.M

−L/2 L/2x

Io,rod =

∫ +L/2

−L/2
x2dm

=
M
L

∫ +L/2

−L/2
x2dx

=
M
L

1
3

x3
∣∣∣∣+L/2
−L/2

=
1
12

ML2.
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(d) Uniform thin stick around a perpendicular axis at its end.M

Lx
Irod =

M
L

∫ L

0
x2dx

=
1
3

ML2.

(e) Uniform sphere of mass M and radius R, around an axis through
its center.
We quote this result but leave the proof for a problem.

Isphere =
2
5

MR2.

7.3.2 The Parallel Axis Theorem
This handy theorem tells us I, the moment of inertia around any axis,
provided that we know I0, the moment of inertia around an axis through
the center of mass parallel to the first. If the mass of the body is M and
the distance between the axes is l, the theorem states that

I = I0 + Ml2.

To prove this, consider the moment of inertia of the body around an axis
that we choose to lie in the z direction. The perpendicular vector from
the z axis to particle j is

ρ j = x j î + y jk̂,
and

I =
∑

j

m jρ j
2.

Center
of mass

x

y

z

X
Y

Z
ρj

ρj′ R⊥

mj

If the center of mass is at R = X î + Y ĵ + Zk̂, the vector perpendicular
from the z axis to the center of mass is

R⊥ = X î + Y ĵ.

If the vector from the axis through the center of mass to particle j is ρ
′
j,

then the moment of inertia around the center of mass is

I0 = Σmjρ
′2
j .

From the diagram we see that

ρ j = ρ
′
j + R⊥,

so that

I = Σmjρ j
2

= Σmj(ρ
′
j + R⊥)2

= Σmj(ρ
′2
j + 2ρ

′
j · R⊥ + R⊥2).
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The middle term vanishes by definition of the center of mass:

Σmjρ
′
j = Σmj(ρ j − R⊥) = M(R⊥ − R⊥)

= 0.

If we designate the magnitude of R⊥ by l, then

I = I0 + Ml2.

For example, in Example 7.3(c) we showed that the moment of inertia of
a stick around its center of mass (the midpoint) is ML2/12. The moment
of inertia around its end, which is L/2 away from the center of mass, is
therefore

Ia =
1
12

ML2 + M
(L

2

)2
=

1
3

ML2,

the result we found in Example 7.3(d).
Similarly, the moment of inertia of a disk around an axis at the rim,

perpendicular to the plane of the disk, is

Ia =
1
2

MR2 + MR2 =
3
2

MR2.
M

a

R

7.4 Torque
To continue our development of the dynamics of rotational motion we
introduce a new quantity, torque τ, which plays a role in rotational mo-
tion analogous to the role of force in linear motion. The torque due to
force F that acts on a particle at position r is defined to be

τ = r × F. (7.6)

In Section 7.2 we discussed several ways to evaluate angular momentum,
r × p. The methods we developed for calculating the cross product can
also be applied to torque r × F. For example, we have

r⊥

F

r

F⊥

F

r

|τ| = |r⊥||F|
|τ| = |r||F⊥|

τ =

∣∣∣∣∣∣∣∣
î ĵ k̂
x y z

Fx Fy Fz

∣∣∣∣∣∣∣∣ .
We can also associate a “sense of rotation” using r and F. Assume that
all the vectors shown in the sketch are in the x−y plane. The torque on
m1 due to F1 is along the positive z axis (out of the paper) and the torque
on m2 due to F2 is along the negative z axis (into the paper).

F1
F2

r2

m2

y

x

m1

r1
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It is important to appreciate that torque and force are inherently dif-
ferent quantities. For one thing, torque depends on the origin we choose
but force does not. For another, we see from the definition τ = r×F that
τ and F are always mutually perpendicular. There can be a torque on a
system with zero net force, and there can be force with zero net torque.
In general, there may be both torque and force. These three cases are
illustrated in the sketches. (The torques are evaluated around the centers
of the disks.)

f

f

f

R

τ  = 2Rf
F = 0

τ  = Rf
F = f

τ  = 0
F = 2f

ff

R

Example 7.4 Torque due to Gravity
We often encounter systems in which there is a torque exerted by
gravity. Examples include a pendulum, a child’s top, and a falling
chimney. In the usual case of a uniform gravitational field, the torque
on a body around any point is R ×W, where R is a vector from the
point to the center of mass and W is the weight. Here is the proof.

mj

mj grj

A

R w

A

Center
of mass

The problem is to find the torque on a body of mass M around origin
A when the applied force is due to a uniform gravitational field g. We
can regard the body as a collection of particles. The torque τ j on the
jth particle is

τ j = r j × mjg,

where r j is the position vector of the jth particle from origin A, and mj

is its mass. The total torque is

τ =
∑

j

τ j

=
∑

j

r j × mjg

=

⎛⎜⎜⎜⎜⎜⎜⎝∑
j

m jr j

⎞⎟⎟⎟⎟⎟⎟⎠ × g.

By definition of center of mass,∑
mjr j = MR,
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where R is the position vector of the center of mass. Hence

τ = MR × g = R × Mg
= R ×W.

Example 7.5 Torque and Force in Equilibrium
For a system to be in equilibrium, the total force and the total torque
must vanish. In calculating the torque, one is free to choose the
origin because torque must vanish around every point for a body in
equilibrium. The most convenient origin is generally a point where
several forces act, since then the torques due to these forces all
vanish.

A uniform rod of length πR/2 is bent in the shape of a quadrant of
radius R. The rod has one end on the ground and the other leaning
against a frictionless wall, as shown. The problem is to calculate the
force against the wall, which equals the force component A of the wall
on the quadrant.

A

R
R

π /4

w

l

B
N

The center of mass is halfway along the rod at πR/4. For transla-
tional equilibrium, we have in the vertical direction N = W, where
W is the weight, acting at the center of mass. The frictionless wall
does not exert a vertical force. In the horizontal direction, A = B.
For rotational equilibrium, let us evaluate the torque about the point
where the quadrant rests on the ground. The torque is τ = Wl − AR,
and is 0 at equilibrium. (Counterclockwise torque is positive out of
the plane of the paper.) From the geometric construction, we see that
l = R − R/

√
2 ≈ 0.293R. Consequently, the force against the wall is

A ≈ 0.293W.

The same result is obtained if torques are taken about the point where
the quadrant rests on the wall, because the torque about any point must
be 0 for a body in equilibrium.

7.5 Torque and Angular Momentum
Torque is important because it determines the rate of change of angular
momentum:

dL
dt
=

d
dt

(r × p)

=

(
dr
dt
× p
)
+

(
r × dp

dt

)
.

The first bracketed term vanishes: (dr/dt)×p = v×mv = 0, because the
cross product of parallel vectors is zero. Also, dp/dt = F, by Newton’s
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second law. Hence the second bracketed term is r × F = τ, and we have

τ =
dL
dt
. (7.7)

7.5.1 Conservation of Angular Momentum
Equation (7.7) shows that if the torque is zero, L is constant and the
angular momentum is conserved. As you have already seen from our
discussion of linear momentum and energy, conservation laws are
powerful tools. Because we have considered the angular momentum of a
single particle, the conservation law for angular momentum has not been
presented in much generality. In fact, Eq. (7.7) follows directly from
Newton’s second law. Only when we talk about extended systems does
angular momentum assume its proper role as a new physical concept.
Nevertheless, even in the present context, considerations of angular
momentum lead to some surprising simplifications, as the next two
examples show.

Example 7.6 Central Force Motion and the Law of Equal Areas
In 1609 the mathematician and astronomer Johannes Kepler announced
his first two laws of planetary motion. The first is that the orbits of
the planets are not circles but ellipses. The second is the law of equal
areas: the area swept out by the radius vector from the Sun to a planet
in a given time is the same for any location of the planet in its orbit.

B

A

In the sketch (not to scale), the areas swept out by the Earth during a
month at two different seasons are shown shaded. The shorter radius
vector at B is compensated by the greater speed of the Earth when it is
nearer the Sun. We shall now show that the law of equal areas follows
directly from considerations of angular momentum, and that it holds
not only for motion under the gravitational force but also for motion
under any central force.

Consider a particle moving under a central force F(r) = f (r)r̂, where
f (r) has any dependence on r we care to choose. The torque on the par-
ticle around the origin is τ = r×F(r) = r× f (r)r̂ = 0. The angular mo-
mentum of the particle L = r×p is therefore constant in both magnitude
and direction. An immediate consequence is that the motion is confined
to a plane; otherwise the direction of L would change with time.

We shall now prove that the rate at which area is swept out is constant,
a result that leads directly to Kepler’s law of equal areas.

r(t + Δt )

Δθ

r (t)

Consider the position of the particle at t and t + Δt, when its polar
coordinates are (r, θ) and (r + Δr, θ + Δθ), respectively. The area swept
out is shown shaded in the drawing.
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For small values of Δθ, the area ΔA is approximately equal to the area
of a triangle with base r + Δr and altitude rΔθ, as shown

ΔA ≈ 1
2 (r + Δr)(r Δθ)

= 1
2 r2Δθ + 1

2 r Δr Δθ.

The rate at which area is swept out is

dA
dt
= lim
Δt→0

ΔA
Δt

= lim
Δt→0

1
2

(
r2Δθ

Δt
+ r
ΔθΔr
Δt

)

=
1
2

r2 dθ
dt
.

The small triangle with sides rΔθ and Δr is of second order and makes
no contribution in the limit.

Δr

r + Δr

Δθ

rΔθ

In polar coordinates the velocity of the particle is v = ṙr̂ + rθ̇θ̂. Its
angular momentum is

L = (r × mv) = rr̂ × m(ṙ r̂ + rθ̇θ̂) = mr2θ̇k̂,

using r̂ × θ̂ = k̂. Hence

dA
dt
=

1
2

r2θ̇

=
Lz

2m
.

Because Lz is constant for any central force, it follows that dA/dt is
constant also.

r

v
υθ = r θ

υr = r

θ

.

.

Here is another way to prove the law of equal areas, based on the
vanishing of the Coriolis acceleration. For a central force, Fθ = 0,
so that aθ = 0. It follows that raθ = 0, but raθ = r(2ṙθ + rθ̈) =
(d/dt)(r2θ̇) = 2(d/dt)(dA/dt). Hence dA/dt = constant.

Example 7.7 Capture Cross-section of a Planet
How accurately must you aim the trajectory of an unpowered space-
craft to hit a far-off planet? Seen through a telescope, the planet has
the shape of a disk. The area of the disk is πR2, where R is the planet’s
radius. If gravity played no role, assuring a hit would require that we
aim the spacecraft to hit this area. Fortunately, the situation is more
favorable than this. Gravity tends to attract the spacecraft toward the
planet, so that some trajectories that are aimed outside the planetary
disk nevertheless end in a hit. Consequently, the effective area for a hit
Ae is greater than the geometrical area Ag = πR2. Our problem is to
find Ae.



7.5 TORQUE AND ANGULAR MOMENTUM 255

We shall neglect effects of the Sun and other planets here, although
they would obviously have to be taken into account for a real space
mission.

One approach to the problem would be to calculate the precise orbit of
the spacecraft in the gravitational field of the planet. The procedure for
this is described in Chapter 10, but such a calculation is not required,
because conservation of energy and conservation of angular momen-
tum yield the answer in a few short steps.

b2

b1

a a

R

b′

The sketch shows several possible trajectories of the spacecraft. The
distance between the launch point and the target planet is assumed
to be extremely large compared to R, so that the different trajectories
are effectively parallel before the gravitational force of the planet be-
comes important. The line aa is parallel to the initial trajectories and
passes through the center of the planet. The distance b between the
initial trajectory and line aa is called the impact parameter of the tra-
jectory. The largest value of b for which the trajectory hits the planet
is indicated by b′ in the sketch. The area through which the trajec-
tory must pass to assure a hit is Ae = π(b′)2. If there were no attrac-
tion, the trajectories would be straight lines. In this case, b′ = R and
Ae = πR2 = Ag.

b′
R

v

r

φ

φ

To find b′, we note that the energy of the spacecraft and its angular
momentum around the center of the planet are conserved. (Do you un-
derstand why angular momentum of the spacecraft is conserved while
linear momentum is not?)

The kinetic energy is K = 1
2 mv2, and the potential energy is U =

−mMG/r. The total energy E = K + U is

E =
1
2

mv2 − mMG
r

.
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Initially, r → ∞, and

Li = −mb′v0,

Ei =
1
2

mv0
2.

A collision first occurs when this distance of closest approach is the
radius of the planet. At the point of closest approach, r and v are per-
pendicular. If v(R) is the speed at this point,

Lc = −mRv(R)

Ec =
1
2

mv(R)2 − mMG
R

.

Because L and E are conserved, Li = Lc and Ei = Ec. Hence

− mb′v0 = −mRv(R) (1)

1
2

mv0
2 =

1
2

mv(R)2 − mMG
R

. (2)

Equation (1) gives v(R) = v0b′/R, and by substituting this in Eq. (2) we
obtain

(b′)2 = R2
(
1 +

mMG/R
mv0

2/2

)
.

The effective area is

Ae = π(b′)2

= πR2
(
1 +

mMG/R
mv0

2/2

)
.

As we expect, the effective area is greater than the geometrical area.
Since mMG/R = −U(R), and mv0

2/2 = E, we have

Ae = Ag

(
1 − U(R)

E

)
.

If we “turn off” gravity U(R) → 0, then Ae → Ag, as we require.
Furthermore, as E → 0, Ae → ∞, which means that it is impossible to
miss the planet, provided that the spacecraft starts from rest. For E = 0,
the spacecraft inevitably falls into the planet.

The gravitational force is attractive, so that Ae > Ag always. The
same form of force law governs the interaction of electric charges, but
electric forces can be repulsive or attractive. For the repulsive force,
Ae < Ag.

If there is a torque on a system the angular momentum must change
according to τ = dL/dt, as the following examples illustrate.
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Example 7.8 Angular Momentum of a Sliding Block 2
For a simple illustration of the relation τ = dL/dt, consider a small
block of mass m sliding along the x axis with velocity v = vî. The
angular momentum of the block around origin B is

LB = mrB × v (1)

= mlvk̂,

as we discussed in Example 7.1. If the block is sliding freely, v does
not change, and LB is therefore constant, as we expect, because there
is no torque on the block.

rB

LB

v

z

l

B

m
x

y

Suppose now that the block slows because of a friction force f = − f î.
The torque on the block around origin B is

τB =rB × f

= − l f k̂.

We see from Eq. (1) that as the block slows, LB remains along the posi-
tive z direction but its magnitude decreases. Therefore, the change ΔLB

in LB points in the negative z direction, as shown in the sketch. The di-
rection of ΔLB is the same as the direction of τB. From the fundamental
relation τ = dL/dt, the vectors τ and ΔL are always parallel.

rB

τB

f
z

l

B

x

y

ΔL

x

z

y

LB (t + Δt)
LB (t)

From Eq. (1),
ΔLB = ml Δvk̂, (2)

where Δv < 0. Dividing Eq. (2) by Δt and taking the limit Δt → 0, we
have

dLB

dt
= ml

dv
dt

k̂. (3)

By Newton’s second law, m dv/dt = − f and Eq. (3) becomes

dLB

dt
= −l f k̂

= τB,

as we expect.

It is important to keep in mind that because τ and L depend on the
choice of origin, the same origin must be used for both when applying
the relation τ = dL/dt, as we were careful to do in this problem.

The angular momentum of the block in this example changed only in
magnitude and not in direction, because τ and L happened to be along
the same line. In the next example we return to the conical pendulum to
study a case in which the angular momentum is constant in magnitude
but changes direction due to an applied torque.
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Example 7.9 Dynamics of the Conical Pendulum
In Example 7.2, we calculated the angular momentum of a conical
pendulum around two different origins. For an origin at the center of
the circular plane of motion, L is constant. In contrast, for an origin on
the axis at the pivot point, L sweeps through space as the pendulum
rotates. Nevertheless, as we shall show, the relation τ = dL/dt is
satisfied for both origins.

ω

α
l

T

rA

z

Mg

The sketch illustrates the forces on the bob, where T is the tension in
the string. For uniform circular motion there is no vertical acceleration,
and consequently

T cosα − Mg = 0. (1)

As the bob moves along its circular path, it accelerates toward the axis.
Hence, the net force on F on the bob is radially inward: F = −T sinαr̂.
The torque on M around origin A is

τA = rA × F
= 0,

since rA and F are both in the r̂ direction. Hence
dLA

dt
= 0

and we have the result
LA = constant

as we already know from Example 7.2.

τ

α

F

ω

z

B

l cos α
l = |rB|

The situation is entirely different if we take the origin at B. The torque
τB is

τB = rB × F.

Hence

|τB| = lF cosα = lT cosα sinα
= Mgl sinα,

where we have used T cosα = Mg from Eq. (1). The drawing shows
that the direction of τB is tangential to the line of motion of M:

τB = Mgl sinαθ̂, (2)

where θ̂ is the unit tangential vector in the plane of motion.

Our problem is to show that the relation

τB =
dLB

dt
(3)

is satisfied.
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α

ω
z

LB =
 Mlr ω

Lz

Lr

l

r

From Example 7.2, we know that LB has constant magnitude Mlrω.
As the diagram shows, LB has a vertical component Lz = Mlrω sinα
and a horizontal radial component Lr = Mlrω cosα. Writing LB =

Lz + Lr, we see that Lz is constant, as we expect because τB has no
vertical component. Lr, however, is not constant; it changes direction
as the bob swings around while the magnitude of Lr remains constant.
We encountered such a situation in Section 1.8, where we showed that
the only way a vector A of constant magnitude can change in time is
to rotate, and that if its instantaneous rate of rotation is dθ/dt, then
|dA/dt| = Adθ/dt. We can employ this relation directly to obtain∣∣∣∣∣dLr

dt

∣∣∣∣∣ = Lrω.

Because we shall invoke this result frequently, let us take a moment to
rederive it geometrically.

Δθ

Δθ

Lr

Lr
ΔLr ≈ Lr Δθ

Lr (t + Δt)

Lr (t)

ΔLr The vector diagrams show Lr at a time t and at t + Δt. During the
interval Δt, the bob swings through angle Δθ = ω Δt, and Lr rotates
through the same angle. The magnitude of the vector difference ΔLr =

Lr(t + Δt) − Lr(t) is given approximately by

|ΔLr | ≈ LrΔθ.

In the limit Δt → 0, we have
dLr

dt
= Lr

dθ
dt

= Lrω.

Since Lr = Mlrω cosα, we have
dLr

dt
= Mlrω2 cosα.

Mrω2 is the radial force, T sinα so that Mlrω2 cosα = Tl sinα cosα.
Because T cosα = Mg, we have

dLr

dt
= Mgl sinα,

which agrees with the magnitude of τB from Eq. (2). Furthermore, as
the vector drawings indicate, dLr/dt lies in the tangential direction,
parallel to τB, as we expect.

Another way to calculate dLB/dt is to write LB in vector form and then
differentiate:

LB = (Mlrω sinα)k̂ + (Mlrω cosα)r̂.
dLB

dt
= Mlrω cosα

dr̂
dt

= Mlrω2 cosαθ̂,

where we have used dr̂/dt = ωθ̂.
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It is important to be able to visualize angular momentum as a vector
that can rotate in space. This type of reasoning occurs often in analyz-
ing the motion of rigid bodies; we shall find it particularly helpful in
understanding gyroscope motion in Chapter 8.

7.6 Dynamics of Fixed Axis Rotation
In Chapter 4 we showed that the translational motion of a system of
particles is simple to describe if we distinguish between external forces
and internal forces acting on the particles. The internal forces cancel by
Newton’s third law, and the momentum changes only because of external
forces. This leads to the law of conservation of momentum: the momen-
tum of an isolated system is constant.

In describing rotational motion it is tempting to follow the same pro-
cedure by distinguishing between external and internal torques. Unfor-
tunately, there is no way to prove from Newton’s laws that the internal
torques add to zero. Nevertheless, it is an experimental fact that inter-
nal torques always cancel because the angular momentum of an isolated
system has never been observed to change. We shall discuss this more
fully in Chapter 8, and for the remainder of this chapter we shall simply
assume that only external torques change the angular momentum of a
rigid body.

In this section we consider what might be called “fixed, fixed-axis”
rotation, that is, rotation around an axis that is rigidly mounted and can-
not translate. Examples could be the motion of a gate on its hinges or the
turning of a water wheel. Motion like this, for which there is an axis of
rotation at rest, is referred to as pure rotation. Pure rotation is important
because it is simple and because it is frequently encountered.

Consider a body rotating with angular speed ω around the z axis. From
Eq. (7.4) the z component of angular momentum is

Lz = Iω.

Since τ = dL/dt, where τ is the external torque, we have

τz =
d
dt

(Iω)

= I
dω
dt

= Iα,

where α = dω/dt is called the angular acceleration. We are concerned
with rotation around the z axis only and so we can drop the subscript z
and write

τ = Iα. (7.8)

As a simple illustration, recall that in Example 7.4 we showed that the
torque on a body in a uniform gravitational field is R ×W, where R is
the vector from an origin to the center of mass and W is the weight. It
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follows that to balance an object (α = 0) the pivot point must be at the
center of mass R = 0.

Equation (7.8) is reminiscent of F = ma. There is a close analogy
between linear and rotational motion, with moment of inertia analogous
to mass, torque analogous to force, and angular acceleration analogous
to linear acceleration. We can develop the analogy further by evaluating
the kinetic energy of a body undergoing pure rotation:

K =
∑

j

1
2 mjv j

2

=
∑

j

1
2 mjρ j

2ω2

= 1
2 Iω2,

where we have used v j = ρ jω and I = Σmjρ j
2. This is clearly analogous

to the kinetic energy due to the translational motion of a body: K =
1
2 MV2, where V is the speed of the center of mass.

The method of handling problems involving rotation under applied
torques is a straightforward extension of the familiar procedure for treat-
ing translational motion under applied forces, as the following example
illustrates.

Example 7.10 Atwood’s Machine with a Massive Pulley
The problem is to find the acceleration a for the arrangement shown in
the sketch. The rope does not slip on the pulley and the effect of the
massive pulley is to be included.

α

α

M1

T1

T1 T2

T2

M2

Mρ

Wρ

N

R R

a

R

a

a

a

W1

W2
M1

M2

Force diagrams for the three masses are shown in the sketch, including
the points of application of the forces on the pulley, which is necessary
to do whenever we need to calculate torques. The pulley evidently un-
dergoes pure rotation around its axle, so we take the axis of rotation to
be the axle.

The equations of motion are

W1 − T1 = M1a mass1
T2 −W2 = M2a mass2

τ = T1R − T2R = Iα net torque on pulley
N − T1 − T2 −Wp = 0 net vertical force on pulley.

Note that in the torque equation, α must be positive counterclock-
wise to correspond to our convention that torque out of the paper is
positive.

N is the force on the axle, and the equation for the net vertical force on
the pulley simply assures that the pulley does not fall. Since we don’t
need to know N, it does not contribute to the solution.



262 ANGULAR MOMENTUM AND FIXED AXIS ROTATION

There is a constraint relating a and α, assuming that the rope does not
slip. The velocity of the rope is the velocity of a point on the surface of
the wheel, v = ωR, from which it follows that a = αR.

We can now eliminate T1,T2, and α:

W1 −W2 − (T1 − T2) = (M1 + M2)a

T1 − T2 =
Iα
R
=

Ia
R2

W1 −W2 − Ia
R2 = (M1 + M2)a.

If the pulley is a simple uniform disk, we have

I = (Mp/2)R2

and it follows that

a =
(M1 − M2)g

M1 + M2 + Mp/2
.

The pulley increases the total inertial mass of the system, but in com-
parison with the hanging weights, the effective mass of the pulley is
only one-half its real mass.

7.7 Pendulum Motion and Fixed Axis Rotation
In Example 3.10 we analyzed the motion of a simple pendulum—a mass
M hanging from a string of length l in a gravitational field g. For small-
amplitude motion, we found that the pendulum executes simple har-
monic motion with frequency ω =

√
g/l. That solution, however, can-

not be extended to a real pendulum—called a physical pendulum—in
which the mass is not a particle but an extended structure and the sup-
port is not a massless string but a rod or some comparable structure.
With the tools we have developed, we can now solve the more general
problem.

We begin by describing the equation of motion of the simple pendu-
lum using the formalism of fixed axis rotation.

7.7.1 The Simple Pendulum
We analyzed the simple pendulum in Example 3.10 by a straightforward
application of F = Ma. The solution was correct, but hardly elegant. The
bob on a pendulum moves on a circular arc, a case of fixed axis rotation,
so the problem practically cries out to be analyzed using the language of
angular momentum.

φ

T

l

a

Mg

Consider the angular momentum and torque around the pivot point
a. The moment of inertia of the mass is Ia = Ml2. The tension in the
string is a radial force and consequently exerts no torque around a; the
torque arises exclusively from the weight W = Mg of the bob. The torque
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is τa = −Wr⊥ = −Wl sin φ. (The minus sign is because the torque is
clockwise around a.) Using the small-angle approximation sin φ ≈ φ,
the equation of motion is

τa = Iaα = Iaφ̈,

−Wlφ = Iaφ̈,

Iaφ̈ = −Wlφ,

φ̈ +
Wl
Ia
φ = 0,

or, using I0 = Ml2,

φ̈ +
g
l
φ = 0.

This is the equation of motion for a simple harmonic oscillator whose
solution was described in Example 3.10 and proved in Example 5.2

φ = A sinωt + B cosωt.

The frequency of the oscillatory motion is

ω =

√
Wl
Ia
=

√
Mgl
Ml2

=

√
g
l
. (7.9)

Caution: The symbol ω here stands for the angular frequency of the os-
cillator, a convention widely used in physics. However, we have used the
same symbol to represent angular speed, which is also consistent with
usage in physics. In this problem, the angular speed of the pendulum is
φ̇. It is easy to confuse the two usages, particularly because they both
have the same physical dimension [T]−1, and are both measured in units
of radians per second.

For the pendulum to obey the equation of motion of a harmonic os-
cillator we had to make the small-angle approximation: sin φ ≈ φ. Few
problems in physics have exact solutions, and approximations like the
small-angle approximation are often required. Because quantitative pre-
diction is the essence of physics, it is important to determine the accuracy
of an approximation wherever possible.

Note 5.1 investigates the accuracy of the small-angle approximation.
The most important effect is that the finite amplitude of the swing causes
a small increase in the period of the motion. For small amplitudes φ0, the
period T of the pendulum is

T ≈ T0(1 + φ2
0/16),

where T0 = 2π
√

l/g.

7.7.2 The Physical Pendulum
Now let us turn to the physical pendulum, a real pendulum such as the
one in the sketch.
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The swinging object can have any shape. Its mass is M, and its center
of mass is at distance l from the pivot. The moment of inertia around the
pivot, Ia, is no longer Ml2 but a quantity that depends on the particular
shape. Other than this, the analysis is identical to that for the simple
pendulum that we discussed in Section 7.7.1. The pendulum executes
simple harmonic motion with frequency ω =

√
Mgl/Ia.

φ

a l

l
a

W

M

Center
of mass We can write this result in a simpler form if we introduce the idea of

radius of gyration. If the moment of inertia of an object about its center
of mass is I0, the radius of gyration k is defined as

k ≡
√

I0

M
. (7.10)

A ring of radius R has kring = R; for a disk, kdisk =
√

1/2R; and for a
solid sphere, ksphere =

√
2/5R.

By the parallel axis theorem we have

Ia = I0 + Ml2

= M(k2 + l2),

so that

ω =

√
gl

k2 + l2
.

The simple pendulum corresponds to k = 0, in which case we obtain
ω =

√
g/l, as expected.

Example 7.11 Kater’s Pendulum
Between the sixteenth and twentieth centuries, the most accurate mea-
surements of g were obtained from experiments with pendulums. The
method is attractive because the only quantities needed are the pendu-
lum’s dimensions and the pendulum’s period, which can be determined
to great accuracy by counting many swings. For precise measurements,
the limiting feature turned out to be the accuracy with which the center
of mass of the pendulum and its radius of gyration can be determined.
A clever invention, named after the nineteenth-century English
physicist, surveyor, and inventor Henry Kater, overcame this difficulty.

Center
of mass

Knife
edge

lA

lB

Kater’s pendulum has two knife edges and the pendulum can be
suspended from either. If the knife edges are distances lA and lB from
the center of mass, then the period for small oscillations from each of
these is, respectively,

TA = 2π

√
k2 + lA

2

glA

TB = 2π

√
k2 + lB

2

glB
.
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In operation, lA or lB is adjusted until the periods are identical:
TA = TB = T. This can be done with great precision. We can then
eliminate T and solve for k2:

k2 =
lAlB

2 − lBlA
2

lB − lA

= lAlB.

Then

T = 2π

√
lAlB + (lA)2

glA

= 2π

√
lA + lB

g

or

g = 4π2
(

lA + lB

T 2

)
.

The beauty of Kater’s invention is that the only geometrical quantity
needed is lA + lB, the distance between the knife edges, which can be
measured to high accuracy. The position of the center of mass need
not be known.

Example 7.12 Crossing Gate
A simple railroad crossing gate consists of a long narrow plank of
mass M and length 2L pivoted at one end. While the gate is open,
the gate is stored slightly off vertical, so that when the closing signal
comes, the gate rotates downward. It is stopped by a support rod that
keeps the gate horizontal, as shown in the sketch.

Where should the support rod be placed to minimize wear and tear on
the pivot? The force Fs on the gate due to the support rod and the force
Fp due to the pivot can each be resolved into a component perpen-
dicular to the gate and a component along the gate. The components
along the gate provide the radial centripetal acceleration of the rotat-
ing gate, but because we will focus on the short time of impact, these
components are small compared to the large impact forces and can be
neglected.

L

l

L

Mg

Fsν Fpν The sketch shows the vertical forces acting on the gate at the moment of
impact: the component Fsv due to the support, the vertical component
Fpv due to the pivot, and the weight force. We shall see that Fpv can be
made to vanish, minimizing the force on the pivot.
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Taking torques around the pivot,

τ = MgL − Fsvl

= Ipθ̈

where Ip is the moment of inertia around the pivot, L is the distance
from the pivot to the center of mass, and l is the distance from the pivot
to the support rod. Integrating over the short time of the collision from
t to t + Δt gives

Ipθ̇ ≈ (MgL − Fsvl)Δt

≈ −FsvlΔt. (1)

The torque due to the weight force can be neglected compared to the
torque due to the much larger impact force.

Applying Newton’s second law to the motion of the center of mass,

M
dV
dt
= −(Fsv + Fpv) + Mg

and integrating

MV = MLθ̇ = −(Fsv + Fpv), (2)

where the impulse due to the weight force can be neglected over the
short collision time.

Solving Eq. (1) for FsvΔt = −Ipθ̇/l and using this in Eq. (2) gives

FpvΔt = (Ip/l − ML)θ̇. (3)

Equation (3) shows that if we make Ip/l − ML = 0, the impulse due
to Fpv vanishes, minimizing the force on the pivot. The support rod
should be placed at

l =
Ip

ML
. (4)

Assuming that the gate is like a long, thin rod, we showed in Example
7.3(d) that Ip = M(2L)2/3, so that l = 4L/3.

The distance l specified by Eq. (4) in the previous example is called
the center of percussion. In batting a baseball it is important to hit the
ball at the bat’s center of percussion to avoid a reaction on the batter’s
hands and a painful sting.l

From Eq. (7.10), the definition of radius of gyration is k =
√

I0/M.
The distance to the center of percussion is therefore l = k2/L, where k is
the radius of gyration about the pivot and L is the distance from the pivot
to the center of mass.
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7.8 Motion Involving Translation and Rotation
Often translation and rotation occur in the same system, as for example
a drum rolling down an incline. In such a situation there is no obvious
axis as there was in Section 7.6 where we analyzed pure rotation. The
problem seems confusing until we recall the theorem in Note 7.1—it is
always possible to describe any motion of a rigid body by a translation
of its center of mass plus a rotation around its center of mass. By using
center of mass coordinates we will find simple expressions for both the
translational and rotational motions, as well as the dynamical equation
connecting them.

We continue to consider only fixed axis rotation, for which the axis
of rotation does not change direction, but now we will let the axis itself
translate. Let the z axis be along the axis of rotation. We shall show that
Lz, the z component of the angular momentum of the body, can be written
as the sum of two terms: Lz is the angular momentum I0ω due to rotation
of the body around its center of mass, plus the angular momentum (R ×
MV)z due to motion of the center of mass with respect to the origin of
the inertial coordinate system:

Lz = I0ω + (R × MV)z, (7.11)

where R is a vector from the origin to the center of mass, V = Ṙ, and I0
is the moment of inertia around the center of mass.

m2

m1

r2

r1

R

r′′2

r′1

y

y ′

z ′

x ′

x

z

To prove Eq. (7.11), we start by considering the body to be an aggre-
gation of N particles with masses mj ( j = 1, . . . ,N), located at r j with
respect to the chosen origin in an inertial system. The angular momen-
tum of the body is

L =
N∑

j=1

(r j × mjṙ j). (7.12)

The center of mass of the body has position vector R:

R =
Σmjr j

M
, (7.13)

where M is the total mass. Let us employ the center of mass coordinates
r′j that were introduced in Section 4.3:

r j = R + r′j. (7.14)

Combining Eqs. (7.12) and (7.14) gives

L =
∑

(R + r′j) × mj(Ṙ + ṙ′j)

= R ×
∑

mjṘ +
∑

mjr′j × Ṙ + R ×
∑

mjṙ′j +
∑

mjr′j × ṙ′j.
(7.15)

This expression looks cumbersome, but we can show that the middle two
terms are identically zero and that the first and last terms have simple
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physical interpretations. Starting with the second term, we have∑
mjr′j =

∑
mj(r j − R)

=
∑

mjr j − MR

= 0

by Eq. (7.13). The third term is also zero; because
∑

mjr′j is identically
zero, its time derivative vanishes.

The first term is

R ×
∑

mjṘ = R × MṘ

= R × MV,

where V ≡ Ṙ is the velocity of the center of mass with respect to the
inertial system. Equation (7.15) becomes

L = R × MV +
∑

r′j × mjṙ′j. (7.16)

The first term of Eq. (7.16) represents the angular momentum due to the
center of mass motion. The second term represents angular momentum
due to motion around the center of mass. The only way for the particles
of a rigid body to move with respect to the center of mass is for the body
as a whole to rotate. We shall evaluate the second term for an arbitrary
axis of rotation in Chapter 8. In this chapter, however, we are restricting
ourselves to fixed axis rotation around the z axis. The z component of
Eq. (7.16) is

Lz = (R × MV)z +
(∑

r′j × mjṙ′j
)

z
. (7.17)

The second term can be simplified. The body has angular speedω around
its center of mass, and because the origin of r′j is the center of mass, the
second term is identical in form to the case of pure rotation we treated in
Section 7.6: (∑

mjr′j × ṙ′j
)

z
=
(∑

mjρ
′
j × ρ̇′j

)
z

=
∑

mjρ
′
j
2ω

= I0ω,

where ρ′j is the vector to mj perpendicular from a z axis through the
center of mass, and I0 =

∑
mjρ

′
j
2 is the moment of inertia of the body

around this axis.

mj

Center
of mass

r′′j

ρ′j

y

x

z

Collecting our results, we have

Lz = I0ω + (R × MV)z. (7.18)

We have proven the result asserted at the beginning of this section: the
angular momentum of a rigid object is the sum of the angular momentum
of rotation around its center of mass and the angular momentum of the
center of mass around the origin. These two terms are often referred to
as the spin and orbital terms, respectively. The Earth’s motion around
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the Sun illustrates the distinction nicely. The daily rotation of the Earth
around its polar axis gives rise to the Earth’s spin angular momentum,
and the Earth’s annual revolution around the Sun gives rise to its orbital
angular momentum.

Orbital
motion

Spin
motion

An important feature of spin angular momentum is that it is indepen-
dent of the coordinate system. In this sense it is intrinsic to the body; no
change in coordinate system can eliminate spin, whereas orbital angu-
lar momentum disappears if the origin is chosen to lie along the line of
motion.

Equation (7.18) is valid even if the center of mass is accelerating, be-
cause L was calculated with respect to an inertial coordinate system.

Example 7.13 Angular Momentum of a Rolling Wheel
In this example we apply Eq. (7.18) to the calculation of the angular
momentum of a uniform wheel of mass M and radius b that rolls
uniformly and without slipping. The moment of inertia of the wheel
around its center of mass is I0 =

1
2 Mb2. With the motion shown in the

sketch, the wheel’s angular momentum about the center of mass is

L0 = −I0ω

= − 1
2 Mb2ω.

L0 is parallel to the z axis. The minus sign indicates that L0 is directed
into the paper, in the negative z direction.

b

ω

v
R

y

x

Because the wheel rolls without slipping, V = bω, and

(R × MV)z = −MbV.

The total angular momentum around the origin is then

Lz = − 1
2 Mb2ω − MbV

= − 1
2 Mb2ω − Mb2ω

= − 3
2 Mb2ω.

7.8.1 Torque on a Moving Body
Torque also naturally divides itself into two terms. The torque on a body
is

τ =
∑

r j × f j

=
∑

(r′j + R) × f j

=
∑

(r′j × f j) + R × F, (7.19)

where F =
∑

f j is the total applied force. The first term in Eq. (7.19) is
the torque around the center of mass due to the various external forces,



270 ANGULAR MOMENTUM AND FIXED AXIS ROTATION

and the second term is the torque on the center of mass due to the total
external force. For fixed axis rotation Eq. (7.19) can be written

τz = τ0 + (R × F)z, (7.20)

where τ0 is the z component of the torque around the center of mass. But
from Eq. (7.18) for Lz we have

dLz

dt
= I0

dω
dt
+

d
dt

(R × MV)z

= I0α + (R × Ma)z. (7.21)

Using τz = dLz/dt, Eqs. (7.20) and (7.21) yield

τ0 + (R × F)z = I0α + (R × Ma)z

= I0α + (R × F)z.

Hence

τ0 = I0α. (7.22)

According to Eq. (7.22), rotational motion around the center of mass
depends only on the torque around the center of mass, independent of
the translational motion. In other words, Eq. (7.22) is correct even if the
axis is accelerating.

Let us recapitulate the line of reasoning in this derivation. Starting
with the fundamental equation

τ =
dL
dt

and applying it to rotation around an axis fixed in direction, for instance
in a rolling body, we showed that

Lz = (R × MV)z + I0ω

dLz

dt
=

d
dt

(R × MV)z + I0
dω
dt
.

Using dR/dt = V, MdV/dt = F and dω/dt = α

dLz

dt
= (R × F)z + I0α.

But dLz/dt = τz and from Eq. (7.20)

τz = τ0 + (R × F)z.

Comparing our results, it follows that

τ0 = I0α.

The result τ0 = I0α closely resembles the equation of motion for trans-
lation in one dimension Fz = maz, and demonstrates the close analogies
between the equations of motion for translational and rotational motion
even though the two modes of motion are totally independent.
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The same type of natural separation holds true for the kinetic energy
K.

K = 1
2

∑
mjv j

2

= 1
2

∑
mj(ρ̇′j + V)2

= 1
2

∑
mjρ̇

′
j
2 +
∑

mjρ̇
′
j · V + 1

2

∑
mjV2

= 1
2 I0ω

2 + 1
2 MV2. (7.23)

The first term corresponds to the kinetic energy of spin angular momen-
tum, and the last term arises from the orbital center of mass motion.

Note 7.2 summarizes the dynamical relations governing fixed axis
rotation.

Example 7.14 Disk on Ice
A disk of mass M and radius b is pulled with constant force F by a thin
tape wound around its circumference. The disk slides on ice without
friction. What is its motion?

F

b

M

We shall solve the problem by two different methods.

Method 1

a

y

b

x
A F

v
R

α

Analyzing the motion around the center of mass we have

τ0 = bF

= I0α

or

α =
bF
I0
.

The acceleration of the center of mass is

a =
F
M
.

Method 2
We choose a coordinate system whose origin at point A is on the line
of F. The torque around A is

τz = τ0 + (R × F)z

= bF − bF = 0.

The torque is zero, as we expect, and angular momentum around the
origin is conserved. The angular momentum around A is

Lz = I0ω + (R × MV)z

= I0ω − bMV.
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Because dLz/dt = 0, we have

0 = I0α − bMa

or

α =
bMa

I0
=

bF
I0
,

as before.

Example 7.15 Drum Rolling Down a Plane
A uniform drum of radius b and mass M rolls without slipping down
a plane inclined at angle θ. The moment of inertia of the drum
around its axis is I0 = Mb2/2. Find the drum’s acceleration along the
plane.

Method 1

f N w

a

b

θ

θ

α

The forces on the drum are shown in the diagram. f is the force of
friction. The translation of the center of mass along the plane is given
by

W sin θ − f = Ma

and the rotation around the center of mass obeys

b f = I0α.

For rolling without slipping, we have

a = bα.

Eliminating f ,

W sin θ − I0
α

b
= Ma.

Using I0 = Mb2/2, α = a/b, and W = Mg, we obtain

Mg sin θ − Ma
2
= Ma

or

a = 2
3 g sin θ.

A

A

y

y

f

f

x

x

w
N

R⊥
R||

N w
V

b

θ

ω

Method 2
Choose a coordinate system whose origin A is on the plane. The torque
around A is

τs = (R × F)z

= −R +W sin θ + R‖(N −W cos θ)
= −bW sin θ,
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since R⊥ = b and W cos θ = N. The angular momentum around A is

Lz = −I0ω + (R × MV)z

= − 1
2 Mb2ω − Mb2ω

= − 3
2 Mb2ω,

where (R × MV)z = −Mb2ω, as in Example 7.13. Since τz = dLz/dt,
we have

bW sin θ =
3
2

Mb2α,

or

α =
2
3

W
Mb

sin θ =
2
3

g sin θ
b

.

For rolling without slipping, a = bα and

a = 2
3 g sin θ.

Note that the analysis would have been even more direct if we had
chosen the origin at the point of contact. In this case we can calculate
τz directly from

τz =
∑

(r j × f j)z.

Since the unknown forces f and N act at the origin, they do not con-
tribute to the torque. The torque is due only to W, and

τz = −bW sin θ.

The moment of inertia about the contact point is I = Mb2 + I0 =
3
2 Mb2

by the parallel axis theorem. Using a = −αb = τzb/I, we find a =
2
3 g sin θ as before.

f

R

N
w
θ

7.9 The Work–Energy Theorem and
Rotational Motion

In Chapter 5 we derived the work–energy theorem for a particle

Kb − Ka = Wba

where

Wba = C
∫ rb

ra

F · dr.

We can generalize this for a rigid body and show that the work–energy
theorem divides naturally into two parts, one dealing with translational
energy and one dealing with rotational energy.
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To derive the translational part, we start with the equation of motion
for the center of mass

F = M
d2R
dt2

= M
dV
dt
.

The work done when the center of mass is displaced by dR = V dt is

F · dR = M
dV
dt
· V dt

= d( 1
2 MV2).

Integrating, we obtain

C
∫ Rb

Ra

F · dR = 1
2 MVb

2 − 1
2 MVa

2. (7.24)

Now let us evaluate the work associated with the rotational kinetic en-
ergy. The equation of motion for fixed axis rotation around the center of
mass is

τ0 = I0α

= I0
dω
dt
.

Rotational kinetic energy has the form 1
2 I0ω

2, which suggests that we
multiply the equation of motion by dθ = ωdt:

τ0 dθ = I0
dω
dt
ωdt

= d( 1
2 I0ω

2).

Integrating, we find that∫ θb

θa

τ0 dθ = 1
2 I0ωb

2 − 1
2 I0ωa

2. (7.25)

The integral on the left evidently represents the work done by the applied
torque.

The general work–energy theorem for a rigid body is therefore

Kb − Ka = Wba,

where K = 1
2 MV2 + 1

2 I0ω
2 and Wba is the total work on the body

as it moves from position a to position b. We see from Eqs. (7.24)
and (7.25) that the work–energy theorem is composed of two indepen-
dent theorems, one for translation and one for rotation. In many prob-
lems these theorems can be applied separately, as the following example
shows.
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Example 7.16 Drum Rolling Down a Plane: Energy Method
Consider once again a uniform drum of radius b, mass M, weight
W = Mg, and moment of inertia I0 = Mb2/2 on a plane of angle β. If
the drum starts from rest and rolls without slipping, find the speed V
of its center of mass after it has descended a height h.

ω

β

vM

b

The forces on the drum are shown in the sketch.

f
N w l

h
β β

The energy equation for the translational motion is

C
∫ b

a
F · dr = 1

2 MVb
2 − 1

2 MVa
2

or
(W sin β − f )l = 1

2 MV2, (1)

where l = h/ sin β is the displacement of the center of mass as the drum
descends height h.

The energy equation for the rotational motion is∫ θb

θa

τ dθ = 1
2 I0ωb

2 − 1
2 I0ωa

2,

or
f bθ = 1

2 I0ω
2,

where θ is the rotation angle around the center of mass. For rolling
without slipping, bθ = l. Hence

f l = 1
2 I0ω

2. (2)

We also have ω = V/b, so that

f l =
1
2

I0V2

b2 .

Using this in Eq. (1) to eliminate f gives

Wh =
1
2

( I0

b2 + M
)

V2

=
1
2

(M
2
+ M

)
V2

= 3
4 MV2

or

V =

√
4gh
3
.

An interesting point in this example is that the friction force is not dis-
sipative. From Eq. (1), friction decreases the translational energy by
an amount f l. However, from Eq. (2), the torque exerted by friction
increases the rotational energy by the same amount. In this motion,
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friction simply transforms mechanical energy from one mode to an-
other. This is no longer the case if slipping occurs, and then some of
the mechanical energy is dissipated as heat.

We conclude this section with an example involving constraints that is
easily handled by energy methods.

Example 7.17 The Falling Stick
A stick of length l and mass M, initially upright on a frictionless table,
starts falling. The problem is to find the speed of the center of mass as
a function of the angle θ from the vertical.

The key lies in realizing that because there are no horizontal forces, the
center of mass must fall straight down. Since we must find velocity as
a function of position, it is natural to apply energy methods.

The sketch shows the stick after it has rotated through angle θ and the
center of mass has fallen distance y.l/2 – y

l/2

θ

y

The initial energy is

E = K0 + U0

=
Mgl

2
.

The kinetic energy at a later time is

K = 1
2 I0θ̇

2 + 1
2 Mẏ2

and the corresponding potential energy is

U = Mg
(

l
2
− y
)
.

Because there are no dissipative forces, mechanical energy is conserved
and K + U = K0 + U0 = Mgl/2. Hence

1
2 Mẏ2 + 1

2 I0θ̇
2 + Mg

(
l
2
− y
)
= Mg

l
2
.

We can eliminate θ̇ by using the constraint equation. The sketch shows
that

y =
l
2

(1 − cos θ).

Hence

ẏ =
l
2

sin θ θ̇

and

θ̇ =
2

l sin θ
ẏ.
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Using I0 = Ml2/12, we obtain

1
2 Mẏ2 + 1

2 M
l2

12

(
2

l sin θ

)2
ẏ2 + Mg

(
l
2
− y
)
= Mg

l
2

or

ẏ2 =
2gy

[1 + 1/(3 sin2 θ)]
,

ẏ =

√
6gy sin2 θ

3 sin2 θ + 1
,

=

√
3lg(1 − cos θ) sin2 θ

3 sin2 θ + 1
.

7.10 The Bohr Atom
The theory of the hydrogen atom published by the Danish physicist Niels
Bohr in 1913 pointed the way to the creation of quantum mechanics in
the 1920s. We conclude this chapter with a description of Bohr’s theory
to illustrate how the concepts of angular momentum and energy devel-
oped in this chapter were carried forward to help create a new theory.
Our description of the Bohr theory is similar, though not identical, to
Bohr’s paper that he published in 1913 at the age of 26. This brief ac-
count cannot deal adequately with the background to the Bohr theory,
but it may give some of the flavor of one of the great chapters in physics.
Our discussion is not rigorous: this account is intended to be in the spirit
of optional reading rather than an essential step in our development of
classical mechanics.

The development of optical spectroscopy in the nineteenth century
made available a great deal of experimental data on the structure of
atoms. The light from atoms excited by an electric discharge is radi-
ated only at certain discrete wavelengths characteristic of the element in-
volved. In the last half of the nineteenth century tremendous efforts were
devoted to measuring the wavelengths and intensities of these spectral
lines. The wavelength measurements represented a notable experimen-
tal achievement but their interpretation was a notable failure; aside from
certain empirical rules that gave no insight into the underlying physical
laws, there was no progress in fundamental understanding.

The most celebrated empirical spectral formula was discovered in
1886 by the Swiss high school art teacher Joseph Balmer. He found that
the wavelengths of the optical spectrum of atomic hydrogen are given
within experimental accuracy by the formula

1
λ
= R∞

(
1
22 −

1
n2

)
n = 3, 4, 5, . . . ,
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where λ is the wavelength of a particular spectral line, and R∞ is a con-
stant, named the Rydberg constant after the Swedish spectroscopist who
modified Balmer’s formula to apply to certain other spectra. Numeri-
cally, R∞ = 109, 700 cm−1. (In this section we shall follow the former
tradition of atomic physics by using CGS units.)

Not only did Balmer’s formula account for the known lines of hydro-
gen, n = 3 through n = 6, it predicted other lines, n = 7, 8, . . . , which
were quickly found. Furthermore, Balmer suggested that there might be
other lines given by

1
λ
= R∞

(
1

m2 −
1
n2

)
m = 3, 4, 5, . . . n = m + 1, m + 2, . . . (7.26)

and these, too, were found. (Balmer overlooked the series with m = 1,
lying in the ultraviolet, which was found in 1916.)

The Balmer formula undoubtedly contained the key to the structure of
hydrogen, yet no one was able to create a model for an atom that could
radiate such a spectrum.

J. J. Thomson, working in the Cavendish physical laboratory at
Cambridge University, surmised the existence of electrons in 1897. This
first indication of the divisibility of the atom stimulated further work,
and in 1911 New Zealand-born Ernest Rutherford’s α scattering experi-
ments at the University of Manchester showed that atoms have a charged
core that contains most of the mass. Each atom has an integral number
of electrons and an equal number of positive charges in the massive core.
However, this planetary model of the atom created a crucial dilemma: ac-
cording to the laws of electromagnetic theory, the circulating electrons
should radiate their energy in a very short time and spiral into the core.

A further development in physics that played an essential role in
Bohr’s theory was Einstein’s theory of the photoelectric effect. In 1905,
the same year that he published the special theory of relativity, Einstein
proposed that the energy transmitted by light consists of discrete “pack-
ages,” or quanta. The quantum of light is called a photon, and Einstein
asserted that the energy of a photon is E = hν, where ν is the frequency
of the light and h = 6.62×10−27 erg · s is Planck’s constant. (Max Planck
had introduced h in 1901 in his theory of radiation from hot bodies.)

Bohr made the following postulates:

1. Atoms cannot possess arbitrary amounts of energy but must exist only
in certain stationary states. While in a stationary state, an atom does
not radiate. By this bold but totally unjustified step, Bohr swept aside
the problem of atomic stability.

2. An atom can “jump” from one stationary state a to a lower state b by
emitting radiation with energy Ea − Eb. The frequency of the emitted
“package of radiation” is

ν =
Ea − Eb

h
.

In 1926 the “package” was given the name photon.
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3. While in a stationary state, the motion of an electron can be described
by classical physics, notwithstanding that the idea of energy jumps
was totally novel.

4. The angular momentum of the electron is nh/2π, where n is an in-
teger. In other words, angular momentum is quantized—it can have
only certain discrete values.

Since assumption 1 breaks completely with classical physics, assump-
tion 3 hardly seems justified. Bohr recognized this difficulty, and possi-
bly the reason that Bohr continued to apply classical physics to this non-
classical situation was that he felt that at least some of the fundamental
concepts of classical physics should carry over into the new physics, and
that they should not be discarded until proven to be unworkable.

Bohr did not utilize postulate 4 in his first paper, although he pointed
out the possibility of doing so. It has become traditional to treat this
postulate as a fundamental assumption.

rn

vn

m0

Let us apply these four postulates to hydrogen. The hydrogen atom
consists of a single electron of charge −e and mass me, and a nucleus of
charge +e and mass M. We assume that the massive nucleus is essentially
at rest and that the electron is in a circular orbit of radius r with velocity
v. The radial equation of motion is

− mev2

r
= −e2

r2 , (7.27)

where −e2/r2 is the attractive Coulomb force between the charges. (We
are using a system of units in which the force between two charges is
Q1Q2/r2.) The energy is

E = K + U = 1
2 mev2 − e2

r
. (7.28)

Combining Eqs. (7.27) and (7.28) yields

E = −1
2

e2

r
. (7.29)

By postulate 4, the angular momentum is nh/2π, where n is an integer.
Labeling the orbit parameters by n, we have

nh
2π
= mernvn. (7.30)

Combining Eqs. (7.30) and (7.27) yields

rn =
n2h2

mee2

1
(2π)2 , (7.31)

and Eq. (7.29) gives

En = −1
2

(2π)2mee4

n2h2 . (7.32)
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If the electron makes a transition from state n to state m, the emitted
photon has frequency

v =
En − Em

h

=
(2π)2

2
mee4

h3

(
1

m2 −
1
n2

)
.

The wavelength of the radiation is given by

1
λ
=
ν

c

=
(2π)2

2c
mee4

h3

(
1

m2 −
1
n2

)
.

This is identical in form to the Balmer formula, Eq. (7.26), with the
Rydberg constant predicted to depend on fundamental constants accord-
ing to

R∞ =
(2π)2

2c
mee4

h3 .

Because Bohr’s prediction of the Rydberg constant agreed with its ob-
served value, his paper was taken seriously, even though it was filled
with contradictions.

Note 7.1 Chasles’ Theorem
Chasles’ theorem asserts that it is always possible to represent an arbi-
trary displacement of a rigid body by a translation of its center of mass
plus a rotation around its center of mass. The proof in this note is rather
detailed and an understanding of it is not necessary for following the
development of the text. However, the result is interesting and its proof
provides a nice exercise in vector methods for those interested.

To avoid algebraic complexities, we consider here a simple rigid body
consisting of two masses m1 and m2 joined by a massless rigid rod of
length l. The position vectors of m1 and m2 are r1 and r2, respectively, as
shown in the sketch. The position vector of the center of mass of the body
is R, and r′1 and r′2 are the position vectors of m1 and m2 with respect to
the center of mass. The vectors r′1 and r′2 are back to back along the line
joining the masses.

r2 m2

m1

r1

Center of massr′1

dr1

dr2

r′2R

In an arbitrary displacement of the body, m1 is displaced by dr1 and
m1 is displaced by dr2. Because the body is rigid, dr1 and dr2 are not
independent, and we begin our analysis by finding their relation. The
distance between m1 and m2 is fixed and of length l. Therefore

|r1 − r2| = l

or
(r1 − r2) · (r1 − r2) = l2. (1)

Taking differentials of Eq. (1), and recalling that d(A · A) = 2A · dA,

(r1 − r2) · (dr1 − dr2) = 0. (2)
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Equation (2) is the “rigid body condition” we seek. There are evidently
two ways of satisfying Eq. (2): either dr1 = dr2, or (dr1 − dr2) is per-
pendicular to (r1 − r2).

r1′

r2

r1 r2′

R

We now turn to the translational motion of the center of mass. By
definition,

R =
m1r1 + m2r2

m1 + m2
.

Therefore, the displacement dR of the center of mass is

dR =
m1dr1 + m2dr2

m1 + m2
. (3)

If we subtract this translational displacement from dr1 and dr2, the resid-
ual displacements dr1 − dR and dr2 − dR should give a pure rotation
around the center of mass. Before investigating this point, we notice that
since

r1 − R = r′1
r2 − R = r′2,

the residual displacements are

dr1 − dR = dr′1
dr2 − dR = dr′2. (4)

Using Eq. (3) in Eq. (4) we have

dr′1 = dr1 − dR

=

(
m2

m1 + m2

)
(dr1 − dr2) (5)

and

dr′2 = dr2 − dR

= −
(

m1

m1 + m2

)
(dr1 − dr2). (6)

Note that if dr1 = dr2, the residual displacements dr′1 and dr′2 are zero
and the rigid body translates without rotating.

We must now show that the residual displacements represent a pure
rotation around the center of mass to complete the proof. The sketch
shows what a pure rotation would look like.

dr1′

dr2′

Center of
mass

Δθ

r1′

r2′

First we show that dr′1 and dr′2 are perpendicular to the line r′1 − r′2:

dr′1 · (r′1 − r′2) = dr′1 · (r1 − r2)

=

(
m2

m1 + m2

)
(dr1 − dr2) · (r1 − r2)

= 0,
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where we have used Eq. (5) and the rigid body condition Eq. (2).
Similarly,

dr′2 · (r′1 − r′2) = 0.

Finally, we require that the residual displacements correspond to rotation
through the same angle Δθ. With reference to the sketch, this condition
in vector form is

dr′1
r′1
= −dr′2

r′2
.

Note that
r′1
r′2
=

m2

m1

by definition of the center of mass. Using Eqs. (5) and (6), we have

dr′1
r′1
=

(
m2

m1 + m2

)
(dr1 − dr2)

r′1

=

(
m1

m1 + m2

)
(dr1 − dr2)

r′2

= −dr′2
r′2
,

completing the proof.

Note 7.2 A Summary of the Dynamics of Fixed Axis Rotation
(a) Pure rotation around an axis—no translation

L = Iω

τ = Iα

K = 1
2 Iω2.

(b) Rotation and translation (subscript 0 refers to the center of
mass)

Lz = I0ω + (R × MV)z

τz = τ0 + (R × F)z

τ0 = I0α

K = 1
2 I0ω

2 + 1
2 MV2.

Problems
For problems marked *, refer to page 522 for a hint, clue, or answer.

7.1 Origins
(a) Show that if the total linear momentum of a system of par-

ticles is zero, the angular momentum of the system is the same
around all origins.
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(b) Show that if the total force on a system of particles is zero,
the torque on the system is the same around all origins.

7.2 Drum and sand*
A drum of mass MA and radius a rotates freely with initial angu-
lar speed ωA(0). A second drum with mass MB and radius b > a
is mounted on the same axis and is at rest, although it is free to
rotate. A thin layer of sand with mass Ms is distributed on the in-
ner surface of the smaller drum. At t = 0, small perforations in
the inner drum are opened. The sand starts to fly out at a constant
rate dM/dt = λ and sticks to the outer drum. Find the subsequent
angular velocities of the two drums ωA and ωB. Ignore the transit
time of the sand.

ωb

ωa

a
b

7.3 Ring and bug*
A ring of mass M and radius R lies on its side on a frictionless
table. It is pivoted to the table at its rim. A bug of mass m walks
around the ring with speed v, starting at the pivot. What is the
rotational velocity of the ring when the bug is

(a) halfway around?
(b) back at the pivot?

7.4 Grazing instrument package
A spaceship is sent to investigate a planet of mass M and radius R.
While hanging motionless in space at a distance 5R from the center
of the planet, the ship fires an instrument package with speed v0,
as shown in the sketch. The package has mass m, which is much
smaller than the mass of the spaceship. For what angle θ will the
package just graze the surface of the planet?

R

M

υ0

θ

7.5 Car on a hill
A 3000-lb car is parked on a 30◦ slope, facing uphill. The center
of mass of the car is halfway between the front and rear wheels
and is 2 ft above the ground. The wheels are 8 ft apart. Find the
normal force exerted by the road on the front wheels and on the
rear wheels.

7.6 Man on a railroad car
A man of mass M stands on a railroad car that is rounding an
unbanked turn of radius R at speed v. His center of mass is height
L above the car, and his feet are distance d apart. The man is facing
the direction of motion. How much weight is on each of his feet?

M
L

d
R

7.7 Moment of inertia of a triangle
Find the moment of inertia of a thin sheet of mass M in the shape
of an equilateral triangle around an axis through a vertex, perpen-
dicular to the sheet. The length of each side is L.
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7.8 Moment of inertia of a sphere*
Find the moment of inertia of a uniform sphere of mass M and
radius R around an axis through the center.

7.9 Bar and rollers
A heavy uniform bar of mass M rests on top of two identi-
cal rollers that are continuously turned rapidly in opposite di-
rections, as shown. The centers of the rollers are a distance 2l
apart. The coefficient of friction between the bar and the roller sur-
faces is μ, a constant independent of the relative speed of the two
surfaces.

Initially the bar is held at rest with its center at distance x0 from
the midpoint of the rollers. At time t = 0 it is released. Find the
subsequent motion of the bar.

2l

x0

7.10 Cylinder in groove*
A cylinder of mass M and radius R is rotated in a uniform V groove
with constant angular speed ω. The coefficient of friction between
the cylinder and each surface is μ. What torque must be applied to
the cylinder to keep it rotating?

45°45°

ω

7.11 Wheel and shaft*
A wheel is attached to a fixed shaft, and the system is free to rotate
without friction. To measure the moment of inertia of the wheel–
shaft system, a tape of negligible mass wrapped around the shaft
is pulled with a known constant force F. When a length L of tape
has unwound, the system is rotating with angular speed ω0. Find
the moment of inertia I0 of the system.

F

R

7.12 Beam and Atwood’s machine
A pivoted beam has a mass m1 suspended from one end and an At-
wood’s machine suspended from the other (see left-hand sketch).
The frictionless pulley has negligible mass and dimension. Gravity
is directed downward, and m2 > m3.

Find a relation between m1,m2,m3, l1, and l2 that will ensure
that the beam has no tendency to rotate just after the masses are
released.

m1

m2

m3

l1 l2
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7.13 Mass and post
A mass m is attached to a post of radius R by a string. Initially it
is distance r from the center of the post and is moving tangentially
with speed v0.

Case (a) The string passes through a hole in the center of the
post at the top. The string is gradually shortened by drawing it
through the hole.

Case (b) The string wraps around the outside of the post.
What quantities are conserved in each case? Find the final speed

of the mass when it hits the post for each case.

m

m

(a) (b)

7.14 Stick on table*
A uniform stick of mass M and length l is suspended horizontally
with end B on the edge of a table, and the other end A is held by
hand. Point A is suddenly released. At the instant after release:

(a) What is the torque around B?
(b) What is the angular acceleration around B?
(c) What is the vertical acceleration of the center of mass?
(d) From (c), find by inspection the vertical force at B.

A

B

7.15 Two-disk pendulum
A pendulum is made of two disks each of mass M and radius R
separated by a massless rod. One of the disks is pivoted through its
center by a small pin. The disks hang in the same plane and their
centers are a distance l apart. Find the period for small oscillations.

7.16 Disk pendulum
A physical pendulum is made of a uniform disk of mass M and
radius R suspended from a rod of negligible mass. The distance
from the pivot to the center of the disk is l. What value of l makes
the period a minimum?

7.17 Rod and springs
A rod of length l and mass m, pivoted at one end, is held by a spring
at its midpoint and a spring at its far end, both pulling in opposite
directions. The springs have spring constant k, and at equilibrium
their pull is perpendicular to the rod. Find the frequency of small
oscillations around the equilibrium position.
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7.18 Rod and disk pendulum
Find the period of a pendulum consisting of a disk of mass M and
radius R fixed to the end of a rod of length l and mass m. How does
the period change if the disk is mounted to the rod by a frictionless
bearing so that it is perfectly free to spin?

l

M

R 7.19 Disk and coil spring

θ

A solid disk of mass M and radius R is on a vertical shaft. The
shaft is attached to a coil spring that exerts a linear restoring
torque of magnitude Cθ, where θ is the angle measured from
the static equilibrium position and C is a constant. Neglect the
mass of the shaft and the spring, and assume the bearings to be
frictionless.

(a) Show that the disk can undergo simple harmonic motion,
and find the frequency of the motion.

(b) Suppose that the disk is moving according to θ = θ0 sin (ωt),
where ω is the frequency found in part (a). At time t1 = π/ω, a ring
of sticky putty of mass M and radius R is dropped concentrically
on the disk. Find:

(1) The new frequency of the motion.
(2) The new amplitude of the motion.

7.20 Falling plank
A thin plank of mass M and length l is pivoted at one end, as
shown. The plank is released at 60◦ from the vertical. What is the
magnitude and direction of the force on the pivot when the plank
is horizontal?

l

7.21 Rolling cylinder*
A cylinder of radius R and mass M rolls without slipping down a
plane inclined at angle θ. The coefficient of friction is μ.

What is the maximum value of θ for the cylinder to roll without
slipping?

7.22 Bead and rod
A bead of mass m slides without friction on a rod that is made to
rotate at a constant angular speed ω. Neglect gravity.

(a) Show that r = r0eωt is a possible motion of the bead, where
r0 is the initial distance of the bead from the pivot.

(b) For the motion described in part (a), find the force exerted
on the bead by the rod.

(c) For the motion described above, find the power exerted by
the agency that is turning the rod and show by direct calculation
that this power equals the rate of change of kinetic energy of the
bead.

mω

r
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7.23 Disk, mass, and tape*
A disk of mass M and radius R unwinds from a tape wrapped
around it. The tape passes over a frictionless pulley, and a mass
m is suspended from the other end. Assume that the disk drops
vertically.

(a) Relate the accelerations of m and the disk, a and A, respec-
tively, to the angular acceleration α of the disk.

(b) Find a, A, and α.m
M

R

Aa

g

α

7.24 Two drums
Drum A of mass M and radius R is suspended from a drum B also
of mass M and radius R, which is free to rotate around its axis. The
suspension is in the form of a massless metal tape wound around
the outside of each drum, and free to unwind, as shown. Gravity is
directed downward. Both drums are initially at rest. Find the initial
acceleration of drum A, assuming that it moves straight down.

R

R

M

M

B

A

7.25 Rolling marble*
A marble of mass M and radius R is rolled up a plane of angle θ.
If the initial velocity of the marble is v0, what is the distance l it
travels up the plane before it begins to roll back down?

7.26 Sphere and cylinder
A uniform sphere of mass M and radius R and a uniform cylinder
of mass M and radius R are released simultaneously from rest at
the top of an inclined plane. Which body reaches the bottom first
if they both roll without slipping?

7.27 Yo-yo on table
A yo-yo of mass M has an axle of radius b and a spool of radius
R. Its moment of inertia can be taken to be MR2/2. The yo-yo is
placed upright on a table and the string is pulled with a horizontal
force F as shown. The coefficient of friction between the yo-yo
and the table is μ.

What is the maximum value of F for which the yo-yo will roll
without slipping?

R
F

b

7.28 Yo-yo pulled at angle
The yo-yo of the previous problem is pulled so that the string
makes an angle θ with the horizontal. For what value of θ does
the yo-yo have no tendency to rotate?

R

b

7.29 Yo-yo motion
A yo-yo of mass M has an axle of radius b and a spool of radius R.
Its moment of inertia can be taken to be MR2/2 and the thickness
of the string can be neglected. The yo-yo is released from rest.

(a) What is the tension in the cord as the yo-yo descends and as
it ascends?

(b) The center of the yo-yo descends distance h before the string
is fully unwound. Assuming that it reverses direction with uniform
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spin velocity, find the average force on the string while the yo-yo
turns around.

7.30 Sliding and rolling bowling ball
A bowling ball is thrown down the alley with speed v0. Initially
it slides without rolling, but due to friction it begins to roll. Show
that its speed when it rolls without sliding is 5

7 v0.

7.31 Skidding and rolling cylinder*
A cylinder of radius R spins with angular speed ω0. When the
cylinder is gently laid on a table, it skids for a short time and even-
tually rolls without slipping. What is the final angular speed ω f ?

7.32 Two rubber wheels
A solid rubber wheel of radius R and mass M rotates with angular
speed ω0 around a frictionless pivot, as shown. A second rubber
wheel of radius r and mass m, also mounted on a frictionless pivot,
is brought into contact with it. What is the final angular speed of
the first wheel?

M

ω0

R

r

m

ω0

m

h

R

7.33 Grooved cone and mass
A cone of height h and base radius R is free to rotate around a fixed
vertical axis. It has a thin groove cut in its surface. The cone is set
rotating freely with angular speed ω0, and a small block of mass
m is released in the top of the frictionless groove and allowed to
slide under gravity. Assume that the block stays in the groove. Take
the moment of inertia of the cone around the vertical axis to be
I0.

(a) What is the angular speed of the cone when the block reaches
the bottom?

(b) Find the speed of the block in inertial space when it reaches
the bottom.

7.34 Marble in dish*
A marble of radius b rolls back and forth in a shallow dish of radius
R, where R � b. Find the frequency of small oscillations.

7.35 Cube and drum
A cubical block of side L rests on a fixed cylindrical drum of radius
R. Find the largest value of L for which the block is stable (see left-
hand sketch).

R

ma

mb

l

υ0

L

7.36 Two twirling masses*
Two masses ma and mb are connected by a string of length l and lie
on a frictionless table. The system is twirled and released with ma

instantaneously at rest and mb moving with instantaneous velocity
v0 at right angles to the line of centers (see right-hand sketch).
Find the subsequent motion of the system and the tension in the
string.
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7.37 Plank and ball*
(a) A plank of length 2l and mass M lies on a frictionless table.

A ball of mass m and speed v0 strikes its end as shown. Find the
final velocity of the ball, v f , assuming that mechanical energy is
conserved and that v f is along the original line of motion.

(b) Find v f assuming that the stick is pivoted at the lower end.M

m

v0

2l

7.38 Collision on a table*
A rigid massless rod of length l joins two particles each of mass
m. The rod lies on a frictionless table, and is struck by a particle of
mass m and velocity v0, moving as shown. After the collision, the
projectile moves straight back.

Find the angular speed of the rod around its center of mass after
the collision, assuming that mechanical energy is conserved.m

m

m

45°

l

v0
7.39 Child on ice with plank*

A child of mass m runs on ice with velocity v0 and steps on the
end of a plank of length l and mass M that is perpendicular to the
child’s path, as shown.

(a) Describe quantitatively the motion of the system after the
child is on the plank. Neglect friction with the ice.

(b) One point on the plank is at rest immediately after the colli-
sion. Where is it?

M

m

v0

l

7.40 Toothed wheel and spring
A wheel with fine teeth is attached to the end of a spring with
constant k and unstretched length l, as shown. For x > l, the wheel
slips freely on the surface, but for x < l the teeth mesh with the
teeth on the ground so that it cannot slip. The wheel has mass M
and radius R. Assume that all the mass of the wheel is in its rim.

(a) The wheel is pulled to x = l+b and released. How close will
it come to the wall on its first trip?

(b) How far out will it go as it leaves the wall?
(c) What happens when the wheel next hits the gear track?

l b

x

7.41 Leaning plank*
This problem utilizes most of the important laws introduced so far
and it is worth a substantial effort. The problem is tricky (although
not really complicated), so don’t be alarmed if the solution eludes
you.

A plank of length 2L leans against a wall. It starts to slip down-
ward without friction. Show that the top of the plank loses contact
with the wall when it is at two-thirds of its initial height.

2L

θ
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8.1 Introduction
Chapter 7 enabled us to analyze a drum rolling downhill, a yo-yo, and the
rotational motion of a body whose axis has a fixed direction. However,
to analyze a system even as simple as a bicycle rounding a bend, we
need to remove the fixed axis constraint. In this chapter we shall attack
the general problem of the motion of rigid bodies that can rotate about
any axis. Rather than emphasize the formal mathematical details, we
will try to gain insight into the basic principles, mainly by discussing
the motion of gyroscopes and other devices that have large spin angular
momentum.

Our analysis is based on the elementary concept that angular momen-
tum is a vector. Appreciating the vector nature of angular momentum
provides a simple and natural explanation for such a mysterious effect
as the precession of a gyroscope, and gives an important insight into the
general problem of rigid body motion.

A second topic in this chapter is the conservation of angular momen-
tum. We touched on this conservation law in Chapter 7 but postponed
any incisive discussion. Here the challenge is physical subtlety rather
than mathematical complexity.

8.2 The Vector Nature of Angular Velocity and
Angular Momentum

To describe the most general rotational motion of a body we must intro-
duce suitable coordinates. Recall that in the case of translational motion,
our procedure was to employ a Cartesian coordinate system, in which
the position vector is r = xî + yĵ + zk̂. We then found the velocity and
acceleration by successively differentiating r with respect to time.

It is natural, but incorrect, to attempt to use an analogous procedure
for rotational motion using angular coordinates θx, θy, and θz to mea-
sure rotation about the x, y, and z axes, respectively, and then define an
angular position vector Θ given by

Θ
?
=
(
θx î + θy ĵ + θzk̂

)
.

Unfortunately, this does not work. It is impossible to employ a vector to
describe an angular orientation. The reason is that the addition of true
vectors is commutative: A + B = B + A. However, as the following ex-
ample demonstrates, rotations do not commute: θx î + θy ĵ � θyĵ + θx î.

Example 8.1 Rotations through Finite Angles
Consider a can of maple syrup oriented as shown, and let us investigate
what happens when we rotate it by an angle of π/2 around the x
axis, and then by π/2 around the y axis, and compare the result with
executing the same rotations but in reverse order.
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x
x

y y

z z

M M

M

M

M

M

θx

θx

θy

θy

θx i + θy j θyj + θxi ˆ ˆ ˆ ˆ

It is evident from the drawings that

θx î + θy ĵ � θy ĵ + θx î.

Fortunately, all is not lost; although angular position cannot be repre-
sented by a vector, it turns out that angular velocity, the rate of change of
angular position, is a perfectly good vector. We define angular velocity
by

ω =
dθx

dt
î +

dθy

dt
ĵ +

dθz

dt
k̂

= ωx î + ωyĵ + ωzk̂.

The essential point is that although rotations through finite angles do
not commute, infinitesimal rotations like Δθx,Δθy, and Δθz do commute.
Consequently, ω = lim

Δt→0
(Δθ/Δt) represents a component of a true vec-

tor. The reason for this is discussed in Note 8.1 at the end of the chap-
ter. Briefly: the difference in orientations between successive rotations
through small angles Δθx and Δθy, and rotations in the reverse order is a
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small rotation of magnitude Δθx Δθy. This term is second order in angle
and vanishes in the limit Δ→ 0.

Δrn

r(t )

r(t  + Δt )

Δθ

φ

ˆ

n
Origin

Axis of
rotation

ˆ

Assuming that angular velocity is indeed a vector, let us find how the
translational velocity of any particle in a rotating rigid body is related to
the angular velocity of the body.

Consider a rigid body like the top shown, rotating about some axis.
We designate the instantaneous direction of the axis by n̂ and choose a
coordinate system with its origin on the axis. The coordinate system is
fixed in space and is inertial. As the body rotates, each of its particles
moves in a circular path around the axis of rotation. A vector r from the
origin to any particle tends to sweep out a cone. The drawing shows the
result of rotation through angle Δθ about the axis along n̂.

The angle φ between n̂ and r is constant, and the tip of r moves on a
circle of radius r sin φ.

Δr

Δθr sin φ

The magnitude of the displacement |Δr| is

|Δr| = 2r sin φ sin
(
Δθ

2

)
.

For Δθ very small, we can use the small-angle approximation

sin(Δθ/2) ≈ Δθ/2

so that

|Δr| ≈ r sin φ Δθ.

If the rotation through angle Δθ occurs in time Δt, then |Δr|/Δt ≈
r sin φ (Δθ/Δt). In the limit Δt → 0,r sin φ

r sin φ sin 

2
Δθ

2
Δθ

∣∣∣∣∣dr
dt

∣∣∣∣∣ = r sin φ
dθ
dt
.

In the limit, dr/dt is tangential to the circle, as shown.

n

r

dr
dt

dr
d t

dθ
dt

r sin φ
φ

Recalling the definition of the vector cross product (Section 1.4.2), we
see that both the magnitude |dr/dt| = r sin φ dθ/dt, and the direction of
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dr/dt, which is perpendicular to the plane of r and n̂, are given correctly
by dr/dt = n̂ × r dθ/dt. Since dr/dt = v and n̂ dθ/dt = ω, we have

dr
dt
= v = ω × r. (8.1)

Example 8.2 Rotation in the x−y Plane
To connect Eq. (8.1) to a more familiar case—rotation in the x−y
plane—we evaluate v for the rotation of a particle about the z axis. We
have ω = ωk̂, and r = xî + yĵ. Hence

y = r sin θ

θ

θ

θ
θ

x = r cos θ
ω

ω

x

x

x

r

y

y

r

y

î

î

v = ωr θ̂

ĵ

ĵˆ

v = ω × r

= ωk̂ ×
(
xî + yĵ

)
= ω

(
xĵ − yî

)
.

In plane polar coordinates x = r cos θ, y = r sin θ, so that

v = ωr
(
ĵ cos θ − î sin θ

)
.

But ĵ cos θ − î sin θ is a unit vector in the tangential direction θ̂.
Therefore,

v = ωrθ̂.

This is the velocity of a particle moving in a circle of radius r at angular
velocity ω.

It can be difficult at first to appreciate the vector nature of angular
velocity because we are used to visualizing rotation about a fixed axis,
which involves only one component of angular velocity. We are generally
much less familiar with simultaneous rotation about several axes.

We have seen that we can treat angular velocity as a vector in the
relation v = ω × r. It is important to assure ourselves that this relation
remains valid if we resolve ω into components like any other vector. In
other words, if we write ω = ω1 + ω2, is it true that v = (ω1 × r) +
(ω2 × r)? As the following example shows, the answer is yes.

Example 8.3 The Vector Nature of Angular Velocity
Consider a particle rotating in a vertical plane as shown in the sketch.
The angular velocity ω lies in the x–y plane and makes an angle of 45◦
with the x–y axes. The angular velocity is taken to be constant, so that
θ = ωt.

r sin θ
r cos θ

θ

ω

45°

z

r

v

y

x

First we shall calculate v directly from the relation v = dr/dt. To find
r, note from the sketch that x = −r cos θ/

√
2, y = r cos θ/

√
2, and

z = r sin θ. Hence

r = r
(
−cos θ√

2
î +

cos θ√
2

ĵ + sin θ k̂
)
.
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Differentiating with respect to time, and noting that r is constant, we
have

dr
dt
= v

= r
(

sin θ√
2

î − sin θ√
2

ĵ + cos θ k̂
)

dθ
dt

= ωr
(

sin θ√
2

î − sin θ√
2

ĵ + cos θ k̂
)
, (1)

where we have used dθ/dt = ω.

Using the relation v = ω× r is a simpler way to find the velocity. From
the diagram, we see that

ω =
ω√

2
î +

ω√
2

ĵ,

ω × r =

∣∣∣∣∣∣∣∣∣
î ĵ k̂
ω√

2
ω√

2
0

−r cos θ√
2

r cos θ√
2

r sin θ

∣∣∣∣∣∣∣∣∣
= ωr

(
sin θ√

2
î − sin θ√

2
ĵ + cos θ k̂

)
,

in agreement with Eq. (1).

As we expect, we can treat ω just like any other vector.

The next example demonstrates how a problem can be greatly sim-
plified by resolving ω into components along convenient axes. Further-
more, it reveals the fundamental property that angular momentum is not
necessarily parallel to angular velocity, in contrast to the case of fixed
axis rotation where L and ω are parallel and related by L = Iω.

Example 8.4 Angular Momentum of Masses on a Rotating
Skew Rod
Consider a simple rigid body consisting of two particles of mass m
separated by a massless rod of length 2l. The midpoint of the rod is
attached to a vertical axis that rotates at angular speed ω around the
z axis. The rod is skewed at angle α, as shown in the sketch. The
problem is to find the angular momentum of the system.

ω

α

m

z

m′

l

l The most direct method is to calculate the angular momentum from
the definition L = Σ (ri × pi). Each mass moves in a circle of radius
l cosα with angular speed ω. The linear momentum of each mass is
|p| =mωl cos α, and is tangential to the circular path. To calculate the
angular momentum of the two masses we shall take the midpoint of
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the skew rod as origin, with r along the rod and perpendicular to p.
Hence |L| = 2mωl2 cos α. L is perpendicular to the skew rod and lies
in the plane of the rod and the z axis, as shown in the left-hand draw-
ing. L turns with the rod, and its tip traces out a circle about the z
axis.

ω

ω⊥

ω||

α

ω = ωk

z

a

b

(r × p)a

L = (r × p)a  +

(r × p)b

(r × p)b

pa

(out of
paper)

pb (into
paper)
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We now turn to a method for calculating L that emphasizes the vector
nature of ω. First we resolve ω = ωk̂ into components ω⊥ and ω‖,
respectively, perpendicular and parallel to the skew rod. From the right-
hand drawing, we see that ω⊥ = ω cosα, and ω‖ = ω sinα.

Because the masses are particles with negligible size, ω‖ produces no
angular momentum. Consequently, the angular momentum is due en-
tirely to ω⊥. Because L is parallel to ω⊥, we can use the result from
fixed axis rotation L = Iω⊥, where the moment of inertia about the
direction of ω⊥ is ml2 + ml2 = 2ml2. The magnitude of the angular
momentum is

L = Iω⊥
= 2ml2ω⊥
= 2ml2ω cosα.

L points along the direction of ω⊥. Hence L swings around with the
rod; the tip of L traces out a circle about the z axis. (We encountered a
similar situation in Examples 7.2 and 7.8 with the conical pendulum.)
An important feature of this system is that L is not parallel to ω, as
generally true for non-symmetric bodies.

The dynamics of rigid body motion is governed by τ = dL/dt,
which holds in general for any motion because it is derived from New-
ton’s laws (Chapter 7). We can gain insight into the disarmingly sim-
ple rotating skew rod by calculating the torque that causes L to change
direction.
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Example 8.5 Torque on the Rotating Skew Rod
In Example 8.4 we showed that the angular momentum of a uniformly
rotating skew rod is constant in magnitude but changes in direction. L
is fixed with respect to the rod and rotates in space with the rod.

ω

L

L

z

Lz
α

Lh = L sin α

The torque on the rod is given by τ = dL/dt. We can find dL/dt quite
easily by decomposing L as shown in the sketch. (We followed a sim-
ilar procedure in Example 7.9 for the conical pendulum.) The compo-
nent Lz parallel to the z axis, L cosα, is constant, so there is no torque
in the z direction. The horizontal component of L, Lh = L sinα, swings
with the rod. If we choose x−y axes so that Lh coincides with the x axis
at t = 0, then at time t we have

Lx = Lh cosωt

= L sinα cosωt

Ly = Lh sinωt

= L sinα sinωt.

Hence
L = L sinα

(
î cosωt + ĵ sinωt

)
+ L cosαk̂.

The torque is

τ =
dL
dt

= Lω sinα
(
−î sinωt + ĵ cosωt

)
.

Using L = 2ml2ω cosα from Example 8.4, we obtain

τx = −2ml2ω2 sinα cosα sinωt

τy = 2ml2ω2 sinα cosα cosωt.

Hence

τ =
√
τx

2 + τy
2

= 2ml2ω2 sinα cosα
= ωL sinα.

Note that τ = 0 for α = 0 or α = π/2. Do you see why? Also, can you
see why the torque should be proportional to ω2?

L sin α

ωt x

y

z

This analysis may seem roundabout, since the torque can be cal-
culated directly by finding the force on each mass and using τ =
Σr j × f j. However, the procedure used here is just as quick. Further-
more, it illustrates that angular velocity and angular momentum are
real vectors that can be resolved into components along any axes we
choose.
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Example 8.6 Torque on the Rotating Skew Rod
(Geometric Method)
In Example 8.5 we calculated the torque on the rotating skew rod by
resolving L into components and using τ = dL/dt. We repeat the calcu-
lation here using a geometric argument that emphasizes the connection
between torque and the rate of change of L. This method illustrates an
approach that will be helpful in analyzing gyroscopic motion.

L

z

Lz

Lh

α

ω

As in Example 8.5, we begin by resolving L into a vertical component
Lz = L cosα and a horizontal component Lh = L sinα as shown in the
sketch. Because Lz is constant, there is no torque about the z axis. Lh

is constant in magnitude but rotates with the rod, and the time rate of
change of L is due solely to this effect.

Once again we are dealing with a rotating vector, as discussed in
Section 1.10. Using that idea, we therefore know that dLh/dt = ωLh.
However, since it is so important to be able to visualize this result, we
derive it once more. From the vector diagram we have

|ΔLh| ≈ |Lh|Δθ
dLh

dt
= Lh

dθ
dt

= Lhω.

L h
(t +

 Δt )

Δθ
|ΔLh|≈ LhΔθ

Lh(t )

The torque is

τ =
dLh

dt
= Lhω

= ωL sinα,

identical to the result we found in Example 8.5. The torque τ is parallel
to ΔL in the limit. For the skew rod, τ is in the tangential direction in
the horizontal plane and rotates with the rod.

You may have thought that torque on a rotating system necessarily
causes the speed of rotation to change. In this problem, however, the
speed of rotation is constant and the torque causes the direction of L
to change. The torque is produced by the forces on the rotating bearing
of the skew rod. For a real rod this would have to be an extended
structure, something like a sleeve. The torque causes a time-varying
load on the sleeve that results in vibration and wear. Because a uniform
gravitational field exerts no torque on the skew rod, the rod is said to
be statically balanced. However, because there is a torque on the skew
rod when it rotates, it is not dynamically balanced. Rotating machinery
must be designed for dynamical balance if it is to run smoothly.

F

F

ω
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8.3 The Gyroscope
We now turn to some aspects of gyroscope motion that illustrate the ba-
sic concepts of angular momentum, torque, and the time derivative of a
vector. It might seem frivolous to devote serious effort to understanding
a mere toy, but if the toy is a gyroscope, you will find that the experience
is worth the effort. We shall discuss each step carefully because this is
one area of physics where intuition may not be much help.

We bypass for now the complicated mathematical problem of a gen-
eral solution for gyroscope motion and initially concentrate on uniform
precession. In uniform precession the tip of the gyroscope’s axle swings
at a constant rate in a horizontal plane. Our aim is to show that uniform
precession is consistent with τ=dL/dt and Newton’s laws. Furthermore,
this solution provides an excellent starting point for understanding more
general rigid body motion.

The essentials of a gyroscope are a flywheel that spins on an axle
and a suspension that allows the axle to assume any orientation. The
familiar toy gyroscope shown in the left-hand drawing is adequate for
our discussion. The end of the axle rests on a pylon, allowing the axis to
take various orientations without constraint.

Ls
ωs

The right-hand drawing is a schematic representation of the gyro-
scope. The triangle represents the free pivot, and the flywheel spins in
the direction shown.

Ls

N

W

Ω

The flywheel is initially brought up to speed, spinning at rate ωs, most
commonly by yanking on a string that is wound around the axle. If the
gyroscope is then released horizontally with one end supported by the
pivot, its axis wobbles briefly and then the gyroscope settles down to
uniform precession, in which the axle slowly rotates around the vertical
axis with constant angular velocityΩ. One’s immediate impulse is to ask
why the gyroscope does not fall. A possible answer is suggested by the
force diagram. The total vertical force is N −W, where N is the vertical
force exerted by the pivot and W is the weight. If N = W, the center
of mass cannot fall. Naturally, if you remove the upward force N, the
gyroscope falls like a rock.

This explanation is correct but not really satisfactory because we have
asked the wrong question. Instead of wondering why the gyroscope does
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not fall, we should ask why it does not swing from the pivot like a pen-
dulum, under the torque due to its weight.

As a matter of fact, if the gyroscope is released with its flywheel sta-
tionary, it starts to behave exactly like a pendulum; instead of precess-
ing horizontally, it starts to swing vertically, a behavior we shall look at
later. But if the gyroscope is spinning rapidly, it soon begins to precess
smoothly.

Ls

N

z

y

x

W

ωs

If the axle is held fixed in space, the gyroscope’s angular momentum
Ls is due entirely to the spin of its flywheel and is directed along the
axle with magnitude Ls = I0ωs, where I0 is the moment of inertia of the
flywheel about the axle. When the gyroscope precesses about the z axis,
it also has a small orbital angular momentum in the z direction. How-
ever, for uniform precession this orbital angular momentum is constant
in magnitude and direction and plays no dynamical role. Consequently,
we can ignore it here.

Ls always points along the axle. As the gyroscope precesses, Ls ro-
tates with it, as shown in sketch (a). We have encountered rotating vec-
tors many times, most recently when discussing the skew rod. If the an-
gular velocity of precession is Ω, the rate of change of Ls is given by∣∣∣∣∣dLs

dt

∣∣∣∣∣ = ΩLs.

Ls(t3)

Ls(t2)

Ls

y

xLs(t1)

(a) (b)

Ω Ω
dLs
dt

The direction of dLs/dt is tangential to the horizontal circle swept out
by Ls. At the instant shown in sketch (b), Ls is in the x direction and
dLs/dt is in the y direction.

There must be a torque on the gyroscope to account for the change in
Ls. The source of the torque is apparent from the force diagram. If we
take the pivot as the origin, the torque is due to the weight of the flywheel
acting at the center of mass.

y

x

z

Lsl

N

W

The magnitude of the torque is

τ = lW.

τ is parallel to dLs/dt, as we expect.
We can find the rate of precession Ω from the relation∣∣∣∣∣dLs

dt

∣∣∣∣∣ = τ.
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Because |dLs/dt| = ΩLs and τ = lW, we have

ΩLs = lW,

or

Ω =
lW

I0ωs
. (8.2)

Alternatively, we could have analyzed the motion about the center of
mass (the center of the flywheel). In this case the torque is τ0 = Nl = Wl
as before, since N = W.

Equation (8.2) indicates that the rate of precession Ω increases as the
flywheel slows. This effect is easy to see with a toy gyroscope. Obviously
Ω cannot increase indefinitely; eventually uniform precession gives way
to a violent and erratic motion. This occurs whenΩ becomes so large that
we cannot neglect small changes in the angular momentum about the
vertical axis due to frictional torque. Nevertheless, uniform precession
represents an exact solution to the dynamical equations governing the
gyroscope, as explained in detail in Note 8.2.

We have assumed that the axle of the gyroscope is horizontal, but the
rate of uniform precession is independent of the angle of elevation, as
the following example shows.

Example 8.7 Gyroscope Precession
Consider a gyroscope in uniform precession with its axle at angle φ
with the vertical.

y

x

z

N

Ls

Wlφ

The component of Ls in the x−y plane swings around in space as the
gyroscope precesses, while the component parallel to the z axis remains
constant.

The horizontal component of Ls is Ls sin φ. Hence

|dLs/dt| = ΩLs sin φ.

The torque due to gravity is horizontal and has magnitude

τ = l sin φ W.

We have

ΩLs sin φ = l sin φ W

Ω =
lW

I0ωs
.

The precessional velocity is independent of φ.

The last example proves that uniform gyroscope precession is consis-
tent with the dynamical equation τ = dL/dt but it provides little physical
insight as to why the gyroscope precesses. Possibly the following exam-
ple will help provide that insight.
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Example 8.8 Why a Gyroscope Precesses
The primary reason that gyroscope precession seems mysterious is
that angular momentum is much less familiar than linear momentum.
It would be more satisfying if the rotational dynamics of a simple rigid
body could be seen to follow directly from Newton’s laws. To do this,
let us consider a rigid body consisting of two particles of mass m at
either end of a rigid massless rod of length 2l.

y

x

z
m

m

υ0

υ0

l

l

Suppose that the rod rotates in free space with angular momentum Ls

along the z direction. The speed of each mass is v0. We shall show that
the effect of applying torque τ is to cause Ls to precess with angular
velocity Ω = τ/Ls.

To simplify matters, suppose that the torque is applied only during a
short time Δt while the rod is instantaneously oriented along the x axis.
We assume that the torque is due to two equal and opposite forces F,
as shown. The total force is zero, so the center of mass remains at rest.

y

x

τ

F

F

υ0

υ0

The momentum of each mass changes by

Δp = mΔv = FΔt.

Since Δv is perpendicular to v0, the velocity of each mass changes
direction, as shown, and the rod rotates about a new direction.

Δφ

ΔLs

Δv

Δv

v0

vf

vf

v0

y

z

x

The axis of rotation tilts by the angle

Δφ ≈ Δv
v0

=
FΔt
mv0

.

The torque on the system is τ = 2Fl, and the angular momentum is
Ls = 2mv0l. Hence

Δφ =
FΔt
mv0

=
2lFΔt
2lmv0

=
τΔt
Ls

.

The rate of precession during the interval Δt is therefore

Ω =
Δφ

Δt

=
τ

Ls
,
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which is identical to the result for gyroscope precession. Also, the
change in the angular momentum ΔLs is in the y direction, parallel
to the torque, as required.

This model gives some insight into why a torque causes a tilt in the
axis of rotation of a spinning body. The argument can be elaborated to
apply to an extended body like the flywheel of a gyroscope. The result
of such an analysis is equivalent to using τ = dL/dt.

The discussion in this section described uniform precession but this is
only a special case of gyroscope motion. At the beginning of our analy-
sis we assumed that the gyroscope was initially precessing smoothly, but
other initial conditions lead to other types of motion. For instance, if the
free end of the axle is held at rest and suddenly released, the precessional
velocity is initially zero. In this case, the gyroscope’s center of mass sim-
ply starts to fall. It is fascinating to see how this falling motion turns into
uniform precession, which we do in Note 8.2 by a straightforward appli-
cation of τ = dL/dt. The analysis involves the general relation between
L and ω that will be developed in Section 8.6.

8.4 Examples of Rigid Body Motion
In this section we analyze some systems that illustrate the behavior of
angular momentum in rigid body motion.

Example 8.9 Precession of the Equinoxes
The angular momentum of the Earth has two components: orbital
angular momentum arising from its center of mass motion around the
Sun, and spin angular momentum due to rotational motion around
its polar axis. We are concerned here with the Earth’s spin angular
momentum, which is tilted by 23 1

2
◦ from the vertical to the orbital

plane (the plane of the ecliptic). In the approximation that the Earth is
spherical, it experiences no torque from nearby bodies. Consequently,
its angular momentum is constant—both its spin and its angular
momentum always point in the same direction in space.

21 km

N

S

6,
40

0 
km

If we analyze the Earth–Sun system with more care, taking into account
that the Earth is not exactly spherical but slightly oblate, we find that
there is a small torque on the Earth. This causes the spin axis to slowly
alter its direction, resulting in the phenomenon known as precession of
the equinoxes.

The torque arises because of the interaction of the Sun and Moon
with the non-spherical shape of the Earth. The Earth bulges slightly;
its mean radius is approximately 6400 km, but its equatorial radius is
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about 21 km larger than its polar radius. Because the Earth’s axis of
rotation is inclined with respect to the plane of the ecliptic, the gravita-
tional force of the Sun gives rise to a torque.

Ecliptic

FA FB

A
N

B

τ

The sketch represents the winter solstice in December. At that time, the
part A of the bulge above the ecliptic is nearer the Sun than the lower
part B. The mass at A is therefore attracted more strongly by the Sun
than is the mass at B, as indicated. This results in a torque on the Earth
perpendicular to the plane of the sketch.

FA

FB

A

N

B
τ

Six months later, at the summer solstice, when the Earth is on the
other side of the Sun, B is attracted more strongly than A. However,
the torque has the same direction in space as before. Midway between
these extremes (the vernal and autumnal equinoxes), the torque is zero.
The average torque is perpendicular to the spin angular momentum and
lies in the plane of the ecliptic.

The torque causes the spin axis to precess about a normal to the eclip-
tic. As the spin axis precesses, the torque remains perpendicular to it;
the system acts like the gyroscope with tilted axis that we analyzed in
Example 8.7.

The period of the precession is 26 000 years. 13 000 years from now,
the polar axis will not point toward Polaris, the current north star; it
will point 2× 23 1

2
◦
= 47◦ away. Orion and Sirius, those familiar winter

guides, will then shine in the midsummer sky, and the winter solstice
will occur in June.

Precession

N

Polaris

Ecliptic

The spring equinox occurs at the instant the Sun is directly over the
Equator in its apparent passage from south to north. Due to the preces-
sion of the Earth’s axis, the position of the Sun at the equinox against
the background of fixed stars shifts by 50 seconds of arc each year
(1 angular degree = 3600 arc-seconds). This precession of the
equinoxes was known to the ancients. It figures in the astrological
scheme of cyclic history, which distinguishes twelve ages named by
the constellation in which the Sun appears to lie at spring equinox. The
present age is Pisces, and in 600 years it will be Aquarius.

Example 8.10 The Gyrocompass
With the advent of the Global Positioning System (GPS), compasses
have become less important. But when the GPS satellite signals are
inaccessible, as in a submarine or spacecraft, an inertial navigation
system can measure the local acceleration and then find velocity and
position by integration. To refer the craft’s location relative to the
Earth, the direction of true north (along the Earth’s axis) must be
known. The gyrocompass, or “gyro,” enables this.
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Try the following experiment with a toy gyroscope. Tie strings to the
frame of the gyroscope at points A and B on opposite sides midway be-
tween the bearings of the spin axis. Hold the strings taut at arm’s length
with the spin axis horizontal. Now slowly pivot so that the spinning gy-
roscope moves in a circle. The gyroscope suddenly flips and comes to
rest with its spin axis vertical, parallel to your axis of rotation. Rotation
in the opposite direction causes the gyro to flip by 180◦, making its
spin axis again parallel to the rotation axis. (When examined in more
detail, the spin axis is found to oscillate about the vertical. Friction in
the horizontal axle quickly damps this motion.)

B

Spin
A

The gyrocompass is based on this effect. A flywheel free to rotate about
two perpendicular axes tends to orient its spin axis parallel to the axis
of rotation of the system. In the case of a gyro, the “system” is the
Earth; the compass comes to rest with its axis parallel to the polar axis.

We can understand the motion qualitatively by simple vector argu-
ments. Assume that the axle is horizontal with Ls pointing along the
x axis. Suppose that we attempt to rotate the gyro around the z axis at
some rate ωz by applying a torque τz, as shown.

Torque

z

F

F

Ls

B

A

y

x

As a result, Lz, the angular momentum along the z axis, starts to in-
crease. If the spin angular momentum Ls were zero, Lz would be due
entirely to rotation of the gyro about the z axis, Lz = Izωz, where Iz

is the moment of inertia around the z axis. However, because the fly-
wheel is spinning, another way for Lz to change is for the gyro to rotate
around the A–B axis, swinging Ls toward the z direction. Our experi-
ment shows that if Ls is large, most of the torque goes into reorienting
the spin angular momentum; only a small fraction goes toward rotating
the gyro about the z axis.

We can see why the effect is so pronounced by considering angular
momentum along the y axis. The pivots at A and B allow the system
to swing freely about the y axis, so there can be no torque along the
y axis. Because Ly is initially zero, it must remain zero. As the gyro
starts to rotate about the z axis, Ls starts to acquire a component in the
y direction. In order to maintain Ly = 0, the gyro and its frame begin to
rotate rapidly, or flip, around the y axis. The angular momentum arising
from this motion cancels the y component of Ls. When Ls finally comes
to rest parallel to the z axis, the motion of the frame no longer changes
the direction of Ls, and its spin axis remains stationary.

z

Ls

Δ L

y

x

The Earth is a rotating system and a gyrocompass on the surface of
the Earth will line up with the polar axis indicating true north. A practi-
cal gyrocompass is somewhat more complicated, however, since it must
continue to indicate true north without responding to the motion of the
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ship or aircraft that it is guiding. In the next example we solve the dynam-
ical equation for the gyrocompass and show how a gyrocompass fixed to
the Earth indicates true north.

Example 8.11 Gyrocompass Motion
Consider a gyrocompass consisting of a balanced spinning disk held in
a light frame supported by a horizontal axle, as shown. The assembly
is on a turntable rotating at steady angular velocity Ω. The gyro has
spin angular momentum Ls = Isωs along the spin axis. In addition,
it possesses angular momentum due to its bodily rotation about the
vertical axis at rate Ω, and also from rotation about the A–B axis.

B

A

Ω

ωs

There can be no torque along the horizontal A–B axis because that axle
is pivoted. The angular momentum Lh along the A–B direction is there-
fore constant, so that dLh/dt = 0.

There are two contributions to dLh/dt. If θ is the angle between the
vertical and the spin axis, and I⊥ is the moment of inertia about the
A–B axis, then as θ changes it generates angular momentum Lh = I⊥θ̇,
contributing an amount I⊥θ̈ to dLh/dt.

B

Ls

Ls

Ls sin θ 

A

θ θ

Ω
Ω

θ

θ
.

In addition, Lh can change because of a change in the direction of Ls,
as we learned from analyzing the precessing gyroscope. The horizontal
component of Ls is Ls sin θ, and its rate of increase along the A–B axis
is ΩLs sin θ.

We have considered the two changes in Lh independently. It is plau-
sible that the total change in Lh is the sum of the two changes; a
rigorous justification can be given based on arguments presented in
Section 8.7.

Adding the two contributions to dLh/dt gives

dLh

dt
= I⊥θ̈ + ΩLs sin θ.
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Because dLh/dt = 0, the equation of motion becomes

θ̈ +

(
LsΩ

I⊥

)
sin θ = 0.

This is identical to the equation for a pendulum, Example 3.10. When
the spin axis is near the vertical, sin θ ≈ θ and the equation of motion
becomes

θ̈ +

(
LsΩ

I⊥

)
θ = 0.

Once again, we have the equation for simple harmonic motion. Con-
sequently, the axis of the gyroscope executes simple harmonic motion
given by

θ = θ0 sin βt

where

β =

√
LsΩ

I⊥

=

√
ωsΩIs

I⊥
.

If there is a small amount of friction in the bearings at A and B, the
amplitude of oscillation θ0 will eventually become zero, and the spin
axis comes to rest parallel to Ω.

To use the gyro as a compass, fix it to the Earth with the A−B axle
vertical and the frame free to turn.

N

N

A
B

Pivot
λ

Ωe
ωs

Ωe cos λ
Ωe sin λ

Ωe cos λ

As the drawing shows, if λ is the latitude of the gyro, the component
of the Earth’s angular velocity Ωe perpendicular to the A–B axle is the
horizontal component Ωe cos λ. The spin axis oscillates in the horizon-
tal plane about the direction of the north pole, and eventually comes to
rest pointing north.
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The period of small oscillations is T = 2π/β = 2π
√

I⊥/(IsωsΩe cos λ).
For a thin disk I⊥/Is = 1/2, and Ωe = 2π rad/day ≈ 7.27 × 10−5 rad/s.
With a gyro rotating at ωs = 20 000 rpm ≈ 2100 rad/s, the period at the
Equator is 11 s. Near the north pole the period becomes so long that the
gyrocompass is not effective.

Example 8.12 The Stability of Spinning Objects
Angular momentum can make a freely moving object remarkably
stable. For instance, spin angular momentum keeps a child’s rolling
hoop upright even when it hits a bump; instead of falling, the hoop
changes direction slightly and continues to roll. The effect of spin on
a bullet provides another example. The spiral grooves, or rifling, in
a gun’s barrel helps to stabilize the bullet by giving the bullet spin
angular momentum. If you need proof of the stabilizing effect of
rotation, try throwing a Frisbee R© without spinning it.

l

υ

ω

F

A

A

Center
of mass

To analyze the stabilizing effect of spin, consider a cylinder of mass
M moving parallel to its axis, but not spinning along the axis. Suppose
that a small perturbing force F acts on the cylinder for time Δt. Let F
be perpendicular to the axis, and the point of application be distance l
from the center of mass, as shown.

The torque along the axis A−A through the center of mass is τ = Fl so
that the “angular impulse” is τΔt = FlΔt. Because the cylinder has no
spin, the angular momentum acquired around the A−A axis is

ΔLA = IA(ω − ω0) = FlΔt.

If we assume that the initial angular velocity is 0, then the final angular
velocity is

ω =
FlΔt

IA
.

The effect of the blow is to give the cylinder angular velocity around
the transverse axis; it starts to tumble.

Now consider the same situation, except that the cylinder is rapidly
spinning around its long axis with angular momentum Ls.

υ

F
A

A
B

B

B

Ls

Ls
DLs

φ

Ω

The situation is similar to that of the gyroscope: torque along the A−A
axis causes precession around the B−B axis. The rate of precession
while F acts is dLs/dt = ΔLs, or

Ω =
Fl
Ls
.

The angle through which the cylinder precesses is

φ = ΩΔt

=
FlΔt
Ls

.
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Instead of starting to tumble, the cylinder slowly changes its orientation
while the force is applied, and then stops precessing. The larger the
spin, the smaller the angle through which it precesses and the less the
effect of the perturbation on its flight.

Note that spin has no effect on the center of mass motion. In both cases,
the center of mass acquires velocity Δv = FΔt/M.

8.5 Conservation of Angular Momentum
Before tackling the general problem of rigid body motion, let us return to
the question of whether or not the angular momentum of an isolated sys-
tem is conserved. It would be pleasing if this conservation law stemmed
directly from Newton’s laws, but this is not the case. Nevertheless, the
total angular momentum of an isolated system is always conserved. We
now turn to see how far this conservation law can be supported.

Consider a system of N particles with masses m1,m2, . . . ,mj, . . . ,mN .
We assume that the system is isolated, so that the forces are due entirely
to interactions between the particles. The force on particle j is

F j =

N∑
k=1

F jk,

where F jk is the force on particle j due to particle k. (In evaluating the
sum, we can neglect the term with k = j, since F j j = 0, by Newton’s
third law.)

Let us choose a convenient origin and calculate the torque τ j on parti-
cle j:

τ j = r j × F j

= r j ×
∑

k

F jk.

Let τ jk be the torque on j due to the particle k:

τ jk = r j × F jk.

Similarly, the torque on k due to j is

τk j = rk × Fk j.

The sum of these two torques is

τ jk + τk j = rk × Fk j + r j × F jk.

Because F jk = −Fk j we have

τ jk + τk j = (rk × Fk j) − (r j × Fk j)
= (rk − r j) × Fk j

= r jk × Fk j,
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where r jk is a vector from j to k. If we could prove that τ jk + τk j =

0, so that the internal torques cancel in pairs just as the internal forces
do, then the total internal torque would vanish, proving that the angular
momentum of an isolated system is conserved.

Because neither r jk nor Fk j is zero, Fk j would need to be parallel to
r jk as shown in figure (a) for the torque τ j = r j × F j to vanish. For
the situation in figure (b), however, the torque is not zero, and angular
momentum is not conserved. Nevertheless, the forces are equal and op-
posite, and linear momentum is conserved.

flj

flj

rjl

rjl

fjl

fjl

rl

rl
rj

(a)

(b)

rj

ml

ml

mj

mj

The situation shown in figure (a) corresponds to the case of central
forces. We conclude that in the particular case of central force motion the
conservation of angular momentum follows from Newton’s laws. How-
ever, Newton’s laws do not explicitly require forces to be central. We
must conclude that Newton’s laws have no direct bearing on whether or
not the angular momentum of an isolated system is conserved because
these laws do not exclude the situation shown in figure (b).

It is possible to take exception to the argument above on the following
grounds: although Newton’s laws do not explicitly require forces to be
central, they implicitly make this requirement because in their simplest
form Newton’s laws deal with particles. Particles are idealized masses
that have no size and no structure. In this case, the force between isolated
particles must be central, since the only vector defined in a two-particle
system is the vector r jk from one particle to the other.

θ

θ

a

b

rjl

ml

mj

Suppose that we try to invent a force that lies at angle θ with respect
to the interparticle axis, as shown in the diagram. There is no way to
distinguish direction a from b; both are at angle θ with respect to r jk. An
angle-dependent force cannot be defined using only the single vector r jk;
the force between the two particles must be central.

The difficulty in discussing angular momentum in the context of New-
tonian ideas is that our understanding of nature now encompasses entities
vastly different from simple particles. As an example, perhaps the elec-
tron comes closest to the Newtonian idea of a particle. The electron has a
well-defined mass and, as far as present knowledge goes, zero radius. In
spite of this, the electron has something analogous to internal structure;
it possesses spin angular momentum. It seems paradoxical that an object
with zero size can nevertheless possess angular momentum, but we must
accept this paradox as one of the facts of nature.

Because the spin of an electron defines an additional direction in
space, the force between two electrons need not be central. As an ex-
ample, there might be a force

F12 = Cr12 × (S1 + S2)
F21 = Cr21 × (S1 + S2),

where C is some constant and Si is a vector parallel to the angular mo-
mentum of the ith electron. The forces are equal and opposite but not
central, and they produce a torque.

S1 S2

r12

F21

F12

1 2
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There are other possibilities for non-central forces. Experimentally,
the force between two charged particles moving with respect to each
other is not central; the velocities define additional axes on which the
force depends. The angular momentum of the two particles is not nec-
essarily conserved. The apparent breakdown of conservation of angular
momentum is due to neglect of an essential part of the system: the elec-
tromagnetic field. A field refers to a change in the nature of space (or in
the case of relativity, of spacetime) by physical interactions such as grav-
ity or electromagnetism. Although fields lie beyond the scope of particle
mechanics, it turns out that fields can possess energy, momentum, and
angular momentum. When the angular momentum of the field is taken
into account, the angular momentum of the entire particle–field system
is conserved.

The situation, in brief, is that Newtonian physics is incapable of pre-
dicting conservation of angular momentum but no isolated system has
yet been encountered experimentally for which the total angular mo-
mentum is not conserved. We conclude that conservation of angular mo-
mentum is an independent physical law, and until a contradiction is dis-
covered, our physical understanding must be guided by it.

8.6 Rigid Body Rotation and the Tensor of Inertia
The governing equation τ = dL/dt for rigid body motion bears a formal
resemblance to the translational equation of motion F = dP/dt. There is,
however, an essential difference between them. Linear momentum and
center of mass motion are simply related by the vector equation P = MV
where M is a scalar, a simple number. P and V are therefore always
parallel. The connection between L and ω is not so simple. For fixed
axis rotation, L = Iω, and it is tempting to suppose that for any general
rotation L = Iω, where I is a scalar. However, this cannot be correct,
since we know from our study of the rotating skew rod, Example 8.4,
that L and ω are not necessarily parallel.

In this section, we shall develop the general relation between angular
momentum and angular velocity, and in Section 8.7 we shall attack the
problem of solving the equations of motion.

8.6.1 Angular Momentum and the Tensor of Inertia
We begin by showing that to analyze the rotational motion of a rigid
body, we really need consider only the angular momentum about the
center of mass as origin.

As we discussed in Chapter 7, an arbitrary displacement of a rigid
body can be resolved into a displacement of the center of mass plus a
rotation about some instantaneous axis through the center of mass. To
derive the equations of motion, we start from the general expressions
for the angular momentum and torque of a rigid body, Eqs. (7.15) and
(7.18):

L = R × MV + Σr′j × mjṙ′j
τ = R × F + Σr′j × f j,
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where r′j is the position vector of mj relative to the center of mass and
where Σf j is the total applied force F. Since τ = dL/dt, we have

R × F + Σr′j × f j =
d
dt

(R × MV) +
d
dt

(Σr′j × mjṙ′j)

= R × MA +
d
dt

(Σr′j × mjṙ′j).

Because F = MA, the terms involving R cancel, and we are left with

Σr′j × f j =
d
dt

(Σr′j × mjṙ′j).

In words, the total torque around the center of mass is the rate of change
of angular momentum around the center of mass. This relation is inde-
pendent of the center of mass motion. The angular momentum Lcm about
the center of mass is

Lcm = Σr′j × mjṙ′j. (8.3)

Our task now is to express Lcm for a rigid body in terms of the instan-
taneous angular velocity ω. Because the length of r′j is fixed, the only
way for r′j to change is by rotation. Consequently, r′j is a rotating vector

ṙ′j = ω × r′j.

ω

r′j

r′j

⋅

Therefore

Lcm = Σr′j × mj(ω × r′j).

To simplify the notation, we can adopt center of mass coordinates by
writing L for Lcm and r j for r′j. Our result becomes

L = Σr j × mj(ω × r j). (8.4)

This result looks complicated. As a matter of fact, it is complicated, but
we can make it look simple. We will take the pedestrian approach of
patiently evaluating the cross products in Eq. (8.4) using Cartesian co-
ordinates. (An elegant way is to use the vector identity A × (B × C) =
(A · C)B − (A · B)C.)

Because ω = ωx î + ωy ĵ + ωzk̂, we have

ω × r = (zωy − yωz)î + (xωz − zωx)ĵ + (yωx − xωy)k̂. (8.5)

Let us compute one component of L, say Lx. Temporarily dropping the
subscript j, we have

[r × (ω × r)]x = y(ω × r)z − z(ω × r)y. (8.6)

If we substitute Eq. (8.5) into Eq. (8.6), the result is

[r × (ω × r)]x = y(yωx − xωy) − z(xωz − zωx)

= (y2 + z2)ωx − xyωy − xzωz.

Hence

Lx = Σmj(y j
2 + z j

2)ωx − Σmjx jy jωy − Σmjx jz jωz. (8.7)
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This expression can be written in a more compact form by introducing
the following symbols:

Ixx = Σmj(y j
2 + z j

2)
Ixy = −Σmjx jy j (8.8)
Ixz = −Σmjx jz j.

Ixx is called a moment of inertia and it is the moment of inertia we
introduced for fixed axis rotation, I = Σmjρ j

2, where we take the
axis in the x direction so that ρ j

2 = y j
2 + z j

2. The quantities Ixy and
Ixz are called products of inertia. They are symmetrical in x and y;
Ixy = −Σmjx jy j = −Σmjy jx j = Iyx.

To calculate Ly and Lz, we could repeat the above derivation but it is
simpler to relabel the coordinates by letting x → y, y → z, z → x.
Making these substitutions in Eqs. (8.7) and (8.8) yields

Lx = Ixxωx + Ixyωy + Ixzωz (8.9a)

Ly = Iyxωx + Iyyωy + Iyzωz (8.9b)

Lz = Izxωx + Izyωy + Izzωz. (8.9c)

This array of three equations describes rotation about any axes, and in-
cludes fixed axis rotation as a special case. Consider for example rotation
about an axis in the z direction, ω = ωk̂. Then Eq. (8.9c) reduces to

Lz = Izzω

= Σmj(x j
2 + y j

2)ω,

the result for fixed axis rotation that we derived in Chapter 7.
However, Eqs. (8.9) also show that angular velocity in the z direction

can produce angular momentum about any of the three coordinate axes.
For example, ifω = ωk̂, then Lx = Ixzω and Lz = Izzω. In fact, if we look
at the set of equations for Lx, Ly, and Lz, we see that in each case the an-
gular momentum along one axis depends on the angular velocities along
all three axes. Both L and ω are ordinary vectors, and L is proportional
to ω in the sense that doubling the components of ω doubles the compo-
nents of L. Nevertheless, as we have already seen from the behavior of
the rotating skew rod, L does not necessarily point in the same direction
as ω.

The nine-element array of the moments of inertia and the products
of inertia is called the tensor of inertia. In addition to mechanics, ten-
sors have an important application in the analysis of curves and surfaces,
including the geometry of curved spacetime in general relativity.

Here is an example demonstrating the tensor of inertia.

Example 8.13 Rotating Dumbbell
Consider a dumbbell made of two uniform spheres each of radius b
and mass M separated by a thin massless rod. The distance between
centers is 2l. The body is rotating about some axis through its center
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of mass. At a certain instant the rod coincides with the z axis, and
ω lies in the y−z plane, ω = ωyĵ + ωzk̂. The problem is to find the
instantaneous angular momentum L.

ωz

ωy

ω

x

y

z

To find L, we need the moments and products of inertia. Fortunately,
the products of inertia vanish for a symmetrical body lined up with the
coordinate axes. For example, Ixy = −Σmjx jy j = 0, because for mass
mn located at (xn, yn) there is, in a symmetrical body, an equal mass
located at (xn,−yn); the contributions of these two masses to Ixy cancel.
In this case Eqs. (8.9) simplify to

Lx = Ixxωx

Ly = Iyyωy

Lz = Izzωz.

The moment of inertia Izz is just the moment of inertia of two spheres
about their diameters:

Izz = 2
(

2
5 Mb2

)
= 4

5 Mb2.

To calculate Iyy, we can use the parallel axis theorem to find the moment
of inertia of each sphere about the y axis

Iyy = 2
(

2
5 Mb2 + Ml2

)
= 4

5 Mb2 + 2Ml2.

Because we are takingω to lie in the y−z plane, we haveω = ωyĵ+ωzk̂,

Lx = 0
Ly = Iyyωy

Lz = Izzωz.

Since Iyy � Izz it follows that Ly/Lz � ωy/ωz and L is not parallel to ω,
as the drawing shows.

Lz  = Izz ωz

Ly  = Iyy ωy

L

ωy

ωz
ω

Equations (8.9) are cumbersome and it is convenient to write them
using a compact notation:

L = Ĩω. (8.10)

This vector equation represents three equations, just as F = ma repre-
sents three equations. The difference is that m is a simple scalar while Ĩ
is the more complicated tensor of inertia.

The nine components of Ĩ can be tabulated in a 3 × 3 array:

Ĩ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (8.11)

Of the nine components only six can be different, since Iyx= Ixy, Izx = Ixz,
and Iyz = Izy. The rule for multiplying ω by Ĩ to find L = Ĩω can
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be defined using matrix multiplication, writing L and ω as column
vectors: ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Lx

Ly

Lz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
Lxx Lxy Lxz

Lyx Lyy Lyz

Lzx Lzy Lzz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
ωx

ωy

ωz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (8.12)

The following example is another illustration of the tensor of inertia.

Example 8.14 The Tensor of Inertia for a Rotating Skew Rod
We found the angular momentum of a rotating skew rod from first
principles in Example 8.4. Let us now find L for the skew rod by using
L = Ĩω.

x

x

y

h

h

l

l

l

2

z

y
z

m

m
α

α

ρ
ωtα

ρ

ω

l

l

A massless rod of length 2l separates two equal masses m. The rod is
skewed at angle α with the vertical, and rotates around the z axis with
angular velocity ω. At t = 0 it lies instantaneously in the x−z plane.
Using the parameters ρ = l cosα and h = l sinα, the coordinates of the
particles at any other time are:

Particle 1 Particle 2
x1 = ρ cosωt x2 = −ρ cosωt
y1 = ρ sinωt y2 = −ρ sinωt
z1 = −h z2 = h.

The components of Ĩ can now be calculated from their definitions. For
example,

Izz = m1(y1
2 + z1

2) + m2(y2
2 + z2

2)

= 2m(ρ2 sin2 ωt + h2)
Izy = Iyz

= −m1y1z1 − m2y2z2

= 2mρh sinωt.

The remaining terms are readily evaluated. We find:

Ĩ = 2m

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
ρ2 sin2 ωt + h2 −ρ2 sinωt cosωt ρh cosωt
−ρ2 sinωt cosωt ρ2 cos2 ωt + h2 ρh sinωt

ρh cosωt ρh sinωt ρ2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
The common factor 2m multiplies each of the nine terms.

Since ω = (0, 0, ω), we have, from Eq. (8.9) or equivalently Eq. (8.12),

Lx = 2mρhω cosωt

Ly = 2mρhω sinωt

Lz = 2mρ2ω.



8.6 RIGID BODY ROTATION AND THE TENSOR OF INERTIA 317

We can find the torque that must be applied to the rod from τ = dL/dt
by taking the time derivative of L:

τx = −2mρhω2 sinωt

τy = 2mρhω2 cosωt

τz = 0.

These results are seen to be identical to those in Example 8.5, when we
make the substitution ρh = l2 cosα sinα.

8.6.2 Principal Axes
If the symmetry axes of a uniform symmetric body coincide with the co-
ordinate axes, the products of inertia are zero, as we saw for the rotating
dumbbell in Example 8.13. In such a case the tensor of inertia takes a
simple diagonal form:

Ĩ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
Ixx 0 0
0 Iyy 0
0 0 Izz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (8.13)

Remarkably, for a body of any shape and mass distribution, it is always
possible to find a set of three perpendicular axes for which the products
of inertia vanish. (The proof uses matrix algebra and is given in most
texts on advanced dynamics.) Such axes are called principal axes. With
respect to principal axes, the tensor of inertia has a diagonal form.

x y

z For a uniform sphere, any perpendicular axes through the center are
principal axes. For a body with cylindrical symmetry, the axis of revo-
lution is a principal axis, and the other two principal axes are mutually
perpendicular and lie in a plane through the center of mass perpendicular
to the axis of revolution.

Consider a rotating rigid body, and suppose that we introduce a co-
ordinate system 1, 2, 3 that coincides instantaneously with the principal
axes of the body.

1

2

3

With respect to this coordinate system, the instantaneous angular ve-
locity has components ω1, ω2, ω3, and the components of L have the
simple form

L1 = I1ω1

L2 = I2ω2 (8.14)
L3 = I3ω3,

where I1, I2, I3 are the moments of inertia about the principal axes.

8.6.3 Rotational Kinetic Energy of a Rigid Body
The kinetic energy of a rigid body is

K = 1
2Σmjv j

2.
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To separate the translational and rotational contributions, we introduce
center of mass coordinates:

r j = R + r′j
v j = V + v′j.

We have

K = 1
2Σmj(V + v′j)

2 = 1
2Σmj(V + v′j) · (V + v′j)

= 1
2 MV2 + 1

2Σmjv
′2
j ,

where the term V · Σmjv′j vanishes identically. Using v′j = ω × r′j, the
kinetic energy of rotation becomes

Krot =
1
2Σmjv

′2
j

= 1
2Σmj(ω × r′j) · (ω × r′j).

The right-hand side can be simplified with the vector identity (A×B)·C =
A · (B × C). Identifying A = ω,B = r′j, and C = ω × r′j, we obtain

Krot =
1
2Σmjω · [r′j × (ω × r′j)]

= 1
2ω · [Σmjr′j × (ω × r′j)].

According to Eq. (8.4), the sum is the angular momentum L. Therefore

Krot =
1
2ω · L. (8.15)

Rotational kinetic energy has a simple form when L and ω are referred
to principal axes. Using Eq. (8.15) we have

Krot =
1
2ω · L

= 1
2 I1ω1

2 + 1
2 I2ω2

2 + 1
2 I3ω3

2. (8.16)

Alternatively,

Krot =
L1

2

2I1
+

L2
2

2I2
+

L3
2

2I3
. (8.17)

Example 8.15 Why a Flying Saucer is Better Than a
Flying Cigar
An early space satellite, cylindrical in shape, was put into orbit spin-
ning around its long axis. To the designer’s surprise, even though the
spacecraft was torque-free, it began to wobble more and more, until
finally it was spinning around a transverse axis.

The reason is that although L is strictly conserved for torque-free mo-
tion, kinetic energy of rotation can change if the body is not abso-
lutely rigid. If the satellite rotates slightly off the symmetry axis, each
part of the body undergoes a time-varying centripetal acceleration. The
spacecraft warps and bends under the fluctuating force, and energy is
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dissipated by internal friction in the structure. The kinetic energy of
rotation decreases to provide the energy converted into heat. From
Eq. (8.17), if the body rotates about a principal axis, Krot = L2/2I.
Krot is a minimum for the axis with largest moment of inertia, and the
motion is stable around that axis. For the cylindrical spacecraft, the ini-
tial axis of rotation had the minimum moment of inertia, and the motion
was not stable.

A thin disk (“flying saucer”) spinning about its cylindrical axis is in-
herently stable because the other two moments of inertia are only half
as large. A cigar-shaped craft is unstable about its long axis and only
neutrally stable about the transverse axes; there is no single axis having
a maximum moment of inertia.

8.6.4 Rotation about a Fixed Point
We showed at the beginning of this section that in analyzing the motion
of a rotating and translating rigid body it is always correct to calculate
torque and angular momentum about the center of mass. In some ap-
plications, however, one point of a body is fixed in space, like the pivot
point of a gyroscope on a pylon. It is often convenient to analyze the mo-
tion using the fixed point as origin, because the center of mass motion
need not be considered explicitly and the constraint force at the pivot
produces no torque.

mj

r′jrj

R

Center
of mass

Taking the origin at the fixed point, let r j be the position vector of
particle mj and let R = X î +Yĵ + Zk̂ be the position vector of the center
of mass. The torque about the origin is

τ = Σr j × f j,

where f j is the force on mj.
If the angular velocity of the body is ω, the angular momentum about

the origin is

L = Σr j × mjṙ j

= Σr j × mj(ω × r j).

This has the same form as Eq. (8.4). Taking over the results wholesale,
we have

L = Ĩω

with

Ixx = Σmj(y′j
2 + z′j

2)

Ixy = −Σmjx′jy
′
j

etc.
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where the prime indicates center of mass coordinates. This result is iden-
tical in form to Eq. (8.8) but the components of Ĩ are now calculated with
respect to the pivot point rather than the center of mass.

If the tensor of inertia Ĩ0 about the center of mass is known, Ĩ about
any other origin can be found from a generalization of the parallel axis
theorem in Section 7.3.1. Typical results, the proof of which we leave as
a problem, are

Ixx = (I0)xx + M(Y2 + Z2)
Ixy = (I0)xy − MXY (8.18)

etc.

z

M

x

b

y

l

Consider for example a uniform sphere of mass M and radius b
centered on the z axis a distance l from the origin. We have Ixx =
2
5 Mb2 + Ml2, Iyy =

2
5 Mb2 + Ml2, Izz =

2
5 Mb2.

8.7 Advanced Topics in Rigid Body Dynamics
In this section we shall look at a few examples of rigid body motion.
However, none of the results will be needed in subsequent chapters and
this section can be skipped without loss of continuity.

The fundamental problem of rigid body dynamics is to find how the
orientation of a rotating body changes in time, given the torque. The goal
is to solve τ = dL/dt, which is the rotational analogue to F = Ma. How-
ever, the analogy is not really helpful because of the complicated relation
L = Ĩω between angular momentum L and angular velocity ω. We can
make the problem look simpler by using a coordinate system that coin-
cides with the principal axes of the body. The tensor of inertia Ĩ becomes
diagonal in form (the off-diagonal products of inertia all vanish), and the
components of L are

Lx = Ixxωx

Ly = Iyyωy

Lz = Izzωz.

The crux of the problem is that as the body rotates, the principal axes,
which are fixed to the body, rotate with it. Because the applied torque
τ is applied in a fixed coordinate system, which we could consider to
be our “laboratory system,” we require the components of L along axes
having a fixed orientation in space. As the body rotates, its principal
axes move out of coincidence with the space-fixed system. The products
of inertia are no longer zero in the space-fixed system and, worse yet, the
components of the tensor of inertia Ĩ vary with time.

The situation appears hopelessly tangled. Fortunately, if the principal
axes do not stray far from the space-fixed system, we can find the motion
using simple vector arguments. Leaving the general case for later, we
illustrate this approach by finding the torque-free motion of a rigid body.
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8.7.1 Torque-free Precession: Why the Earth Wobbles
If you drop a spinning coin and give it a slight flip, the coin will fall
through the air with a wobbling motion; the symmetry axis tends to rotate
in space, as the sketch shows.

Because there is essentially no torque on the freely falling coin, the
motion is known as torque-free precession.

Torque-free precession is a characteristic mode of rigid body motion.
For example, the spin axis of the Earth moves around the polar axis be-
cause of this effect. The physical explanation of the wobbling motion is
related to our observation that L need not be parallel to ω. If there are
no torques on the body, L is fixed in space and ωmust move, as we shall
now show.

To keep the math simple, consider the case of a cylindrically symmet-
ric rigid body like a coin or a spheroid. We shall assume that the preces-
sional motion is small in amplitude so that we can employ small-angle
approximations.

Suppose that the body has a large spin angular momentum Ls = Isωs

along the main symmetry axis, where Is is the corresponding moment
of inertia and ωs is the angular velocity about the symmetry axis. In
addition, we shall allow the body to have small angular displacements
around the axes transverse to the main symmetry axis.

Ls
Ls

Ls sin θy

θy

θy

θx

z
z

yy

x x

Suppose that Ls is close to the z axis, directed at angles θx 
 1 and
θy 
 1 with respect to the x and y axes. As Note 8.1 explains, rotations
about each axis can be considered independently, to first order, for rota-
tions through infinitesimal angles. The contribution to Lx due to rotation
about the x axis is Lx = d(Ixxθx)/dt = Ixxdθx/dt. We can treat Ixx as a
constant because moments of inertia about principal axes are constant
to first order for small angular displacements. Similarly, the products of
inertia remain zero to first order. (The proofs are left as a problem.) In
addition, rotation about y contributes to Lx by giving Ls a component
Ls sin θy in the x direction. Adding the two contributions, we have

Lx = Ixx
dθx

dt
+ Ls sin θy.
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Similarly,

Ly = Iyy
dθy

dt
− Ls sin θx.

By symmetry, Ixx = Iyy = I⊥. For small angles, sin θ ≈ θ and cos θ ≈ 1.
Hence

Lx = I⊥
dθx

dt
+ Lsθy (8.19a)

Ly = I⊥
dθy

dt
− Lsθx. (8.19b)

To the same order of approximation,

Lz = Isωs. (8.19c)

Since the torque is zero, dL/dt = 0. Equation (8.19c) gives Ls =

constant, ωs = constant, and Eqs. (8.19a) and (8.19b) yield

I⊥
d2θx

dt2 + Ls
dθy

dt
= 0 (8.20a)

I⊥
d2θy

dt2 − Ls
dθx

dt
= 0. (8.20b)

If we let ωx = dθx/dt, ωy = dθy/dt, Eqs. (8.20) become

I⊥
dωx

dt
+ Lsωy = 0 (8.21a)

I⊥
dωy

dt
− Lsωx = 0. (8.21b)

To solve this pair of coupled equations, we can differentiate Eq. (8.21a)
and substitute the value for dωy/dt in Eq. (8.21b), giving

I⊥2

Ls

d2ωx

dt2 + Lsωx = 0

or
d2ωx

dt2 + γ
2ωx = 0, (8.22)

where

γ =
Ls

I⊥
= ωs

Is

I⊥
.

Equation (8.22) is the familiar equation for simple harmonic motion. The
solution can be written

ωx = A sin (γt + φ), (8.23)

where A and φ are arbitrary constants. Substituting this in Eq. (8.21a)

ωy = − I⊥
Ls

dωx

dt

=
I⊥

Isωs
Aγ cos (γt + φ),
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or

ωy = A cos (γt + φ). (8.24)

By integrating Eqs. (8.23) and (8.24) we obtain

θx =
A
γ

cos (γt + φ) + θx0 (8.25a)

θy = −A
γ

sin (γt + φ) + θy0, (8.25b)

where θx0 and θy0 are constants of integration. Because we are making
the small-angle approximation, we require that A/γ 
 1.

Ls θ0

x

y

z
γ

Equations (8.25a) and (8.25b) reveal that the spin axis rotates around
a fixed direction in space. If we take that direction along the z axis, then
θx0 = θy0 = 0. Assuming that at t = 0, θx = θ0 and θy = 0, we have

θx = θ0 cos γt (8.26a)

θy = θ0 sin γt, (8.26b)

where we have taken A/γ = θ0 and φ = 0.
Equations (8.26a) and (8.26b) describe torque-free precession in

which the spin axis precesses in space at a fixed angle θ0 with respect to
the z axis. The frequency of the precessional motion is γ = ωsIs/I⊥. For
a body flattened along the axis of symmetry, such as the oblate spheroid
in the sketch, Is > I⊥ and γ > ωs. For a thin coin, Is = 2I⊥ and γ = 2ωs.
Thus, a freely falling coin wobbles twice as fast as it spins.

ωs

The Earth is an oblate spheroid and exhibits torque-free precession.
The amplitude of the motion is small; the spin axis wanders about the
polar axis by about 5 m at the North Pole. Since the Earth itself is spin-
ning at rate ωs, the apparent rate of precession to an earthbound observer
is

γ′ = γ − ωs

= ωs

(
Is − I⊥

I⊥

)
. (8.27)

For the Earth, (Is−I⊥)/I⊥ = 1
300 , and the precessional motion should have

a period of 300 days. In reality, the situation is not quite so ideal. The ob-
served motion is somewhat irregular with an apparent period of about
430 days. The fluctuations arise from the elastic nature of the Earth,
which is significant for motions this small.

The discussion of the nutating gyroscope in Note 8.2 is also based
on the small-angle approximation and provides another example of the
approach used here.

8.7.2 Euler’s Equations
We turn now to the task of solving the equation of motion for a rigid
body. The equation is simple to write: τ = dL/dt. To evaluate dL/dt,
we shall calculate the change in the components of L in the time interval
from t to t + Δt using the small-angle approximation. The results are
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correct only to first order but they will become exact when we take the
limit Δt → 0.

2

Δθ2

ω2

ω3

ω1Δθ1

Δθ3

3

1

Let us introduce an inertial coordinate system that coincides with the
instantaneous position of the body’s principal axes at time t. We label
the axes of the inertial system 1, 2, 3. Let the components of the angular
velocity ω at time t relative to the 1, 2, 3 system be ω1, ω2, ω3. Because
we are using principal axes, the components of L are L1 = I1ω1, L2 =

I2ω2, L3 = I3ω3, where I1, I2, I3 are the respective moments of inertia
about the three axes.

In the time interval Δt, the principal axes rotate away from the 1, 2, 3
axes. To first order, the rotation angle about the 1 axis is Δθ1 = ω1 Δt;
similarly, Δθ2 = ω2 Δt and Δθ3 = ω3 Δt. The corresponding change
ΔL1 = L1(t + Δt) − L1(t) can be found to first order by treating the three
rotations one by one, according to Note 8.1 on infinitesimal rotations.
There are two ways L1 can change. If ω1 changes, the magnitude of I1ω1
also changes. In addition, rotations about the other two axes cause L2 and
L3 to change direction, and these can contribute to angular momentum
along axis 1.

3

3

2

2

1

1

L1

L1
L2

L3Δθ2

L2Δθ3

Δθ2

Δθ2

Δθ3

Δθ3

Δθ3

Δθ2

L3

The contribution Δ(I1ω1) to ΔL1 is Δ(I1ω1) = I1Δω1 because the com-
ponents of Ĩ are constant to first order for small angular displacements
about the principal axes.

To find the remaining contributions to ΔL1, first consider rotation
about the 2 axis through angle Δθ2. This causes ΔL1 and ΔL3 to rotate as
shown.

The rotation of L1 causes no change along the 1 axis, to first or-
der. However, the rotation of L3 around the 2 axis contributes L3Δθ2 =

I3ω3Δθ2 along the 1 axis. Similarly, rotation about the 3 axis contributes
−L2Δθ3 = −I2ω2Δθ3 to ΔL1.

Adding all the contributions gives

ΔL1 = I1 Δω1 + I3ω3 Δθ2 − I2ω2 Δθ3.

Dividing by Δt and taking the limit Δt → 0 yields
dL1

dt
= I1

dω1

dt
+ (I3 − I2)ω3ω2.

The other components can be treated in a similar fashion or we can sim-
ply relabel the subscripts by 1→ 2, 2→ 3, 3→ 1 to give

dL2

dt
= I2

dω2

dt
+ (I1 − I3)ω1ω3

dL3

dt
= I3

dω3

dt
+ (I2 − I1)ω2ω1.

Using τ = dL/dt, we obtain

τ1 = I1
dω1

dt
+ (I3 − I2)ω3ω2 (8.28a)

τ2 = I2
dω2

dt
+ (I1 − I3)ω1ω3 (8.28b)

τ3 = I3
dω3

dt
+ (I2 − I1)ω2ω1, (8.28c)
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where τ1, τ2, τ3 are the components of τ along the axes of the inertial
system 1, 2, 3.

Equations (8.28) were first derived by the great mathematician Leon-
hard Euler in the mid-eighteenth century, and are known as Euler’s equa-
tions of rigid body motion.

Because Euler’s equations are tricky to apply, it is important to under-
stand what they mean.

We set up the 1, 2, 3 inertial system to coincide with the instanta-
neous directions of the body’s principal axes at some time t. The com-
ponents of τ along the 1, 2, 3 axes at time t are τ1, τ2, τ3. Similarly,
ω1, ω2, ω3 are the components of ω along the 1, 2, 3 axes at time t, and
dω1/dt, dω2/dt, dω3/dt are the instantaneous rates of change of these
components. Euler’s equations relate these quantities at time t. To apply
Euler’s equations at another time t′, we have to resolve τ andω along the
axes of a new inertial system 1′, 2′, 3′ that coincides with the principal
axes at t′.

Time t

Time t ′

3

3 ′

2 ′1′

1

2

The difficulty is that Euler’s equations do not show us how to find the
orientation of these coordinate systems in space. Essentially, we have
traded one problem for another; we know the disposition of the axes
in the familiar x, y, z laboratory coordinate system, but the components
of the tensor of inertia vary in an unknown way. In the 1, 2, 3 system,
the components of Ĩ are constant, but we do not know the orientation
of the axes. Consequently, Euler’s equations cannot be integrated di-
rectly to give angles specifying the orientation of the body relative to
the x, y, z laboratory system. Euler overcame this difficulty by express-
ing ω1, ω2, ω3 in terms of a set of angles, known as Euler’s angles, that
relate the principal axes of the rigid body to the axes of the laboratory
system.

In terms of these angles, Euler’s equations are a set of coupled dif-
ferential equations. The general equations are fairly complicated and are
discussed in advanced texts. Fortunately, in many important applications
we can find the motion from Euler’s equations by using straightforward
geometrical arguments. Here are three examples.

Example 8.16 Dynamical Stability of Rigid Body Motion
In principle, a pencil can be balanced on its point, but in practice, the
pencil falls almost immediately. Although a perfectly balanced pencil
is in equilibrium, the equilibrium is not stable. If the pencil starts to
tip because of some small perturbing force, the gravitational torque
causes it to tip even farther; the system continues to move away from
equilibrium.

A static system is stable if a displacement from equilibrium gives rise
to forces that drive it back toward equilibrium. A dynamical system is
stable if it responds to a perturbing force by altering its motion only
slightly. In contrast, an unstable dynamical system can have its motion
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drastically changed by a small perturbing force, possibly leading to
catastrophic failure.

A rotating rigid body can exhibit either stable or unstable motion de-
pending on the axis of rotation. As we shall show, the motion is stable
for rotation about the axes of maximum or minimum moment of inertia
but unstable for rotation about the axis with intermediate moment of in-
ertia. The effect is easy to demonstrate: wrap a book with a rubber band
and let it fall spinning about each of its principal axes in turn. Let the
moment of inertia be maximum about axis a and minimum about axis
c. You will find that the motion is stable if the book is spun about either
of these axes. However, if the book is spun about axis b with the inter-
mediate moment of inertia, it tends to flop over as it spins, generally
landing on its broad side.

a

b
c

To explain this behavior, we turn to Euler’s equations, Eq. (8.28). Sup-
pose that the body initially spins with ω1 = constant � 0, ω2 = 0, ω3 =

0, and that it is suddenly perturbed. Immediately after the perturbation,
ω2 and ω3 are different from zero but small compared with ω1. Once
the perturbation ends, the motion is torque-free and Euler’s equations
become:

I1
dω1

dt
+ (I3 − I2)ω2ω3 = 0 (1)

I2
dω2

dt
+ (I1 − I3)ω1ω3 = 0 (2)

I3
dω3

dt
+ (I2 − I1)ω1ω2 = 0. (3)

Because ω2 and ω3 are both very small, we can neglect the second term
in Eq. (1). Therefore I1 dω1/dt = 0, so that ω1 is constant.

If we differentiate Eq. (2) and substitute the value of dω3/dt from Eq.
(3), we have

I2
d2ω2

dt2 −
(I1 − I3)(I2 − I1)

I3
ω1

2ω2 = 0

or
d2ω2

dt2 + Aω2 = 0 (4)

where

A =
(I1 − I2)(I1 − I3)

I2I3
ω1

2.

If I1 is the largest or the smallest moment of inertia, A > 0 and Eq.
(4) is the equation for simple harmonic motion: ω2 oscillates at fre-
quency

√
A with bounded amplitude. It is easy to show that ω3 also

undergoes simple harmonic motion. Since ω2 and ω3 are bounded, the
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motion is stable, corresponding to the torque-free precession we calcu-
lated earlier.

If I1 is the intermediate moment of inertia, A < 0. In this case ω2 and
ω3 tend to increase exponentially with time and the motion is unstable.

Example 8.17 The Rotating Rod
Consider a uniform rod mounted on a horizontal frictionless axle
through its center. The axle is carried on a turntable revolving with
constant angular velocity Ω, with the center of the rod over the axis of
the turntable. Let θ be the angle shown in the sketches. The problem is
to find θ as a function of time.

Ω

θ
 Ω cos θ

 Ω sin θ

3
3

2

2

1

θ

Ω
θ

To apply Euler’s equations, take principal axis 1 of the rod along the
horizontal axle, principal axis 2 along the length of the rod, and prin-
cipal axis 3 in a vertical plane perpendicular to the rod. ω1 = θ̇, and
by resolving Ω along the 2 and 3 directions we find ω2 = Ω sin θ and
ω3 = Ω cos θ.

There is no torque about the 1 axis and the first of Euler’s equations
gives

I1θ̈ + (I3 − I2)Ω2 sin θ cos θ = 0

or

θ̈ +

(
I3 − I2

2I1

)
Ω2 sin 2θ = 0 (1)

using sin θ cos θ = 1
2 sin 2θ.

For oscillations near the horizontal, sin 2θ ≈ 2θ and Eq. (1) becomes

θ̈ +

(
I3 − I2

I1

)
Ω2θ = 0.

Recalling that I3 > I2, we see that θ executes simple harmonic motion
with angular frequency

√
(I3 − I2)/I1Ω.

Example 8.18 Euler’s Equations and Torque-free Precession
We discussed the torque-free motion of a cylindrically symmetric body
in Section 8.7.1 using the small-angle approximation. Here we obtain
an exact solution by using Euler’s equations.
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1

2

3

Let the axis of cylindrical symmetry be principal axis 1 with moment
of inertia I1. The other two principal axes are perpendicular to the
1 axis, and I2 = I3 = I⊥.

From the first of Euler’s equations Eq. (8.28a),

τ1 = I1
dω1

dt
+ (I3 − I2)ω2ω3, (1)

we have

0 = I1
dω1

dt
,

which gives

ω1 = constant = ωs.

Principal axes 2 and 3 therefore revolve about the 1 axis at the constant
angular velocity ωs.

2

1

3
ω⊥

ω3

ω2

γt

1

2

3

ω

ωs

ω2

ω⊥

ω3

The two remaining Euler’s equations are

0 = I⊥
dω2

dt
+ (I1 − I⊥)ωsω3 (2)

0 = I⊥
dω3

dt
+ (I⊥ − I1)ωsω2. (3)

Differentiating Eq. (2) and using Eq. (3) to eliminate dω3/dt gives

d2ω2

dt2 +

(
I1 − I⊥

I⊥

)2
ωs

2ω2 = 0.

The angular velocity component ω2 executes simple harmonic motion
with angular frequency

γ =

∣∣∣∣∣ I1 − I⊥
I⊥

∣∣∣∣∣ ωs.

Thus ω2 is given by ω2 = ω⊥ cos γt where the amplitude ω⊥ is deter-
mined by initial conditions. Then, if I1 > I⊥, Eq. (2) gives

ω3 = −1
γ

dω2

dt
= ω⊥ sin γt.

As the drawing shows, ω2 and ω3 are the components of a vector ω⊥
that rotates in the 2–3 plane at rate γ. An observer fixed to the body
would see ω⊥ rotate relative to the body about the 1 axis at angular
frequency γ.

Since the 1, 2, 3 axes are fixed to the body and the body is rotating
about the 1 axis at rate ωs, the rotational speed of ω⊥ relative to an
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observer fixed in space is

γ + ωs =
I1

I⊥
ωs.

Euler’s equations have told us how the angular velocity moves relative
to the body, but we have yet to find the actual motion of the body in
space. Here we must use our ingenuity. We know the motion of ω rel-
ative to the body, and we also know that for torque-free motion L is
constant. This is enough to find the actual motion of the body, as we
shall now show.

α ωsω⊥

I⊥ω⊥

I1 ωs

ω Ωp

L

The diagram showsω and L at some instant of time. Because L cosα =
I1ωs, and ωs and L are constant, α must be constant as well. Conse-
quently, the relative position of all the vectors in the diagram never
changes. The only possible motion is for the diagram to rotate about L
with some “precessional” angular velocity Ωp. (Bear in mind that the
diagram is moving relative to the body; Ωp is greater than ωs.)

The remaining problem is to find Ωp. We have shown that ω precesses
about ωs in space at rate γ +ωs. To relate this to Ωp, resolve Ωp into a
vector A along ωs and a vector B perpendicular to ωs.

ω

α

Ωp

B

A

The magnitudes are A = Ωp cosα and B = Ωp sinα. The rotation A
turns ω about ωs, but the rotation B does not. Hence the rate at which
ω precesses about ωs is Ωp cosα. Equating this to γ + ωs,

Ωp cosα = γ + ωs

=
I1

I⊥
ωs

or

Ωp =
I1ωs

I⊥ cosα
.

The precessional angular velocity Ωp represents the rate at which the
symmetry axis rotates about the fixed direction L. It is the frequency of
wobble we observe when we flip a spinning coin. Earlier in this section
we used the small-angle approximation and found that the rate at which
the symmetry axis rotates about a space-fixed direction is I1ωs/I⊥.
Our earlier result agrees with the exact result derived here in the limit
α→ 0.

Note 8.1 Finite and Infinitesimal Rotations
In this Note we shall demonstrate that the order in which rotations
are made is important if the rotations are large—finite rotations do not
commute—but not if they are small—infinitesimal rotations do com-
mute. By an infinitesimal rotation we mean one for which all powers
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of the rotation angle beyond the first can be neglected. Commutatitivity
is important because it allows us to treat small angular displacements as
components of a vector.

In Example 8.1 we demonstrated that if two rotations are performed
in opposite order the results are different, so that we cannot write a finite
rotation as a vector. To prove this, we shall calculate the effect of suc-
cessive rotations on a position vector r. Let rα be the result of rotating r
through α about n̂α, and rαβ the result of rotating rα through β about n̂β.
We shall show that

rαβ � rβα.

However, for α 
 1 and β 
 1, we will find that rαβ = rβα to first order
in the rotation angles, so there is no problem treating the orientation
angle as a vector for infinitesimal rotations. Our calculation is a special
case, but it illustrates the essential features of a general proof.

Suppose vector r is initially along the x axis, r = r î. First rotate
through angle α about the z axis and then through angle β about the y
axis, as follows.α

α

z

x
rα

r
y

First rotation: through angle α about the z axis.

r = r î

rα = r cosα î + u sinα ĵ,

since |rα| = |r| = r.

z

x β

β

rαβ

y

Second rotation: through angle β about the y axis. The y component
r sinα ĵ is unchanged by this rotation.

rαβ = r cosα(cos β î − sin β k̂) + r sinα ĵ

= r cosα cos β î + r sinα ĵ − r cosα sin β k̂. (1)

Now go through the same argument but in reverse order. The result is

rβα = r cosα cos β î + r cos β sinα ĵ − r sin β k̂. (2)

Comparing Eqs. (1) and (2) reveals that rαβ and rβα differ in their y and
z components. Represent the rotation angles by Δα and Δβ, as in the
sketches, and take Δα 
 1,Δβ 
 1.

Δα

Δα

rΔx 
x

y

z

r

If we neglect all terms of second order and higher, then sinΔθ ≈ Δθ
and cosΔθ ≈ 1, and Eq. (1) becomes

rαβ = r î + rΔα ĵ − rΔβ k̂, (3)

while Eq. (2) becomes

rβα = r î + rΔα ĵ − rΔβ k̂. (4)
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Hence rαβ = rβα to first order for small rotations, and the vector

Δθ = Δβ ĵ + Δα k̂

is well defined. In particular, the displacement of r is

Δr = rfinal − rinitial

= rαβ − r î

= rΔα ĵ − rΔβ k̂ = Δθ × r. (5)

If the displacement occurs in time Δt, the velocity is

v = lim
Δt→0

Δr
Δt

= lim
Δt→0

Δθ × r
Δt

= ω × r,

where

ω = lim
Δt→0

Δθ

Δt
.

In our example, ω = (dβ/dt) ĵ + (dα/dt) k̂.
The equality of Eqs. (3) and (4) indicates that the result of two in-

finitesimal rotations can be found by evaluating the effects of the rota-
tions independently. To first order, the effect of rotating r = r î through
Δα about z is to generate a y component rΔα ĵ. The effect of rotating
r through Δβ about y is to generate a z component, −rΔβ k̂. The total
change in r to first order is the sum of the two effects,

Δr = rΔα ĵ − rΔβ k̂,

in agreement with Eq. (5).

Note 8.2 More about Gyroscopes
In Section 8.3 we used simple vector arguments to discuss the uni-
form precession of a gyroscope. However, uniform precession is not the
most general form of gyroscope motion. For instance, a gyroscope re-
leased with its axle at rest horizontally does not instantaneously start
to precess. Instead, the center of mass begins to fall and the falling
motion is rapidly converted to an undulatory motion called nutation.
If the undulations are damped out by friction in the bearings, the gy-
roscope eventually settles into uniform precession. The purpose of this
Note is to show how nutation occurs, using the small-angle approxima-
tion. (We used the same approach in Section 8.7.1 to explain torque-free
precession.)

Consider a gyroscope consisting of a flywheel of mass M at one end
of a shaft of length l whose other end is attached to a universal pivot.
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The flywheel is set spinning rapidly and the axle is released from the
horizontal. What is the subsequent motion?

x

zωs

y

Because it is natural to consider the motion in terms of rotation about
the fixed pivot point, we introduce a coordinate system with its origin at
the pivot.

Assume for the moment that the gyroscope is not spinning but that
the axle is rotating horizontally around the pivot at rate ωz. To calcu-
late the angular momentum about the origin we need a generalization of
the parallel axis theorem. Consider the angular momentum due to rota-
tion of the axle about the z axis at rate ωz. If the moment of inertia of
the disk around a vertical axis through the center of mass is Izz, then the
moment of inertia about the z axis through the pivot is Izz + Ml2. (The
proof is straightforward, and is left as a problem.) If we let Izz+Ml2 = Ip,
then Lz = Ipωz. By symmetry, the moment of inertia about the x axis is
Ixx + Ml2 = Ip, so that Lx = Ipωx.

x

y

z

l

ωz

ωs

These results are exact when the gyroscope lies along the y axis, as in
the drawing, and they are true to first order in angle for small angles of
tilt around the y axis.

Now suppose that the flywheel is set spinning at rate ωs. If the mo-
ment of inertia along the axle is Is, then the spin angular momentum is
Ls = Isωs.

There are two separate contributions to the angular momentum as-
sociated with small angular displacements from the y axis. The first is
from the motion of the system as a whole as it rotates about the pivot at
some rate ωz. This rotation makes a contribution of the form Iωz, where
I is the moment of inertia about the axis of ωz. The second arises from
the change in direction of the spin. As the gyroscope moves away from
the y axis, components of Ls are generated in the x and z directions.
For small angular displacements θ, such components will be of the form
Lsθ.

θ

Ls

Ls θ

Ls

For small angular displacements, θx 
 1 about the x axis and θz 
 1
about the z axis, the rotations can be considered independently and their
effects added.
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x x
ωx

θz

ωz

θx

Ls

Ls

z
z

y y

(a) (b)

(a) Rotation about the x axis Suppose that the axle has rotated about
the x axis through angle θx 
 1, and has instantaneous angular velocity
ωx. Then

Lx = Ipωx

Ly = Ls cos θx ≈ Ls (1)
Lz = Ls sin θx ≈ Lsθx.

(b) Rotation about the z axis
For rotation by θz 
 1 about the z axis, a similar argument gives

Lx = −Ls sin θz ≈ −Lsθz

Ly = Ls cos θz ≈ Ls (2)
Lz = Ipωz.

Equations (1) and (2) show that the rotations θx and θz leave Ly un-
changed to first order. However, the rotations give rise to first order con-
tributions to Lx and Lz. From Eqs. (1) and (2) we find

Lx = Ipωx − Lsθz

Ly = Ls (3)
Lz = Ipωz + Lsθx.

x

z

l

W

The instantaneous torque about the origin is

τx = −lW, (4)

where l is the length of the axle and W is the weight of the gyro. Since
τ = dL/dt, Eqs. (3) and (4) give

Ipω̇x − Lsωz = −lW (5a)
L̇s = 0 (5b)

Ipω̇z + Lsωx = 0, (5c)

where we have used θ̇z = ωz, θ̇x = ωx.
Equation (5b) assures us that the spin is constant, as we expect for

a flywheel with good bearings. To solve the remaining equations, we
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differentiate Eq. (5a) to obtain

Ipω̈x − Lsω̇z = 0.

Substituting the result ω̇z = −Lsωx/Ip from Eq. (5c) gives

ω̈x +
Ls

2

Ip
2 ωx = 0.

Letting γ = Ls/Ip = ωsIs/Ip, this becomes

ω̈x + γ
2ωx = 0.

We again have the familiar equation for simple harmonic motion. The
solution is

ωx = A cos(γt + φ), (6)

where A and φ are arbitrary constants.
We can use Eq. (5a) to find ωz:

ωz =
lW
Ls
+

Ip

Ls
ω̇x.

Substituting the result ω̇x = −Aγ sin(γt + φ) obtained from Eq. (6) gives

ωz =
lW
Ls
− Ip

Ls
Aγ sin(γt + φ)

=
lW
Ls
− A sin(γt + φ). (7)

We can integrate Eqs. (6) and (7) to obtain

θx = B sin(γt + φ) +C

θz =
lW
Ls

t + B cos(γt + φ) + D, (8)

where B = A/γ, and C,D are constants of integration.
The motion of the gyroscope depends on the constants B, φ,C, and D

in Eq. (8), and these depend on the initial conditions. We consider three
separate cases.

Case 1. Uniform Precession If we take B = 0 and C = D = 0,
Eq. (8) gives

θx = 0

θz = lW
t

Ls
. (9)

This corresponds to the case of uniform precession we treated in Section
8.3. The rate of precession is dθz/dt = lW/Ls, the same result we found
earlier, Eq. (8.2). If the gyroscope is moving in uniform precession at
t = 0, it will continue to do so. However, if we release the gyroscope
from rest at t = 0, its initial precession rate is zero. Consequently, we
need to examine the solution more closely.
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Case 2. Torque-free Precession If we “turn off” gravity so that W is
zero, then Eq. (8) gives, with C = D = 0,

θx = B sin(γt + φ) (10a)

θz = B cos(γt + φ). (10b)

The tip of the axle moves in a circle about the y axis. The amplitudeθx

θz

γ
of the motion depends on the initial conditions. This is identical to the
torque-free precession discussed in Section 8.7.1 and Example 8.18.

Case 3. Nutation Suppose that the axle is released from rest along
the y axis at t = 0. The initial conditions at t = 0 on the x motion are
(θx)0 = 0, (dθx/dt)0 = 0. From Eq. (8) we obtain

B sin φ +C = 0
Bγ cos φ = 0.

Assuming for the moment that B is not zero, we have φ = π/2,C = −B.
Equation (8) then becomes

θz =
lW
Ls

t − B sin γt + D.

The initial conditions on the z motion at t = 0 are (θz)0 = 0, (dθz/dt)0 =

0, and we obtain

D = 0

−Bγ +
lW
Lz
= 0

or

B =
lW
γLs

.

Inserting these results in Eq. (8) gives

θx =
lw
γLs

(cos γt − 1) (11a)

θz =
lw
γLs

(γt − sin γt). (11b)

θx

θz

The motion described by Eqs. (8.31) is illustrated in the sketch. As
time increases, the tip of the axle traces out a cycloidal path. The dipping
motion of the axle is called nutation. The motion is easy to see with a
well-made gyroscope. Note that the initial motion of the axle is vertically
down. When the gyroscope is released it starts to fall, but the motion is
rapidly reversed and it rises to its initial elevation. Meanwhile, it has
precessed slightly. Eventually the nutation dies out due to friction in the
pivot, and the damped motion turns into uniform precession, as shown
in the sketch.

Damped nutation

θx

θz

The axle is left with a slight dip after the nutation is damped; this
keeps the total angular momentum about the z axis zero. The rotational
energy of precession comes from the fall of the center of mass. Other
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nutational motions are also possible, depending on the initial conditions;
the sketches show two possible cases. These can all be described by
Eq. (8) by suitable choices of the constants.

θx

θx

θz

θz
We made the approximation that θx 
 1, θz 
 1, but because of pre-

cession, θz increases linearly with time and the approximation inevitably
breaks down. This is not a problem if we examine the motion for one
period of nutation. The nutational motion repeats itself with period
T = 2π/γ. If θz is small during one period, then we can mentally start
the problem over at the end of the period with a new coordinate system
having its y axis again along the direction of the axle. The restriction on
θz is then that ΩT
1, or

2πΩ
γ

 1.

Our solution breaks down if the rate of precession becomes comparable
to the rate of nutation. More vividly, our approximation is good if the
gyroscope nutates many times as it precesses through a full turn.

In a toy gyroscope, friction is so large that it is practically impossible
to observe nutation. However, in an air suspension gyroscope, friction
is so small that nutation is easy to observe. The rotor of this gyroscope
is a massive metal sphere which rests in a close fitting cup. The sphere
is suspended on a film of air which flows from an orifice at the bottom
of the cup. Torque is applied by the weight of a small mass on a rod
protruding radially from the sphere. The pictures are photographs of a
stroboscopic light source reflected from a small bead on the end of the
rod, showing three modes. By studying the distance between the dots
you can discern the variation in speed of the rod through the precession
cycle.
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Problems
For problems marked *, refer to page 523 for a hint, clue, or answer.

8.1 Rolling hoop
A thin hoop of mass M and radius R rolls without slipping about
the z axis. It is supported by an axle of length R through its center,
as shown. The hoop circles around the z axis with angular speed
Ω.

(a) What is the instantaneous angular velocity ω of the hoop?
(b) What is the angular momentum L of the hoop? Is L paral-

lel to ω? (The moment of inertia of a hoop for an axis along its
diameter is 1

2 MR2.)

z

R

R

8.2 Flywheel on rotating table
A flywheel of moment of inertia I0 rotates with angular velocity
ω0 at the middle of an axle of length 2l. Each end of the axle is
attached to a support by a spring which is stretched to length l
and provides tension T . You may assume that T remains constant
for small displacements of the axle. The supports are fixed to a
table that rotates at constant angular velocity Ω, where Ω 
 ω0.
The center of mass of the flywheel is directly over the center of
rotation of the table. Neglect gravity and assume that the motion
is completely uniform so that nutational effects are absent. The
problem is to find the direction of the axle with respect to a straight
line between the supports.

l
l

2l

ω0

Ω

8.3 Suspended gyroscope
A gyroscope wheel is at one end of an axle of length A. The other
end of the axle is suspended from a string of length B. The wheel
is set into motion so that it executes uniform precession in the hor-
izontal plane. The wheel has mass M and moment of inertia about
its center of mass I0. Its spin angular velocity is ωs. Neglect the
masses of the shaft and string.

Find the angle β that the string makes with the vertical. As-
sume that β is so small that approximations like sin β ≈ β are
justified.

β

ωs

L

l

8.4 Grain mill*
In an old-fashioned rolling mill, grain is ground by a disk-shaped
millstone that rolls in a circle on a flat surface, driven by a ver-
tical shaft. Because of the stone’s angular momentum, the con-
tact force with the surface is greater than the weight of the
wheel.

Assume that the millstone is a uniform disk of mass M, radius b,
and width w, and that it rolls without slipping in a circle of radius
R with angular velocity Ω. Find the ratio of the contact force with
respect to the surface to the weight of the stone.

b

w

R

Ω
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8.5 Automobile on a curve
When an automobile rounds a curve at high speed, the loading
(weight distribution) on the wheels is markedly changed. For suffi-
ciently high speeds the loading on the inside wheels goes to zero, at
which point the car starts to roll over. This tendency can be avoided
by mounting a large spinning flywheel on the car.

(a) In what direction should the flywheel be mounted, and what
should be the sense of rotation, to help equalize the loading?
(Be sure that your method works for the car turning in either
direction.)

(b) Show that for a disk-shaped flywheel of mass m and radius
R, the requirement for equal loading is that the angular velocity ω
of the flywheel is related to the velocity of the car V by

ω = 2V
Mb
mR2 ,

where M is the total mass of the car and flywheel, and b is the
height of the center of mass of the car (including the flywheel)
above the road. Assume that the road is unbanked.

8.6 Rolling coin*
A coin of radius b and mass M rolls on a horizontal surface at
speed V . If the plane of the coin is vertical the coin rolls in a
straight line. If the plane is tilted, the path of the coin is a circle
of radius R. Find an expression for the tilt angle of the coin α in
terms of the given quantities. (Because of the tilt of the coin the
circle traced by its center of mass is slightly smaller than R but
you can ignore the difference.)

α

ωs

R

b

8.7 Suspended hoop
A thin hoop of mass M and radius R is suspended from a string
through a point on the rim of the hoop. If the support is turned
with high angular velocity ω, the hoop will spin as shown, with
its plane nearly horizontal and its center nearly on the axis of the
support. The string makes angle α with the vertical.

(a) Find, approximately, the small angle β between the plane of
the hoop and the horizontal. Assume that the center of mass is at
rest.

(b) Find, approximately, the radius of the small circle traced out
by the center of mass about the vertical axis.

(c) Find a criterion for the validity of the assumption that mo-
tion of the center of mass can be neglected. (With skill you can
demonstrate this motion with a rope. It is a favorite cowboy lariat
trick.)

ω

ω

α

β

8.8 Deflected hoop
A child’s hoop of mass M and radius b rolls in a straight line with
velocity V . The top of the hoop is given a light tap with a stick at
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right angles to the direction of motion. The impulse of the blow is
I.

(a) Assuming that the spin angular momentum is much larger
than any other component of angular momentum, the only effect
of the tap is to change the direction that the hoop rolls by some
angle Φ. Find Φ.

(b) Find a criterion for the peak applied force F in order for the
assumption in part (a) to be valid.

8.9 Stability of a bicycle*
As a bicycle changes direction, the rider leans inward creating a
horizontal torque on the bike. Part of the torque is responsible
for the change in direction of the spin angular momentum of the
wheels. Consider a bicycle and rider system of total mass M with
wheels of mass m and radius b, rounding a curve of radius R at
speed V . The center of mass of the system is 1.5b from the ground.

(a) Find an expression for the tilt angle α.
(b) Find the value of α, in degrees, if M = 70 kg, m = 2.5 kg,

V = 30 km/hour and R = 30 m.
(c) What would be the percentage change in α if spin angular

momentum were neglected?

8.10 Measuring latitude with a gyro
Latitude can be measured with a gyro composed of a spinning disk
mounted to pivot freely on an axis through the plane of the disk,
with its axle horizontal and lying along the east–west axis.

(a) Show that the gyro can remain stationary when its spin axis
is parallel to the polar axis and is at the latitude angle λ with the
horizontal.

(b) If the gyro is released with the spin axis at a small angle to
the polar axis show that the gyro spin axis will oscillate about the
polar axis with a frequency ωosc =

√
I1ωsΩe/I⊥, where I1 is the

moment of inertia of the gyro about its spin axis, I⊥ is its moment
of inertia about the fixed horizontal axis, and Ωe is the Earth’s
rotational angular velocity.

What value of ωosc is expected for a gyro rotating at 40 000 rpm,
assuming that it is a thin disk and that the mounting frame makes
no contribution to the moment of inertia?

8.11 Tensor of inertia
A particle of mass m is located at x = 2, y = 0, z = 3.

(a) Find its moments and products of inertia relative to the
origin.

(b) The particle undergoes pure rotation about the z axis through
a small angle α. Show that its moments and products of inertia are
unchanged to first order in α if α 
 1.

z

y

x

m
α
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8.12 Euler’s disk*
If you spin a coin or solid uniform disk about a vertical axis on a
hard surface, it will eventually lose energy and begin to wobble and
perhaps make a buzzing sound as it rolls. With a massive disk—a
toy called Euler’s disk—the wobbling motion can be astonishing,
with the frequency of buzzing increasing as the rotational speed of
the disk decreases. The motion seems at first sight to be like gyro-
scope motion, but it can be argued that Euler’s disk is an antigy-
roscope. The goal of this problem is to understand the underlying
physics of the disk’s motion.

Consider a thin disk of radius R and mass M that is executing
the rapidly buzzing motion. The plane of the disk is at angle α
with respect to the table. The axis of the disk precesses around
the vertical at rate Ωp. The disk also spins about its own axis with
spin angular velocity Ω0. The result of the two motions is for the
contact point on the table to be momentarily at rest.

Find Ωp for a given small angle α.
(a) Find the total angular velocity of the disk and the angular

momentum. From this, find the precession rate Ωp.
(b) Find the rate at which the disk appears to rotate as viewed

from above, when α is very small.

R

α

α

Ω p

Ω 0
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9.1 Introduction
In discussing the principles of dynamics in Chapter 2, we stressed that
Newton’s second law F = ma holds true only in inertial coordinate sys-
tems. We have so far avoided non-inertial systems in order not to obscure
our goal of understanding the physical nature of forces and accelerations.
Because that goal has largely been realized, in this chapter we turn to
the use of non-inertial systems with a twofold purpose. By introducing
non-inertial systems we can simplify many problems; from this point
of view, the use of non-inertial systems represents one more computa-
tional tool. However, consideration of non-inertial systems also enables
us to explore some of the conceptual difficulties of classical mechanics.
Consequently, the second goal of this chapter is to gain deeper insight
into Newton’s laws, the properties of space, and the meaning of inertia.
We start by developing a formal procedure for relating observations in
different inertial systems.

9.2 Galilean Transformation
In this section we shall show that any coordinate system moving uni-
formly with respect to an inertial system is also inertial. This result is so
transparent that it hardly warrants formal proof. However, the argument
will be helpful in the next section when we analyze non-inertial systems.

Suppose that two physicists, Alice and Bob, set out to observe a series
of events such as the position of a body of mass m as a function of time.
Each has their own set of measuring instruments and each works in their
own laboratory. Alice has confirmed by experiments that Newton’s laws
hold accurately in her laboratory, and she concludes that her reference
frame is therefore inertial. How can she predict whether or not Bob’s
system is also inertial?

yα

xα

rα rβ

m

s

xβ

yβ

For simplicity, Alice and Bob agree to use Cartesian coordinate sys-
tems with identical scale units. In general, their coordinate systems do
not coincide. Leaving rotations for later, we suppose for the time being
that the systems are in relative motion but that corresponding axes are
parallel. Let the position of mass m be given by rα in Alice’s system, and
rβ in Bob’s system. If the origins of the two systems are displaced by S,
as shown in the sketch, then

rβ = rα − S. (9.1)

If Alice sees the mass accelerating at rate aα = r̈α, she concludes from
Newton’s second law that there is a force on m given by

Fα = maα.

Bob observes m to be accelerating at rate aβ, as if it were acted on by a
force

Fβ = maβ.

What is the relation between Fβ and the true force Fα measured in an
inertial system?
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It is a simple matter to relate the accelerations in the two systems.
Successive differentiation of Eq. (9.1) with respect to time yields

vβ = vα − V (9.2a)

aβ = aα − A (9.2b)

where V = Ṡ and A = V̇ = S̈.
If V is constant, the relative motion is uniform and A = 0. In this case

aβ = aα and

Fβ = maβ = maα
= Fα.

The measured force is the same in both systems. The equations of mo-
tion in a system moving uniformly with respect to an inertial system
are identical to those in the inertial system. It follows that all systems
translating uniformly relative to an inertial system are inertial. This sim-
ple result leads to an enigma. Although it would be appealing to single
out a coordinate system absolutely at rest, there is no dynamical way to
distinguish one inertial system from another. Nature provides no clue to
absolute rest.

We tacitly made a number of plausible assumptions in the above ar-
gument. In the first place, we have assumed that both observers use the
same scale for measuring distance. To assure this, Alice and Bob must
calibrate their scales with the same standard of length. If Alice deter-
mines that the length of a certain rod at rest in her system is Lα, we
expect that Bob will measure the same length. This is indeed the case
if there is no motion between the two systems. However, it is not true
in general. If Bob moves parallel to the rod with uniform velocity v,
he will measure a length Lβ = Lα

√
1 − v2/c2, where c is the velocity

of light. The contraction of a moving rod, known as the Lorentz con-
traction, follows from the theory of special relativity, as discussed in
Section 12.8.2.

A second assumption we made is that time is the same in both systems.
If Alice determines that the time interval between two events is Tα, we
assumed that Bob will observe the same interval. Here again the assump-
tion breaks down at high velocities. As discussed in Section 12.8.1, Bob
finds that the interval he measures is Tβ = Tα

√
1 − v2/c2. Once again

nature provides an unexpected result.
The reason these results are so unexpected is that our notions of space

and time come chiefly from immediate contact with the world around us,
and this never involves velocities even remotely near the velocity of light.
If we normally moved with speeds approaching the velocity of light, we
would take these results for granted. As it is, even the highest “everyday”
velocities are low compared with the velocity of light. For instance, the
velocity of an artificial satellite around the Earth is about 8 km/s. In
this case v2/c2 ≈ 10−9, and length and time are altered by only 1 part
in 109.
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A third assumption is that the observers agree on the value of the mass.
However, mass is defined by experiments that involve both time and dis-
tance, and so this assumption must also be examined. According to a
further result from special relativity, if an object at rest has mass m0, the
most useful quantity corresponding to mass for an observer moving with
velocity v is m = m0/

√
1 − v2/c2.

Now that we are aware of some of the complexities, let us defer con-
sideration of special relativity until Chapters 12, 13, and 14, and for the
time being limit our discussion to situations where v 
 c. In this case
the Newtonian ideas of space, time, and mass are valid to high accuracy.
The following equations then relate measurements made by Alice and
Bob, provided that their coordinate systems move with uniform relative
velocity V. We choose the origins of the coordinate systems to coincide
at t = 0 so that S = Vt. Then from Eq. (9.1) we have

rβ = rα − Vt (9.3a)

tβ = tα. (9.3b)

The time relation Eq. (9.3b) is generally assumed implicitly.
This set of relations, called a transformation, gives the prescription

for transforming coordinates of an event from one coordinate system
to another. Equations (9.3) transform coordinates between inertial sys-
tems and are known as the Galilean transformation. Because force is
unchanged by the Galilean transformation, observers in different inertial
systems obtain the same dynamical equations. It follows that the laws
of physics look the same in all inertial systems; in other words, they
have the same form. Otherwise, different observers would make differ-
ent predictions; for instance, if one observer predicts the collision of two
particles, another observer might not.

The assertion that the forms of the laws of physics are the same in
all inertial systems is known as the principle of relativity. Although the
principle of relativity played only a minor role in the development of
Newtonian mechanics, its role in Einstein’s theory of relativity is cru-
cial. This is discussed further in Chapter 12, where we show that the
Galilean transformation is not universally valid but must be replaced by
the more general Lorentz transformation. However, the Galilean trans-
formation is accurate for v 
 c, and we shall take it to be exact in this
chapter.

9.3 Uniformly Accelerating Systems
Next we turn our attention to how physical laws appear to an observer
in a system accelerating at a constant rate A with respect to an inertial
system. To simplify notation we shall drop the subscripts α and β and
label quantities in non-inertial systems by primes. Equation (9.2b) then
becomes

a′ = a − A,
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where A is the acceleration of the primed system as measured in the
inertial system.

In the accelerating system the apparent force is

F′ = ma′

= ma − mA.

Because the unprimed system is inertial, ma is equal to the true force F
due to physical interactions. Hence

F′ = F − mA.

We can write this as

F′ = F + Ffict,

where

Ffict ≡ −mA.

Ffict is called a fictitious force. In words, Ffict has magnitude mA, and its
direction is opposed to the direction of A.

The fictitious force experienced in a uniformly accelerating system is
uniform and proportional to the mass, like a gravitational force. How-
ever, fictitious forces originate in the acceleration of the coordinate sys-
tem, not in interactions between bodies. The term fictitious is intended
to emphasize the non-physical nature of Ffict.

Here are three examples illustrating the use of fictitious forces.

Example 9.1 The Apparent Force of Gravity
A small weight of mass m hangs from a string in an automobile that
accelerates at rate A. What is the static angle of the string from the
vertical, and what is the tension in the string?

We shall analyze the problem both in an inertial frame and in a non-
inertial frame accelerating with the car.

A

m

A reminder about signs: a vector is written as positive for the di-
rection shown in the vector diagram, so in this example we write
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Laboratory system Accelerating system

T cos θ −W = 0 T cos θ −W = 0
T sin θ = mA T sin θ − Ffict = 0

Ffict = mA

tan θ =
mA
W
=

A
g

tan θ =
A
g

T = m
√

g2 + A2 T = m
√

g2 + A2.

The physically measurable quantities θ and T are the same regardless
of which system we use, as must be the case.

θ

Ffict

m

T

W
Acceleration = 0

Accelerating system

Laboratory system
W

Acceleration = A

θ

m

T

A

From the point of view of a passenger in the accelerating car, the ficti-
tious force acts like a horizontal gravitational force. The effective grav-
itational force is the vector sum of the real and fictitious forces. How
would a helium-filled balloon held on a string in the accelerating car
behave?

The fictitious force in a uniformly accelerating system behaves exactly
like a constant gravitational force; the fictitious force is constant and is
proportional to the mass. The fictitious force on an extended body there-
fore acts at the center of mass, as illustrated in the following example.

Example 9.2 Cylinder on an Accelerating Plank
A cylinder of mass M and radius R rolls without slipping on a plank
that is accelerated at rate A. Find the acceleration of the cylinder.

The force diagram for the horizontal force on the cylinder as viewed in
an accelerating system fixed to the plank is shown in the sketch. a′ is
the acceleration of the cylinder as observed in the accelerating system.
f is the friction force, and Ffict = MA with the direction shown.

α′

ƒ

R

RFfict

M
A

a′

a

The equations of motion in the system fixed to the accelerating plank
are

f − Ffict = Ma′

R f = −I0α
′.

The cylinder rolls on the plank without slipping, so

α′R = a′.
These equations yield

Ma′ = −I0
a′

R2 − Ffict

a′ = − Ffict

M + I0/R2 .
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Since I0 = MR2/2, and Ffict = MA, we have

a′ = −2
3

A.

The acceleration of the cylinder in an inertial system is

a = A + a′

=
1
3

A.

Examples 9.1 and 9.2 can be worked with about the same ease in either
an inertial or an accelerating system. Here is a problem that is compli-
cated to solve in an inertial system (try it), but that is almost trivial in an
accelerating system.

Example 9.3 Pendulum in an Accelerating Car
Consider again the weight on a string in the accelerating car of Exam-
ple 9.1, but now assume that the car is at rest with the weight hanging
vertically. The car suddenly accelerates at rate A. The problem is to
find the maximum angle φ through which the weight swings. (φ is
larger than the equilibrium angle θ found in Example 9.1 due to the
sudden acceleration.)

φ

φ

φ0

φ0

mA

mg

Apparent
vertical

Gravity

In a system accelerating with the car, the bob behaves like a pendulum
in a gravitational field where “down” is at an angle φ0 from the true
vertical. From Example 9.1, φ0 = arctan(A/g). The pendulum is ini-
tially at rest, so that it swings back and forth with amplitude φ0 about
the apparent vertical direction. Hence φ = 2φ0 = 2 arctan(A/g) is the
maximum angle of swing from the true vertical.

9.4 The Principle of Equivalence
The laws of physics in a uniformly accelerating system are identical to
those in an inertial system provided that we introduce a fictitious force



348 NON-INERTIAL SYSTEMS AND FICTITIOUS FORCES

on each particle, Ffict = −mA. Ffict is indistinguishable from the force
due to a uniform gravitational field g = −A; both the gravitational force
and the fictitious force are constant forces proportional to the mass.

In a local gravitational field g a free particle of mass m experiences a
force F = mg. Consider the same particle in deep space free of any phys-
ical interactions. If it is in a non-inertial system uniformly accelerating
at rate A = −g, it experiences an apparent force Ffict = −mA = mg, as
before. Is there any way to distinguish physically between these different
situations?

The significance of this question was first pointed out by Einstein,
who illustrated the problem with the following “gedanken” experiment.
(A gedanken, or thought, experiment is meant to be thought about rather
than carried out.)

A man is holding an apple in an elevator at rest in a gravitational field
g. He lets go of the apple, and it falls with a downward acceleration
a = g. Now consider the same man in the same elevator, but let the
elevator be in free space accelerating upward at rate a = g. The man
again lets go of the apple, and it again appears to accelerate down at
rate g. From the man’s point of view the two situations are identical.
There is no way to distinguish between acceleration of the elevator and
a gravitational field.

Acceleration
a = g

Gravity g

The point becomes even more apparent in the case of the elevator
freely falling in the gravitational field. The elevator and all its contents
accelerate downward at rate g. If the man releases the apple, it will float
as if the elevator were motionless in free space. Einstein pointed out
that the downward acceleration of the elevator exactly cancels the local
gravitational field. From the point of view of an observer in the elevator,
there is no way to determine whether the elevator is in free space or
whether it is falling in a gravitational field.

This apparently simple idea, known as the principle of equivalence,
underlies Einstein’s general theory of relativity and all other theories of
gravitation. We summarize the principle of equivalence as follows: there
is no way to distinguish locally between a uniform gravitational acceler-
ation g and an acceleration of the coordinate system A = −g.

By saying that there is no way to distinguish locally, we mean that
there is no way to distinguish from within a sufficiently confined system.
The reason that Einstein put his observer in an elevator was to define
such an enclosed system. For instance, if you are in an elevator and ob-
serve that free objects accelerate toward the floor at rate a, there are two
possible explanations:

1. There is a downward gravitational field g, and the elevator is at rest
(or moving uniformly) in the field.

2. There is no gravitational field, but the elevator is accelerating up at
rate a = g.

To distinguish between these alternatives, you must look out of the el-
evator. Suppose, for instance, that you see an apple suddenly drop from
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a nearby tree and fall down with acceleration a. The most likely explana-
tion is that you and the tree are at rest in a downward gravitational field
of magnitude g = a. However, it is conceivable that your elevator and the
tree are both at rest on a giant elevator which is accelerating up at rate a.

To choose between these alternatives you must look farther off. If you
see that you have an upward acceleration a relative to the fixed stars,
that is, if the stars appear to accelerate down at rate a, the only possible
explanation is that you are in a non-inertial system; your elevator and
the tree are actually accelerating up. The alternative is the impossible
conclusion that you are at rest in a gravitational field that extends uni-
formly through all of space. But such fields do not exist; real forces arise
from interactions between real bodies, and for sufficiently large separa-
tions the forces always decrease. Hence it is most unphysical to invoke a
uniform gravitational field extending throughout space.

This, then, is the difference between a gravitational field and an accel-
erating coordinate system. Real fields are local; at large distances they
decrease. An accelerating coordinate system is non-local; the accelera-
tion extends uniformly throughout space. Only for small systems are the
two indistinguishable.

Although these ideas may sound somewhat abstract, the next two
examples show that they have direct physical consequences.

Example 9.4 The Driving Force of the Tides
The Earth is in free fall toward the Sun, and according to the prin-
ciple of equivalence it should be impossible to observe the Sun’s
gravitational force in an earthbound system. However, the equivalence
principle applies only to local systems. The Earth is so large that
appreciable non-local effects like the tides can be observed. In this
example we discuss the origin of the tides to see what is meant by a
non-local effect.

The tides arise because the Sun and the Moon produce an apparent
gravitational field that varies from point to point on the Earth’s surface.
Although the Moon’s effect is larger than the Sun’s, we shall consider
only the Sun for purposes of illustration.n̂

r
rs

The gravitational field of the Sun at the center of the Earth is

G0 =
GMs

r2
s

n̂,

where Ms is the Sun’s mass, rs is the distance between the center of the
Sun and the center of the Earth, and n̂ is the unit vector from the Earth
toward the Sun. The Earth accelerates toward the Sun at rate A = G0.

If G(r) is the gravitational field of the Sun at some point r on the Earth,
where the origin of r is the center of the Earth, then the force on mass
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m at r is

F = mG(r).

To an earthbound observer, the apparent force is

F′ = F − mA = mG(r) − mG0.

The apparent field is

G′(r) =
F′

m
= G(r) −G0.

Ga Gc

d

c
a 0

b

Gd

G0

Gb

The drawing shows the true field G(r) at different points on the Earth’s
surface. (The variations are exaggerated.) Ga is larger than G0 because
a is closer to the Sun than is the center of the Earth. Similarly, Gc is less
than G0. The magnitudes of Gb and Gd are approximately the same as
the magnitude of G0, but their directions are slightly different.

G�b
G�a

G�d

G�c
a

b

c

d

The sketch shows the apparent field G′ = G −G0.

We now evaluate G′ at each of the points indicated.

1. G′a and G′c
The distance from a to the center of the Sun is rs − Re where Re is the
Earth’s radius. The magnitude of the Sun’s field at a is

Ga =
GMs

(rs − Re)2 .

Ga is parallel to G0. The magnitude of the apparent field at a is

G′a = Ga −G0

=
GMs

(rs − Re)2 −
GMs

r2
s

=
GMs

r2
s

[
1

[1 − (Re/rs)]2 − 1
]

= G0

[
1

[1 − (Re/rs)]2 − 1
]
.
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Since Re/rs = 6.4 × 103 km/1.5 × 108 km = 4.3 × 10−5 
 1, we have

G′a = G0

⎡⎢⎢⎢⎢⎢⎣
(
1 − Re

rs

)−2

− 1

⎤⎥⎥⎥⎥⎥⎦
= G0

[
1 + 2

Re

rs
+ · · · − 1

]

≈ 2G0
Re

rs
,

where we have neglected terms of order (Re/rs)2 and higher.

The analysis at c is similar, except that the distance to the Sun is rs+Re

instead of rs − Re. We obtain

G′c = −2G0
Re

rs
.

Note that G′a and G′c point radially out from the Earth.

2. G′b and G′d
Points b and d are, to excellent approximation, the same distance from
the Sun as is the center of the Earth. However, Gb is not parallel to G0;
the angle between them is α ≈ Re/rs = 4.3 × 10−5 
 1.

rs

Reα

To this approximation

G′b ≈ G0α

≈ G0
Re

rs
.

Gb
G�b

G0

By symmetry, G′d is equal and opposite to G′b. Both G′b and G′d point
toward the center of the Earth.

c

b

d

a

The sketch shows G′(r) at various points on the Earth’s surface. This di-
agram is the starting point for analyzing the tides. The forces at a and c
tend to lift the oceans, and the forces at b and d tend to depress them. If
the Earth were uniformly covered with water, the tangential force com-
ponents would cause the two tidal bulges to sweep around the globe as
the Earth rotates. This picture explains the twice daily ebb and flood of
the tides, but the actual motions depend in a complicated way on the
response of the oceans as the Earth rotates, and on the local topography.

We can estimate the magnitude of tidal effects quite easily, as the next
example shows.

Example 9.5 Equilibrium Height of the Tides
The following argument is based on a model devised by Newton.
Pretend that two wells full of water run from the surface of the Earth
to the center, where they join. One is along the Earth–Sun axis and the
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other is perpendicular. For equilibrium, the pressures at the bottom of
the wells must be identical.

To the
Sun

a

b

dr
r

h2

h1

The pressure due to a short column of water of height dr is ρg(r)dr,
where ρ is the density of water and g(r) is the effective gravitational
field at r. The condition for equilibrium is∫ h1

0
ρg1(r)dr =

∫ h2

0
ρg2(r)dr.

h1 and h2 are the distances from the center of the Earth to the surface
of the respective water columns. If we assume that the water is incom-
pressible, then ρ is constant and the equilibrium condition becomes∫ h1

0
g1(r)dr =

∫ h2

0
g2(r)dr.

The problem is to calculate the difference h1 − h2 = Δhs, the height
of the tide due to the Sun. We assume that the Earth is spherical and
neglect effects due to its rotation.

The effective field toward the center of the Earth along column 1 is
g1(r) = g(r) − G′1(r), where g(r) is the gravitational field of the Earth
and G′1(r) is the effective field of the Sun along column 1. (The negative
sign indicates that G′1(r) is directed radially outward.) In Example 9.4
we evaluated G′1(Re) = G′a = 2GMsRe/r3

s . The effective field along
column 1 is obtained by substituting r for Re:

G′1(r) =
2GMsr

rs
3

= 2Cr,

where C = GMs/rs
3.

Combining results gives

g1(r) = g(r) − 2Cr.

The same reasoning gives

g2(r) = g(r) +G′2(r)
= g(r) +Cr.

The condition for equilibrium is∫ h1

0
[g(r) − 2Cr]dr =

∫ h2

0
[g(r) +Cr]dr,

or, rearranging,∫ h1

0
g(r)dr −

∫ h2

0
g(r)dr =

∫ h1

0
2Cr dr +

∫ h2

0
Cr dr.

Combining the integrals on the left-hand side gives
∫ h1

h2
g(r)dr.



9.4 THE PRINCIPLE OF EQUIVALENCE 353

Since h1 and h2 are both nearly equal to the Earth’s radius, g(r) can
be taken as constant in the integral. g(r) = g(Re) = g, the acceleration
due to gravity at the Earth’s surface. The integrals on the left therefore
contribute g(h1−h2) = gΔhs. The integrals on the right can be combined
by taking h1 ≈ h2 ≈ Re, and they yield

∫ Re

0 3Cr dr = 3
2CRe

2. The final
result is

gΔhs =
3
2

CRe
2.

Using g = GMe/Re
2 and C = GMs/rs

3, we find

Δhs =
3
2

Ms

Me

(
Re

rs

)3
Re.

Using the following data

Ms = 1.99 × 1033 g Me = 5.98 × 1027 g

rs = 1.49 × 1013 cm Re = 6.37 × 108 cm,

we obtain
Δhs = 24.0 cm.

An identical argument for the Moon gives

Δhm =
3
2

Mm

Me

(
Re

rm

)3
Re.

Inserting Mm = 7.34 × 1025g, rm = 3.84 × 1010 cm, we obtain Δhm =

53.5 cm. We see that the Moon’s effect is about twice as large as the
Sun’s, even though the Sun’s gravitational field at the Earth is about
200 times stronger than the Moon’s. The reason is that the tidal force
depends both on the mass of the Sun or Moon and on the gradient of the
gravitational field, which varies as 1/r3. Although the Sun is far more
massive than the Moon, the Moon’s closeness to the Earth means that
its gravitational field has much greater variation over the Earth.

The strongest tides, called the spring tides, occur at the new and full
moon when the Moon and Sun act along the same line. The weak neap
tides occur midway between, at the quarters of the Moon. The ratio of
the driving forces in these two cases is

Δhspring

Δhneap
=
Δhm + Δhs

Δhm − Δhs
≈ 3.

Earth not accelerating

The tides offer convincing evidence that the Earth is in free fall toward
the Sun. If the Earth were attracted by the Sun but not in free fall, there
would be only a single tide, whereas free fall results in two tides a day, as
the sketches illustrate. The fact that we can sense the Sun’s gravitational
field from a body in free fall does not contradict the principle of equiva-
lence. The height of the tide depends on the ratio of the Earth’s radius to
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the Sun’s distance, Re/rs. However, for a system to be local with respect
to a gravitational field, the variation of the field must be negligible over
the dimensions of the system. The Earth would be a local system if Re

were negligible compared to rs, but then there would be no tides. The
tides demonstrate that the Earth is too large to constitute a local system
in the Sun’s field.

Earth in free fall

A

There have been a number of experimental investigations of the prin-
ciple of equivalence, because in spite of its apparent simplicity, far-
reaching conclusions follow from it. For example, the principle of equiv-
alence demands that gravitational force be strictly proportional to inertial
mass. An alternative statement is that the ratio of gravitational mass to
inertial mass must be the same for all matter, where the gravitational
mass is the mass that appears in the expression for gravitational force
and the inertial mass is the mass that appears in Newton’s second law.

If an object with gravitational mass Mgr and inertial mass Min interacts
with an object of gravitational mass M0, we have

F = −GM0Mgrr̂
r2 .

The acceleration is F/Min, so that

a = −GM0

r2

(
Mgr

Min

)
r̂. (9.4)

The equivalence principle requires Mgr/Min to be the same for all objects
because otherwise it would be possible to distinguish locally between a
gravitational field and an acceleration. For instance, suppose that for ob-
ject A,Mgr/Min is twice as large as for object B. If we release both objects
in an Einstein elevator and they fall with the same acceleration, the only
possible conclusion is that the elevator is actually accelerating up. On the
other hand, if A falls with twice the acceleration of B, we know that the
acceleration must be due to a gravitational field. The upward acceleration
of the elevator would be distinguishable from a downward gravitational
field, contrary to the principle of equivalence.

The ratio Mgr/Min is taken to be 1 in Newton’s law of gravitation.
Any other choice for the ratio would be reflected in a different value
for G, because according to experiment the only requirement is that
G(Mgr/Min) = 6.67 × 10−11 N ·m2/kg2.

Newton investigated the equivalence of inertial and gravitational mass
by studying the period of a pendulum with interchangeable bobs made of
different materials. The equation of motion for the bob in the small-angle
approximation is

Minlθ̈ + Mgrgθ = 0.

The period of the pendulum is

T =
2π
ω

= 2π

√
l
g

√
Min

Mgr
.
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Newton’s experiment consisted of looking for a variation in T using dif-
ferent bobs. He found no such change and, from an estimate of the sen-
sitivity of the method, concluded that Mgr/Min is constant to better than
one part in a thousand for common materials.

The most compelling evidence for the principle of equivalence comes
from an experiment devised by the Hungarian physicist Baron Roland
von Eötvös at the turn of the twentieth century. (The experiments were
completed in 1908 but the results were not published until 1922, three
years after von Eötvös’ death.) The method and techniques of von
Eötvös’ experiment were refined by Robert Dicke and his collaborators
at Princeton University, and more recently by Eric Adelberger and his
colleagues at the University of Washington.

Consider a torsion balance consisting of two masses A and B of dif-
ferent composition at each end of a bar that hangs from a thin elastic
fiber capable of producing a restoring torque when twisted. The bar can
rotate only about the vertical axis. The masses are attracted by the Earth
and also by the Sun. The gravitational force due to the Earth is ver-
tical and causes no rotation of the balance, but as we now show, the
Sun’s attraction will cause a torque if the principle of equivalence is
violated.

aA

aB

A
B

Assume that the Sun is on the horizon, as shown in the sketch, and
that the horizontal bar is perpendicular to the Sun–Earth axis. According
to Eq. (9.4) the accelerations of the masses due to the Sun are

aA =
GMs

rs
2

[
Mgr(A)
Min(A)

]

aB =
GMs

rs
2

[
Mgr(B)
Min(B)

]
,

where Ms is the gravitational mass of the Sun, and rs is the distance
between Sun and Earth. The acceleration of the masses in a coordinate
system fixed to the Earth are

a′A = aA − a0

a′B = aB − a0,

where a0 is the acceleration of the Earth toward the Sun. (Acceler-
ation due to the rotation of the Earth plays no role and we neglect
it.)

If the principle of equivalence is obeyed, a′A = a′B and the bar has no
tendency to rotate about the fiber. However, if the two masses A and B
have different ratios of gravitational to inertial mass, one will accelerate
more than the other. The balance will rotate until the restoring torque of
the suspension fiber brings it to rest. As the Earth rotates, the apparent
direction of the Sun changes; the equilibrium position of the balance
would move with a 24 hour period.

Adelberger’s apparatus was capable of detecting the deflection caused
by a variation of 1 part in 1012 in the ratio of gravitational to inertial
mass, but no effect was found to this accuracy.
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The principle of equivalence is generally regarded as a fundamental
law of physics. We have used it to discuss the ratio of gravitational to
inertial mass. Surprisingly enough, it can also be used to show that clocks
run at different rates in different gravitational fields. A simple argument
showing how the principle of equivalence forces us to give up the classi-
cal notion of time is presented in Note 9.1.

9.5 Physics in a Rotating Coordinate System
In the previous section we treated physics in a linearly accelerating sys-
tem. In this section we turn to the more complicated problem of physics
in a rotating coordinate system.

But first, a few words on why fictitious forces are useful. We saw in
Example 9.1 that physical results are the same whether we use an in-
ertial system or a non-inertial system. In the inertial system, Newton’s
laws hold without modification. In the non-inertial linearly accelerating
system, we added a non-physical fictitious force −MA. Including the
fictitious force allowed us to treat the problem just like a problem in an
inertial system.

If we tried to treat motion in a rotating coordinate system from the
standpoint of an inertial frame, we could easily get bogged down in ge-
ometry. We shall see in this section that by adding two fictitious forces,
the centrifugal force and the Coriolis force, we can treat motion in a
rotating coordinate system as if we were in an inertial system. The ficti-
tious forces systematically account for the difference between the rotat-
ing non-inertial system and an inertial system.

The surface of the Earth provides an excellent example of a rotating
coordinate system, and using fictitious forces, we will be able to explain
observations on the Earth, for example the precession of the Foucault
pendulum and the circular nature of weather systems.

To analyze motion in a rotating coordinate system, we need an equa-
tion that relates motion in inertial and rotating systems. Our approach
will be to find a general rule for calculating the time derivative of any
vector in a coordinate system that is rotating with respect to an inertial
system, and then to apply this to relate velocity and acceleration in the
two systems.

9.5.1 Rate of Change of a Rotating Vector
Consider any vector B that is rotating at rate Ω about an axis lying in
direction n̂. The rotational velocity vector isΩ = Ωn̂. Let α be the angle
between B and Ω.

The sketch shows B(t) and B(t + Δt).

B sin α

B
(t

)

B
(t

 +
 Δ

t )

n

Ω

ΩΔt

ΔB

α

ˆ

The tip of B sweeps out a circular path with radius B sinα and the
plane of the circle is perpendicular to n̂. In time Δt the tip of B swings
through an angle ΩΔt. Consequently, the tip of B moves by ΔB:

ΔB ≈ (B sinα) ΩΔt
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so that

dB
dt
= lim
Δt→0

(B sinα)ΩΔt
Δt

= (B sinα)Ω.

Note that (B sinα) Ω = |Ω × B| and that ΔB is perpendicular to B and n̂.
The cross product therefore perfectly describes dB/dt:

dB
dt
= Ω × B. (9.5)

This result holds true for any vector that undergoes pure rotation around
axis n̂ at rate Ω.

9.5.2 Time Derivative of a Vector in a Rotating
Coordinate System

Consider any vector C that is changing at rate (dC/dt)in as observed in
an inertial system. The problem is to find the time derivative (dC/dt)rot
as observed in a system rotating at rate Ω.

Let the base vectors be (î, ĵ, k̂) in the inertial system and (î′, ĵ′, k̂′) in
the rotating system. In the inertial system, C and its time derivative are

C = Cx î +Cy ĵ +Cxk̂(
dC
dt

)
in
=

(
dCx

dt
î +

dCy

dt
ĵ +

dCz

dt
k̂
)
.

Let the components of C in the rotating system be

C = C′x î′ +C′y ĵ′ +C′zk̂′.

Keep in mind that a vector is physically measurable, so its magnitude
and direction remain the same regardless of what coordinate system we
choose to assign its components. In calculating the time derivative of
(dC/dt)rot we must take into account that the base vectors in the rotating
system all rotate with angular velocity Ω, so from Eq. (9.5)

dî′

dt
= Ω × î′

dĵ′

dt
= Ω × ĵ′ (9.6)

dk̂′

dt
= Ω × k̂′.

We have

dC
dt
=

(
dC′x
dt

î′ +
dC′y
dt

ĵ′ +
dC′z
dt

k̂′
)
+

⎛⎜⎜⎜⎜⎝C′x dî′

dt
+C′y

dĵ′

dt
+C′z

dk̂′

dt

⎞⎟⎟⎟⎟⎠ . (9.7)

The first term on the right is (dC/dt)rot, the time derivative of C that
would be measured by an observer in the rotating system. Now introduce



358 NON-INERTIAL SYSTEMS AND FICTITIOUS FORCES

Eqs. (9.6) into the second term on the right in Eq. (9.7):⎛⎜⎜⎜⎜⎝C′x dî′

dt
+C′y

dĵ′

dt
+C′z

dk̂′

dt

⎞⎟⎟⎟⎟⎠ = (C′xΩ × î′ +C′yΩ × ĵ′ +C′zΩ × k̂′
)

= Ω ×
(
C′x î′ +C′y ĵ′ +C′zk̂

′)
= Ω × C.

Combining results we have(
dC
dt

)
in
=

(
dC
dt

)
rot
+Ω × C. (9.8)

This equation holds for any vector. It is most easily remembered as an
operator, analogous to the del operator in Note 5.2. The rule is(

d
dt

)
in
=

(
d
dt

)
rot
+Ω ×

We now use this transformation to find expressions for velocity and
acceleration in a rotating system.

9.5.3 Velocity and Acceleration in a Rotating
Coordinate System

Applying Eq. (9.8) to the position vector r, we have(
dr
dt

)
in
=

(
dr
dt

)
rot
+Ω × r,

or

vin = vrot +Ω × r.

We can apply Eq. (9.8) once again to find the acceleration arot in the
rotating coordinate system. We have(

dvin

dt

)
in
=

(
dvin

dt

)
rot
+Ω × vin

=

[
d

dt
(vrot +Ω × r)

]
rot
+Ω × (vrot +Ω × r)

=

(
dvrot

dt

)
rot
+Ω ×

(
dr
dt

)
rot
+Ω × (vrot +Ω × r)

=

(
dvrot

dt

)
rot
+ 2Ω × vrot +Ω × (Ω × r).

Expressing this in terms of the accelerations ain and arot, we have

ain = arot + 2Ω × vrot +Ω × (Ω × r). (9.9)

The acceleration viewed in the rotating system is

arot = ain − 2Ω × vrot −Ω × (Ω × r). (9.10)
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9.5.4 Fictitious Forces in a Rotating Coordinate System
As viewed in a rotating coordinate system, the equation of motion for
mass m is

Frot = m arot.

From Eq. (9.10) we have

Frot = m ain − 2 mΩ × vrot − mΩ × (Ω × r), (9.11)

which we can write as

Frot = F + FCoriolis + Fcentrifugal

= F + Ffict

where F is the real force and

Fcentrifugal = −mΩ × (Ω × r),
FCoriolis = −2 mΩ × vrot

are fictitious forces. The centrifugal force is easily experienced in circu-
lar motion when we twirl a mass on a string. The mass is at rest in the
rotating system, so its equation of motion is Fcentrifugal − T = 0, where T
is the tension in the string. The string exerts a pull T on our hand, so we
feel that the mass is pulling outward.

The centrifugal force Fcentrifugal = −mΩ × (Ω × r) is perpendicular
to the axis of rotation and is directed radially outward. Its magnitude is
mΩ2ρ, where ρ is the perpendicular distance from the axis of rotation to
the tip of r. As the sketch shows, (Ω × (Ω × r) is radially inward; this
is the centripetal acceleration, arising because every point at rest in the
rotating system is moving in a circular path in the inertial system. The
outward fictitious centrifugal force is opposite to the inward centripetal
acceleration.

Ω
Ω × (Ω × r)

Ω × r

r

ρ

Ω

vrot⊥

vrot ||

ρ

θ

The Coriolis force FCoriolis is the fictitious force required to balance
the real force that provides the Coriolis acceleration 2Ω × vrot. Here is
how the Coriolis acceleration arises. The sketch shows vrot resolved into
vectors vrot‖ and vrot⊥, parallel and perpendicular toΩ, respectively. Only
vrot⊥ contributes to the cross product. Hence the acceleration is in a plane
perpendicular toΩ, so it is convenient to use plane polar coordinates ρ, θ
to describe motion in this plane. As shown in the sketch, vrot⊥ has a radial
component ρ̇ and a tangential component ρθ̇′.

ρ

ρθ

ρ⋅

⋅
vrot⊥

θ

The radial component ρ̇ contributes 2Ωρ̇ in the tangential direction to
ain. This tangential acceleration is simply the Coriolis term we found in
Section 1.11.4 for motion in inertial space with angular velocity Ω and
radial velocity ρ̇.

The tangential component ρθ̇′ of vrot⊥ contributes a radial component
2Ωρθ̇′ to the Coriolis acceleration, directed toward the rotation axis. To
see the origin of this term, note that in inertial space the instantaneous
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angular velocity is θ̇ = θ̇′ +Ω and the centripetal acceleration term in ain
is

ρθ̇2 = ρ(θ̇′ + Ω)2

= ρθ̇′2 + 2Ωρθ̇′ + ρΩ2.

The three terms on the right correspond to the three terms on the right
of Eq. (9.9). ρθ̇′2 is part of arot, 2Ωρθ̇′ follows from 2Ω×vrot as we have
shown, and ρΩ2 comes from Ω × (Ω × r).

θ

θ = θ′ + Ωt 
θ = θ′ + Ω 

θ′

Ωt

⋅ ⋅

The following examples illustrate the use of rotating coordinates.

Example 9.6 Surface of a Rotating Liquid
A bucket of water spins with angular speed ω. What shape does the
water’s surface assume? In a coordinate system rotating with the
bucket, the problem is purely static. Consider the force on a small
volume of water of mass m at the surface of the liquid. For equilibrium,
the total force on m must be zero. The forces are the contact force F0,
the weight W, and the radial outward fictitious force Ffict

F0 cos φ −W = 0
−F0 sin φ + Ffict = 0,

where Ffict = mΩ2r = mω2r, since Ω = ω for a coordinate system
rotating with the bucket.

Ω

F0

F0

mg

mω2r

φ

φ

Ffict

W
r̂

z

r

F0 φ

φ

Solving these equations for φ yields

φ = arctan
(
ω2r

g

)
.

Unlike solids, liquids cannot exert a static force tangential to the sur-
face. Hence F0, the force on m due to the neighboring liquid, must be
perpendicular to the surface. The slope of the surface at any point is
therefore

dz
dr
= tan φ

=
ω2r

g
.
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We can integrate to find the equation of the surface z = f (r):∫
dz =

ω2

g

∫
r dr

z =
1
2
ω2

g
r2,

where we have taken z = 0 on the axis at the surface of the liquid. The
surface is a parabola of revolution.

Example 9.7 A Sliding Bead and the Coriolis Force
A bead slides without friction on a horizontal rigid wire rotating at
constant angular speed ω. The problem is to find the force exerted on
the bead by the wire. Neglect gravity.

In a coordinate system rotating with the wire the motion is purely
radial. The sketch shows the force diagram in the rotating system, as
seen from above.ω

ω

N

r

FCor

Fcent Fcent is the centrifugal force and FCor is the Coriolis force. Since the
wire is frictionless, the contact force N is normal to the wire. In the
rotating system the equations of motion are

Fcent = mr̈

N − FCor = 0.

Using Fcent = mω2r, the first equation gives

mr̈ − mω2r = 0,

which has the solution

r = Aeωt + Be−ωt,

where A and B are constants depending on the initial conditions. The
tangential equation of motion, which expresses the fact that there is no
tangential acceleration in the rotating system, gives

N = FCor = 2mṙω

= 2mω2(Aeωt − Be−ωt).

To complete the problem, we must be given two independent initial
conditions to specify A and B, typically r(0) and ṙ(0).

Example 9.8 Deflection of a Falling Mass
Because of the Coriolis force, falling objects on the Earth are deflected
horizontally. For instance, a mass dropped from a tower lands to the
east of a plumb line from the release point. In this example we shall
calculate the deflection of a mass m dropped from a tower of height h
at the Equator. In the coordinate system r, θ fixed to the Earth (with
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the tangential direction toward the east) the apparent force on m isEast

North

r
r

West

m

ˆ
ˆ

Ω

θ
F = −mg r̂ − 2 mΩ × vrot − mΩ × (Ω × r).

The gravitational and centrifugal forces are radial, and if m is dropped
from rest, the Coriolis force is in the equatorial plane (the plane defined
by the great circle of the Equator). Thus the motion of m is confined to
the equatorial plane, and we have

vrot = ṙ r̂ + rθ̇ θ̂.

Using Ω × vrot = Ωṙ θ̂ − rΩθ̇ r̂ and Ω × (Ω × r) = Ω2r r̂, we obtain

Fr = −mg + 2 mΩθ̇r + mΩ2r,

Fθ = −2 m ṙΩ.

The radial equation of motion is

mr̈ − mr θ̇2 = −mg + 2 mΩθ̇r + mΩ2r.

To an excellent approximation, m falls vertically and θ̇ 
 Ω. We can
therefore omit the terms m r θ̇2 and 2 mΩθ̇r in comparison with mΩ2r.
Thus

r̈ ≈ −g + Ω2r. (1)

The tangential equation of motion is

mrθ̈ + 2mṙθ̇ = −2mṙΩ.

To the same approximation θ̇ 
 Ω we have

rθ̈ ≈ −2ṙΩ. (2)

During the fall, r changes only slightly, from Re + h to Re, where Re is
the radius of the Earth, and we can take g to be constant and r ≈ Re.
Equation (1) becomes

r̈ = −g + Ω2Re

= −g′,

where g′ = g − Ω2Re is the acceleration due to the gravitational force
minus a centrifugal term. g′ is the apparent acceleration due to gravity
as observed on the Earth, and since this is customarily denoted by g, we
shall drop the prime from here on. The solution of the radial equation
of motion r̈ = −g is

ṙ = −gt

r = r0 − 1
2

gt2.

If we insert ṙ = −gt in the tangential equation of motion, Eq. (2), we
have

rθ̈ = 2gtΩ
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or

θ̈ =
2gΩ
Re

t,

where we have used r ≈ Re. Hence

θ̇ =
gΩ
Re

t2

and

θ =
1
3

gΩ
Re

t3. (3)

The horizontal deflection of m is y ≈ Reθ or

y =
1
3

gΩt3.

Re

yθ The time T to fall distance h is given by

r − r0 = −h

= −1
2

gT 2

so that

T =

√
2h
g

and y =
1
3

gΩ
(

2h
g

) 3
2

.

Ω = 2π rad/day ≈ 7.3 × 10−5 rad/s and g = 9.8 m/s2. For a tower
50 m high, y ≈ 7.7×10−3 m = 0.77 cm. θ is positive, and the deflection
is toward the east.

Example 9.9 Motion on the Rotating Earth
A surprising effect of the Coriolis force is that it turns straight line
motion on a rotating sphere into circular motion. Consider a velocity
v tangent to a rotating sphere (like the velocity of wind over the
Earth’s surface). The horizontal component of the Coriolis force is
perpendicular to v and its magnitude is independent of the direction of
v, as we shall prove.λ

H

V

Consider a particle of mass m moving with velocity v at latitude λ on
the surface of a sphere. The sphere is rotating with angular velocity Ω.
If we decompose Ω into a vertical vector ΩV and a horizontal vector
ΩH as shown, the Coriolis force is

F = −2m(Ω × v)
= −2m(ΩV × v +ΩH × v)
= FV + FH .

ΩH and v are horizontal, so that ΩH × v is vertical. Thus the hori-
zontal Coriolis force FH arises solely from the term ΩV × v. ΩV is
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perpendicular to v, and ΩV × v has magnitude ΩVv, independent of the
direction of v, as we wished to prove.

N

Ω

S

FH

FH

v

v

We can write the result in a more explicit form. If r̂ is a unit vector
perpendicular to the surface at latitude λ, ΩV = Ω sin λ r̂ and

FH = −2mΩ sin λ (r̂ × v).

The magnitude of FH is

FH = 2mvΩ sin λ.

FH is always perpendicular to v, and in the absence of other horizon-
tal forces it would produce circular motion, clockwise in the northern
hemisphere and counterclockwise in the southern. Air flow on the Earth
is strongly influenced by the Coriolis force and without it stable circular
weather patterns could not form. However, to understand the dynam-
ics of weather systems we must also include other forces, as the next
example discusses.

Example 9.10 Weather Systems
Imagine that a region of low pressure occurs in the atmosphere, per-
haps because of differential heating of the air. The closed curves in
the sketch represent lines of constant pressure, or isobars. There is a
force on each element of air due to the pressure gradient, and in the
absence of other forces winds would blow inward, quickly equalizing
the pressure difference.

Low

However, the wind pattern is markedly altered by the Coriolis force. As
the air begins to flow inward, it is deflected sideways by the Coriolis
force, a fictitious force on the rotating Earth.

Low High

FC

FCFC

(a) (b)

In the northern hemisphere the wind circulates counterclockwise along
the isobars about regions of low pressure, (a), and clockwise about
highs, (b). The directions of rotation are reversed in the southern hemi-
sphere. The Coriolis force is nearly zero near the Equator (latitude ≈
0◦), so circular weather systems cannot form there and the weather
tends to be uniform.
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In order to analyze the motion, consider the forces on a parcel of air at
latitude λ that is rotating about a low. The pressure force on the face
along the isobar P1 is P1S , where S is the area of the inner face, as
shown in the sketch. The force on the outer face is (P1 +ΔP)S , and the
net pressure force is (ΔP)S inward.Low

r

P1 P1 +  ΔP

S

Δr

υ

The Coriolis force is 2mv(Ω sin λ), where m is the mass of the parcel
and v its velocity. The air is rotating counterclockwise about the low,
so that the Coriolis force is outward. The radial equation of motion for
steady circular flow is therefore

mv2

r
= (ΔP)S − 2mv(Ω sin λ).

The volume of the parcel is ΔrS , where Δr is the distance between the
isobars, and the mass is wΔrS , where w is the density of air, assumed
constant. Inserting this in the equation of motion and taking the limit
Δr → 0 yields

v2

r
=

1
w

dP
dr
− 2vΩ sin λ. (1)

Air masses do not rotate as rigid bodies. Near the center of the low,
where the pressure gradient dP/dr is large, wind velocities are highest.
Far from the center, v2/r is small and can be neglected. Equation (1)
predicts that far from the center the wind speed is

v =
(

1
2Ω sin λ

)
1
w

dP
dr
. (2)

The density of air at sea level is 1.3 kg/m3 and atmospheric pressure
is Pat = 105 N/m2. dP/dr can be estimated by looking at a weather
map. Far from a high or low, a typical gradient is 3 millibars over
100 km ≈ 3 × 10−3 N/m3, and at latitude 45◦ Eq. (2) gives

v = 22 m/s
≈ 50 mi/h.

Near the ground this speed is reduced by friction with the land, but at
higher altitudes Eq. (2) can be applied with good accuracy.

Low

FC

FP

dP
dr

A hurricane is an intense compact low in which the pressure gradient
can be as high as 30 × 10−3 N/m3. Hurricane winds are so strong that
the v2/r term in Eq. (1) cannot be neglected. Solving Eq. (1) for v we
find

v =

√
(rΩ sin λ)2 +

r
w

dP
dr
− rΩ sin λ. (3)

At a distance 100 km from the center of a hurricane (the “eye”) at
latitude 20◦, Eq. (3) predicts a wind speed of 45 m/s ≈ 100 mi/h for
a pressure gradient of 30 × 10−3 N/m3, in reasonable agreement with
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weather observations. At larger radii, the wind speed drops because the
pressure gradient decreases.

FP

FCHigh

dP
dr

There is an interesting difference between lows and highs. In a low, the
pressure force is inward (the pressure gradient dP/dr is outward), and
the Coriolis force is outward. In a high, the pressure force is outward
and the Coriolis force is inward.

The radial equation of motion for air circulating around a high is

v2

r
= 2vΩ sin λ − 1

w

∣∣∣∣∣dP
dr

∣∣∣∣∣ . (4)

Solving Eq. (4) for v yields

v = rΩ sin λ −
√

(rΩ sin λ)2 − r
w

∣∣∣∣∣dP
dr

∣∣∣∣∣. (5)

We see from Eq. (5) that if 1/w|dP/dr| > r(Ω sin λ)2, the high cannot
form; the Coriolis force is too weak to supply the needed centripetal
acceleration against the large outward pressure force. For this reason,
storms like hurricanes are always low pressure systems; the strong
inward pressure force helps hold a low together.

The Foucault pendulum provides one of the most dramatic demon-
strations that the Earth is a non-inertial system. The pendulum is simply
a heavy bob hanging from a long wire mounted to swing freely in any
direction. As the pendulum swings back and forth, the plane of motion
precesses slowly about the vertical, taking about a day and a half for a
complete rotation in the mid-latitudes. The precession is a result of the
Earth’s rotation. The plane of motion tends to stay fixed in inertial space
while the Earth rotates beneath it.

In the 1850’s Foucault hung a pendulum 67 m long from the dome of
the Pantheon in Paris. The bob precessed almost a centimeter on each
swing, and presented the first direct evidence that the Earth is indeed
rotating. The pendulum became the rage of Paris.

The next example uses our analysis of the Coriolis force to calculate
the motion of the Foucault pendulum in a simple way.

Example 9.11 The Foucault Pendulum
Consider a pendulum of mass m that is swinging with frequency
γ =

√
g/l, where l is the length of the pendulum. If we describe the

position of the pendulum’s bob in the horizontal plane by coordinates
r, θ, then

θ

λ

r

r = r0 sin γt,

where r0 is the amplitude of the motion. In the absence of the Coriolis
force, there are no tangential forces and θ is constant. The horizontal
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Coriolis force FCH is

FCH = −2m(Ω sin λ)ṙθ̂.

The tangential equation of motion maθ = FCH becomes

m(rθ̈ + 2ṙθ̇) = −2m(Ω sin λ) ṙ

or

rθ̈ + 2ṙθ̇ = −2(Ω sin λ) ṙ.

The simplest solution to this equation is found by taking θ̇ = constant.
The term rθ̈ then vanishes, and we have

θ̇ = −Ω sin λ.

The pendulum precesses uniformly in a clockwise direction. The time
for the plane of oscillation to rotate once is

T =
2π
θ̇

=
2π
Ω sin λ

=
24 h
sin λ

.

At the latitude of Paris, ≈ 49◦, the Foucault pendulum rotates once in
32 h.

θ

At the North Pole (latitude = 90◦) the period of precession is 24 h; the
pendulum rotates clockwise with respect to the Earth at the same rate as
the Earth rotates counterclockwise. The plane of motion remains fixed
with respect to inertial space. What happens at the Equator?

In addition to its dramatic display of the Earth’s rotation, the Fou-
cault pendulum embodies a profound mystery. Consider, for instance, a
Foucault pendulum at the North Pole. The precession is obviously an ar-
tifact; the plane of motion stays fixed while the Earth rotates beneath it.
The plane of the pendulum remains fixed relative to the fixed stars. Why
should this be? How does the pendulum “know” that it must swing in
a plane that is stationary relative to the fixed stars instead of, say, in a
plane that rotates at some uniform rate?

Newton described this puzzling question in terms of the following ex-
periment: if a bucket contains water at rest, the surface of the water is flat.
If the bucket is set spinning at a steady rate, the water at first lags behind,
but gradually, as the water’s rotational speed increases, the surface takes
on the form of the parabola of revolution discussed in Example 9.6. If the
bucket is suddenly stopped, the concavity of the water’s surface persists
for some time. It is evidently not motion relative to the bucket that is
important in determining the shape of the liquid surface. So long as the
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water rotates, the surface is depressed. Newton concluded that rotational
motion is absolute, since by observing the water’s surface it is possible
to detect rotation without reference to outside objects.

From one point of view there is really no paradox to the absolute na-
ture of rotational motion. The principle of Galilean invariance asserts
that there is no way to detect locally the uniform translational motion of
a system. However, this does not limit our ability to detect the acceler-
ation of a system. A rotating system accelerates in a most non-uniform
way. At every point the acceleration is directed toward the axis of ro-
tation; the acceleration shows us the axis. Our ability to detect such an
acceleration in no way contradicts Galilean invariance.

Nevertheless, there is an enigma. Both the rotating bucket and the Fou-
cault pendulum maintain their motion relative to the fixed stars. How can
the fixed stars determine an inertial system? What prevents the plane of
the pendulum from rotating with respect to the fixed stars? Why is the
surface of the water in the rotating bucket flat only when the bucket is at
rest with respect to the fixed stars? Ernst Mach, who in 1883 wrote the
first incisive critique of Newtonian physics, put the matter this way. Sup-
pose that we keep a bucket of water fixed and rotate all the stars. Phys-
ically there is no way to distinguish this from the original case where
the bucket is rotated, and we expect the surface of the water to again as-
sume a parabolic shape. Apparently the motion of the water in the bucket
depends on the motion of matter far off in the universe. To put it more
dramatically, suppose that we eliminate the stars, one by one, until only
our bucket remains. What will happen now if we rotate the bucket? There
is no way for us to predict the motion of the water in the bucket—the in-
ertial properties of space might be totally different. We have a most pecu-
liar situation. The local properties of space depend on far-off matter, yet
when we rotate the water, the surface immediately starts to deflect. There
is no time for signals to travel to the distant stars and return. How does
the water in the bucket “know” what the rest of the universe is doing?

The principle that the inertial properties of space depend on the ex-
istence of far-off matter is known as Mach’s principle. The principle is
accepted by many physicists, but it can lead to strange conclusions. For
instance, there is no reason to believe that matter in the universe is uni-
formly distributed around the Earth; the solar system is located well out
in the limb of our galaxy, and matter in our galaxy is concentrated pre-
dominantly in a very thin plane. If inertia is due to far-off matter, then
we might well expect it to be different in different directions so that the
value of mass would depend on the direction of acceleration. No such
effects have ever been observed. Inertia remains a mystery.

Note 9.1 The Equivalence Principle and the Gravitational
Red Shift
Radiating atoms emit light at only certain characteristic wavelengths. If
light from atoms in the strong gravitational field of dense stars is ana-
lyzed spectroscopically, the characteristic wavelengths are observed to
be slightly increased, shifted toward the red. We can visualize atoms as
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clocks that “tick” at characteristic frequencies. The shift toward longer
wavelengths, known as the gravitational red shift, corresponds to a slow-
ing of the clocks. The gravitational red shift implies that clocks in a grav-
itational field appear to run slow when viewed from outside the field. As
we shall show, the origin of the effect lies in the nature of space, time,
and gravity, not in the trivial effect of gravity on mechanical clocks.

The gravitational red shift is different from the Doppler shift due to the
relative motion of a source and an observer. There is no relative motion
in the gravitational red shift.

It is rather startling to see how the equivalence principle, which is
so simple and non-mathematical, leads directly to a connection between
space, time, and gravity. To show the connection we must use an ele-
mentary result from the theory of relativity; it is impossible to transmit
information faster than the velocity of light, c = 3 × 108 m/s. However,
this is the only relativistic idea needed; our argument is otherwise com-
pletely classical.

Consider two scientists Alice and Bob separated by distance L as
shown in sketch (a).

L

B

A

z

(a)

A
t

z

B
L/c TB

TA

L

(b)

t

L

TA

zA = υt

zB =  L + υt

z

(c)

TB

L

TA

TB
z

t(d)

zB = L +    at21
2

zA =    at21
2

Alice sends out a short light pulse at time t = 0, and a second pulse
shortly thereafter at time TA. The signals are received by Bob, who uses
his own clock to note the interval TB between pulses. A plot of vertical
distance versus time is shown for two light pulses in (b), when the two
stations are at rest. The pulses are delayed by the transit time, L/c, but
the interval TB is the same as TA.

Now consider the situation if both observers move upward uniformly
with speed v, as shown in sketch (c). Although both scientists move dur-
ing the time interval, they move equally, and we still have TB = TA.

The situation is entirely different if both observers are accelerating
upward at uniform rate a as shown in sketch (d). Bob detects the first
pulse at time T1:

T1 =
L + 1

2 aT1
2

c
.

The numerator is the distance the light pulse travels. Similarly, Bob
detects the second pulse at time T2:

T2 = TA +
L + 1

2 aT2
2 − 1

2 aTA
2

c
.

Note that at time TA Alice’s light source is instantaneously at height
1
2 aTA

2.
Solving these quadratic equations for T1 and T2 gives, after some

algebra,

TB = T2 − T1 =
c
a

⎡⎢⎢⎢⎢⎢⎣−
√

1 − 2a
c2 (L + cTA − 1

2 aTA
2) +

√
1 − 2aL

c2

⎤⎥⎥⎥⎥⎥⎦ .
In the first square root, we can neglect the term 1

2 aTA
2, which is small

compared to cTA.
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As is often the case in physics, the exact solution does not give us
much insight. To obtain a more useful result, we use the binomial series
(Note 1.3) to expand each square root, retaining terms through a2. Also,
we assume that the light pulses are close together, so that cTA 
 L. The
first non-vanishing terms are

ΔT
T
=

TB − TA

TA
=

aL
c2 .

Now, by the principle of equivalence, Alice and Bob cannot distinguish
between their upward accelerating system and a system at rest in a down-
ward gravitational field with magnitude g = a. If the experiment is re-
peated in a system at rest in a gravitational field, the equivalence prin-
ciple therefore requires that TB > TA, as we just found, and Bob will
conclude that Alice’s clock is running slow. This is the origin of the
gravitational red shift.

Einstein reported this result in 1911, using a derivation involving the
Doppler shift. Our derivation in this note uses only kinematics, the prin-
ciple of equivalence, and the finite speed of light.

On Earth the gravitational red shift is ΔT/T = 10−16L, where L is in
meters. The effect, though small, was measured experimentally on the
Earth by Pound, Rebka, and Snider at Harvard University. The “clock”
was the frequency of a gamma-ray, and by using a technique known as
Mössbauer absorption they were able to measure accurately the gravita-
tional red shift due to a vertical displacement of 25 m. The accuracy of
the Harvard measurement was 1%, but different experiments since then
have confirmed the effect to an accuracy of better than 1 part in 108.

Problems
For problems marked *, refer to page 524 for a hint, clue, or answer.

9.1 Pivoted rod on car
A uniform thin rod of length L and mass M is pivoted at one end.
The pivot is attached to the top of a car accelerating at rate A, as
shown.

θ
A

(a) What is the equilibrium value of the angle θ between the rod
and the top of the car?

(b) Suppose that the rod is displaced a small angle φ from equi-
librium. What is its motion for small φ?

9.2 Truck door
A truck at rest has one door fully open, as shown. The truck ac-
celerates forward at constant rate A, and the door begins to swing
shut. The door is uniform and solid, has total mass M, height h,
and width w. Neglect air resistance.

w A

(a) Find the instantaneous angular velocity of the door about its
hinges when it has swung through 90◦.

(b) Find the horizontal force on the door when it has swung
through 90◦.
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9.3 Pendulum on moving pivot
A pendulum is at rest with its bob pointing toward the center of
the Earth. The support of the pendulum is moved horizontally with
uniform acceleration a, and the pendulum starts to swing. Neglect
rotation of the Earth.

∗ ∗

Re

a

θ0

d

Consider the motion of the pendulum as the pivot moves over a
small distance d subtending an angle θ0 ≈ d/Re 
 1 at the center
of the Earth. Show that if the period of the pendulum is 2π

√
Re/g,

the pendulum will continue to point toward the center of the Earth,
if effects of order θ0

2 and higher are neglected. (One way to make
such a long-period pendulum would be to place the pivot point of
a long rod close to its center of mass.)

9.4 Weight on a car’s wheels
The center of mass of a 1600 kg car is midway between the wheels
and 0.7 m above the ground. The wheels are 2.6 m apart.

(a) What is the minimum acceleration A of the car so that the
front wheels just begin to lift off the ground?

(b) If the car decelerates at rate g, what is the normal force on
the front wheels and on the rear wheels?

9.5 Gyroscope and acceleration
Gyroscopes can be used to detect acceleration and measure speed.
Consider a gyroscope spinning at high speed ωs. The gyroscope is
attached to a vehicle by a universal pivot P. If the vehicle acceler-
ates in the direction perpendicular to the spin axis at rate a, then
the gyroscope will precess about the acceleration axis, as shown in
the sketch. The total angle of precession, θ, is measured.

Acceleration

P

l

θ

ωs

Show that if the system starts from rest, the velocity of the vehi-
cle is given by

v =
Isωs

Ml
θ,

where Isωs is the gyroscope’s spin angular momentum, M is the
total mass of the pivoted portion of the gyroscope, and l is the dis-
tance from the pivot to the center of mass. (Such a system is called
an integrating gyro, since it automatically integrates the accelera-
tion to give the velocity.)

9.6 Spinning top in an elevator
A top of mass M spins with angular speed ωs about its axis, as
shown. The moment of inertia of the top about the spin axis is
I0, and the center of mass of the top is a distance l from the
point. The axis is inclined at angle φ with respect to the vertical,
and the top is undergoing uniform precession. Gravity is directed
downward.

φ

ωs

The top is in an elevator, with its tip held to the elevator floor by
a frictionless pivot. Find the rate of precession, Ω, clearly indicat-
ing its direction, in each of the following cases:
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(a) The elevator at rest.
(b) The elevator accelerating down at rate 2g.

9.7 Apparent force of gravity
Find the difference in the apparent force of gravity at the Equator
and the poles, assuming that the Earth is spherical.

9.8 Velocity in plane polar coordinates
Derive the familiar expression for velocity in plane polar coordi-
nates, v = ṙr̂ + rθ̇θ̂, by examining the motion of a particle in a
rotating coordinate system in which the velocity is instantaneously
radial.

9.9 Train on tracks*
A 400-ton train runs south at a speed of 60 mi/h at a latitude of
60◦ north.

(a) What is the horizontal force on the tracks?
(b) What is the direction of the force?

9.10 Apparent gravity versus latitude*
The acceleration due to gravity measured in an earthbound coor-
dinate system is denoted by g. However, because of the Earth’s
rotation, g differs from the true acceleration due to gravity, g0. As-
suming that the Earth is perfectly spherical, with radius Re and
angular velocity Ωe, find g as a function of latitude λ. (Assuming
the Earth to be spherical is actually not justified—the contribution
to the variation of g with latitude due to the polar flattening is com-
parable to the effect calculated here.)

9.11 Racing hydrofoil
A high-speed hydrofoil races across the ocean at the Equator at a
speed of 200 mi/h. Let the acceleration of gravity for an observer
at rest on the Earth be g. Find the fractional change in gravity,
Δg/g, measured by a passenger on the hydrofoil when the hydro-
foil heads in the following directions:

(a) east
(b) west
(c) south
(d) north.

9.12 Pendulum on rotating platform
A pendulum is rigidly fixed to an axle held by two supports so that
it can swing only in a plane perpendicular to the axle. The pendu-
lum consists of a mass M attached to a massless rod of length l.
The supports are mounted on a platform that rotates with constant
angular velocity Ω. Find the pendulum’s frequency assuming that
the amplitude is small.

M

Ω

l
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10.1 Introduction
Johannes Kepler was the assistant of the sixteenth-century Danish as-
tronomer Tycho Brahe. They had an ideal combination of talents. Brahe
had the ingenuity and skill to measure planetary positions to better than
0.01◦, all made by naked eye because the telescope was not invented un-
til a few years after his death. Kepler had the mathematical genius and
fortitude to discover that Brahe’s measurements could be fitted by three
simple empirical laws. The task was formidable. It took Kepler 18 years
of laborious calculation to obtain the following three laws of planetary
motion, which he stated early in the seventeenth century:

1. Every planet moves in an ellipse with the Sun at one focus.
2. The radius vector from the Sun to a planet sweeps out equal areas in

equal times.
3. The period of revolution T of a planet about the Sun is related to the

major axis A of the ellipse by T 2 = kA3, where k is the same for all
the planets.

Kepler’s empirical laws went unexplained until the latter half of the
seventeenth century, when Newton’s fascination with the problem of
planetary motion inspired him to formulate his laws of motion and the
law of universal gravitation. Using these mathematical laws, Newton ex-
plained Kepler’s empirical laws, giving an overwhelming argument in
favor of the new mechanics and marking the beginning of modern math-
ematical physics. Planetary motion and the more general problem of mo-
tion under a central force continue to play an important role in many
branches of physics and turn up in such topics as particle scattering,
atomic structure, and space navigation.

In this chapter we apply Newtonian physics to the general problem
of central force motion. We shall start by looking at some of the gen-
eral features of a system of two particles interacting with a central force
f (r)r̂, where f (r) is any function of the distance r between the particles
and r̂ is a unit vector along the line of centers. After making a simple
change of coordinates, we shall show how to find a complete solution by
using the conservation laws of energy and angular momentum. Finally,
we shall apply these results to the case of planetary motion, f (r) ∝ 1/r2,
and show how they predict Kepler’s empirical laws.

10.2 Central Force Motion as a One-body Problem
Consider an isolated system consisting of two particles interacting under
a central force f (r)r̂. The masses of the particles are m1 and m2 and their
position vectors are r1 and r2. We have

ˆ

r2

r

r = r1 − r2

r1

m2

m1

r = r1 − r2

r = |r|
= |r1 − r2|.
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The equations of motion are

m1r̈1 = f (r)r̂ (10.1a)
m2r̈2 = − f (r)r̂. (10.1b)

From our definition of r, the force is attractive for f (r) < 0 and repulsive
for f (r) > 0. Equations (10.1a) and (10.1b) are coupled together by r;
the behavior of r1 and r2 depends on r = r1 − r2. The problem is easier
to handle if we replace r1 and r2 by r = r1 − r2 and the center of mass
vector R:

R =
m1r1 + m2r2

m1 + m2
.

The equation of motion for R is trivial if there are no external forces:

R̈ = 0,

which has the simple solution

R = R0 + Vt.

The constant vectors R0 and V depend on the choice of coordinate sys-
tem and the initial conditions. If we are clever enough to take the origin
at the center of mass, R0 = 0, and if the center of mass is stationary,
V = 0.

The equation for r turns out to be like the equation of motion of a
single particle and has a straightforward solution. To find the equation
of motion for r we divide Eq. (10.1a) by m1 and Eq. (10.1b) by m2 and
subtract to give

r̈1 − r̈2 =

(
1

m1
+

1
m2

)
f (r)r̂

or (
m1m2

m1 + m2

)
(r̈1 − r̈2) = f (r)r̂.

Denoting m1m2/(m1+m2) by μ, the reduced mass, and using r̈1− r̈2 = r̈,
we have

μr̈ = f (r)r̂. (10.2)

Equation (10.2) is identical to the equation of motion for a particle of
mass μ acted on by a force f (r)r̂; no trace of the two-particle problem re-
mains. The two-particle problem has been transformed to a one-particle
problem.

Unfortunately, the method cannot be generalized. There is no way to
reduce the equations of motion for three or more particles to equiva-
lent one-body equations, and partly for this reason the exact solution
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of the general three-body problem remains unknown, although there are
solutions for a few special cases. We discuss one of them in Example
10.8. If we can solve Eq. (10.2) for r, we can easily work back to find r1
and r2 from the relations

r = r1 − r2

R =
m1r1 + m2r2

m1 + m2
.

Solving for r1 and r2 gives

r1 = R +
(

m2

m1 + m2

)
r (10.3a)

r2 = R −
(

m1

m1 + m2

)
r. (10.3b)

As the sketch shows, m2r/(m1+m2) and −m1r/(m1+m2) are the position
vectors of m1 and m2 relative to the center of mass.

� �

r2

r−
Center of mass

R

r1

m1
m1 + m2

m2

m1

� �rm2
m1 + m2

⊕

10.3 Universal Features of Central Force Motion
Solving the vector equation of motion μr̈ = f (r)r̂ for r(t) depends on the
particular form of f (r), but some properties of central force motion hold
true in general regardless of the form of f (r). Constraints imposed by
the conservation laws of energy and angular momentum provide a ma-
jor step toward finding the complete solution. In this section we shall
see how to use conservation laws to identify some universal features
of the solution and to reduce the vector equation to an equation in a
single scalar variable. Conservation of linear momentum adds nothing
new, because it is already embodied in the equal and opposite forces
on the two masses, and in the uniform motion of the system’s center of
mass.

Although we shall focus mainly on the gravitational central force
f (r) = −C/r2 later in this chapter, the consequences of the conserva-
tion laws discussed in this section hold for all central forces, whatever
the form of f (r).

10.3.1 Consequences of the Conservation of
Angular Momentum

The central force f (r)r̂ is along r and can exert no torque on the reduced
mass μ. Hence the angular momentum L of μ is constant, both in direc-
tion and in magnitude.

A. The motion is confined to a plane
As a proof, L = r × μṙ, so it follows that r is always perpendicular to

L by the properties of the cross product. Because L is fixed in direction,
the plane of the motion is also fixed, and r can only move in a plane
perpendicular to L.

r

L
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Introducing plane polar coordinates r, θ in the plane of motion, the
equation of motion μr̈ = f (r)r̂ becomes

μ(r̈ − rθ̇2) = f (r) (10.4a)
μ(rθ̈ + 2ṙθ̇) = 0. (10.4b)

In particular, Eq. (10.4b) is a consequence of the fact that a central force
has no tangential component.

r

y

x

θ

μ

ˆf (r)r

B. The law of equal areas
The magnitude L of the angular momentum is constant, and is

L = μr2θ̇. (10.5)

This leads immediately to the law of equal areas, Kepler’s second empir-
ical law, that we proved in Example 7.5. Summarizing, the area element
in polar coordinates is dA = r2dθ/2, so that dA/dt = r2θ̇/2 = L/2μ =
constant. The areas swept out by r are the same for equal time intervals.
The law of equal areas holds for any central force and for both closed
and open orbits. For the solar system, a planetary orbit is an example of
a closed orbit. An open orbit would be like the orbit of a comet enter-
ing the solar system, sweeping around the Sun, and heading back out to
space, never to return.

10.3.2 Consequences of the Conservation of Energy
The kinetic energy of μ is

K =
1
2
μv2

=
1
2
μ(ṙr̂ + rθ̇θ̂)2

=
1
2
μ(ṙ2 + r2θ̇

2).

We showed in Example 5.9 that all central forces are conservative, so we
can associate a potential energy U(r) with f (r):

U(r) − U(ra) = −
∫ r

ra

f (r)dr.

The constant U(ra) is not physically significant, so we can leave ra un-
specified; adding a constant to the energy has no effect on the motion.

υr  = r
υθ = rθ

r

θ

μ

From the work–energy theorem,

E = K + U(r)

=
1
2
μv2 + U(r) (10.6a)

=
1
2
μ(ṙ2 + r2θ̇

2) + U(r) (10.6b)
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where E, the total mechanical energy, is constant. We can eliminate θ̇
from Eq. (10.6b) by using Eq. (10.5). The result is

E =
1
2
μṙ2 +

1
2

L2

μr2 + U(r). (10.7)

10.3.3 The Effective Potential
Equation (10.7) looks like the energy equation for a particle moving in
one dimension; all reference to θ is gone. We can press the parallel fur-
ther by introducing

Ueff(r) ≡ 1
2

L2

μr2 + U(r), (10.8)

so that

E =
1
2
μṙ2 + Ueff(r). (10.9)

Ueff is called the effective potential energy. Often it is referred to sim-
ply as the effective potential. Ueff differs from the true potential U(r) by
the term L2/2μr2, called the centrifugal potential. Introducing the effec-
tive potential is a convenient mathematical trick to make Eq. (10.9) look
just like the energy equation for a particle in one dimension. However,
the term L2/2μr2 is not a true potential energy related to a force. From
Eq. (10.6b), this term is seen to be another way of writing the kinetic
energy due to the tangential velocity rθ̇. The term L2/2μr2 is really a ki-
netic energy, but grouping it with the true potential U(r) helps us write
the formal solution of Eq. (10.9) more directly, and it will also help us use
simple energy diagrams to describe central force motion qualitatively.

10.3.4 The Formal Solution for Central Force Motion
The formal solution of Eq. (10.9) is

dr
dt
=

√
2
μ

(E − Ueff) (10.10)

or ∫ r

r0

dr√
(2/μ)(E − Ueff)

= t − t0. (10.11)

Equation (10.11) formally gives us r as a function of t, although the
integral may have to be done numerically in some cases. To find θ as a
function of t, rewrite Eq. (10.5) as

dθ
dt
=

L
μr2 . (10.12)

Since r is known as a function of t from Eq. (10.11), we can formally
integrate to find θ(t):

θ − θ0 =
L
μ

∫ t

t0

dt
r2 . (10.13)
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Often we are interested in the path of the particle, which means knowing
r as a function of θ rather than as a function of time. We often call the
trajectory r(θ) the orbit of the particle, even if the trajectory does not
close on itself. To eliminate t, combine Eqs. (10.10) and (10.12) using
the chain rule:

dθ
dr
=

dθ
dt

dt
dr
=

(
L
μr2

) √
μ

2(E − Ueff)
.

The formal solution for the orbit is then

θ − θ0 = L
∫ r

r0

dr

r2
√

2μ(E − Ueff)
. (10.14)

This completes the formal solution of the central force problem. We can
obtain r(t), θ(t), or r(θ) as we please; all we need to do is evaluate the
appropriate integrals.

10.4 The Energy Equation and Energy Diagrams
In Section 10.3 we found two equivalent ways of writing E, the total en-
ergy in the center of mass system. According to Eqs. (10.6a) and (10.9),
respectively,

E =
1
2
μv2 + U(r), (10.15a)

E =
1
2
μṙ2 + Ueff(r). (10.15b)

We generally need to use both these forms in analyzing central force
motion. The first form, 1

2μv2 + U(r), is handy for evaluating E; all we
need to know is the relative speed and position at some instant. How-
ever, v2 = ṙ2 + (rθ̇)2, and the dependence on two coordinates r and θ
makes it difficult to visualize the motion. In contrast, the second form,
1
2μṙ2 + Ueff(r), depends on the single coordinate r. In fact, it is identi-
cal to the equation for the energy of a particle of mass μ constrained to
move along a straight line with kinetic energy 1

2μṙ2 and potential energy
Ueff(r). The coordinate θ is completely suppressed—the kinetic energy
1
2μ(rθ̇)2 associated with the tangential motion is accounted for in the
effective potential by the relations

1
2
μ(rθ̇)2 =

L2

2μr2

Ueff(r) =
L2

2μr2 + U(r).

Equation (10.15b) involves only the radial motion. Consequently, we
can use the energy diagram technique developed in Chapter 5 to find
the qualitative features of the radial motion. To see how the method
works, let’s start by looking at a very simple system, two non-interacting
particles.
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Example 10.1 Central Force Description of
Free-particle Motion
Two non-interacting particles m1 and m2 move toward each other with
velocities v1 and v2, respectively. The reduced mass is μ = m1m2/
(m1 + m2). Their paths are offset by distance b, as shown in the sketch.
We shall develop the equivalent one-body description of this system
and its energy diagram.

m2

m1

v2

r
b

v1 The relative velocity is

v0 = ṙ
= ṙ1 − ṙ2

= v1 − v2.

v0 is constant because v1 and v2 are constant. The energy of the system
relative to the center of mass is

E =
1
2
μv0

2 + U(r) =
1
2
μv0

2,

since U(r) = 0 for non-interacting particles.

In order to draw the energy diagram we need to find the effective
potential

Ueff =
L2

2μr2 + U(r) =
L2

2μr2 .

We could evaluate L by direct computation, but it is simpler to use the
relation

E =
1
2
μṙ2 +

L2

2μr2 =
1
2
μv0

2.

When m1 and m2 pass each other, r = b and ṙ = 0. Hence

m2

m1

v2

b

v1

L2

2μb2 =
1
2
μv0

2,

L = μbv0.

This result holds for all times because L is constant. Therefore

Ueff =
1
2
μv0

2 b2

r2 .

The energy diagram is shown in the sketch.

r

Kinetic
energy

E
ne

rg
y

rt

Ueff =           1
2

b2

r 2
μυ0

2

E =           1
2 μυ0

2

The kinetic energy associated with radial motion is

K =
1
2
μṙ2

= E − Ueff .
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K can never be negative, so that the motion is restricted to regions
where E − Ueff ≥ 0. Initially r is very large and Ueff ≈ 0. As the
particles approach, the kinetic energy decreases, vanishing at the
turning point rt, where the radial velocity is zero and the motion is
purely tangential. At the turning point E = Ueff(rt), which gives

1
2
μv0

2 =
1
2
μv0

2 b2

rt
2

or

rt = b

as we expect, since rt is the distance of closest approach of the par-
ticles; it is the minimum value of r. Once the turning point is passed,
r increases and the particles separate. In our one-dimensional picture,
the particle μ “bounces off” the barrier of the effective potential.

Despite the colorful language, keep in mind that the “centrifugal
potential” L2/(2μr2) is not related to a real physical force that could
accelerate particles according to Newton’s second law. The particles in
this example do not interact; they move steadily ahead without “bounc-
ing.” The purpose of energy diagrams is to show qualitatively the
motion as a function of r and in particular to establish the limits of the
motion.

Now let us apply energy diagrams to the meatier problem of planetary
motion. For the gravitational force, which is always attractive,

f (r) = −Gm1m2

r2

U(∞) − U(r) = −
∫ ∞

r
f (r)dr

= Gm1m2

∫ ∞

r

dr
r2

=
Gm1m2

r

so that

U(r) = −Gm1m2

r
.

By the usual convention, we have taken U(∞) = 0. The effective poten-
tial energy is

Ueff =
L2

2μr2 −
Gm1m2

r
.

If L � 0, the repulsive centrifugal potential L2/(2μr2) dominates at small
r, and the attractive gravitational potential –Gm1m2/r dominates at large
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r. The drawing shows the energy diagram with various values of the total
energy E.

E
ne

rg
y

Case 1: E > 0

Case 2: E = 0
Case 3: E < 0

Case 4: E = Emin

0

Ueff           

L 2

2μr 2

Gm1m2

r 2

r

−

The kinetic energy of radial motion is K = E −Ueff , and the motion is
restricted to regions where K ≥ 0. The nature of the motion is determined
by the total energy. Here are the various possibilities, as shown in the
sketch:

1. E > 0: r is unbounded for large values but cannot be less than a cer-
tain minimum if L � 0. The particles are kept apart by the “centrifugal
barrier.”

2. E = 0: this is qualitatively similar to case 1 but on the boundary
between unbounded and bounded motion.

3. E < 0: the motion is bounded for both large and small r. The two
particles form a bound system.

4. E = Emin: r is restricted to one value. The particles stay a constant
distance from one another.

In Section 10.5 we shall find that case 1 corresponds to motion in a
hyperbola; case 2, to a parabola; case 3, to an ellipse; and case 4, to a
circle.

There is one other possibility, L = 0. In this case the particles accel-
erate toward each other along a straight line on a collision course, since
when L = 0 there is no “centrifugal barrier” to keep them apart.

Example 10.2 How the Solar System Captures Comets
Suppose that a comet with E > 0 (an extrasolar comet) drifts into the
solar system. From our discussion of the energy diagram for motion
under a gravitational force, the comet will approach the Sun and then
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swing away, never to return. How then can an extrasolar comet with
initial energy E > 0 become a member of the solar system? For this
to happen, its energy would have to be decreased to a negative value.
However, the gravitational force is conservative and the total energy of
the comet in the Sun’s gravity cannot change.

The situation is quite different if a third body is involved. For instance,
if the comet is deflected by a massive planet like Jupiter, it can transfer
energy to the planet and so become trapped in the solar system.

Suppose that an extrasolar comet is heading outward toward the orbit
of Jupiter after swinging around the Sun, as shown in the sketch. Let
the velocity of the comet before it starts to interact appreciably with
Jupiter be vi, and let Jupiter’s velocity be V. For simplicity we shall
assume that the orbits are not appreciably deflected by the Sun during
the time of interaction.

In the comet–Jupiter center of mass system Jupiter is essentially at rest
because of its much greater mass, and the center of mass velocity of the
comet is vic = vi − V, as shown in (a).

−V

vic vi

(a) (b) (c)

V

vfc

vf
vi

Θ
vic

vfc

In the center of mass system the path of the comet is deflected by
Jupiter, but the final speed is equal to the initial speed vic. Hence, the
interaction merely rotates vic through some angle Θ to a new direction
v f c, as shown in (b). The final velocity in the space-fixed system is

v f = v f c + V.

Figure (c) shows v f and, for comparison, vi. For the deflection shown,
v f < vi, and the comet’s energy has decreased. Conversely, if the deflec-
tion is in the opposite direction, interaction with Jupiter would increase
the energy, possibly freeing a bound comet from the solar system. A
large proportion of known comets have energies near zero (bounded
elliptic orbit if E � 0 or unbounded hyperbolic orbit if E � 0). The in-
teraction of a comet with Jupiter is therefore often sufficient to change
the orbit from unbound to bound, or vice versa.

This mechanism for transferring energy to or from a planet can be used
to accelerate an interplanetary spacecraft. By picking the orbit cleverly,
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the spacecraft can “hop” from planet to planet with a great saving in
fuel.

The process we have described may seem to contradict the idea that
the gravitational force is strictly conservative. Only gravity acts on the
comet and yet its total energy can change. The reason is that the comet
experiences a time-dependent gravitational force, and time-dependent
forces are intrinsically non-conservative. Nevertheless, the total energy
of the entire system is conserved, as we expect; in the comet–Jupiter
system, the excess energy is taken up by a slight change in the motion
of Jupiter.

Example 10.3 Perturbed Circular Orbit
A satellite of mass m orbits the Earth in a circle of radius r0. One of
its engines is fired briefly toward the center of the Earth, changing the
energy of the satellite but not its angular momentum. The problem is
to find the new orbit.

Ueff           

Ef 

E
ne

rg
y

Ei

r0
r

The energy diagram shows the initial energy Ei and the final energy
E f . Note that firing the engine radially does not change the effective
potential because L is not altered. Since the Earth’s mass Me is much
greater than m, the reduced mass is nearly m and the Earth is effectively
fixed.

If E f is not much greater than Ei, the energy diagram shows that
r never differs much from r0. Rather than solve the planetary mo-
tion problem exactly, as we shall do in the next section, we in-
stead approximate Ueff(r) in the neighborhood of r0 by a parabolic
potential.

As we know from our analysis of small oscillations of a particle about
equilibrium, Section 6.2, the resulting radial motion of the satellite will
be simple harmonic motion about r0 to good accuracy. The effective
potential is, with C ≡ GmMe,

Ueff(r) = −C
r
+

L2

2mr2 .

The minimum of Ueff is at r = r0. Since the slope is zero there, we have

dUeff

dr

∣∣∣∣∣
r0

=
C
r0

2 −
L2

mr0
3 = 0,

which gives

L =
√

mCr0. (1)

This result can also be found by applying Newton’s second law to
circular motion. From Section 6.2, the frequency of oscillation of the
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system, which we shall denote by β, is

β =

√
k
m
,

where

k =
d2Ueff

dr2

∣∣∣∣∣∣
r0

. (2)

This is readily evaluated to yield

β =

√
C

mr0
3 =

L
mr0

2 . (3)

The radial position is then given by

r = r0 + A sin βt + B cos βt

= r0 + A sin βt. (4)

We have taken B = 0 in the complete solution to satisfy the initial
condition r(0) = r0. Although we could calculate the amplitude A in
terms of E f , we shall not bother with the algebra here except to note
that A 
 r0 for E f nearly equal to Ei.

To find the new orbit, we must eliminate t and express r as a function
of θ. For the circular orbit,

θ̇ =
L

mr0
2 , (5)

or

θ =

(
L

mr0
2

)
t ≡ βt. (6)

Comparing Eqs. (3) and (5) shows, surprisingly, that the frequency of
rotation θ̇ is equal to the frequency of radial oscillation β.

Equation (6) is accurate enough for our purposes, even though the ra-
dius oscillates slightly after the engine is fired; t occurs only in a small
correction term to r in Eq. (4), and we are neglecting terms of order A2

and higher.

From Eqs. (1) and (5) the frequency of rotation of the satellite around
the Earth can be written

θ̇ =
L

mr0
2 =

√
mCr0

mr0
2 =

√
C

mr0
3 .

If we substitute Eq. (6) in Eq. (4), we obtain

r = r0 + A sin θ. (7)

The new orbit is shown as the solid line in the sketch.
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r
θ

r0

A

The orbit looks almost circular, but it is no longer centered on the Earth.
As we shall show in Section 10.5, the exact orbit for E = E f is an
ellipse described by the equation

r =
r0

1 − (A/r0) sin θ
.

If A/r0 
 1,

r ≈ r0

(
1 +

A
r0

sin θ
)

= r0 + A sin θ.

To first order in A, Eq. (7) is the equation of an ellipse. However, the ex-
act calculation is harder to derive (and to digest) than the approximate
result we found in this example with the help of the energy diagram.

10.5 Planetary Motion
In this section we solve the chapter’s main problem: finding the orbit for
a planet of mass m moving about a star of mass M under the gravitational
interaction

U(r) = −G
Mm

r
≡ −C

r
. (10.16)

Our results would also apply to a satellite of mass m orbiting a planet of
mass M, or even to a binary star system with two stars of masses m and
M. Further, we shall use our results to show how Newtonian mechanics
can account for Kepler’s empirical laws of planetary motion.

Because we are often interested in a satellite of mass m orbiting the
Earth (mass Me), it is handy in this case to express C in more familiar
terms. At the Earth’s surface (r = Re) the acceleration due to gravity is
g = GMe/Re

2, so C can be written

C = GmMe = mgRe
2 (10.17)

for a satellite orbiting the Earth.
Inserting the potential U(r) from Eq. (10.16) into the orbit equation,

Eq. (10.14), we obtain

θ − θ0 = L
∫

dr

r
√

(2μEr2 + 2μCr − L2)
,

where θ0 is a constant of integration. Note 10.1 shows how the integral
over r can be evaluated by converting it to a standard form, with the
result

r =
(L2/μC)

1 − √1 + (2EL2/μC2) sin(θ − θ0)
. (10.18)
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The usual conventions are to take θ0 = −π/2 and to introduce the param-
eters

r0 ≡ L2

μC
(10.19)

ε ≡
√

1 +
2EL2

μC2 . (10.20)

Physically, r0 is the radius of the circular orbit corresponding to the given
values of L, μ, and C. The dimensionless parameter ε, called the eccen-
tricity, characterizes the shape of the orbit, as we shall see. With these
replacements, Eq. (10.18) becomes

r =
r0

1 − ε cos θ
. (10.21)

Equation (10.21) looks more familiar in Cartesian coordinates r =√
x2 + y2, r cos θ = x. Rewriting Eq. (10.21) in the form r− εr cos θ = r0,

we have √
x2 + y2 − εx = r0

or

(1 − ε2)x2 − 2r0εx + y2 = r0
2. (10.22)

This quadratic form describes the conic sections—hyperbola, parabola,
ellipse, circle—traced out by a plane cutting a cone at various angles.

The shape of the orbit depends on ε, hence also on E through
Eq. (10.20). Here are the possibilities:

1. ε > 1 hence E > 0; the system is unbounded: The coefficients of x2

and y2 are unequal and opposite in sign; the equation has the form
y2 − Ax2 − Bx = constant, which is the equation of a hyperbola.

2. ε = 1 hence E = 0; the system is on the border between bounded and
unbounded: Eq. (10.22) becomes

x =
y2

2r0
− r0

2
,

which is the equation of a parabola.
3. 0 ≤ ε < 1 hence −μC2/2L2 ≤ E < 0; the system is bounded: The

coefficients of x2 and y2 are unequal but of the same sign; the equation
has the form y2 + Ax2 − Bx = constant, which is the equation of an
ellipse. The term linear in x means that the geometric center of the
ellipse is not at the origin of coordinates. As proved in Note 10.2, one
focus of the ellipse is at the center of mass, which we have taken to
be the origin.r

Focus

y

x
θ

When ε = 0, E has its lowest possible value −μC2/2L2. The equation
of the orbit becomes x2+y2 = r0

2; the ellipse degenerates to a circle, r =
constant.
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10.5.1 Hyperbolic Orbits
To calculate a real orbit we need to derive the initial conditions from
experimentally accessible parameters. For example, if the orbit is un-
bounded, we might know the energy and the initial trajectory, obtained
from observation of the position at two or more times.

In this section we shall show how to use experimental parameters to
describe a hyperbolic orbit, which could apply to the motion of an extra-
solar comet about the Sun. Another application could be the trajectory of
a charged particle scattering off an atomic nucleus, because the electric
force and the gravitational force are both ∝ 1/r2.

Let v0 be the speed of μ when it is far from the origin, and let the
projection of its initial path pass the origin at distance b, as shown; b is
commonly called the impact parameter.

b

μ
υ0

The angular momentum L and energy E are

L = μv0b

E =
1
2
μv0

2.

For an inverse-square force U(r) = −C/r, the equation of the orbit is

r =
r0

1 − ε cos θ
, (10.23)

where

r

θ

rmin

r0 =
L2

μC
=
μv0

2b2

C

=
2Eb2

C
(10.24)

and

ε =

√
1 +

2EL2

μC2

=

√
1 +
(
2Eb/C2

)2
. (10.25)

We have used L2 = 2μEb2 from Eq. (10.24).
When θ = π, r = rmin, and from the orbit equation (10.23)

rmin =
r0

1 + ε

=
2Eb2/C

1 +
√

1 + (2Eb/C)2
.

For E → ∞, rmin → b. Hence 0 < rmin < b.
The half-angle θa between the asymptotes can be found from Eq.

(10.23) for the orbit by letting r → ∞.
We find

cos θa =
1
ε
. (10.26)
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In the interaction, μ is deflected through the angle ψ = π−2θa; in atomic
and nuclear physics, ψ is called the scattering angle. According to the
sketch, ψ is related to θa, and hence to the eccentricity. The scattering
angle ψ is

θa

θa

ψ = π − 2θa

Repulsive

Attractive

ψ = π − 2θa

so that

cos θa = cos(π/2 − ψ/2)
= sin(ψ/2)

and using Eqs. (10.25) and (10.26) it follows that

sin(ψ/2) = 1/ε

=
1√

1 + (2Eb/C)2
. (10.27)

The scattering angle ψ approaches 180◦ if (2Eb/C)2 
 1.

Example 10.4 Rutherford (Coulomb) Scattering
In Rutherford’s classic experiment (1909) fast α-rays (doubly charged
helium nuclei) emitted by radioactive decay products of radium
bombarded thin gold foils. After being deflected (“scattered”) by
the foil, the α-rays were allowed to strike a zinc sulfide phosphor
screen viewed through a microscope, giving off momentary flashes of
light to mark where the α-rays hit. The time-consuming experiment,
carried out with the help of Hans Geiger and Ernest Marsden (an
undergraduate), consisted of measuring the relative number of α-rays
scattered through various angles ranging from a few degrees to 150◦.
The foil was so thin that it was unlikely for an α-ray to be scattered by
more than one gold nucleus, simplifying the analysis.

Rutherford calculated the scattering of the α-rays according to the
Coulomb potential U(r) = C′/r, and found good agreement with exper-
iment. The α-rays followed hyperbolic orbits even when rmin was 3 ×
10−15 m (at 150◦), far less than the radius of the atom � 150× 10−12 m,
proving that most of the mass of an atom must be concentrated in a
small volume, the nucleus. These results disproved the earlier “plum
pudding” model of the atom that had negative electrons distributed
through a sphere of positive charge and therefore did not possess a
massive scattering center that could cause large scattering angles.

To analyze the scattering using hyperbolic orbits, we start from
Eq. (10.27), which relates the scattering angle ψ to the eccentricity

sin(ψ/2) =
1√

1 + (2Eb/C′)2
. (1)
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Rutherford was unable to determine whether the gold nuclei attracted
(C′ < 0) or repelled (C′ > 0) the α-rays. According to Eq. (1) the scat-
tering angle depends on (2Eb/C′)2, making it impossible to measure
the algebraic sign of the strength parameter C′.

b

 α-ray

nucleus
Δb

ψ

Suppose that a narrow beam of α-rays traveling parallel to the x axis is
incident on the foil, and let the uniform flux in the beam be N m−2s−1.
Imagine a geometric annulus of radius b and width Δb centered on,
and perpendicular to, the x axis, and located far from the scattering
center, as shown in the sketch. The rate ns at which incident α-rays
pass through the annulus per second is

ns = 2πbΔbN . (2)

An α-ray passing through the annulus will have an impact parameter
between b and b + Δb, and will be scattered through an angle between
ψ and ψ + Δψ. Taking differentials of Eq. (1),

cos(ψ/2)Δψ = −2
(2E/C′)2bΔb[

1 + (2Eb/C′)2]3/2
which can be rewritten using Eq. (1) to give

cos(ψ/2)Δψ = −2(2E/C′)2 sin3(ψ/2)bΔb. (3)

We can disregard the negative sign, which simply tells us that ψ
increases as b decreases.

Simplifying, let the phosphor scintillation screen be a hollow sphere of
radius R centered on the origin. (The macroscopic R is far greater than
the submicroscopic scattering geometry.) The α-rays scattered through
angles between ψ and ψ+Δψ strike the sphere in a ring of radius R sinψ
and width RΔψ, hence with area ΔA = R2sinψΔψ. The flux of scattered
α-rays striking ΔA is then ns/ΔA m−2s−1. Relative to the incident flux
N we have

ns/ΔA
N =

cos(ψ/2)Δψ
2(2E/C′)2R2 sinψΔψ sin3(ψ/2)

=
1

4(2E/C′)2R2 sin4(ψ/2)
(4)

where we have used the identity sinψ = 2 sin(ψ/2) cos(ψ/2).

Equation (4) shows the strong dependence of Coulomb scattering on
the scattering angle ψ. A large proportion of the α-rays are scattered
through fairly small angles, but there is a small but non-zero probability
of scattering through very large angles, ψ → 180◦, as observed by
Geiger and Marsden.

When high energy α-rays scattered off “light” elements (elements
whose nuclei have fewer than 10–15 protons), Rutherford observed
deviations from his scattering calculation. He realized that for these
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nuclei the α-rays could move close to the nucleus itself, against a repul-
sive Coulomb force weaker than for a gold nucleus. The observations
allowed estimates of the radius R of the nucleus, generally expressed to-
day as R = R0A1/3, where R0 ≈ 1.4×10−15 m and where the mass num-
ber A is the total number of protons and neutrons in the nucleus. The ex-
pression is consistent with the density of nuclear matter being constant.

In the 1920’s, physicists realized that the newly developed quantum
mechanics was the correct tool for accurately describing phenomena
on the atomic or subatomic scale. Much to Rutherford’s delight, the
quantum mechanical result for Coulomb scattering turned out to be
nearly the same as the classical account, especially for scattering from
heavy elements such as gold.

10.5.2 Elliptic Orbits and Planetary Motion
Elliptic orbits are so important in astronomy and astrophysics that it is
worth looking at their properties in more detail. For elliptic orbits, E < 0,
and the eccentricity is 0 ≤ ε < 1. In Cartesian coordinates, Eq. (10.22)
for the orbit is

(1 − ε2)x2 − 2r0εx + y2 = r0
2

and we see that the ellipse is symmetric about the x axis in our chosen
coordinate system. Further, the term linear in x shows that the ellipse is
displaced from the origin along the x axis. Note 10.2 proves that a focus
of the ellipse is at the origin, so that for the solar system, the Sun is at a
focus of the ellipse, in accord with Kepler’s laws.

A

r min r max

The length of the major axis is

A = rmin + rmax

= r0

(
1

1 + ε
+

1
1 − ε

)

=
2r0

1 − ε2 . (10.28)

Expressing r0 and ε in terms of E, L, μ,C by Eqs. (10.19) and (10.20)
gives

A =
2r0

1 − ε2

=
2L2/(μC)

1 − [1 + 2EL2/(μC2)]

=
C

(−E)
. (10.29)

The length of the major axis is independent of L; orbits with the same
major axis have the same energy. For instance, all the orbits in the sketch
correspond to the same value of E although they have different values
of L.
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Substituting E = −C/A in the energy equation E = (1/2)μv0
2 − C/r,

we obtain the useful relation

v2 =
2C
μ

(
1
r
− 1

A

)
, (10.30)

which gives the orbital speed v at any radial position r on the orbit.

The Period of an Elliptic Orbit
To find the period T of an elliptic orbit, a direct method is to integrate
Eq. (10.11) for r(t). Taking Ueff = (1/2)L2/(μr2) −C/r,

tb − ta = μ
∫ rb

ra

rdr√
(2μEr2 + 2μCr − L2)

.

Integrating by parts, with E < 0,

tb − ta =

√
(2μEr2 + 2μCr − L2)

2E

∣∣∣∣∣∣∣
rb

ra

−
(
μC
2E

) 1√−2μE
arcsin

⎛⎜⎜⎜⎜⎜⎝ −2μEr − μC√
μ2C2 + 2μEL2

⎞⎟⎟⎟⎟⎟⎠
∣∣∣∣∣∣∣
rb

ra

.

For a complete period, tb − ta = T . The first term vanishes because rb =

ra, and in the second term, the arcsin changes by 2π. The result is

T =
(
πμC
−E

) 1√−2μE

or

T 2 =
π2μC2

−2E3 .

Finally, using Eq. (10.29),

T 2 =
π2μ

2C
A3. (10.31)

Incidentally, we have just proved Kepler’s third law, T 2 = kA3, where k is
essentially the same for all planets about the Sun. Table 10.1 lists A3/T 2

for several planets. Despite variations of ≈ 100 in the major axis and
≈ 1000 in the period, the value of A3/T 2 is constant to within 0.05%.

Table 10.1∗

Planet ε A, km T , s A3/T 2

Mercury 0.206 1.16 × 108 7.62 × 106 2.69 × 1010

Earth 0.017 2.99 × 108 3.16 × 107 2.68 × 1010

Mars 0.093 4.56 × 108 5.93 × 107 2.70 × 1010

Jupiter 0.048 1.557 × 109 3.743 × 108 2.69 × 1010

Neptune 0.007 9.05 × 109 5.25 × 109 2.69 × 1010

∗Source: G. Woan, The Cambridge Handbook of Physics Formulas, Cambridge
University Press (2003).
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A simpler way to calculate the period is to start from Eq. (10.12) for
angular momentum

L = μr2 dθ
dt
,

which can be written

L
2μ

dt =
1
2

r2dθ.

r dθ

r
 dθ

But (1/2)r2dθ is the area element in polar coordinates, so integrating
over a complete period T sweeps out the area of the ellipse.

L
2μ

T = area of ellipse = πab.

a

b

Here a is the semi-major axis, a = A/2, so that from Eq. (10.29),

a =
C
−2E

.

From Note 10.2, the semi-minor axis b is

b =
L√−2μE

.

Using these values,

T 2 =
π2μ

2C
A3

as before.

Orbit Eccentricities
The ratio rmax/rmin is

rmax

rmin
=

r0/(1 − ε)
r0/(1 + ε)

=
1 + ε
1 − ε .

When ε is near zero, rmax/rmin ≈ 1 and the ellipse is nearly circular.
When ε is near 1, the ellipse is very elongated. The shape of the ellipse
is determined entirely by ε; r0 only supplies the scale.

ε = 0 ε = 0.6

ε = 0.9

Table 10.2 gives the eccentricities of the orbits of the planets, the body
Pluto, and Halley’s comet. The table reveals why the Ptolemaic theory of
circles moving on circles was reasonably successful in dealing with early
observations. All the planetary orbits, except those of Mercury and the
body Pluto, have eccentricities near zero and are nearly circular. Mercury
is never far from the Sun and is hard to observe, and Pluto (no longer
classed as a planet) was not discovered until 1930, so that neither of
these was an impediment to the Ptolemaists. Mars has the most eccentric
orbit of the easily observable planets, and its motion was a stumbling
block to the Ptolemaic theory. Kepler discovered his laws of planetary
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Table 10.2∗

Planet ε Planet/body ε

Mercury 0.206 Saturn 0.055
Venus 0.007 Uranus 0.051
Earth 0.017 Neptune 0.007
Mars 0.093 Pluto 0.252
Jupiter 0.048 Halley’s comet 0.967

∗Note 10.2 derives further geometric properties of elliptic orbits.

motion by trying to fit his calculations to Brahe’s accurate observations
of Mars’ orbit.

Orbits

Example 10.5 Geostationary Orbit
For communications purposes, satellites are typically placed in a cir-
cular geosynchronous orbit. If the orbit is in the equatorial plane of the
Earth, it is called geostationary. A satellite’s orbital speed in a geo-
stationary orbit is set to match the angular velocity Ωe of the rotating
Earth, so that as seen from the Earth the satellite is stationary above a
fixed point on the Equator. For a satellite of mass m in a geostationary
circular orbit, Eq. (10.30) gives, with A = 2r, μ ≈ m,C = mgRe

2, and
v = rΩe,

v2 = (rΩe)2 =
2C
m

(
1
r
− 1

2r

)

r3 =
gRe

2

Ωe
2 .

With Ωe ≈ 2π/86 400 rad/s,

r ≈ 42 250 km

so that the satellite’s altitude h above the Earth is

h = (42 250 − 6400) = 35 850 km ≈ 22 280 mi.

Its orbital speed in the geostationary orbit is v = rΩe = 3070 m/s ≈
6870 mi/hr.

Orbit transfer maneuvers are frequently needed in astronautics. For
example, in the Apollo flights to the Moon the vehicle was first put into
near Earth orbit and then transferred to a trajectory toward the Moon. In
order to transfer a spacecraft from one orbit to another, its velocity must
be altered at a point where the old and new orbits intersect. The next
two examples look at the physical principles of satellite launch and orbit
transfer.
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Example 10.6 Satellite Orbit Transfer 1
The most energy-efficient way to put a satellite into circular orbit is
to launch it into an elliptical transfer orbit whose apogee is at the
desired final radius. When the satellite is at apogee, it is accelerated
tangentially into the circular orbit. In this example we shall look at the
energy required for the first step of the process: putting a satellite into
an elliptical transfer orbit. Example 10.7 considers the second step,
transferring the satellite into a circular geostationary orbit.

The problem is to find the energy Elaunch to launch the satellite. Elaunch
is the difference between the satellite’s energy Eorb in its transfer orbit,
and its initial energy Eground on the ground just before launch. To calcu-
late these we will need to find the eccentricity and angular momentum
of the orbit, and the satellite’s speed at apogee and perigee.

Suppose that the satellite has mass m = 2000 kg. Because m 
 Me,
we treat the Earth as a fixed center of force and take the reduced mass
μ ≈ m. The radius of the Earth is taken to be Re = 6400 km. Assume
that at perigee the satellite has an altitude of 1100 km above the Earth.
The elliptic orbit is chosen so that at apogee the satellite’s altitude is
35 850 km, the altitude of the desired geostationary orbit. (The figure
is not to scale.)

1100
km

perigee

35850
km

apogee
2Re

How much energy Elaunch is required to launch the satellite, and what is
its energy in elliptic orbit Eorb, its eccentricity ε, its angular momentum
L, and its orbital speed at perigee and at apogee?

The energy of the satellite on the ground just before launch is

Eground = U(Re) + K0

where U(Re) = −C/Re = −mgRe
2/Re = −mgRe and K0 is the initial

kinetic energy due to the Earth’s rotation. If the launch is from the
Equator, K0 = (1/2)mv0

2 = (1/2)m(ReΩe)2, where Ωe = 2π/86 400
rad/s is the angular speed of the Earth. Combining the potential and
kinetic energies,

Eground = −mgRe + (1/2)m(ReΩe)2

= mRe(−g + (1/2)ReΩe
2)

= (2000)(6.4 × 106)[−9.8 + 0.5(6.4 × 106)(2π/86 400)2]

= (2000)(6.4 × 106)[−9.8 + 0.017]

= −1.25 × 1011 J.

According to this result, launching from the Equator decreases Eground
by less than 0.2%, which might not seem significant. But for a given
maneuver, the amount of fuel consumed is roughly proportional to the
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required change in velocity, so the Earth’s rotation helps save fuel. The
efficiency of an orbital maneuver is judged by the Δv required, the
smaller the better.

The major axis A of the orbit is (1100 + 6400 + 35 850 + 6400) km =
5.0 × 107 m, so we can find Eorb from Eq. (10.29).

Eorb = −C
A

= −mgRe
2

A

= − (2 × 103)(9.8)(6.4 × 106)2

5.0 × 107

= −1.61 × 1010 J.

The energy needed to launch the satellite, neglecting losses due to in-
efficiencies of the rocket engines, is therefore

Elaunch = Eorb − Eground = 1.09 × 1011 J.

Turning now to the problem of finding the angular momentum, we can
use Eq. (10.20) to find L from the eccentricity, and we can find the
eccentricity from the dimensions of the orbit. Using rmin = r0/(1 + ε)
and rmax = r0/(1 − ε) we can solve for the eccentricity. We have

r0 = (1 + ε)rmin = (1 − ε)rmax

from which we find

ε =
rmax − rmin

rmax + rmin

=
rmax − rmin

A

=
3.5 × 107 m
5.0 × 107 m

= 0.70.

From the definition of ε, Eq. (10.20),

ε2 = 1 +
2EorbL2

mC2

= 1 +
2EorbL2

m(mgRe
2)2

which yields

L = 1.43 × 1014 kg·m2/s.

At perigee rp = 1100 + 6400 = 7.500 × 106 m and at apogee ra =

35 850 + 6400 = 4.225 × 107 m. We know the angular momentum,
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and because the velocity is perpendicular to the radius vector at the
extremes of the orbit, we can immediately find the speed at these points.
At perigee,

L = mrpvp

vp =
L

mrp
=

1.43 × 1014

(2000)(7.500 × 106)

= 9530 m/s ≈ 21 300 mi/hr.

Similarly, at apogee,

va =
L

mra
=

1.43 × 1014

(2000)(4.225 × 107)

= 1690 m/s ≈ 3800 mi/hr.

Alternatively, we could use Eq. (10.30), which gives the same
results.

Example 10.7 Satellite Orbit Transfer 2
We now want to transfer the 2000 kg satellite of Example 10.6 into
a circular geostationary orbit. As we showed in Example 10.5, its
orbital speed in the geostationary orbit will be 3070 m/s but from
Example 10.6 its speed at apogee in the elliptic orbit is only 1690
m/s. The rocket engine must therefore give a burst to increase the
speed.

If the satellite is moving with velocity v and the engine boosts the
velocity by Δv, the increase in energy is then

ΔE = (1/2)m(v + Δv)2 − (1/2)m(v)2

= (1/2)m(v · Δv + Δv2).

The increase in energy is maximum when the velocity boost is par-
allel to the orbit. The fuel needed to inject a satellite into a circular
orbit is a minimum if the satellite is first launched into an elliptic or-
bit with apogee at the desired final radius, and then transferred to the
desired circular orbit by boosting its speed at apogee, as shown in the
sketch. Plans for efficient orbital transfer were first put forth by Walter
Hohmann in 1925, a forward-looking German scientist interested in the
possibilities of space flight.

ra

v

Using Eq. (10.29), E = −C/A, the change in energy going from an orbit
with major axis Ai to an orbit with major axis Af is

ΔE = −C
(

1
Af
− 1

Ai

)
= −mgRe

2
(

1
Af
− 1

Ai

)
. (1)
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From Example 10.6, Ai = 5.0 × 107 m. For the geostationary or-
bit, Af = 2 × 42 250 km = 8.45 × 107 m. Substituting in Eq. (1)
gives

ΔE = −(2000)(9.8)(6.4 × 106)
2
(

1
8.45 × 107 −

1
5.0 × 107

)

= 6.6 × 109 J.

This increases the orbital energy from −16.1 × 109 J for the elliptical
orbit to −9.5 × 109 J for the geostationary orbit.

Similar considerations apply when a spacecraft on a space mission re-
turns to Earth. First it is slowed enough to be captured in a circular
orbit, and then at the proper time it is transferred to an elliptic orbit that
intersects the Earth.

Example 10.8 Trojan Asteroids and Lagrange Points
The Trojan asteroids are a remarkable feature of the solar system.
There is a clump of several hundred asteroids traveling along Jupiter’s
orbit preceding the planet, and another clump on the orbit trailing
Jupiter an equal distance behind. Furthermore, the Sun, Jupiter, and
each clump are located at the vertices of an equilateral triangle.
The asteroids are called Trojan asteroids, named after characters in
Homer’s Iliad, the story of some events in the Greek siege of Troy.
Trojan asteroids have been observed associated with other planets,
including at least one on the Earth’s orbit.

The problem of three gravitating masses has never been solved in gen-
eral, but this example discusses a special restricted case with known
solution. Consider a planet (mass Mp) orbiting the Sun (mass Ms) and
an asteroid (mass m), all located at the vertices of an equilateral trian-
gle. Assume that the asteroid has small mass, so that its gravitational
force has a negligible effect on the motion of the Sun and the planet.
Assume also that the Sun and the planet are in circular orbit about their
center of mass. This is nearly the case for Jupiter, because of its small
eccentricity (ε = 0.048).

planet

asteroid

Sun

CM

R0R0

xs
xp

The sketch shows the geometry, with R0 the length of each side of
the triangle. We take the origin of the coordinate system to be at
the center of mass of the Sun and planet (m is assumed to be small
in our treatment, m 
 Mp). Then, by definition of the center of
mass,

0 =
Mp xp − Ms xs

Mp + Ms
. (1)
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Using xp + xs = R0, we can solve for xp and xs:

xp =
Ms R0

Ms + Mp
(2a)

xs =
Mp R0

Ms + Mp
. (2b)

The equation of motion for the planet in circular orbit with angular
velocity Ω about the center of mass is

Mp xpΩ
2 =

GMpMs

R0
2

Ω2 =
G(Ms + Mp)

R0
3 (3)

where we have used Eq. (2a) for xp.

CM

r1 r2r

xpxs

→ → →

Let r1 be the vector from the asteroid to the Sun, r the vector from the
asteroid to the center of mass, and r2 the vector from the asteroid to the
planet, as shown. Because the triangle is equilateral, |r1| = |r2| = R0.
The gravitational force F on the asteroid due to the Sun and the planet
is

F =
GmMs

r1
3 r1 +

GmMp

r2
3 r2

=

(
Gm
R0

3

) (
Ms r1 + Mp r2

)
.

Using

r1 = r − xs î

r2 = r + xp î

we have

F =
(
Gm
R0

3

) [
(Ms + Mp)r + (Mpxp − Msxs)î

]
=

(
Gm(Ms + Mp)

R0
3

)
r

= mΩ2r

where Mpxp −Msxs = 0 according to Eq. (1), and where we have used
the result for Ω2 from Eq. (3).

Our result shows that F is radially inward, directed toward the center of
mass and that the asteroid’s angular velocity about the center of mass
is the same as the angular velocity of the Sun–planet system.

In a coordinate system rotating with angular velocityΩ about the center
of mass, the inward gravitational force on the asteroid is balanced by
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the outward fictitious centrifugal force, so the vertex of the triangle is
an equilibrium point where the net force on the asteroid in the rotating
system is zero. The net force on the Sun and on the planet is similarly
zero. The Sun, planet, and asteroid therefore retain their triangular con-
figuration as the system circles about the center of mass.

The equilibrium points of a three-body system in circular motion were
discovered by the Italian mathematician Joseph Louis Lagrange toward
the end of the eighteenth century but the first observation of a Trojan
asteroid was not made until early in the twentieth century, in the Sun–
Jupiter system. Lagrange calculated that with three gravitating masses
in circular motion, the third mass can be at one of five special locations,
now called Lagrange points, where it is in equilibrium and can in prin-
ciple remain in a fixed configuration relative to the Sun and planet. The
Lagrange point at the vertex of the triangle in this example is called
L4, and the symmetric one trailing the planet is L5. The other three
Lagrange points L1, L2, L3 are collinear with the Sun and the planet.

An asteroid near L4 or L5 is stable, moving harmonically (like A sinωt+
B cosωt) for small displacements from equilibrium. The motion of an
asteroid near L1, L2, or L3 can vary both harmonically and exponen-
tially for small displacements, so the asteroid is only conditionally sta-
ble at the three collinear Lagrange points. For space research, an artifi-
cial satellite placed at L1, L2, or L3 could stay in a fixed configuration
with only modest use of fuel, if the initial conditions are chosen to
minimize the exponential terms.

Lagrange made other substantial contributions to mechanics. He refor-
mulated Newtonian mechanics in a more powerful form that eliminates
reference to forces in favor of the more fundamental concepts of kinetic
and potential energy.

Example 10.9 Cosmic Keplerian Orbits and the Mass of
a Black Hole
The crowning achievement of Newtonian mechanics was the expla-
nation of Kepler’s laws of planetary motion from the laws of motion
and the law of universal gravitation. These laws also appear to hold on
a galactic or cosmic scale far larger than our solar system, and their
application can give us information about a remarkable object, a black
hole.

A black hole is so compact and so massive that not even light can
escape its gravitational field. It is non-Newtonian, and must be de-
scribed using concepts of space and time from general relativity. Nev-
ertheless, the gravitational field outside the black hole follows New-
ton’s inverse-square law. There is now overwhelming evidence that a
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massive black hole is at the center of our galaxy, based on observations
that stars follow elliptic orbits about a mass invisible to optical tele-
scopes. The black hole, in the constellation Sagittarius (the “Archer”),
is named Sagittarius A-star (abbreviated Sgr A*). No radiation can es-
cape, but radiation is emitted by material falling in. A strong image
of Sgr A* has been detected in the radio-frequency region of the elec-
tromagnetic spectrum. Our Sun is rotating about the galactic center at
1000 km/s, but measurements show that Sgr A* is nearly stationary,
evidence that it is at or near the galactic center.

Partial orbits, marked by dots, of
seven stars near Sgr-A* at the
center of our galaxy. The data
were taken at uniform time
intervals between 1995 and 2008
at the Very Large Telescope of the
European Southern Observatory
in northern Chile. (Figure courtesy
of A. G. Hey.)

The cosmic elliptic orbit of star S2,
superimposed on the background
star field at the galactic center
but magnified by 100. The
observations extend over the
entire orbital period of 15.8 years.
The plane of the orbit does not lie
in the plane of the paper. The
eccentricity of S2’s orbit is
approximately 0.87. (Figure
courtesy of R. Genzel.)

S2’s orbit is huge: the major axis A is ≈ 11 light days = 2.9 × 1011 km.
The eccentricity of the orbit is ε = 0.88. To put the orbit’s size in
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perspective, it takes light only 86 minutes to travel across the full di-
ameter of Jupiter’s orbit.

We can now estimate the mass of the black hole relative to the mass of
the Sun, using the measured values and Kepler’s third law M ∝ A3/T 2

for a massive attractor

Mblack hole

MSun
=

(2.9 × 1011)3/(5.0 × 108)2 km3 · s−2

2.7 × 1010 km3 ·min−2

≈ 4 × 106,

where we have used A3/T 2 = 2.7 × 1010 for the Sun from Table 10.1.
Sgr A* has a mass approximately 4 × 106 times the mass of our Sun.
Estimates of the size of Sgr A*, based on radio observations, suggest
that it is incredibly dense, hundreds of times denser than water. Sgr-A*
is actually a modest black hole, in comparison to some known to be
billions of times more massive than our Sun.

The discussion in this example draws on Mark J. Reid, Is there a super-
massive black hole at the center of the Milky Way?, J. Modern Physics
D 18, 889 (2009).

10.6 Some Concluding Comments on
Planetary Motion

The description of two particles interacting under an inverse-square grav-
itational force according to Newtonian mechanics predicts planetary mo-
tion surprisingly well considering that our solar system consists of eight
planets and numerous smaller bodies. We might therefore expect to ob-
serve large departures from Kepler’s laws. Fortunately, the mass of the
Sun is so large compared to the masses of the planets that the influence
of the planets on one another is minor, and the effects can be treated as
small corrections. Techniques for such calculations, called perturbation
theory, were highly developed in the nineteenth century, and in 1930 ob-
served perturbations in the orbit of Neptune helped Clyde Tombaugh in
Arizona discover Pluto.

In the nineteenth century, fundamental problems arose with the laws of
mechanics themselves. Astronomical observations showed that the peri-
helion of Mercury’s orbit is slowly precessing, although for an ideal
two-body system the perihelion should remain stationary. “Slowly” here
means only 574 seconds of arc per century, small but accurately mea-
surable. Taking perturbations of other planets into account predicted a
precession rate of 531 seconds of arc per century. Although this was
very close to the observed rate, Einstein was not satisfied. The failure
of classical physics to predict Mercury’s motion precisely was an es-
sential piece of evidence in the development of his general theory of



NOTES 403

relativity. In 1915, Einstein used general relativity to predict an addi-
tional precession of 43 seconds of arc per century, resolving the earlier
discrepancy and marking a great success for general relativity and giving
Einstein great confidence in the truth of his revolutionary new theory.

Ancient peoples viewed celestial events like comets and eclipses with
both wonder and foreboding, because they thought that any changes
in the supposedly immutable heavens foretold upcoming great events,
good or bad. Newtonian mechanics swept away these ideas and be-
came widely accepted by the public soon after it was introduced. Salon
philosophers saw that Newtonian mechanics described the universe
as a mechanical system, and they began to picture the universe as a
great deterministic mechanical clock, which, once wound and set to
initial conditions, would run on its predetermined way to the end of
time.

A fundamental problem with the deterministic clock model came to
light early in the twentieth century when the French physicist and math-
ematician Henri Poincaré discovered the phenomenon of chaos in me-
chanics. Newtonian mechanics is remarkably accurate, able to predict
eclipses from thousands of years in the past to thousands of years in
the future. In a chaotic system, however, a small change in the initial
conditions can lead to exponentially divergent behavior at later times.
The change grows like eΛt, where Λ is known as the Lyapounov char-
acteristic exponent. Because a chaotic system is not calculable, we can-
not make accurate predictions of its future behavior. Weather systems
on the Earth appear to be chaotic, with small changes in one place
possibly causing large effects in another (the “butterfly effect”). Even
planetary motion, the cornerstone of Newtonian mechanics, can ex-
hibit chaotic behavior. The characteristic exponent Λ for the Earth’s
orbit is in the neighborhood of 4 to 5 million years. Luckily for us,
the effect is evidently not large; life has existed on the Earth for 600
million years, but during that time the Earth’s orbit has not changed
enough to cause the Earth to become either too hot or too cold to sustain
life.

Four centuries have passed since Kepler discovered his empirical laws.
Soon after, Galileo used an early telescope to observe that the moons of
Jupiter constituted a solar system in miniature, and then Newton for-
mulated the laws of dynamics and gravitation. Today, the dynamics of
chaos and the dynamics of intense gravitational fields near black holes
are among the frontier topics of science. Physics, it would seem, is inex-
haustible.

Note 10.1 Integrating the Orbit Integral
In this Note we integrate the orbit integral

θ − θ0 = L
∫

dr

r
√

(2μEr2 + 2μCr − L2)
. (1)
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Make the substitution

r =
1

s − α
dr = − ds

(s − α)2

dr
r
= − ds

(s − α)
where α is a constant to be determined.

With this substitution, the integral in Eq. (1) becomes

θ − θ0 = L
∫

ds

(s − α)
√

2μE
(s−α)2 +

2μC
(s−α) − L2

= −L
∫

ds√
2μE + 2μC(s − α) − L2(s − α)2

= −L
∫

ds√
2μE + 2μCs − 2μCα − L2s2 + 2L2αs − L2α2

.

Now we choose α = −μC/L2, which makes the term linear in s vanish,
leaving

θ − θ0 = −L
∫

ds√
2μE − 2μCα − L2s2 − L2α2

= −L
∫

ds√
2μE + 2(μC)2

L2 − L2s2 − (μC)2

L2

= −L
ds√

2μE + (μC)2

L2 − L2s2

= −L2
∫

ds√
2μEL2 + (μC)2 − L4s2

.

This integral can be put into the standard form for the arcsin, sinα =∫ α
0 dx/

√
1 + x2, so we have

θ − θ0 = − arcsin

⎛⎜⎜⎜⎜⎜⎜⎝s
√

L4

2μEL2 + (μC)2

⎞⎟⎟⎟⎟⎟⎟⎠
sin (θ − θ0) = − sL2√

2μEL2 + (μC)2

and using s = 1/r + α = 1/r − μC/L2,

sin (θ − θ0) =
μC − L2/r√

2μEL2 + (μC)2
. (2)
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Finally, solving Eq. (2) for r gives

L2

r
= μC −

√
2μEL2 + (μC)2 sin(θ − θ0)

r =
L2

μC −
√

2μEL2 + (μC)2 sin(θ − θ0)

=
(L2/μC)

1 − √1 + (2EL2/μC2) sin (θ − θ0)

in agreement with Eq. (10.18).

Note 10.2 Properties of the Ellipse
The equation in polar coordinates of an ellipse isy

x

r
θ r =

r0

1 − ε cos θ
. (1)

Converting to Cartesian coordinates r =
√

x2 + y2, x = r cos θ, Eq. (1)
becomes

(1 − ε2)x2 − 2r0x + y2 = r0
2. (2)

The ellipse corresponds to the case 0 ≤ ε < 1. The ellipse described by
Eqs. (1) and (2) is symmetrical about the x axis, but its center does not
lie at the origin.

We can use Eq. (1) to determine the important dimensions of the
ellipse. The maximum value of r, which occurs at θ = 0, is

rmin

rmax rmax =
r0

1 − ε .

The minimum value of r, which occurs at θ = π, is

rmin =
r0

1 + ε
.

The major axis A is

A = rmax + rmin

= r0

(
1

1 − ε +
1

1 + ε

)

=
2r0

1 − ε2 . (3)

The semi-major axis a is

a =
A
2

=
r0

1 − ε2 . (4)
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The distance from the origin to the center of the ellipse is

x0 = a − rmin

= r0

(
1

1 − ε2 −
1

1 + ε

)

=
r0ε

1 − ε2 . (5)

Comparing Eqs. (4) and (5), we see that ε = x0/a.

A

a

x0rmin

r

x0

b
θ To find the length of the semi-minor axis b =

√
r2 − x0

2, note that the
tip of the semi-minor axis has angular coordinates given by cos θ = x0/r.
We have

r =
r0

1 − ε cos θ

=
r0

1 − εx0/r

or

r = r0 + εx0 = r0

(
1 +

ε2

1 − ε2

)

=
r0

1 − ε2 .

Hence

b =
√

r2 − x0
2 =

( r0

1 − ε2

) √
1 − ε2

=
r0√

1 − ε2
.

Finally, we shall prove that the origin lies at a focus of the ellipse.
According to the definition of an ellipse, the sum of the distances from
the two foci to a point on the ellipse is a constant. We start by assuming
that one focus is at the origin, and by symmetry the other focus is there-
fore at 2x0, because the distance from the first focus to the center of the
ellipse is x0.

Let r and r′ be the distances from the foci to a point on the ellipse, as
shown in the sketch. We shall now show that r+ r′ = constant, justifying
our initial assumption.

2x0

r r ′
θ

By the law of cosines,

r′2 = r2 + 4x0
2 − 4rx0 cos θ. (6)

From Eq. (1) we find that

r cos θ =
r − r0

ε
.

Equation (6) becomes

r′2 = r2 + 4x0
2 − 4rx0

ε
+

4r0x0

ε
.
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Using the relation x0 = r0ε/(1 − ε2) from Eq. (5) gives

r′2 = r2 −
(

4r0

1 − ε2

)
r +

4r0
2ε2

(1 − ε2)2 +
4r0

2

(1 − ε2)

= r2 −
(

4r0

1 − ε2

)
r +

4r0
2

(1 − ε2)2 .

The right-hand side is a perfect square, so

r′ = ±
(
r − 2r0

1 − ε2

)
= ±(r − A).

Since A > r, we must choose the negative sign to keep r′ > 0. Therefore

r′ + r = A

= constant,

which supports our assumption that a focus is at the origin.
To conclude, we list a few of our results in terms of E, l, μ,C for the

inverse-square force problem U(r) = −C/r. When using these formulas,
E must be taken to be a negative number. From Eqs. (10.19) and (10.20),

r0 =
l2

μC

and

ε =

√
1 + 2El2/(μC2).

x0

a b

Hence

semi-major axis a =
r0

1 − ε2 =
C
−2E

semi-minor axis b =
r0√

1 − ε2
=

1√−2μE

semi-minor axis
semi-major axis

=
b
a
=
√

1 − ε2 =

√
−2E
μC2

and the distance of the focus from the origin is

x0 =
r0ε

1 − ε2 =

( C
−2E

) √
1 +

2El2

μC2 .

Problems
For problems marked *, refer to page 524 for a hint, clue, or answer.

10.1 Equations of motion
Obtain Eqs. (10.4a) and (10.4b) by differentiating Eqs. (10.5) and
(10.6b) with respect to time.
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10.2 r3 central force*
A particle of mass 50 g moves under an attractive central force
of magnitude 4r3 dynes. The angular momentum is equal to
1000 g· cm2/s.

(a) Find the effective potential energy.
(b) Indicate on a sketch of the effective potential the total

energy for circular motion.
(c) The radius of the particle’s orbit varies between r0 and 2r0.

Find r0.

10.3 Motion with 1/r3 central force
A particle moves in a circle under the influence of an inverse-
cube law force. Show that the particle can also move with uniform
radial velocity, either in or out. (This is an example of neutral
stability. Any slight perturbation to the circular orbit will start the
particle moving radially, and it will continue to move uniformly.)
Find θ as a function of r for motion with uniform radial velocity v.

10.4 Possible stable circular orbits
For what values of n are circular orbits stable with the potential
energy U(r) = −A/rn, where A > 0?

10.5 Central spring force
A 2-kg mass on a frictionless table is attached to one end of a
massless spring. The other end of the spring is held by a friction-
less pivot. The spring produces a force of magnitude 3r newtons
on the mass, where r is the distance in meters from the pivot to the
mass. The mass moves in a circle and has a total energy of 12 J.

r

(a) Find the radius of the orbit and the velocity of the mass.
(b) The mass is struck by a sudden sharp blow, giving it

instantaneous velocity of 1 m/s radially outward. Show the state
of the system before and after the blow on a sketch of the energy
diagram.

(c) For the new orbit, find the maximum and minimum values
of r.

10.6 r4 central force
A particle of mass m moves under an attractive central force Kr4

with angular momentum l. For what energy will the motion be
circular, and what is the radius of the circle? Find the frequency
of radial oscillations if the particle is given a small radial
impulse.

10.7 Transfer to escape
A rocket is in elliptic orbit around the Earth. To put it into an
escape orbit, its engine is fired briefly, changing the rocket’s
velocity by ΔV . Where in the orbit, and in what direction, should
the firing occur to attain escape with a minimum value of ΔV?
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10.8 Projectile rise*
A projectile of mass m is fired from the surface of the Earth
at an angle α from the vertical. The initial speed v0 is equal
to
√

GMe/Re. How high does the projectile rise? Neglect air
resistance and the Earth’s rotation.Re

v0

rmax

α

10.9 Halley’s comet
Halley’s comet is in an elliptic orbit about the Sun. The eccen-
tricity of the orbit is 0.967 and the period is 76 years. The mass
of the Sun is 2 × 1030 kg, and G = 6.67 × 10−11 N·m2/kg2.

(a) Using these data, determine the distance of Halley’s comet
from the Sun at perihelion and at aphelion.

(b) What is the speed of Halley’s comet when it is closest to
the Sun?

10.10 Satellite with air friction*
(a) A satellite of mass m is in circular orbit about the Earth.

The radius of the orbit is r0 and the mass of the Earth is Me. Find
the total mechanical energy of the satellite.

(b) Now suppose that the satellite moves in the extreme upper
atmosphere of the Earth where it is retarded by a constant feeble
friction force f . The satellite will slowly spiral toward the Earth.
Since the friction force is weak, the change in radius will be very
slow. We can therefore assume that at any instant the satellite
is effectively in a circular orbit of average radius r. Find the
approximate change in radius per revolution of the satellite, Δr.

(c) Find the approximate change in kinetic energy ΔK of the
satellite per revolution.

10.11 Mass of the Moon
Before landing astronauts on the Moon, the Apollo 11 space
vehicle was put into orbit about the Moon. The mass of the
vehicle was 9979 kg and the period of the orbit was 120 min. The
maximum and minimum distances from the center of the Moon
were 1861 km and 1838 km. Assuming the Moon to be a uniform
spherical body, what is the mass of the Moon according to these
data? G = 6.67 × 10−11 N·m2/kg2.

10.12 Hohmann transfer orbit
A space vehicle is in circular orbit about the Earth. The mass of
the vehicle is 3000 kg and the radius of the orbit is 2Re = 12 800
km. It is desired to transfer the vehicle to a circular orbit of radius
4Re.

4Re

2Re

BA

(a) What is the minimum energy expenditure required for the
transfer?

(b) An efficient way to accomplish the transfer is to use a
semi-elliptical orbit (known as a Hohmann transfer orbit), as
shown. What velocity changes are required at the points of
intersection, A and B?



410 CENTRAL FORCE MOTION

10.13 Lagrange point L1
The Lagrange point L1 is on a line between the Sun and Jupiter,
at approximately 5.31 × 1010 m from Jupiter. The Sun–Jupiter
distance is 7.78 × 1011 m, the mass of the Sun is 1.99 × 1030 kg,
and the mass of Jupiter is 1.90 × 1027 kg. The period of Jupiter is
4330 days.

An asteroid of small mass is located at L1.
(a) Write the equation of motion for the asteroid in equilibrium

in the rotating system.
(b) Using the numerical data, show that the equation of motion

is satisfied to good accuracy.
(c) There are three Lagrange points on the Sun–Jupiter axis.

Show, on physical grounds, where the other two can be found.
(Part c is qualitative: the exact solution requires finding the three
real roots of a fifth-order polynomial.)

10.14 Speed of S2 around Sgr A*
Using the data in Example 10.9, what is the maximum speed of
the star S2 as it orbits the black hole Sgr A*? For comparison,
the speed of the Earth about the Sun is 30 km/s.

10.15 Sun–Earth mass ratio
Kepler’s laws also apply to the motion of satellites around a
planet. The table shows A3/T 2 for a number of Earth satellites.
The ratio A3/T 2 is constant to a fraction of a percent, although
the periods vary by ≈ 35.

Using these data and taking the major diameter of Earth’s solar
orbit to be Ae = 2.99 × 108 km, calculate the mass of the Sun
relative to the mass of the Earth, Ms/Me.

SATELLITE ε A, km T , s A3/T 2

Amsat-Oscar 7
(1974)

1.28 × 10−3 1.566 × 104 6.894 × 103 8.08 × 104

Geotail (1992) 0.83 1.21 × 105 1.485 × 105 8.03 × 104

Apostar 1A
(1996)

1.30 × 10−4 8.433 × 104 8.616 × 104 8.08 × 104

Integral (2002) 0.897 1.679 × 105 2.420 × 105 8.08 × 104

Cosmos 2431
(2007)

1.94 × 10−3 5.102 × 104 4.06 × 104 8.07 × 104

Based on UCS Satellite Database, Union of Concerned Scientists, with the di-
ameter of the Earth taken to be 12,757 km.
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11.1 Introduction
The harmonic oscillator plays a loftier role in physics than one might
guess from its humble origin: a mass bouncing at the end of a spring.
The harmonic oscillator underlies the creation of sound by musical in-
struments, the propagation of waves in media, the analysis and control
of vibrations in machinery and airplanes, and the time-keeping crystals
in digital watches. Furthermore, the harmonic oscillator arises in numer-
ous atomic and optical quantum scenarios, in quantum systems such as
lasers, and it is a recurrent motif in advanced quantum field theories.
In short, if there were a competition for a logo for the universality of
physics, the harmonic oscillator would make a pretty strong contender.

We encountered simple harmonic motion—the periodic motion of a
mass attached to a spring—in Chapter 3. The treatment there was highly
idealized because it neglected friction and the possibility of a time-
dependent driving force. It turns out that friction is essential for the
analysis to be physically meaningful and that the most interesting ap-
plications of the harmonic oscillator generally involve its response to a
driving force. In this chapter we will look at the harmonic oscillator in-
cluding friction, a system known as the damped harmonic oscillator, and
then examine how the system behaves when driven by a periodic applied
force, a system called the driven harmonic oscillator.

x

11.2 Simple Harmonic Motion: Review
To establish the notation we briefly review simple harmonic motion, the
motion of the ideal harmonic oscillator introduced in Section 3.7: a mass
m moves under the influence of the spring force Fspring = −kx, where x is
the displacement from equilibrium. The equation of motion is mẍ = −kx,
which is written in the standard form

ẍ + ω0
2x = 0 (11.1)

where

ω0 =

√
k
m
.

The solution is

x = X0 cos(ω0t + φ), (11.2)

where X0 and φ are arbitrary constants that can be chosen to make the
general solution meet any two given independent initial conditions. Typ-
ically these are the position and velocity at a time taken to be t = 0. Note
that we are now denoting the natural frequency by the symbol ω0 rather
than ω, as in Section 3.7. The solution can be cast in a different form by
using the trigonometric identity cos(α + β) = cosα cos β − sinα sin β.
Applying this to Eq. (11.2) casts the solution into the form

x = B cosω0t +C sinω0t (11.3)
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where

X0 =
√

B2 +C2,

φ = arctan
(
−B

C

)
. (11.4)

We shall generally use Eq. (11.2) as the standard form for the motion of
the ideal (frictionless) harmonic oscillator.

Period T

Amplitude X0

t

x

11.2.1 Nomenclature
In the expression

x = X0 cos(ω0t + φ)

X0 is the amplitude of the motion (the distance from zero displacement
to a maximum) while ω0 is the frequency (more precisely, the angular
frequency) of the oscillator. Angular frequency is measured in units of
radians per second: ω0 =

√
k/m rad/s. Because the radian is dimension-

less, angular frequency is generally written in units of s−1. The circular
frequency ν is the frequency expressed as revolutions per second or cy-
cles per second. ν = ω0/2π hertz, where one hertz (1 Hz) = 1 cycle per
second. The quantity ω0t + φ is the phase of the oscillation at time t, and
φ is known as the phase constant. The period of the motion—the time
for the system to execute one complete cycle—is T = 2π/ω0.

Example 11.1 Incorporating Initial Conditions
At time t = 0 the position of the mass of a harmonic oscillator is
observed to be x(0) and its velocity is v(0). From Eq. 11.2, the
displacement and velocity are given by

x = X0 cos (ω0t + φ)
v = −ω0X0 sin (ω0t + φ).

Evaluating x and v at t = 0 gives

x(0) = X0 cos φ
v(0) = −ω0X0 sin φ.

The complete solution is given by Eq. (11.2) with

X0 =
√

x(0)2 + (v(0)/ω0)2

φ = arctan
( −v(0)
ω0x(0)

)
.

Many other initial conditions are possible. Any two independent pieces
of information are sufficient to provide a complete solution. These
could be the position at two times or the position at one time, the ve-
locity at another. Values of the position and the acceleration at a given
time would not be sufficient, because they are related by mẍ = −kx, so
their values are not independent.
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11.2.2 Energy of the Harmonic Oscillator
A harmonic oscillator possesses kinetic energy from its translational
motion, and potential energy from its spring. The kinetic energy is

K(t) = 1
2 mv2 = 1

2 mω0
2X0

2 sin2 (ω0t + φ)

= 1
2 kX0

2 sin2 (ω0t + φ), (11.5)

where we have used v = ẋ = −ω0X0 sin (ω0t + φ), and m = k/ω2
0.

The potential energy, which is taken as zero for the unstretched spring,
is

U(t) = 1
2 kx2

= 1
2 kX2

0 cos2(ω0t + φ). (11.6)

The total energy of the harmonic oscillator is therefore

E = K(t) + U(t) = 1
2 kX2

0[cos2 (ω0t + φ) + sin2 (ω0t + φ)]

= 1
2 kX2

0 . (11.7)

The total energy is constant, a familiar feature of motion in systems
where the forces are conservative.

11.3 The Damped Harmonic Oscillator
The ideal harmonic oscillator is frictionless. It turns out that friction is
often essential and omitting it can lead to absurd predictions. Let us
therefore examine the effect of a viscous friction force ffric = −bv, as
discussed in Section 3.6. This type of friction is most often encountered,
so our analysis will therefore be widely applicable. For example, in the
case of oscillations in electromagnetic circuits, the electrical resistance
of the circuit is precisely analogous to a viscous retarding force.

The total force acting on the mass m is

F = Fspring + ffric
= −kx − bv.

The equation of motion is

mẍ = −kx − bẋ,

which can be written in the standard form

ẍ + γẋ + ω0
2x = 0 (11.8)

where

γ = b/m, (11.9)

and ω0
2 = k/m, as before.

This is the first time we have encountered a differential equation in the
form of Eq. (11.8). A method for finding its solution is described in Note
11.2. However, we shall attempt to guess the solution from the physics
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of the situation because this can yield insights that the formal solution
may hide.

If friction were negligible the motion would be given by

x = X0 cos (ω0t + φ).

On the other hand, if the spring force were negligible the mass would
move according to v = v0e−(b/m)t, as shown in Section 3.6. We might
therefore guess that the solution to Eq. (11.8) is of the form

x = X0e−αt cos (ω1t + φ) (11.10)

where, if our guess is correct, the constants α and ω1 can be chosen to
make this trial solution satisfy Eq. (11.8). X0 and φ are arbitrary con-
stants for satisfying the initial conditions. Substituting the trial solution
in the equation of motion Eq. (11.8), we find that the equation is satisfied
provided that

α = γ/2, (11.11)

ω1 =

√
ω2

0 − (γ/2)2, (11.12)

where γ = b/m and ω0 =
√

k/m, as before.
This solution is valid when ω0

2 − γ2/4 > 0. Other cases are discussed
in Note 11.2.t

Undamped
γ

2ω1
= 0

t

Lightly damped
γ

2ω1
= 0.05

t

Heavily damped
γ

2ω1
= 0.25

The motion described by Eq. (11.10) is known as damped harmonic
motion. Several examples are shown in the sketches for increasing val-
ues of γ/(2ω1). The motion is reminiscent of the undamped harmonic
motion described in the last section. To emphasize this, we can rewrite
Eq. (11.10) as

x = X0e−(γ/2)t cos (ω1t + φ), (11.13)

or

x = X(t) cos (ω1t + φ), (11.14)

where

X(t) = X0e−(γ/2)t. (11.15)

The motion is similar to the undamped case except that the amplitude
decreases exponentially in time and the frequency of oscillation ω1 is
less than the undamped frequency ω0. The motion is periodic because
the zero crossings of X0e−(γ/2)t cos (ω1t + φ) are separated by equal time
intervals T = 2π/ω1, but the peaks do not lie exactly halfway between
them.

The essential features of the motion depend on the ratio ω1/γ. If
ω1/γ � 1, the amplitude decreases only slightly during the time the
cosine makes many zero crossings; in this regime, the motion is called
lightly damped. Ifω1/γ is comparatively small, X(t) tends rapidly to zero
while the cosine makes only a few oscillations. This motion is called
heavily damped. For light damping, ω1 ≈ ω0, but for heavy damping
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ω1 can be significantly smaller than ω0. If ω1 < γ/2, the trial solution
(11.10) fails, and the motion is not oscillatory. The system is described
as overdamped.

11.3.1 Energy Dissipation in the Damped Oscillator
Friction dissipates mechanical energy, so the energy of a damped oscil-
lator must decay in time. To evaluate the kinetic energy we first find the
velocity by differentiating Eq. (11.13). The result is

v = −X0e−(γ/2)t
[
ω1 sin (ω1t + φ) +

γ

2
cos (ω1t + φ)

]
. (11.16)

We will be most interested in systems with light damping, where ω1 �
γ/2, so that ω1 ≈ ω0. This allows us to make an approximation that
simplifies the arithmetic and reveals some universal features

ω2
1 = ω0

2 − (γ/2)2 ≈ ω0
2. (11.17)

With our approximation that ω1 � γ/2, the second term in the bracket
of Eq. (11.16) can be neglected, giving

v = V0e−(γ/2)t sin (ω0t + φ), (11.18)

where

V0 = ω0X0.

In this case, the potential energy is

U(t) =
1
2

kX2
0e−γt cos2(ω0t + φ), (11.19)

and the kinetic energy is

K(t) =
1
2

mV2
0 =

1
2 mω0

2X2
0e−γt sin2(ω0t + φ)

=
1
2

kX2
0e−γt sin2(ω0t + φ). (11.20)

The total energy is

E(t) = 1
2 kX2

0e−γt. (11.21)

t

E

E0e−t /τ
E0

0.368 E0

τ

The decay of the total energy is described by a simple differential
equation:

dE
dt
= −γE,

which has the solution

E = E0e−γt, (11.22)

where E0 is the energy at time t = 0.
The energy’s decay is characterized by the time τ = 1/γ in which the

energy decreases from its initial value by a factor of e−1 ≈ 0.368. τ is
often called the damping time of the system. In the limit of zero damping,
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γ → 0, τ→ ∞ and E is constant. The system behaves like an undamped
oscillator.

Note that we could have found the same result directly from the
work–energy theorem. The rate at which work is done on the system by
friction is v ffric = −bv2. Using the expression for velocity in Eq. (11.17),
making the approximation ω1 = ω0, and replacing sin2(ω0t + φ) by its
average value of 1/2, we have

dE
dt
= −bv2 = −b

2
V2

0 e−γt = −b
2

k
m

X2
0e−γt

= −γE,

as we expect.

Example 11.2 Physical Limitations to Damped Motion
According to Eq. (11.13), once an oscillator is set into motion it will os-
cillate forever, even though its amplitude steadily decreases. To under-
stand the limits to such an unlikely prediction, we need to examine the
physics of the harmonic oscillator in more detail.

The equation of motion (11.12) describes an isolated oscillator acted on
only by the viscous damping force. The idea of a truly isolated system
is fundamentally non-physical, because it would be out of contact with
all its surroundings, including any measurement apparatus. In reality,
systems are always in contact with their surroundings, and if they are
in equilibrium they can be characterized by a temperature T . We intro-
duced the relation between random thermal motion of atoms in a gas
and the temperature of the gas in Section 5.9. The connection between
random motion and temperature is universal and eventually thermal
effects become important.

The equipartition theorem, introduced in Section 5.11, predicts the av-
erage thermal energy of a system that is in thermal equilibrium at tem-
perature T . The mean kinetic energy of a particle of mass m in equilib-
rium at temperature T is 1

2 mv̄2 = 3
2 kT , where k, known as Boltzmann’s

constant, has the value k ≈ 1.38 × 10−23 m2 kg/s−2.

More generally, the equipartition theorem asserts that if the energy of a
system can be written in the form of a sum of terms that are quadratic
in form, for instance a free particle for which the kinetic energy is
m(v2

x + v2
y + v2

z )/2, then in thermal equilibrium the system possesses,
on the average, energy of 1

2 kT for each of the quadratic terms. Thus,
the mean kinetic energy of an atom in a gas is 3

2 kT . A harmonic os-
cillator with energy 1

2 kx2 + 1
2 mv2 possesses mean thermal energy kT .

When the energy of an oscillator decays to the point where it becomes
comparable with kT , the energy stops decreasing and simply fluctuates
around this average value.
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To reduce thermal fluctuations, ultra-precise measurements are often
made at very low temperature, but this strategy eventually fails when
quantum effects become important. According to the laws of quantum
physics, the energy of a harmonic oscillator Eho cannot be arbitrarily
small because it must obey the quantum rule

Eho = (n + 1
2 )�ω0,

where � ≈ 1.055 × 10−34m2kg/s. � (pronounced “h bar”) is Planck’s
constant h divided by 2π and n is a non-negative integer: n = 0, 1, 2, . . .
There is a minimum or “ground state” energy of 1

2�ω0 that is present
even when n = 0. This energy arises from the intrinsic quantum fluctu-
ations present in all systems. For most purposes, in mechanical systems
these fluctuations are so small that they can be overlooked. Neverthe-
less, research in quantum physics has reached such sensitivity that me-
chanical quantum fluctuations can be observed and pose a fundamental
limit to precision measurements.

11.3.2 The Q of an Oscillator
The degree of damping of an oscillator is often characterized by a di-
mensionless parameter Q, known as the quality factor, defined by

Q =
average energy stored in the oscillator

average energy dissipated during 1 radian of motion
. (11.23)

“Average” is used here to mean the time average over one cycle of mo-
tion, for which 〈sin2 θ〉 = 〈cos2 θ〉 = 1/2.

The energy dissipated per radian is the energy lost during the time
it takes the system to oscillate through one radian. During the period
T = 2π/ω0, the system oscillates through 2π radians. Thus the time to
oscillate through one radian is T/2π = 1/ω0.

From Eq. (11.22), the energy decays at the rate Ė = −γE. Conse-
quently, the energy lost during time Δt = 1/ω0 is

ΔE ≈ dE
dt
Δt = γE

1
ω0
,

so that the quality factor is given by

Q =
E
ΔE
=

E
γE/ω0

=
ω0

γ
. (11.24)

A lightly damped oscillator has Q � 1 while a heavily damped system
that loses energy rapidly has a low Q. A tuning fork has a Q of a thou-
sand or so, whereas a superconducting microwave cavity can have a Q
in excess of 107 and some systems have a Q > 109. In the limit of zero
damping, Q→ ∞.
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Example 11.3 The Q of Two Simple Oscillators
A musician’s tuning fork rings at A above middle C, 440 Hz. A sound
level meter indicates that the sound intensity decreases by a factor of 5
in 4 seconds. What is the Q of the tuning fork?

The sound intensity from the tuning fork is proportional to the energy
of oscillation. Since the energy of a damped oscillator decreases as e−γt,
we can find γ by taking the ratio of the energies at t = 0 and at t = 4 s:

5 =
E(0)e(0)

E(0)e−4γ = e4γ.

Hence

4γ = ln 5 = 1.6

γ = 0.4 s−1,

and

Q =
ω0

γ
=

2π(440 s−1)
0.4 s−1

≈ 7000.

The energy loss is due primarily to the heating of the metal as it bends.
Air friction and energy loss to the mounting point also contribute. The
symmetrical design of a tuning fork minimizes loss to the mount. Inci-
dentally, if you try this experiment, bear in mind that the ear is a poor
sound level meter because it does not respond linearly to sound inten-
sity; its response is more nearly logarithmic.

A rubber band exhibits a much lower Q than a tuning fork, primarily
because of the internal friction generated by the coiling of the long-
chain molecules. In one experiment, a paperweight suspended from a
hefty rubber band had a period of 1.2 s and the amplitude of oscillation
decreased by a factor of 2 after three periods. What is the estimated Q
of this system?

From Eq. (11.15) the amplitude is X(t) = X0e(−γ/2)t. The period of the
oscillator is T = 1.2 s and so the frequency is ω0 = 2π/T = 5.24 s−1.
The ratio of the amplitudes at t = 0 and at t = 3(1.2 s) = 3.6 s is

2 =
X(0)

X(3.6 s)
=

X0e(0)

X0e−3.6(γ/2) .

Solving, we have

1.8γ = ln 2 = 0.69

or

γ = 0.39 s−1.
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Therefore

Q =
ω0

γ
=

5.24 s−1

0.39 s−1

= 13.

It may seem questionable to use the light damping result, Q = ω0/γ,
when Q is so low. The approximations involved introduce errors of
order (γ/ω0)2 = (1/Q)2. For Q > 10 the error is less than 1 percent.

Note that the damping constants for the tuning fork and for the rub-
ber band are very nearly the same. The tuning fork has a much higher
Q, however, because it goes through many more cycles of oscillation
in one damping time and loses correspondingly less of its energy per
cycle.

Example 11.4 Graphical Analysis of a Damped Oscillator
The illustration is taken from a photograph of an oscilloscope trace of
the displacement of an oscillating system versus time. We immediately
recognize that the system is a damped harmonic oscillator. The
frequency ω1 and quality factor Q can be found from the photograph.
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The time interval from ta to tb is 8 ms. There are 28.5 cycles (complete
periods) in this interval. (Check this for yourself from the illustration.)
The period of oscillation is T = 8 × 10−3 s/28.5 = 2.81 × 10−4 s.
The angular frequency is ω0 = 2π/T = 22 400 s−1. The corresponding
circular frequency is ν = ω0/2π = 3560 Hz.

In order to calculate the quality factor Q = ω1/γ, the damping constant
must be known. From Eq. (11.15) the amplitude is X0e−(γ/2)t. This func-
tion describes the envelope of the displacement curve, which has been
drawn with a dashed curve on the photograph. At time ta the envelope
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has magnitude Xa = 2.75 units. When the envelope decays by a factor
e−1 = 0.368, its magnitude is 1.01 units. From the photograph this oc-
curs at tc = 5.35 ms, measured from ta. Hence e−(γ/2)tc = e−1, or γ =
2/tc = 374 s−1. The quality factor is Q = ω1/γ = 60.

Now for a word about the system. This is not a mechanical oscillator,
nor even an electrical oscillator. The signal is produced by radiating
electrons in a small volume of hydrogen gas. The signal was greatly
amplified for oscilloscope display. Furthermore, the atoms were actu-
ally radiating at 9.2 × 109 Hz. Since this is much too high for the os-
cilloscope to follow, the frequency was translated to a lower value by
electronic means. This did not affect the shape of the envelope, and our
measured value of γ is correct. If we use the true value of the frequency
of the atomic system, we find that the actual Q is

Q =
2πν
γ
=

2π(9.2 × 109)
374

= 1.6 × 108.

Such a high Q is not unusual in atomic systems.

m

x

S0 cos ωt

11.4 The Driven Harmonic Oscillator
The most interesting applications of harmonic oscillators generally in-
volve their behavior when they are subject to a time-varying force F(t),
particularly when the force is periodic. Such a system is called a driven
harmonic oscillator. For a mass on a spring, a force could be applied by
moving the end of the spring. To be concrete, let the end of the spring
move according to S = S 0 cosωt, as shown in the sketch. The force on
the mass is −k(x − S 0 cosωt), where x is the position of the mass mea-
sured from equilibrium. The spring force is therefore

Fspring = −k(x − S 0 cosωt) = −kx + F0 cosωt,

where F0 = kS 0. We assume that there is also a damping force −bv, so
that the equation of motion is

mẍ = −bẋ − kx + F0 cosωt,

which is conveniently written in the standard form

ẍ + γẋ + ω0
2x =

F0

m
cosωt, (11.25)

where γ = b/m and ω0 =
√

k/m, as before. A formal method for solving
Eq. (11.25) is presented in Note 11.3, but once again, it is worth trying
to guess the solution. The right-hand side of Eq. (11.25) varies as cosωt,
so that it is tempting to try x = X0 cosωt. However, the first derivative
term on the left, γẋ, introduces a sinωt time dependence that is absent
on the right. To deal with this, let’s try

x = X0 cos(ωt + φ). (11.26)
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This indeed satisfies Eq. (11.24), provided that X0 and φ have the
values

X0 =
F0

m
1

[(ω0
2 − ω2)2 + (ωγ)2]1/2 , (11.27)

φ = arctan
(

γω

ω0
2 − ω2

)
. (11.28)

When ω is close to ω0, the amplitude X0 is large and the phase varies
rapidly. It is therefore reasonable to make the approximation

ω2
0 − ω2 = (ω0 + ω)(ω0 − ω) ≈ 2ω0(ω0 − ω),

and take ω ≈ ω0 elsewhere. With these approximations,

X0 =
F0

2mω0

1
[(ω0 − ω)2 + (γ/2)2]1/2 , (11.29)

φ = arctan
(
γ/2

ω0 − ω
)
. (11.30)

We will also need an expression for the velocity, which is

v = −V0 sin(ωt + φ), (11.31)

where

V0 = ωX0. (11.32)
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Plots of the amplitude X0 (upper) and phase φ (lower) versus the driving
frequency ω are shown in the figures, for small damping (left) and large
damping (right). Note that the phase changes by π as ω ranges from
ω 
 ω0 to ω � ω0. The frequency range over which the amplitude and
phase change significantly depends on the ratio ω0/γ.



11.4 THE DRIVEN HARMONIC OSCILLATOR 423

Example 11.5 Driven Harmonic Oscillator Demonstration
Break a long rubber band and suspend something like a heavy pocket
knife from one end, holding the other end in your hand. The resonant
frequency ω0 is easily determined by observing the free motion. Now
slowly jiggle your hand at a frequency ω < ω0: the weight will move
in phase with your hand. If you jiggle the system with ω > ω0, you
will find that the weight moves in the opposite direction to your hand.
For a given amplitude of motion of your hand, the weight moves with
decreasing amplitude as ω is increased above ω0. If you try to jiggle
the system at resonance ω = ω0, the amplitude increases so much that
the weight either flies up in the air or hits your hand. In either case the
system no longer behaves like a simple oscillator.

11.4.1 Energy Stored in a Driven Harmonic Oscillator
Energy considerations simplified the discussion of the isolated oscillator
in Section 11.2.2, and they are even more useful for the driven oscillator.
From Eqs. (11.26) and (11.31) we have

E(t) = K(t) + U(t)

= 1
2 X2

0[mω2
0 sin2(ωt + φ) + k cos2(ωt + φ)]

= 1
2 kX2

0 ,

where we have again made the approximation ω ≈ ω0.
Energy flows into the driven oscillator from work by the driving

force and is dissipated by the damping force. From the work–energy
theorem,

Wd f = ΔE +Wnc

where in a given time interval Wd f is the work by the driving force, ΔE
is the change in the mechanical energy of the oscillator, and Wnc is the
non-conservative work by the damping force. After steady conditions
have been reached, the mechanical energy of the oscillator is constant
ΔE = 0, leaving

Wd f = Wnc.

In steady conditions, the rate of work by the driving force is equal to the
rate that work is dissipated by the damping.

The mechanical energy of the oscillator is constant but mechanical
energy is not conserved because the oscillator is not isolated. Work is
done on the oscillator by the driving force and work is done by the os-
cillator against the viscous damping force. If we enlarged our system to
include the driving force the total energy of the enlarged system would
be conserved. The total energy of the enlarged system includes whatever
source of energy provides the driving force, the mechanical energy of the
oscillator, and the heat energy generated by the damping.
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The oscillator is at rest with zero mechanical energy when the driv-
ing force is first applied. The oscillator’s stored energy builds to its fi-
nal steady value in the initial period during which some of the work by
the driving force goes into the stored mechanical energy. The period of
change is called the transient, which we shall discuss in Section 11.5.

Using the values of X0 and V0 given by Eqs. (11.27) and (11.32), the
stored energy is

E(ω) =
1
8

F0
2

m
1

(ω − ω0)2 + (γ/2)2 . (11.33)

We can rewrite E(ω) as the product of three factors:

E0 =
1
2

F0
2

mω2
0

,

(
ω0

γ

)2
= Q2,

g(ω) =
(γ/2)2

(ω0 − ω)2 + (γ/2)2 ,

which allow E(ω) to be written as

E(ω) = E0Q2g(ω). (11.34)

E0 is twice the kinetic energy of a free mass m that is driven by the force
F0 cosωt. “Twice” is because a free particle lacks the potential energy
that the oscillating mass possesses.

The quality factor Q = ω0/γ was introduced in Section 11.3.2, where
we used it to describe the decay time for the energy of the oscillator, as
counted by the number of oscillations.

11.4.2 Resonance
The function g(ω) is called the lineshape function (also, the Lorentzian)
because it first arose in the analysis of the shape of the spectral lines
radiated by atoms. The lineshape function describes the frequency de-
pendence of the oscillator’s energy when excited by a periodic driving
force. The peak in the vicinity of ω0 is called a resonance, ω0 is called
the resonance frequency, and the curve itself is often referred to as a
resonance curve.

At resonance, g(ω) = 1. The curve decreases to one-half its peak value
when ω± −ω0 = ±γ/2. The frequency width of the curve at half its max-
imum value is called the resonance widthΔω, often abbreviated FWHM
(full width at half maximum). Since ω+ − ω− = 2(γ/2) = γ, we have

Δω = γ. (11.35)

As γ decreases the curve becomes narrower, the range of frequency over
which the system responds significantly becomes smaller, and the oscil-
lator becomes increasingly selective in frequency.
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The maximum value of the stored energy is

Emax = Q2E0. (11.36)

This result gives some insight into the usefulness of the harmonic oscil-
lator. Q2 can be enormous and so the oscillator can amplify the effect of
a very small periodic force by storing the energy it delivers each cycle.

In Section 11.3.2, the quality factor

Q = ω0/γ (11.37)

was introduced to characterize the time for the free oscillator to dissipate
its energy. The time for the energy to decay by a factor of e−1 is τ = 1/γ,
so that we have

τ = Q/ω.

In this section, the quality factor has taken on quite a different meaning.
Because the width of the lineshape function is Δω = γ, we could rewrite
Eq. (11.23) as

Q =
resonance frequency

frequency width of resonance curve
=
ω0

Δω
. (11.38)
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The drawings show lineshape curves with different Q. It is apparent
that the system with Q = 20 is considerably more selective than the
system with Q = 4. As pointed out in Example 11.4, certain atomic
systems can have a Q greater than 108. The sharpness of the resonance
curve means that the system will not respond substantially unless driven
very near its resonance frequency. This frequency selectivity underlies
the use of harmonic oscillators to serve as frequency standards or clocks,
for instance the oscillating quartz crystals in digital watches.
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It is evident that the response of an oscillator in time and its response
in frequency are intimately related. However, before discussing the im-
plications, we need to complete the solution for the driven oscillator,
because the solution so far does not tell the whole story.

11.5 Transient Behavior
The solution for the motion of the driven harmonic oscillator x =
X0 cos (ωt + φ) satisfies the equation of motion Eq. (11.25) but it is in-
complete because it is unable to accommodate the arbitrary initial con-
ditions of a real problem. For instance, if the mass is released from rest
at t = 0, for which the initial conditions are x(0) = 0 and v(0) = 0, there
is no way that our solution could describe it, because X0 and φ already
have definite values given by Eqs. (11.29) and (11.30).

Fortunately, the fix is simple. Note that the left-hand sides for the mo-
tion of the undriven, or free, damped oscillator, Eq. (11.8), and the equa-
tion for the driven oscillator, Eq. (11.25), are identical. The difference is
that the right-hand side of Eq. (11.8) is zero, while the right-hand side
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of Eq. (11.25) is the driving term F0 cosωt/m. Consequently, if xfree is a
solution to Eq. (11.8) and xdriven is a solution to Eq. (11.25), then

x(t) = xfree(t) + xdriven(t) (11.39)

is also a solution to Eq. (11.25).
Inserting the solution for xfree from Eq. (11.10) and the solution for

xdriven from Eq. (11.26), we have

x(t) = Xf e−(γ/2)t cos(ω0t + φ f ) + X0 cos(ωt + φ), (11.40)

where Xf and φ f are arbitrary constants, and X0 and φ are given by Eqs.
(11.29) and (11.30). (In the first term on the right we made the approxi-
mation ω1 ≈ ω0.)

The first term in Eq. (11.40), the transient, decreases exponentially
with time, and eventually dies away, leaving the completely determined
steady-state behavior X0 cos (ωt + φ).

Example 11.6 Harmonic Analyzer
A device that analyzes the spectrum of a time-varying signal composed
of many frequencies is called a harmonic analyzer. A harmonic ana-
lyzer measures the response to a driving signal at a resonant frequency
that can be selected. A simple example is an old-fashioned dial-tuned
radio that selects one of a multitude of broadcast frequencies by
changing the resonant frequency of an electrical circuit.

We take the signal to be (F0/m) cosω0t. The response of the harmonic
oscillator is given by Eqs. (11.26), (11.27), and (11.28). The phase con-
stant of the oscillator is given by Eq. (11.28), which at resonance yields
φ = ± arctan∞. The ambiguity in sign is because the phase changes
by π as the frequency passes through resonance. We shall take φ =
−π/2. The steady-state oscillator response to the driving field is thus
X0 sinω0t so that Eq. (11.40) takes the form

x(t) = Xf e−(γ/2)t cos(ω0t + φ f ) + X0 sinω0t,

where, from Eq. (11.27) at resonance,

X0 =
F0

mω0γ
.

For the mass to start from rest at t = 0, we require x(0) = 0 and ẋ(0) =
0. The result is (assuming ω0 � γ/2)

x(t) = X0(1 − e−(γ/2)t) sinω0t. (11.41)

tx(
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Q = 10

Q = 1
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The sketches show plots of x(t) for low and high values of Q. The mass,
initially at rest, builds up to its final amplitude over a time that depends
on the Q of the oscillator. The characteristic time for the build-up is
the damping time τ = 1/γ. It is desirable for the analyzer to respond
quickly, particularly if the signal amplitude is time-varying, and this
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requires a short damping time. Because Q = ω0τ, low Q is desirable for
this application. As the sketch shows, the system with Q = 1 reaches
steady state in less than 2 cycles but the system with Q = 10 takes more
than 10 cycles to reach steady state.

On the other hand, if the oscillator is intended to resolve small differ-
ences in frequency, the resonance linewidth Δωmust be small. Because
Q= ω0/Δω, high Q is desirable, but the response will be slow. There is
a trade-off between speed of response and spectral resolution.

11.6 Response in Time and Response in Frequency
The smaller the damping of a free oscillator, the more slowly its energy
is dissipated. The same oscillator, when driven, becomes increasingly
more selective in frequency as the damping is decreased. As we shall
now show, the time dependence of the damped free oscillator and the
frequency dependence of the driven oscillator are intimately related.

Recall from Eq. (11.22) that the energy of a free oscillator is

E(t) = E0e−γt.

The damping time is τ = 1/γ.
Next, consider the response in frequency of the same oscillator when

it is driven by a force F0 cosωt. From Eq. (11.35) the width of the reso-
nance curve is

Δω = γ.

The damping time τ = 1/γ and the resonance curve width Δω obey

τ Δω = 1. (11.42)

According to this result it is impossible to design an oscillator for which
the damping time and the resonance width are both arbitrary; if we
choose one, the other is automatically fixed by Eq. (11.42).

Equation (11.42) has many implications for the design of mechanical
and electrical systems. Any element that is highly frequency selective
will oscillate for a long time if it is accidentally perturbed. Furthermore,
such an element will take a long time to reach the steady state when a
driving force is applied because the effects of the initial conditions die
out only slowly. More generally, Eq. (11.42) plays a fundamental role in
quantum mechanics; it is closely related to one form of the Heisenberg
uncertainty principle.

Example 11.7 Vibration Attenuator
The phenomenon of resonance has both positive and negative aspects
in practice. By operating at the resonance frequency of a system we
can obtain a response of large amplitude for a very small driving force.
Organ pipes utilize this principle effectively, and resonant electric
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circuits enable us to tune our radios to the desired frequency. On the
negative side, we do not want motions of large amplitude in the springs
of an automobile or in the crankshaft of its engine. To reduce undue
response at resonance a dissipative friction force is needed.

The problem of isolating a body from its surroundings arises in the
design of sensitive experimental apparatus and in numerous everyday
situations, for instance isolating an automobile body from the effects
of a bumpy road. The basic strategy is to use a spring to cushion the
disturbance. This strategy can be made to work very well, but, as we
shall see, it also holds the possibility of making matters worse.

M

k

y 0
 c

os
(w

gt
)

To illustrate the principles, we idealize the system as a simple mass M
that rests on top of a spring with constant k, whose lower end is attached
to the floor, which may be vibrating. We assume that the system is con-
strained so that the only important motion is vertical. The floor vibrates
at frequency ωg with amplitude y0, so that its position is given by

y = y0 cosωgt.

We denote the displacement of M from its equilibrium position by x.
The equation of motion for M is

Mẍ = k(x − y) = k(x − y0 cosωgt)

which can be written in the standard form

ẍ + ω2
0x = ω2

0y0 cosωgt,

where ω0 =
√

k/M, as usual.

The steady-state motion is given by x = x0ωgt, where

x0 = y0
ω2

0

ω2
0 − ω2

g
. (1)

The effectiveness of the vibration attenuator depends on the ratio
|x0|/|y0|, which we denote by F :

F = |x0|
|y0| .

The object of the spring suspension is to make F as small as possible.
In the absence of damping, F is, from Eq. (1),

F =
∣∣∣∣∣∣∣

ω2
0

(ω2
0 − ω2

g)

∣∣∣∣∣∣∣ .
For ωg 
 ω0,F ≈ 1, and the vibration is essentially transmitted with-
out reduction. However, for ωg � ω0, F < 1, and the vibration is
attenuated. Thus, for the vibration attenuator to be effective, its reso-
nance frequency must be low compared to the driving frequency.
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Our system suffers from a fatal flaw; if vibration occurs near the res-
onant frequency ωg ≈ ω0, the vibration attenuator becomes a vibra-
tion amplifier. To avoid this, some damping mechanism must be pro-
vided. Often this is accomplished with a device called a dashpot (in
an automobile, a shock absorber, which consists of a piston in a cylin-
der of oil). The dashpot provides a viscous retarding force −bv, where
v = ẋ − ẏ is the relative velocity of its ends.

The equation of motion of M is

Mẍ = −k(x − y) − b(ẋ − ẏ).

Taking y = y0 cosωgt and v = −ω0gy0 sinωgt, we obtain

ẍ + γẋ + ωo
2x = ωo

2yo cosωgt − γωg sinωgt

where γ = b/M and ω0
2 = k/M. This is like the equation of a driven

damped oscillator, Eq. (11.25), except that the motion of the floor on
the dashpot has introduced an additional driving term γωy0 sinωt. We
can guess that the solution has the form x = x0 cos(ω + φ) or use the
method described in Note 11.3 to formally derive the solution. Either
method yields

F =
[

ω0
4 + (ωγ)2

(ω0
2 − ω2)2 + (ωγ)2

] 1
2
.
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The graph shows F versus ωg/ω0 for various values of γ/ω0. For
ωg/ω0 less than about 1.5, |x0|/|y0| > 1. The vibration is actually
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enhanced, showing that even with damping it is essential to reduce
the resonance frequency below the driving frequency. When ωg/ω0 is
greater than 1.5, F < 1. For these higher frequencies, the vibration
isolation is more effective the smaller the damping. However, small
damping increases the danger from vibrations near resonance.

If a smooth turnpike ride is the chief consideration in an auto, one wants
a massive car with weak damping and soft springs. Such a car is diffi-
cult to control on a bumpy road where resonance could be excited. The
best suspensions are heavily damped and feel rather stiff. The danger
in driving with defective shock absorbers is that the car may be thrown
out of control if it is excited at resonance by bumps.

Note 11.1 Complex Numbers
All the equations of motion in this chapter can be solved simply by using
complex variables. This Note summarizes the definitions and algebra of
complex numbers and the two following Notes lay out how to solve the
equations of motion using complex numbers.

1. Basic properties
Every complex number z can be written in the Cartesian form x + ı̇y,

where ı̇2 = −1. x is the real part of z, and y is the imaginary part.
The sum of two complex numbers z1 = x1 + ı̇y1 and z2 = x2 + ı̇y2 is

the complex number z1 + z2 = (x1 + x2) + ı̇(y1 + y2). The product of z1
and z2 is

z1z2 = (x1 + ı̇y1)(x2 + ı̇y2) = x1x2 + ı̇x1y2 + ı̇y1x2 + ı̇
2y1y2

= (x1x2 − y1y2) + ı̇(x1y2 + y1x2).

If two complex numbers are equal, the real and imaginary parts are re-
spectively equal:

x1 + ı̇y1 = x2 + ı̇y2

implies that

x1 = x2

y1 = y2.

2. Complex conjugate z∗ ≡ x − ıy is the complex conjugate of z =
x + ıy. The quantity |z| = √zz∗ is the magnitude of z:

|z| = √zz∗

=
√

(x + ı̇y)(x − ı̇y)

=

√
x2 + y2.

3. de Moivre’s theorem de Moivre’s theorem states that eıθ =
cos θ + ı sin θ. This is proved by using the power series representation
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ex = 1 + x + (1/2)x2 + (1/3!)x3 + · · · . Using ı2 = −1, ıi3 = −ı, etc., we
have

eıθ = 1 + ıθ − (1/2)θ2 + (1/3!)(ıθ)3 + · · ·
= 1 − (1/2)θ2 + · · · + ı(θ − (1/3!)θ3 + · · · ).

Comparing these expressions with the power series expansions for cos θ
and sin θ in Chapter 1, Note 1.3, completes the proof.

4. Standard form Any complex number can be written in the stan-
dard form x + iy, where x and y are real. Because i2 = −1, i can never
appear in an expression to a power higher than the first. Here is an
example:

(a + ib)
(c + id)

=
(a + ib)
(c + id)

(c − id)
(c − id)

=
(a + ib)(c − id)

(c2 + d2)

=
(ac + bd) + i(bc − ad)

(c2 + d2)

where we have multiplied the numerator and the denominator by the
complex conjugate of the denominator.

5. Polar representation Every complex number z can be written in
the polar form reı̇θ. r is a real number, the modulus, and θ is the argument.
To transform from Cartesian to polar form we use de Moivre’s theorem:

reı̇θ = r cos θ + ı̇r sin θ
= x + ı̇y,

from which it follows that

x = r cos θ
y = r sin θ

and

r =
√

x2 + y2

θ = arctan
y
x
.

We see that r = |z| = √x2 + y2.

x

y

(x, y )

r sin θr

r cos θ

θ

Note 11.2 Solving the Equation of Motion for the Damped
Oscillator
The equation of motion is

ẍ + γẋ + ω0
2x = 0. (1)

To cast this into complex form we introduce the companion equation

ÿ + γẏ + ω0
2y = 0. (2)
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Multiplying Eq. (2) by i and adding it to Eq. (1) yields

z̈ + γż + ω0
2z = 0. (3)

Note that either the real or imaginary part of z is an acceptable solution
for the equation of motion.

All the coefficients of the derivatives of z are constants and so a natural
choice for the solution of Eq. (3) is

z = z0eαt, (4)

where z0 and α are constants. With this trial solution Eq. (3) yields

α2z0eαt + αγz0eαt + ωo
2z0eαt = 0.

Cancelling the common factor z0eαt, we have

α2 + αγ + ω0
2 = 0, (5)

which has the solution

α = −γ
2
±
√(

γ

2

)2
− ω0

2. (6)

Let the two roots be α1 and α2. The solution can be written as

z = zAeα1t + zBeα2t,

where zA and zB are constants.
There are three possible forms of the solution, depending on whether

α is real or complex. We consider these solutions in turn.
Case 1: light damping: (γ/2)2 
 ω0

2.

In this case
√

(γ/2)2 − ω2
0 is imaginary and we can write

α = −γ
2
± ı̇
√
ω2

0 −
(
γ

2

)
2 (7)

= −γ
2
± ı̇ω1

where

ω1 =

√
ω0

2 − (γ/2)2.

The solution is

z = e−(γ/2)t(z1eı̇ω1t + z2e−ı̇ω1t), (8)

where z1 and z2 are complex constants. In order to find the real part of z
we write the complex numbers in Cartesian form

x + ı̇y = e−(γ/2)t[(x1 + ı̇y1)(cosω1t + ı̇ sinω1t)
+ (x2 + ı̇y2)(cosω1t − ı̇ sinω1t)].
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The real part can be rearranged

x = Ae−(γ/2)t cos (ω1t + φ)

where A and φ are new arbitrary constants. This is the result quoted in
Eq. (11.10). The imaginary part of z, which is also an acceptable solu-
tion, has the same form.

Case 2: heavy damping: (γ/2)2 > ω0
2.

In this case,
√

(γ/2)2 − ω0
2 is real and Eq. (5) has the solution

α = −γ
2
± γ

2

√
1 − ω0

2

(γ/2)2 .

Both roots are negative, and we can write

z = z1e−|α1 |t + z2e−|α2 |t. (9)

The exponentials are real. The real part of z is

x = Ae−|α1 |t + Be−|α2 |t. (10)

This solution has no oscillatory behavior and is known as overdamped.
Case 3: critical damping: γ2/4 = ω0

2.
If γ2/4 = ωo

2 we have only the single root

α = −γ
2
.

The corresponding solution is

x = Ae−(γ/2)t. (11)

However, this solution is incomplete. Mathematically, the solution of a
second-order linear differential equation must always involve two arbi-
trary constants. Physically, the solution must have two constants to allow
us to specify the initial position and initial velocity of the oscillator. As
described in texts on differential equations, the second solution can be
found by using a “variation of parameters” trial solution.

x = u(t)e(−γ/2)t.

Substituting in Eq. (1) and recalling that γ = 2ωo for this case, we find
that u(t) must satisfy the equation

ü = 0.

Hence

u = a + bt

and the general solution for critical damping is therefore

x = (A + Bt)e−(γ/2)t. (11.43)
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Note 11.3 Solving the Equation of Motion for the Driven
Harmonic Oscillator
The equation of motion is

ẍ + γẋ + ω0
2x =

F0

m
cosωt. (1)

The companion equation is

ÿ + γẏ + ω0
2y =

F0

m
sinωt. (2)

Multiplying Eq. (2) by i and adding to Eq. (1) yields

z̈ + γż + ω0
2z =

F0

m
eı̇ωt. (3)

z must vary as eı̇ωt, so we try

z = z0eı̇ωt.

Inserting this in Eq. (3) gives

(−ω2 + ı̇ωγ + ω0
2)z0eı̇ωt =

F0

m
eı̇ωt

or

z0 =
F0

m

⎛⎜⎜⎜⎜⎝ 1
ω2

0 − ω2 + ı̇ωγ

⎞⎟⎟⎟⎟⎠ .
We can put z0 into Cartesian form by multiplying numerator and denom-
inator by the complex conjugate of the denominator. This gives

z0 =
F0

m

⎛⎜⎜⎜⎜⎝ (ω2
0 − ω2) − ı̇ωγ

(ω2
0 − ω2)2 + (ωγ)2

⎞⎟⎟⎟⎟⎠ .
In polar form, z0 = Reı̇φ, where

R =
√

z0z∗0

=
F0

m

√
1

(ω0
2 − ω2)2 + (ωγ)2 (4)

and

φ = arctan
(

ωγ

ω2 − ω0
2

)
. (5)

The complete solution is

z = Re ˙ıφeı̇ωt,

which has the real part

x = R cos(ωt + φ).
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Problems
For problems marked *, refer to page 524 for a hint, clue, or answer.

11.1 Time average of sin2

Show by direct calculation that 〈sin2(ωt)〉 = 1
2 , where the time

average is taken over any complete period t1 ≤ t ≤ t1 + 2π/ω.

11.2 Time average of sin× cos
Show by direct calculation that 〈sin(ωt) cos(ωt)〉 = 0 when the
average is over a complete period.

11.3 Damped mass and spring
A 0.3-kg mass is attached to a spring and oscillates at 2 Hz with
a Q of 60. Find the spring constant and damping constant.

11.4 Phase shift in a damped oscillator
In an undamped free harmonic oscillator the motion is given by
x = A sinω0t. The displacement is maximum exactly midway
between the zero crossings.

x
Damped

Undamped

ω0t

φ

3π
4

π π
2

π
4

In a damped oscillator the motion is no longer sinusoidal, and
the maximum is advanced before the midpoint of the zero cross-
ings. Show that the maximum is advanced by a phase angle φ
given approximately by

φ =
1

2Q
,

where we assume that Q is large.

11.5 Logarithmic decrement
The logarithmic decrement δ is defined to be the natural logarithm
of the ratio of successive maximum displacements (in the same
direction) of a free damped oscillator. Show that δ = π/Q.

11.6 Parameters of a damped oscillator
Find the spring constant k and damping constant b of a damped
oscillator having a mass of 5 kg, frequency of oscillation 0.5 Hz,
and logarithmic decrement 0.02.

11.7 Critically damped oscillator
If the damping constant of a free oscillator is given by γ = 2ω0,
the system is said to be critically damped.

(a) Show by direct substitution that in this case the motion is
given by

x = (A + Bt)e−(γ/2)t,

where A and B are constants.
(b) A critically damped oscillator is at rest at equilibrium. At

t = 0 it is given a blow of total impulse I. Sketch the motion, and
find the time at which the velocity starts to decrease.
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11.8 Scale spring constant*
A mass of 10 kg falls 50 cm onto the platform of a spring scale,
and sticks. The platform eventually comes to rest 10 cm below its
initial position. The mass of the platform is 2 kg.

(a) Find the spring constant.
(b) It is desired to put in a damping system so that the scale

comes to rest in minimum time without overshoot. This means
that the scale must be critically damped (see Note 11.2). Find the
necessary damping constant and the equation for the motion of
the platform after the mass hits.

11.9 Velocity and driving force in phase*
Find the driving frequency for which the velocity of a driven
damped oscillator is exactly in phase with the driving force.

11.10 Grandfather clock
The pendulum of a grandfather clock activates an escapement
mechanism every time it passes through the vertical. The escape-
ment is under tension (provided by a hanging weight) and gives
the pendulum a small impulse a distance l from the pivot. The en-
ergy transferred by this impulse compensates for the energy dis-
sipated by friction, so that the pendulum swings with a constant
amplitude.

l

Impulse

L

θ0

(a) What is the impulse needed to sustain the motion of a pen-
dulum of length L and mass m, with an amplitude of swing θ0 and
quality factor Q?

(b) Why is it desirable for the pendulum to engage the escape-
ment as it passes vertical rather than at some other point of the
cycle?

11.11 Average stored energy
Show that for a lightly damped driven oscillator

average energy stored in the oscillator
average energy dissipated per radian

≈ ωo

γ
= Q.

11.12 Cuckoo clock*
A small cuckoo clock has a pendulum 25 cm long with a mass
of 10 g and a period of 1 s. The clock is powered by a 200-gram
weight which falls 2 m between the daily windings. The ampli-
tude of the swing is 0.2 rad. What is the Q of the clock? How
long would the clock run if it were powered by a battery with 1 J
capacity?

11.13 Two masses and three springs*
Two identical masses M are hung between three identical springs.
Each spring is massless and has spring constant k. The masses
are connected as shown to a dashpot of negligible mass. Neglect
gravity.

M M

k k k

x1 x2
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The dashpot exerts a force bv, where v is the relative velocity
of its two ends. The force opposes the motion. Let x1 and x2 be
the displacements of the two masses from equilibrium.

(a) Find the equation of motion for each mass.
(b) Show that the equations of motion can be solved in terms

of the new dependent variables y1 = x1 + x2 and y2 = x1 − x2.
(c) Show that if the masses are initially at rest and mass 1 is

given an initial velocity v0, the motion of the masses after a suffi-
ciently long time is

x1 = x2

=
v0

2ω
sinωt.

Evaluate ω.

11.14 Motion of a driven damped oscillator
The motion of a damped oscillator driven by an applied force
F0 cosωt is given by xa(t) = X0 cos (ωt + φ), where X0 and
φ are given by Eqs. (11.29) and (11.30). Consider an oscilla-
tor that is released from rest at t = 0. Its motion must sat-
isfy x(0) = 0, v(0) = 0, but after a very long time, we expect
that x(t) = xa(t). To satisfy these conditions we can take as the
solution

x(t) = xa(t) + xb(t),

where xb(t) is the solution to the equation of motion of the free
damped oscillator, Eq. (11.10).

(a) Show that if xa(t) satisfies the equation of motion for the
driven damped oscillator, then so does x(t) = xa(t) + xb(t), where
xb(t) satisfies the equation of motion of the free damped oscillator,
Eq. (11.10).

(b) Choose the arbitrary constants in xb(t) so that x(t) satisfies
the initial conditions. (Note that A and φ here are arbitrary.)

(c) Sketch the resulting motion for the case where the oscillator
is driven at resonance.
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12.1 Introduction
In the centuries following publication of the Principia, Newtonian dy-
namics was accepted whole-heartedly not only because of its enor-
mous success in explaining planetary motion but also in accounting for
all motions commonly encountered on the Earth. Physicists and math-
ematicians (often the same people) created elegant reformulations of
Newtonian physics and introduced more powerful analytical and cal-
culational techniques, but the foundations of Newtonian physics were
assumed to be unassailable. Then, on June 30 1905, Albert Einstein
presented his special theory of relativity in his publication The Elec-
trodynamics of Moving Bodies. The English translation, available on
the web, is reprinted from Relativity: The Special and General Theory,
Albert Einstein, Methuen, London (1920). The original publication is
Zur Elektrodynamik bewegter Körper, Annalen der Physik 17 (1905).
Einstein’s paper transformed our fundamental view of space, time, and
measurement.

The reason that Newtonian dynamics went unchallenged for over two
centuries is that although we now realize that it is only an approximation
to the laws of motion, the approximation is superb for motion with speed
much less than the speed of light, c ≈ 3 × 108 m/s. Relativistic modifi-
cations to observations of a body moving with speed v typically involve
a factor of v2/c2. Most familiar phenomena involve speeds v 
 c. Even
for the high speed of an Earth-orbiting satellite, v2/c2 ≈ 10−10. There
is one obvious exception to this generalization about speed: light itself.
Thus, it is hardly surprising that the problems that triggered Einstein’s
thinking concerned not mechanics but light, problems that grew out of
Einstein’s early fascination with Maxwell’s electromagnetic theory—the
theory of light.

12.2 The Possibility of Flaws in Newtonian Physics
The German physicist and philosopher Ernst Mach first pointed out the
possibility of flaws in Newtonian thought. Although Mach proposed no
changes to Newtonian dynamics, his analysis impressed the young Ein-
stein and was crucial in the revolution shortly to come. Mach’s 1883
text The Science of Mechanics incorporated the first incisive critique of
Newton’s ideas about dynamics. Mach carefully analyzed Newton’s ex-
planation of the dynamical laws, taking care to distinguish between defi-
nitions, derived results, and statements of physical law. Mach’s approach
is now widely accepted; our discussion of Newton’s laws in Chapter 2 is
very much in Mach’s spirit.

The Science of Mechanics raised the question of the distinction be-
tween absolute and relative motion. According to Mach, the fundamen-
tal weakness in Newtonian dynamics was Newton’s conception of space
and time. Newton avowed that he would forgo abstract speculation (“I do
not make hypotheses”) and deal only with observable facts, but he was
not totally faithful to this resolve. In particular, consider the following
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description of time that appears in the Principia. (The excerpt is con-
densed.) Absolute, true and mathematical time, of itself and by its own
true nature, flows uniformly on, without regard to anything external. Rel-
ative, apparent and common time is some sensible and external measure
of absolute time estimated by the motions of bodies, whether accurate or
inequable, and is commonly employed in place of true time; as an hour,
a day, a month, a year.

Mach commented “it would appear as though Newton in the remarks
cited here still stood under the influence of medieval philosophy, as
though he had grown unfaithful to his resolve to investigate only actual
facts.” Mach went on to point out that since time is necessarily mea-
sured by the repetitive motion of some physical system, for instance
the pendulum of a clock or the revolution of the Earth about the Sun,
then the properties of time must be connected with the laws that de-
scribe the motions of physical systems. Simply put, Newton’s idea of
time without clocks is metaphysical; to understand the properties of time
we must observe the properties of clocks. As a prescient question, we
might inquire whether a time interval observed on a moving clock has
the same value as the interval observed on a clock at rest. A simple
question? Yes indeed, except that the idea of absolute time is so nat-
ural that the eventual consequences of Mach’s critique, the relativistic
description of time, still comes as something of a shock to students of
science.

There are similar weaknesses in the Newtonian view of space. Mach
argued that since position in space is determined using measuring rods,
the properties of space can be understood only by investigating the prop-
erties of meter sticks. For example, does the length of a meter stick ob-
served while it is moving agree with the length of the same meter stick
at rest? To understand space we must look to nature, not to Platonic
ideals.

Mach’s special contribution was to examine the most elemental as-
pects of Newtonian thought, to look critically at matters that might seem
too simple to discuss, and to insist that correctly understanding nature
means turning to experience rather than invoking mental abstractions.
From this point of view, Newton’s assumptions about space and time
must be regarded merely as postulates. Newtonian mechanics follows
from these postulates, but other assumptions are possible and from them
different laws of dynamics could follow.

Mach’s critique had no immediate effect but its influence was eventu-
ally profound. The young Einstein, while a student at the Polytechnic In-
stitute in Zurich in the period 1897–1900, was much attracted by Mach’s
work and by Mach’s insistence that physical concepts be defined in terms
of observables. However, the most urgent reason for superseding Newto-
nian physics was not Mach’s critique but Einstein’s recognition that there
were inconsistencies in interpreting the results of Maxwell’s electromag-
netic theory, notwithstanding that Maxwell’s theory was considered the
crowning achievement of classical physics.
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The crucial event that triggered the theory of special relativity and
decisively altered physics is generally taken to be the Michelson–Morley
experiment, though it is not clear precisely what role this experiment
actually played in Einstein’s thinking. Nevertheless, most treatments of
special relativity take it as the point of departure and we shall follow this
tradition.

12.3 The Michelson–Morley Experiment
The problem that Michelson attacked was to detect the effect of the
Earth’s motion on the speed of light. Briefly, Maxwell’s electromag-
netic theory (1861) predicted that electromagnetic disturbances in empty
space would propagate at 3 × 108 m/s—the speed of light. The evidence
was overwhelming that light consisted of electromagnetic waves, but
there was a serious conceptual difficulty.

The only waves then known to physics propagated in matter—solid,
liquid, or gas. A sound wave in air, for example, consists of alternate re-
gions of higher and lower pressure propagating with a speed of 330 m/s,
somewhat less than the speed of molecular motion. The speed of me-
chanical waves in a metal bar is higher, typically 5000 m/s. The speed
of sound increases with the rigidity of the material or the strength of the
“spring forces” between neighboring atoms.

Electromagnetic wave propagation seemed to be fundamentally differ-
ent. By analogy with mechanical waves in matter, electromagnetic waves
were assumed to propagate through space as vibrations in a medium
called the ether that supported electromagnetic wave propagation. Un-
fortunately, the ether had to possess contradictory properties; immensely
rigid to allow light to propagate at 3×108 m/s while so insubstantial that
it did not interfere with the motion of the planets.

One consequence of the ether hypothesis is that the speed of light
should depend on the observer’s motion relative to the ether. Maxwell
suggested an astronomical experiment to detect this effect. The mo-
tion of the planet Jupiter through space relative to the Earth should
affect the speed with which its light reaches us. The periodic eclipses
of the moons of Jupiter create a clock. The clock should appear to
periodically advance or fall behind, as the speed of light increases or
decreases as Jupiter approaches to and recedes from the Earth. The ef-
fect turned out to be too small to be measured accurately. Nevertheless,
Maxwell’s proposal was historically important: it stimulated Albert A.
Michelson, a young U.S. Navy officer at Annapolis, to invent a labora-
tory experiment for measuring the Earth’s motion through the ether.

The following explanation of the Michelson–Morley experiment as-
sumes some familiarity with optical interference. If you do not yet know
about interference, you can skip the description and take the conclusion
on faith: the speed of light is always the same, regardless of the relative
motion of the source and the observer.
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Michelson’s apparatus was an optical interferometer. As shown in the
drawing, light from a source is split into two beams by a semi-silvered
mirror Msemi that reflects half the light and transmits half. Half of the
beam from the light source travels straight ahead on path 1, passing
through Msemi until it is reflected by mirror M1. It then returns to mirror
Msemi, and half is reflected to the observer. The remainder of the beam
from the light source is the half that is reflected by M2, along path 2. It
is reflected by mirror M2, which directs it to the observer after passing
again through Msemi. Thus beams 1 and 2 each have 1/4 the intensity of
the initial beam.

Light
source

Arm B

Arm A

Telescope

Observer

M2

Msemi M1

path 1

pa
th

 2

If beams 1 and 2 travel the same distance, they arrive at the observer in
phase so that their electric fields add. The observer sees light. However,
if the path lengths differ by half a wavelength, the fields arrive out of
phase and cancel so that no light reaches the observer. In practice, the
two beams are slightly misaligned and the observer sees a pattern of
bright and dark interference fringes.

(a) in phase

τ

τ

(b) 180° out of phase

If the length of one of the arms is slowly changed, the fringe pattern
moves. Changing the difference in path lengths by one wavelength shifts
the pattern by one fringe.

The motion of the Earth through the ether should cause a difference
between the times for light to transit the two arms of the interferometer,
just as if there were a small change in the distance. The difference in
transit time depends on the orientation of the arms with respect to the
velocity of the Earth through the ether.

We suppose that the laboratory moves through the ether with speed v
and that arm A lies in the direction of motion while arm B is perpen-
dicular. According to the ether hypothesis, an observer moving toward
the source of a light signal with speed v will observe the signal to travel
with speed c + v, while for motion away from the source the speed is
c − v.

If the length of the arms from the partially silvered mirror Msemi to
their ends is l, then the time interval for the light to go from Msemi to M1
and return along arm A is τA, where

τA =
l

c + v
+

l
c − v

=
2l
c

(
1

1 − v2/c2

)
.

Because v2/c2 
 1, we can simplify the result using the Taylor series
expansion in Note 1.3: 1/(1− x) = 1+ x+ x2 + · · · . Letting x = v2/c2 we
have

τA ≈ 2l
c

(
1 +

v2

c2

)
.

Arm B is perpendicular to the motion so the speed of light is not af-
fected by the motion. However, there is nevertheless a time delay due to
the motion of Msemi as the light traverses the arm. Denoting the round
trip time by τB, then during that interval Msemi moves a distance vτB.
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Consequently, the light travels along the hypotenuse of the right trian-
gles shown in the sketch, and the distance traveled is 2

√
l2 + (vτB/2)2.

l l

Msemi

M2
ν

ντB

Consequently,

τB =
2
c

√
l2 + (vτB/2)2,

which gives

τB =
2l
c

1√
1 − v2/c2

.

Using the approximation 1/
√

1 − x = 1 + (1/2)x + (1/8)x2 + · · · , and
keeping the first term, we have

τB =
2l
c

(
1 +

1
2

v2/c2
)
.

The difference in time for the two paths is

Δτ = τA − τB ≈ l
c

(
v2

c2

)
.

The frequency of light ν is related to its wavelength λ and the speed of
light by ν = c/λ. The interference pattern shifts by one fringe for each
cycle of delay. Consequently, the number of fringe shifts caused by the
time difference is

N = νΔT =
l
λ

(
v2

c2

)
.

The orbital speed of the Earth around the Sun gives v/c ≈ 10−4. Taking
the path length l = 1.2 m, and using sodium light for which λ = 590 ×
10−9 m, Michelson predicted a fringe shift of N = 0.02. In his initial
attempt in 1881, Michelson searched for a fringe shift as the rotation of
the Earth changed the direction of motion through the ether, but could
detect none to within experimental accuracy.

3
4

21
16

In 1887 Michelson repeated the experiment in collaboration with the
chemist Edward Morley using an apparatus mounted on a granite slab
35 cm thick that floated on mercury and could be continuously rotated.
The path length was extended by a factor of 10 using repeated reflections
between the mirrors. However, again no fringe shift. The Michelson–
Morley experiment has been refined and repeated over the years but no
effect of motion through the ether has ever been detected. We are forced
to recognize that the speed of light is unaffected by motion of the ob-
server through the ether. Ironically, Michelson, who conceived and exe-
cuted the experiment for which he is famous, viewed it as a failure. He
set out to see the effect of motion through the ether but could not detect
any.

Various attempts to explain the null result of the Michelson–Morley
experiment introduced such complexity as to threaten the foundations of
electromagnetic theory. One attempt was the hypothesis proposed by the
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Irish physicist G.F. FitzGerald and the Dutch physicist H.A. Lorentz that
motion of the Earth through the ether caused a shortening of one arm
of the Michelson interferometer (the “Lorentz–FitzGerald contraction”)
by exactly the amount required to eliminate the fringe shift. Other the-
ories that involved such artifacts as drag of the ether by the Earth were
even less productive. The elusive nature of the ether remained a troubling
enigma.

12.4 The Special Theory of Relativity
It is an indication of Einstein’s genius that the troublesome problem of
the ether pointed the way not to complexity and elaboration but to a
simplification that unified the fundamental concepts of physics. Einstein
regarded the difficulty with the ether not as a fault in electromagnetic the-
ory but as an error in basic dynamical principles. He presented his ideas
in the form of two postulates, prefacing them with a note on simultaneity
and how to synchronize clocks.

12.4.1 Synchronizing Clocks
Before presenting his theory of space and time, Einstein considered the
elementary process of comparing measurements of time by different
observers having identical clocks. For the measurements to agree, the
clocks must be synchronized—they must be adjusted to agree on the time
of a single event. In Newtonian physics, if a flash of light occurs, the
flash arrives simultaneously at all synchronized clocks, wherever their
locations.

The Newtonian procedure would work if the speed of light were in-
finite or so large that it could be regarded as infinite. However, if one
accepts that signals can propagate no faster than the speed of light, the
procedure is wrong in principle. For instance, a signal from the Moon
to the Earth takes about one second. One might attempt to synchronize
a clock on the Moon with a clock on the Earth by advancing the Moon
clock by one second. With this adjustment, the Moon clock would al-
ways appear to agree with the Earth clock. However, for the observer on
the Moon, the Earth clock would always lag the Moon clock by two sec-
onds. Thus the clocks would be synchronized for one observer but not
the other.

Einstein proposed a simple procedure for synchronizing clocks so that
all observers agree on the time of an event. Observer A sends observer B
a signal at time TA. Observer B notes that the signal arrives at time TB

on the local clock. B immediately sends a signal back to A who detects
it at time T ′A = TA + ΔT. The clocks are synchronized if B’s clock reads
TB = TA + ΔT/2. Interpreting the times reported by different observers
requires knowing their positions, but everyone would agree on the time
of an event.

Einstein thought about time measurements in terms of railway
clocks at different stations for which light propagation times are of no
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practical importance. Today, Einstein’s procedure for synchronizing
clocks is crucially important: it is essential for comparing atomic clocks
in international time standards laboratories, as well as for keeping the In-
ternet synchronized and for maintaining the voltage–current phase across
the national power grid.

12.4.2 The Principle of Relativity
The special theory of relativity rests on two postulates. The first, known
as the principle of relativity, is that the laws of physics have the same
form with respect to all inertial systems. In Einstein’s words: “The laws
by which the states of physical systems undergo change are not affected,
whether these changes of state be referred to the one or the other of
two systems of co-ordinates in uniform translatory motion.” The princi-
ple of relativity was hardly novel; Galileo is credited with first pointing
out that there is no dynamical way to determine whether one is mov-
ing uniformly or is at rest, and Newton gave it rigorous expression in
his dynamical laws in which acceleration, not velocity, is paramount. If
the principle of relativity were not true, energy and momentum might
be conserved in one inertial system but not in another. The principle of
relativity played only a minor role in the development of classical me-
chanics: Einstein elevated it to a keystone of dynamics. He extended the
principle to include not only the laws of mechanics but also the laws of
electromagnetic interaction and all the laws of physics. Furthermore, in
his hands the principle of relativity became a powerful tool for discover-
ing the correct form of physical laws.

We can only guess at the sources of Einstein’s inspiration, but they
must have included the following consideration. If the speed of light
were not a universal constant, that is, if the ether could be detected, then
the principle of relativity would fail; a special inertial frame would be
singled out, the one at rest in the ether. However, the form of Maxwell’s
equations, as well as the failure of any experiment to detect motion
through the ether, cause us to conclude that the speed of light is indepen-
dent of the motion of the source. Our inability to detect absolute motion,
either with light or with Newtonian dynamics, forces us to accept that
absolute motion has no role in physics.

The Universal Speed
The second postulate of relativity is that the speed of light is a univer-
sal constant, the same for all observers. “Any ray of light moves in the
stationary system of co-ordinates with the determined speed c, whether
the ray be emitted by a stationary or by a moving body.” Einstein argued
that because the speed of light c predicted by electromagnetic theory in-
volves no reference to a medium, then no matter how we measure the
speed of light the result will always be c, independent of our motion.
This is in contrast to the behavior of sound waves, for example, where
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the observed speed of the wave depends on the motion of the observer
through the medium. The idea of a universal speed was indeed a bold
hypothesis, contrary to all previous experience and, for many of Ein-
stein’s contemporaries, defying common sense. But common sense can
be a poor guide. Einstein once quipped that common sense consists of
the prejudices one learns before the age of eighteen.

Rather than regarding the absence of the ether as a paradox, Einstein
saw that the concept of a universal speed preserved the simplicity of the
principle of relativity. His view was essentially conservative; he insisted
on maintaining the principle of relativity that the ether would destroy.
The urge toward simplicity appeared to be fundamental to Einstein’s per-
sonality. The special theory of relativity was the simplest way to preserve
the unity of classical physics.

To summarize, the postulates of special relativity are: The laws of
physics have the same form in all inertial systems. The speed of light
in empty space is a universal constant, the same for all observers re-
gardless of their motion.

These postulates require us to revise our ideas about space and time,
and this has immediate consequences for physics. The mathematical ex-
pression of kinematics and dynamics in the special theory of relativity
is embodied in the Lorentz transformation—a simple prescription for
relating events in different inertial systems.

12.5 Transformations
In the world of relativity, a transformation is a set of equations that re-
late observations in one coordinate system to observations in another. As
you will see, the logic of special relativity is reasonably straightforward
and the mathematics is not arcane. Nevertheless, the reasoning is likely
to seem perplexing because of the underlying question “Isn’t this a pe-
culiar way to do physics?” The answer is “Yes! This is a most peculiar
way to do physics!” Rather than examining forces, conservation laws,
dynamical equations, and other staples of Newtonian physics, Einstein
merely discussed how things look to different observers.

Einstein was the first person to use transformation theory to discover
new physical behavior, in particular, to create the theory of special rel-
ativity. From two simple assumptions, he derived a new way to look at
space and time and discovered a new system of dynamics.

Special relativity can be written with all the elegance of a beautiful
mathematical theory but its most attractive attribute is that it not only
looks beautiful, it works beautifully. The theory of special relativity is
among the most carefully studied theories in physics and its predictions
have always been correct within experimental error.

The heart of special relativity is the Lorentz transformation, but to
introduce Einstein’s approach let us first look at the corresponding pro-
cedure for Newtonian physics where the transformation is known as the
Galilean transformation.
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12.5.1 The Galilean Transformation
We will frequently refer to observations in two standard inertial systems:
S = (x, y, z, t) and S ′ = (x′, y′, z′, t′). S ′ moves with respect to S at speed
v in the x direction. Alternatively, S moves with respect to S ′ at speed
v in the negative x direction. For convenience, we take the origins to
coincide at t = 0, and take the x and x′ axes to be parallel.

yy

x, x

r

v

r

R = v t

If a particular point in space has coordinates r = (x, y, z) in S , the
coordinates in S ′ are r′ = (x′, y′, z′). These are related by

r′ = r − R,

where

R = vt.

Since v is in the x direction, we have

x′ = x − vt, (12.1)
y′ = y

z′ = z

t′ = t.

The fourth equation t′ = t, listed merely for completeness, is taken
for granted in Newtonian dynamics, and follows immediately from the
Newtonian concept of “ideal” time.

Equations (12.1) are known as the Galilean transformation. Because
the laws of Newtonian mechanics hold in all inertial systems, the form
of the laws is unaffected by this transformation. More concretely, there
is no way to distinguish between systems on the basis of the motion they
predict. The following example illustrates what this means.

Example 12.1 Applying the Galilean Transformation
Consider how we might discover the law of force between two isolated
bodies from observations of their motion. For example, the problem
might be to discover the law of gravitation from data on the elliptical
orbit of one of Jupiter’s moons. If m1 and m2 are the masses of the
moon and of Jupiter, respectively, and if r1 and r2 are their positions
relative to an observer on the Earth, we have

m1r̈1 = F(r)
m2r̈2 = −F(r),

where we assume that the force F between the bodies is a central force
that depends only on the separation r = |r2 − r1|. From our observa-
tions of r1(t) we can evaluate r̈1, from which we obtain the value of F.
Suppose the data reveal that F(r) = −Gm1m2r̂/r2.

Now let us look at the problem from the point of view of an observer
in a spacecraft that is moving with constant speed far from the Earth.
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According to the principle of relativity this observer must obtain the
same force law as the earthbound observer. The situation is represented
in the drawing. x, y is the earthbound system, x′, y′ is the spacecraft
system, and v is the relative velocity of the two systems. Note that the
vector r from m1 to m2 is the same in both coordinate systems.

y y
υ
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x, x
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r1
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r = r2 − r1 = r1r2 −

In the x′, y′ system the observer sees that the moon is accelerating at
rate r̈′1 and concludes that the force is

F′(r) = m1r̈′1.

A fundamental property of the Galilean transformation is that accel-
eration is unaltered. Here is the formal proof: because v̇ = 0, we
have

r1 = r′1 + vt

ṙ1 = ṙ′1 + v
r̈1 = r̈′1.

Consequently,

F′(r′) = m1r̈′1
= m1r̈1

= F(r)

= −Gm1m2

r2 r̂.

The law of force is identical in the two systems. This is what we mean
when we say that two inertial systems are equivalent. If the form of the
law, or the value of G, were not identical we could make a judgment
about the speed of a coordinate system in empty space by investigating
the law of gravitation in that system. The inertial systems would not be
equivalent.

Example 12.1 is almost trivial because the force depends on the sepa-
ration of the two particles, a quantity that is unchanged (invariant) under
the Galilean transformation. All forces in Newtonian physics are due to
interactions between particles, interactions that depend on the relative
coordinates of the particles. Consequently, they are invariant under the
Galilean transformation.

What happens to the equation for a light signal under the Galilean
transformation? The following example shows the difficulty.

Example 12.2 Describing a Light Pulse by the Galilean
Transformation
At t = 0 a pulse of light is emitted from the origin of the S system, and
travels along the x axis at speed c. The equation for the location of the
pulse along the x axis is x = ct.
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In the S ′ system, the equation for the wavefront along the x′ axis is

x′ = x − vt

= (c − v)t,

where v is the relative velocity of the two systems. The speed of the
pulse in the S ′ system is

dx′

dt
= c − v.

But this result is contrary to the postulate that the speed of light is
always c, the same for all observers.

Because the Galilean transformation is incompatible with the principle
that the speed of light is always c, our task is to find a transformation
that is compatible. Before undertaking this, it is useful to think carefully
about the nature of measurement.

The Galilean transformation relates the spatial coordinates of an event
measured by observers in two inertial systems moving with relative
speed v. By an “event” we mean the unique values of a set of coordi-
nates in space and time. Physically meaningful measurements invariably
involve more than a single event. For instance, measuring the length of a
rod involves placing the rod along a calibrated scale such as a meter stick,
and recording the position at each end. Consequently, length involves
two measurements. If the rod is at rest along the axis in the S system,
the coordinates of its end points might be xa and xb, where xb = xa + L.
According to an observer in the S ′ system, the x′ coordinates are given
by Eq. (12.1): x′a = xa − vt and x′b = xb − vt. Since xb = xa + L, we have
L = xb − xa and L′ = x′b − x′a = L. The two observers agree on the length.

In this simple exercise in measurement we have made a natural as-
sumption: the measurements are made simultaneously. This is not impor-
tant in the S system because the rod is at rest. However, in the S ′ system
the rod is moving. If the end points were recorded at different times, the
value for L′ would have been incorrect. We have used the Galilean as-
sumption t′ = t, which implies that if measurements are simultaneous in
one coordinate system they are simultaneous in all coordinate systems.
This would be the case if the speed of light were infinite, but the finite
speed of light profoundly affects our idea of simultaneity. We therefore
digress briefly to examine the nature of simultaneity.

12.6 Simultaneity and the Order of Events
We have an intuitive idea of simultaneity: two events are simultaneous
if their time coordinates have the same value. However, as the following
example shows, events that are simultaneous in one coordinate system
are not necessarily simultaneous when observed in a different coordinate
system.
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Example 12.3 Simultaneity
A railwayman stands at the middle of a flatcar of length 2L. He flicks
on his lantern and a light pulse travels out in all directions with the
velocity c.

L
A

A υ BA* B*

B
L

Light arrives at the ends of the car after a time interval L/c. In this
system, the flatcar’s rest system, the light arrives simultaneously at the
end points A and B.

Now let us observe the same situation from a frame moving to the right
with velocity v. In this frame the flatcar moves to the left with velocity
v. As observed in this frame the light still has velocity c, according to
the second postulate of special relativity. However, during the transit
time, A moves to A∗ and B moves to B∗. It is apparent that the pulse
arrives at B∗ before A∗; the events are not simultaneous in this frame.

Just as events that are simultaneous in one inertial system may not
be simultaneous in another, it can be shown that events that are spa-
tially coincident— having the same coordinates in space—in one system
may not appear to be coincident in another. We shall show later that
two events can be classified as either spacelike or timelike. For spacelike
events it is impossible to find a coordinate system in which the events co-
incide in space, though there is a system in which they are simultaneous
in time. For timelike events it is impossible to find a coordinate system
in which the events are simultaneous in time, though there is a system in
which they coincide in space.

At this point we need a systematic way to solve the problem of re-
lating observations made in different inertial systems in a fashion that
obeys the principle of relativity. This task constitutes the core of special
relativity.

12.7 The Lorentz Transformation
The failure of the Galilean transformation to satisfy the postulate that the
speed of light is a universal constant constituted a profound dilemma.
Einstein solved the dilemma by introducing a new transformation law
for relating the coordinates of events as observed in different inertial
systems. He introduced a system designed to ensure that a signal moving
at the speed of light in one system would be observed to move at the
same speed in the other, irrespective of the relative motion. Such a “fix”
took some courage because to alter a transformation law is to alter the
fundamental relation between space and time.υy

y

x
x

Let us refer once more to our standard systems, the S system (x, y, z, t),
and the S ′ system (x′, y′, z′, t′). The system S ′ moves with velocity v
along the positive x axis, and the origins coincide at t = t′ = 0. We take
the most general transformation relating the coordinates of a given event
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in the two systems to be of the form

x′ = Ax + Bt (12.2a)
y′ = y (12.2b)
z′ = z (12.2c)
t′ = Cx + Dt. (12.2d)

Some comments on Eqs. (12.2): the transformation equations are linear
because a nonlinear transformation could yield an acceleration in one
system even if the velocity were constant in the other. Further, we leave
the y′ and z′ axes unchanged, by symmetry.

Here is one model to justify the assumption that y′ = y and z′ = z:
consider two trains on parallel tracks. Each train has an observer holding
a paint brush at the same height in their system, say at 1 m above the
floor of the train. Each train is close to a wall. The trains approach at
relative speed v, and each observer holds the brush to the wall, leaving
a stripe. Observer 1 paints a blue stripe and observer 2 paints a yellow
stripe.

Suppose that observer 1 sees that the height of observer 2 has changed,
so that the blue stripe is below the yellow stripe. Observer 2 would have
to see the same phenomenon except that it is now the yellow stripe that is
below the blue stripe. Because their conclusions are contradictory they
cannot both be right. Since there is no way to distinguish between the
systems, the only conclusion is that both stripes are at the same height.
We conclude that distance perpendicular to the direction of motion is
unchanged by the motion of the observer.

We can evaluate the four constants A, B,C,D in Eqs. (12.2) by
comparing coordinates for four events. These could be:

(1) The origin of S is observed in S ′:
S : (x = 0, t); S ′ : (x′ = −vt′, t′).
From Eqs. (12.2a) and (12.2d), −vt′ = 0 + Bt, and t′ = 0 + Dt.
Consequently, B = −vD.

(2) The origin of S ′ is observed in S:
S ′ : (x′ = 0, t′); S : (x = +vt, t).
From Eq. (12.2a), 0 = Avt + Bt.
Consequently, B = −vA, and using result (1), if follows that
D = A.

(3) A light pulse is emitted from the origin at t = 0, t′ = 0 and is
observed later along the x and x′ axes.

S : (x = ct, t); S ′ : (x′ = ct′, t′).
From Eqs. (12.2a) and (12.2d), ct′ = ctA + Bt, and t′ = ctC + Dt
Using D = A and B = −vA, it follows that
C = −(v/c2)A.
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(4) A light pulse is emitted from the origin at t = 0, t′ = 0 and is
observed later along the y axis in the S system. In S , x = 0, y = ct, but in
S ′ the pulse has both x′ and y′ coordinates.

S : (x = 0, y = ct, t); S ′ : (x′ = −vt′, y′ =
√

(ct)2 − (−vt′)2, t′).
From Eqs. (12.2b) and (12.2d), ct =

√
(ct′)2 − (−vt′)2 and t′ = Dt

which give
D = 1/

√
1 − v2/c2.

(We selected the positive sign for the square root because otherwise
t and t′ would have opposite signs.) The factor 1/

√
1 − v2/c2 occurs so

frequently that it is given a special symbol:

γ ≡ 1√
1 − v2/c2

.

Note that γ ≥ 1 and that as v→ c, γ → ∞.
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Substituting our results in Eqs. 12.2 yields

x′ = γ (x − vt) (12.3a)
y′ = y (12.3b)
z′ = z (12.3c)

t′ = γ
(
t − vx/c2

)
. (12.3d)

The transformation from S ′ to S can be found by letting v→ −v:

x = γ
(
x′ + vt′

)
(12.4a)

y = y′ (12.4b)
z = z′ (12.4c)

t = γ
(
t′ + vx′/c2

)
. (12.4d)

Equations (12.3) and (12.4) are the prescription for relating the coordi-
nates of an event in different inertial systems so as to satisfy the pos-
tulates of special relativity. They are called the Lorentz transformation
after the physicist Hendrik Lorentz who first wrote them, though in a
very different context.

The Lorentz transformation equations have a straightforward physi-
cal interpretation. The factor γ is a scaling factor that ensures that the
speed of light is the same in both systems. The factor vt in Eq. (12.3a)
reveals that system S ′ is moving in the positive x direction, with speed
v. The factor vx/c2 in Eq. (12.3d) is a little more subtle. The clock syn-
chronization algorithm requires that the time registered on a clock be
corrected for the transit time τtransit from the event point. If the point is
moving with speed v, then the transit time correction must be adjusted
correspondingly. The additional distance traveled is d = vτtransit, where
τtransit = x/c. Hence, the time in Eq. (12.3d) needs to be corrected by the
quantity d/c = vx/c2.



454 THE SPECIAL THEORY OF RELATIVITY

In the limit v/c → 0 (or alternatively c → ∞), where γ → 1, the
Lorentz transformation becomes identical to the Galilean transforma-
tion. However, in the general case, the Lorentz transformation requires a
rethinking of the concepts of space and time.

Before looking into the consequences of this rethinking, let us ex-
amine how the Lorentz transformation demonstrates why Michelson’s
experiment had to give a null result.

12.7.1 Michelson–Morley Revisited
With the Lorentz transformation in hand we can understand why the
Michelson–Morley experiment failed to display any fringe shift as the
apparatus was rotated. We introduce again the two reference systems
S : (x, y, z, t) and the system S ′ : (x′, y′z′, t′) moving with relative speed
v along x. Their origins coincide at t = t′ = 0. A pulse of light is emitted
at t = 0 in the S system and spreads spherically. The locus of the pulse
is given by x2 + y2 + z2 = (ct)2. We leave it as an exercise to show that
the Lorentz transformation, Eqs. (12.3), predicts that in the “moving” S ′
system the locus of the pulse is given by x′2+y′2+z′2 = (ct′)2. Observers
in the two frames see the same phenomenon: a pulse spreading in space
with the speed of light c. There is no trace of a reference to their relative
speed v.

The Michelson–Morley experiment was designed to show the dif-
ference in the speed of light between directions parallel and perpen-
dicular to the Earth’s motion but according to the second postulate of
the special theory of relativity—the speed of light is the same for all
observers—there should be none. The Lorentz transformation shows
explicitly that there is none.

12.8 Relativistic Kinematics
Because the principles of special relativity require us to rethink ba-
sic ideas of measurement and observation, they have important conse-
quences for dynamics. The goal for the rest of this chapter is to learn
how the principles of special relativity are employed to relate measure-
ments in different inertial systems. The motivation for this is to some
extent practical: relativistic kinematics is essential in areas of physics
ranging from elementary particle physics to cosmology and also to tech-
nologies such as the global positioning system. More fundamentally, the
study of relativistic transformations leads to new physics, most famously
the relation E = mc2, and to an elegant unified approach to dynamics and
electromagnetic theory.

Predictions of the Lorentz transformation often defy intuition because
we lack experience moving at speeds comparable to the speed of light.
Two surprising predictions are that a moving clock runs slow and a mov-
ing meter stick contracts. These follow from the Lorentz transforma-
tion of time and space intervals. We will also derive these results by
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geometric arguments that may help provide intuition about this unex-
pected behavior.

Caution: in the discussion to follow, either S or S ′ may be the rest
system for an observer, and in addition there is the possibility of in-
troducing other systems. We need to be clear not only about the phys-
ical phenomena taking place but the system from which it is being
observed.

12.8.1 Time Dilation
A clock is at rest in S at some location x. The clock’s rate is deter-
mined by the interval τ0 between its ticks. The problem is to find the
corresponding interval observed in the S ′ system, in which the clock is
moving with speed −v.

Successive ticks of the clock in the rest system S are

tick 1 (event 1) : t

tick 2 (event 2) : t + τ0.

The corresponding times observed in the moving system S ′ are, from
Eq. (12.3d),

t′ = γ(t − vx/c2)

t′ + τ′0 = γ(t + τ0 − vx/c2).

Subtracting, we obtain

τ′0 = γτ0. (12.5)

Because γ ≥ 1, the time interval observed in the moving system is longer
than in the clock’s rest system. Thus, the moving clock runs slow. As
v→ c, time stands still.

This result, known as time dilation, is hardly intuitive and so it may
be instructive to derive it by a different approach.

M
h

ν

ντ1

Let us consider an idealized clock in which the timing element con-
sists of two parallel mirrors with a light pulse bouncing between them.
(Our discussion follows Introduction to Electrodynamics, David J. Grif-
fiths, Prentice Hall, Upper Saddle Ridge New Jersey, 1999.)

Each round trip of the light constitutes a clock tick. The clock
is mounted vertically on a railway car that moves with speed v, as
shown. An observer on the railway car monitors the rate of the ticks.
If the distance between the mirrors is h, then the time interval between
ticks is

τ0 = 2h/c.

In this calculation, the railway car is the rest system S for the clock.
An observer on the ground system S ′ also monitors the rate of ticks of

the clock. S ′ is moving at speed −v with respect to the rest system on the
railway car. For this observer, the time interval for the light, up or down,
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is τ1 =
√

h2 + (vτ1)2/c. Solving for τ1, the roundtrip time τ′0 is

τ′0 = 2τ1 = (2h/c)
1√

1 − v2/c2
.

Recalling that γ = 1/
√

1 − v2/c2, we have

τ′0 = γτ0

in agreement with Eq. (12.5).

Example 12.4 The Role of Time Dilation in an Atomic Clock
Possibly you have looked through a spectroscope at the light from an
atomic discharge lamp. Each line of the spectrum is the light emitted
when an atom makes a transition between two of its internal energy
states. The lines have different colors because the frequency ν of the
light is proportional to the energy change ΔE in the transition. If ΔE is
of the order of electron-volts, the emitted light is in the optical region
(ν ≈ 1015 Hz). There are some transitions, however, for which the
energy change is so small that the emitted radiation is in the microwave
region (ν ≈ 1010 Hz). These microwave signals can be detected and
amplified with available electronic instruments. Since the oscillation
frequency depends almost entirely on the internal structure of the
atom, the signals can serve as a frequency reference to govern the
rate of an atomic clock. Atomic clocks are highly stable and relatively
immune to external influences.

Each atom radiating at its natural frequency serves as a miniature
clock. The atoms are frequently in a gas and move randomly with
thermal velocities. Because of their thermal motion, the clocks are not
at rest with respect to the laboratory and the observed frequency is
shifted by time dilation.

Consider an atom that is radiating its characteristic frequency ν0 in the
rest frame. We can think of the atom’s internal harmonic motion as akin
to the swinging motion of the pendulum of a grandfather clock: each
cycle corresponds to a complete swing of the pendulum. If the period
of the swing is τ0 seconds in the rest frame, the period in the laboratory
is τ = γτ0. The observed frequency in the laboratory system is

ν =
1
τ
=

1
γτ0
=
ν0

γ

= ν0

√
1 − v2

c2 .

The shift in the frequency is Δν = ν− ν0. If v2/c2 
 1, γ ≈ 1− 1
2 v2/c2,

and the fractional change in frequency is

Δν

ν0
=
ν − ν0

ν0
= −1

2
v2

c2 . (1)
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A handy way to evaluate the term on the right is to multiply numerator
and denominator by the mass of the atom M:

Δν

ν0
= −

1
2 Mv2

Mc2 .

1
2 Mv2 is the kinetic energy due to thermal motion of the atom. This
energy increases with the temperature of the gas, and according to our
treatment of the ideal gas in Section 5.9

1
2

Mv̄2 =
3
2

kT,

where v̄2 is the average squared velocity, k = 1.38 × 10−23 J/deg is
Boltzmann’s constant, and T is the absolute temperature.

In the atomic clock known as the hydrogen maser, the reference fre-
quency arises from a transition in atomic hydrogen. M is close to the
mass of a proton, 1.67 × 10−27 kg, and using c = 3 × 108 m/s, we find

Δν

ν
=

3
2 kT

Mc2 = −
3
2 (1.38 × 10−23)T

(1.67 × 10−27)(9 × 1016)
= 1.4 × 10−13T.

At room temperature, T = 300 K (300 degrees on the absolute
temperature scale ≈ 27 ◦C), we have

Δν

ν
= −4.2 × 10−11.

This is a sizable effect in modern atomic clocks. In order to correct for
time dilation to an accuracy of 1 part in 1013, it is necessary to know
the temperature of the hydrogen atoms to an accuracy of 1 K. However,
if one wishes to compare frequencies to parts in 1015, the absolute
temperature must be known to within a millikelvin, a much harder
task.

The creation of techniques to cool atoms to the microkelvin regime has
opened the way to a new generation of atomic clocks. These clocks,
operating at optical rather than microwave frequencies, have achieved
a stability greater than 1 part in 1017—equivalent to a difference of
about 1 second over the age of the Earth.

12.8.2 Length Contraction
A rod at rest in S has length L0. What is the length observed in the system
S ′ that is moving with speed −v along the direction of the rod?

The rod lies along the x axis and its ends are at xa and xb, where xb =

xa + L0. The measurement involves two events but because the rod is at
rest in S the times are unimportant, so we can take the observations in S
to be simultaneous at time t. The length in S is found from the coordinates
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of two events:

event 1 : (xa, t)
event 2 : (xb, t).

The length observed in the rest frame S is xb − xa = L0. The problem is
to find the length observed in system S ′ where the rod is moving with
speed −v.

A natural, but wrong!, approach to finding the coordinates in S ′ would
be to use Eq. (12.3a) to find values for x′b and x′a and subtract. This would
give L′0 = x′b − x′a = γL0. The result is wrong because the times for the
two events in S ′ are not identical, as can be seen from Eq. (12.3d).

Meaningful measurements of the dimensions of a moving object must
be made simultaneously. We must therefore find the correspondence be-
tween values of x′ and x at the same time t′ in the S ′ system. This is
readily accomplished by applying the Lorentz transformation to relate
events in S to those in S ′. Equation (12.4a) gives x = γ(x′ − vt′). Conse-
quently,

xb = γ(x′b − vt′)
xa = γ(x′a − vt′).

Subtracting, we obtain xb − xa = γ(x′b − x′a), so that L0 = γL′ and

L′ = L0/γ =
√

1 − v2/c2L0. (12.6)

The rod appears to be contracted. As v → c, L′ → 0. The contrac-
tion occurs along the direction of motion only: if the rod lay along
the y axis, we would use the transformation y′ = y and conclude that
L′ = L0.

As in the case of time dilation, we have a non-intuitive result. This,
too, can be understood using a geometrical argument.

M

ν
L0

An observer on a train could measure the length of the train car L0 by
bouncing light between mirrors at each end and measuring the roundtrip
time τ0:

τ0 = 2
L0

c
.

The observer on board concludes that the length of the car is

L0 =
c
2
τ0. (12.7)

An observer on the ground also measures the length of the car L′ as the
train goes by at speed +v by measuring the time for a pulse to make a
roundtrip between the ends. As seen by the ground observer, the time τ+
for the pulse to travel from the rear mirror to the front is longer than L′/c,
because the front mirror moves slightly ahead during the transit time.
The distance traveled is L′+vτ+. Consequently, τ+ = (L′+vτ+)/c so that
τ+ = L′/(c − v). Similarly, the time for the return trip is τ− = L′/(c + v).
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The roundtrip for the light pulse is

τ′0 = τ+ + τ− = L′
(

1
c − v

+
1

c + v

)
=

2L′

c

(
1

1 − v2/c2

)
.

Consequently,

L′ =
c
2
τ′0(1 − v2/c2).

Comparing this with Eq. (12.7), we have

L′ = L0
τ0

τ′0
(1 − v2/c2).

Taking the value of τ0/τ
′
0 from Eq. (12.5), we have

L′ = L0

√
1 − v2/c2.

Because L′ < L0, the ground observer sees the length of the car con-
tracted by the factor

√
1 − v2/c2.

12.8.3 Proper Time and Proper Length
We introduced the symbols τ0 and L0 to denote time and length intervals
observed in the rest frame of the events. These quantities are referred to
as proper: τ0 is the proper time and L0 is the proper length.

Proper time τ is the time measured by a clock in its own rest system,
which might for example be a clock carried aboard a spacecraft. Ac-
cording to Eq. (12.5), a time interval Δt′ measured in a moving frame is
always greater than the proper time interval Δτ:

Δt′ = γΔτ =
Δτ√

1 − v2/c2
≥ Δτ.

Similarly, proper length is the length of an object measured in its own rest
frame, for example a meter stick carried aboard a spacecraft. According
to Eq. (12.6), the length L′ measured in a moving frame is always less
than the proper length L0:

L′ =
L0

γ
=
√

1 − v2/c2L0 ≤ L0.

12.8.4 Are Relativistic Effects Real?
Time and distance are such intuitive concepts that it may be difficult,
at least at first, to accept that the predictions of special relativity are
“real” in the familiar sense of physical reality. We shall look at some
examples where time dilation and length contraction unquestionably oc-
cur. Paradoxes immediately come to mind, for instance the pole-vaulter
paradox: a farmer has a barn with a door at each end. A pole-vaulter runs
through the barn gripping a horizontal pole longer than the barn. The
farmer wants to slam the doors with the pole inside. The farmer instructs
the runner to go so fast that the length contraction permits the pole to fit.
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The moment the runner is inside, the farmer slams the doors. The para-
dox is that from the runner’s point of view, the pole is unchanged but the
length of the barn has contracted. Rather than making the task of fitting
in the barn easier, running makes it harder!

The paradox hinges on the difference between Newtonian and rela-
tivistic concepts of simultaneity. The runner will not agree that the doors
were both shut at the same time, and it will be left as a problem to show
that from the runner’s point of view the pole was never totally in the barn.

The first dramatic experimental demonstration of time dilation oc-
curred in an early study of cosmic rays. The experiment also demon-
strated that although time dilation and length contraction appear to be
fundamentally different phenomena, they are essentially two sides of the
same coin.

Example 12.5 Time Dilation, Length Contraction, and
Muon Decay
The negatively charged muon (symbol μ−) is an elementary particle
related to the electron: it carries one unit of negative charge, same as
the electron, and it has a positively charged antiparticle μ+ analogous
to the positron, the electron’s antiparticle. The muon differs from the
electron most conspicuously in its mass, which is about 205 times the
electron’s mass, and in being unstable. Electrons are totally stable, but
the muon decays into an electron and two neutrinos.

The decay of the muon is typical of radioactive decay processes: if
there are N(0) muons at t = 0, the number at time t is

N(t) = N(0)e−t/τ

where τ is a time constant characteristic of the decay. It is easy to show
that the average time before a given muon decays is τ, and so τ is known
as the “lifetime” of the particle. For muons, τ = 2.2 µs. (Caution: the
symbol µ stands for “micro”, 10−6, as well as for muon. One needs
to keep one’s wits about symbols in physics.) If the muons travel with
speed v, the average distance they travel before decaying is 〈L〉 = vτ.

Muons were discovered in research on cosmic rays. They are created
at high altitudes by high energy protons streaming toward the Earth.
The protons are quickly lost in the atmosphere by collisions, but the
muons continue to sea level with very little loss. The early experiments
ran into a paradox. If one assumes that the muons travel at high speed,
close to the speed of light, then the maximum average distance that they
travel before decay should be no bigger than 〈L〉 = cτ. Consequently,
after traveling distance L, the flux of muons should be decreased by a
factor of at least exp−L/〈L〉. For a 2.2 µs lifetime, 〈L〉 = 660 m. In
the initial experiment (B. Rossi and D. B. Hall, Physical Review, 59,
223 (1941)), the flux was monitored on a mountain top in Colorado and
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at a site 2000 m below. The flux was expected to decrease by a factor
of exp−2000 m/660 m = 0.048. However, the observed loss ratio was
much smaller. The paradox was that the muons behaved as if on their
journey to Earth they lived for about three times their known lifetime.

The resolution of the paradox was the realization that the muons actu-
ally lived that long. The quantity γ was determined from measurements
of the muon energy. When time dilation was taken into account, the
lifetimes were calculated to increase by a factor close to the observed
value.

The concept of proper time is another way to look at this. The muons
carry their own “clock” that determines their decay rate. Their clock, in
the muon rest frame, measures proper time, so the decay rate measured
by a ground observer is longer. Using modern particle accelerators,
muons can be created with much higher energies than obtained with
cosmic rays, leading to correspondingly larger values of γ. In one ex-
periment (R. M. Casey, et al., Phys. Rev. Letters, 82, 1632 (1997)) the
lifetime was extended so much that useful signals could be observed for
up to 440 µs, 200 times the muon lifetime. Do moving clocks “really”
run slow? The answer depends on how you wish to interpret the ex-
periment. In a coordinate system moving with the muons (in the muon
rest system), the particles decay with their natural decay rate. However,
in this system the muons “see” that the thickness of the atmosphere is
smaller than seen by a ground-based observer. Lorentz contraction re-
duced the path length from 2000 m to 2000/γ m. The fraction of muons
that penetrated through is the same as if the problem were viewed from
a ground-based coordinate system.

We see that once we accept the postulates of relativity we are forced
to abandon the intuitive idea of simultaneity. Nevertheless, the Lorentz
transformation, which embodies the postulates of relativity, allows us to
calculate the times of events in two different systems.

Example 12.6 An Application of the Lorentz Transformation
A light pulse is emitted at the center of a railway car x = 0 at time
t = 0. How do we find the time of arrival of the light pulse at each end
of the railway car, which has length 2L? The problem is trivial in the
rest frame. The two events are

Event 1: The pulse arrives at end A

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x1 = −L

t1 =
L
c
= T

Event 2: The pulse arrives at end B

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x2 = L

t2 =
L
c
= T.
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To find the time of the events in system S ′ moving with respect to the
railway car, we apply the Lorentz transformation for the time coordi-
nates.

Event 1:

t′1 = γ
(
t1 − vx1

c2

)
= γ
(
T +

vL
c2

)
=

1√
1 − v2/c2

(
T +

v
c

T
)

= T

√
1 + v/c
1 − v/c

.

Event 2:

t′2 = γ
(
t2 − vx2

c2

)

= T

√
1 − v/c
1 + v/c

.

In the moving system, the pulse arrives at B (event 2) earlier than it
arrives at A, as we anticipated.

Simultaneity is not a fundamental property of events; it depends on
the coordinate system. Is it possible to find a coordinate system in which
any two events are simultaneous? The following example proves what
was asserted in Section 12.6: there are two classes of events. For two
given events, we can find either a coordinate system in which the events
are simultaneous in time or one in which the events occur at the same
point in space—but not both.

Example 12.7 The Order of Events: Timelike and
Spacelike Intervals
Two events A and B on the x axis have the following coordinates in S :

Event A : (xA, tA); Event B : (xB, tB).

The distance between the events is L = xB − xA and the time T separat-
ing the events is T = tB − tA.

The distance between the events in the x′, y′ system, as described by
the Lorentz transformation, is

L′ = γ(L − vT ).

T ′ = γ
(
T − vL

c2

)
.
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Because v is always less than c, it follows that if L > cT then L′ is
always positive, while T ′ can be positive, negative, or zero. Such an
interval is called spacelike, since it is impossible to choose a system
in which the events occur at the same place, though it is possible for
them to be simultaneous, namely, in a system moving with v = c2T/L.
On the other hand, if L < cT , then T ′ is always positive and the events
can never appear to be simultaneous, but L′ can be positive, negative,
or zero. The interval is then known as timelike, because it is impossible
to find a coordinate system in which the events occur at the same time.

12.9 The Relativistic Addition of Velocities
The closest star is more than four light years away and our galaxy is
roughly 10 000 light years across. Consequently, any method for travel-
ing faster than light could be priceless for galactic exploration. Toward
this goal, suppose we build a spaceship, the Starship Sophie, that can
achieve a speed of 0.900c. The crew of the Sophie then launches a second
ship, Starship Surprise, that can reach 0.800c. According to Newtonian
rules, the Surprise should fly away at 1.700c. Let’s see what happens
relativistically.

We designate our rest system (x, y, z, t) by S and spaceship Sophie’s
system (x′, y′, z′, t′) by S ′. S ′ moves with velocity v along the x axis. The
velocity of the Surprise, as observed from the Sophie, is u′ = (u′x, u′y). Our
task is to find the velocity u of the Surprise that we observe in our rest
system S .

y′
ν

uy

z z′

x′x
From the definition of velocity, in S ′ we have

u′x = lim
Δt′→0

Δx′

Δt′

u′y = lim
Δt′→0

Δy′

Δt′

u′z = lim
Δt′→0

Δz′

Δt′
.

The corresponding components in S are

ux = lim
Δt→0

Δx
Δt

uy = lim
Δt→0

Δy
Δt

uz = lim
Δt→0

Δz
Δt
.

The problem is to relate displacements and time intervals in S to those
in S ′. From the Lorentz transformation Eqs. (12.3) we have

Δx = γ(Δx′ + vΔt′)
Δy = Δy′

Δz = Δz′

Δt = γ
(
Δt′ + (v/c2)Δx′

)
.
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Hence

Δx
Δt
=

γ(Δx′ + vΔt′)
γ[Δt′ + (v/c2)Δx′]

=
Δx′/Δt′ + v

1 + (v/c2)(Δx′/Δt′)
.

Next we take the limit Δt′ → 0. Using u′x = limΔt′→0 Δx′/Δt′, we obtain

ux =
u′x + v

1 + vu′x/c2 . (12.8a)

Similarly,

uy =
u′y

γ[1 + vu′x/c2]
(12.8b)

and

uz =
u′z

γ[1 + vu′x/c2]
. (12.8c)

Equations (12.8) are the relativistic rules for adding velocities. For v 

c, we obtain the Galilean result u = v + u′.

The transformation from S to S ′ is

u′x =
ux − v

1 − vux/c2 . (12.9a)

u′y =
uy

γ[1 − vux/c2]
. (12.9b)

u′z =
uz

γ[1 − vux/c2]
. (12.9c)

Returning to the problem of the two starships, let u′x = 0.800c be the
speed of the Surprise relative to the Sophie and v = 0.900c be the speed
of the Sophie relative to us. The velocity of the Surprise relative to us is,
from Eq. (12.8a),

ux =
0.900c + 0.800c

1 + (0.900)(0.800)

=
1.700c
1.720

= 0.988c.

The speed of the Surprise is less than c. Equation (12.8a) reveals that we
cannot exceed the speed of light by changing reference frames.

Taking the limiting case u′x = c, the final velocity in the rest system is
then

ux =
c + v

1 + vc/c2

= c,
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independent of v. This agrees with the postulate that we built into the
Lorentz transformation: the speed of light is the same for all observers.
Furthermore, it suggests that the speed of light is the ultimate speed
allowed by the theory of relativity.

Example 12.8 The Speed of Light in a Moving Medium
As an exercise in the relativistic addition of velocities, let us find how
a moving medium, such as flowing water, influences the speed of
light.

The speed of light in matter is less than c. The index of refraction, n, is
used to specify the speed in a medium:

n =
c

velocity of light in the medium
.

n = 1 corresponds to empty space; in ordinary matter n > 1. The
slowing can be appreciable: for water n = 1.3.

Light beam

υ

The problem is to find the speed of light through a moving liquid. For
instance, consider a tube filled with water. If the water is at rest, the
speed of light in the water with respect to the laboratory is u = c/n.
What is the speed of light when the water is flowing with speed v?

Consider the speed of light in water as observed in a coordinate system
S ′ = (x′, y′) moving with the water. The speed in S ′ is

u′ =
c
n
.

The speed in the laboratory is, by Eq. (12.8a),

u =
u′ + v

1 + u′v/c2

=
c/n + v

1 + v/nc

=
c
n

(
1 + nv/c
1 + v/nc

)
.

If we expand the factor on the right-hand side and neglect terms of
order (v/c)2 and smaller, we obtain

u =
c
n

(
1 +

nv
c
− v

nc

)
=

c
n
+ v
(
1 − 1

n2

)
.

The light appears to be “dragged” by the fluid, but not completely. Only
the fraction f = 1 − 1/n2 of the fluid velocity is added to the speed of
light c/n. This effect was observed experimentally in 1851 by Fizeau,
although it was not explained satisfactorily until the advent of relativity.
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12.10 The Doppler Effect
The Doppler effect is the change in the frequency of a wave due to mo-
tion between the source and observer. It causes the familiar drop in pitch
of the horn of a truck or the whistle of a train as they pass by. For as-
tronomers and astrophysicists the Doppler effect provides an invaluable
tool for measuring the speed of far off objects by the shift in the spectral
wavelengths they emit. All our knowledge about how fast the universe
is expanding comes from observations of the Doppler effect in spectral
lines. More prosaically, the Doppler effect is at the heart of reliable and
cheap radar speed monitors.

The relativistic Doppler effect differs from the classical effect in a
pleasing manner: it is simpler. Furthermore, it displays a phenomenon
absent in classical behavior, the transverse Doppler effect that causes a
frequency shift in light from a moving source, as seen by an observer
transverse to the path.

To start, we review the classical Doppler effect in sound.

12.10.1 The Doppler Effect in Sound
Sound travels through a medium, such as air, with a speed w determined
by the properties of the medium, independent of the motion of the source.

υ

w

L

Consider sound waves from a source moving with velocity w through
the medium toward an observer at rest. For now, we shall restrict our-
selves to the case where the observer is along the line of motion. We will
picture sound as regular series of pulses separated by time τ0 = 1/ν0,
where ν0 is the number of pulses per second generated by the source.
The distance between pulses is wτ0 = w/ν0, which we designate by λ.
We could equally well picture the disturbance as a sine wave, in which
case ν0 corresponds to the frequency of sound and the distance between
successive crests is the wavelength λ = w/ν0.

υ

υτ0

wτ0

L

t  = 0

 t  =  τ0

If the source moves toward the observer at speed v, then the distance
between successive pulses is λD = λ − vτ0 = λ − v/ν0. Hence

w
ν′0
=

w
ν0
− v
ν0
,

ν′0 = ν0

(
1

1 − v/w

)
(moving source). (12.10)

The shift in frequency (Δν)λD = ν
′
0 − ν0 is known as the Doppler shift.

The situation is somewhat different if the observer is moving toward
the source at speed w. Previously, the observer was at rest in the medium:
now the observer is moving through the medium. The relative velocity
between source and observer is the same, w. The distance between wave
fronts is unchanged, but the relative speed of arrival is now w + v. Con-
sequently, the frequency is ν′0 = (w + v)/λ, which can be written

ν′0 = ν0(1 + v/w) (moving observer). (12.11)

Equations (12.11) and (12.12) are identical to first order in the ratio v/w,
but they differ in the second order. The second-order difference could
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in principle be used be determine whether the Doppler shift is due to
motion of the source or motion of the observer. The distinction is real
because the motion is measured relative to a fixed medium such as air.

If these results were valid for light waves in space, we would be able
to distinguish which of two systems is at absolute rest, which is not pos-
sible. To resolve this difficulty, we turn now to a relativistic derivation of
the Doppler effect.

12.10.2 The Relativistic Doppler Effect
A light source flashes with period τ0 = 1/ν0 in its rest frame. The source
is moving toward an observer with velocity v. Due to time dilation, the
period in the observer’s rest frame is

τ = γτ0.

υ

L

If the wavelength λD is the distance between pulses in the observer’s
rest frame, the frequency of the pulses is νD = c/λD, where the wave-
length λD is the distance between pulses in the observer’s frame. Because
the source is moving toward the observer this distance is

L

υτ

υ

cτ

λD = cτ − vτ = (c − v)τ

and

νD =
c

(c − v)τ

=

(
1

1 − v/c

)
1
γτ0

or

νD = ν0

√
1 − v2/c2

1 − v/c

which reduces to

νD = ν0

√
1 + v/c
1 − v/c

. (12.12)

νD is the frequency in the observer’s rest frame and v is the relative speed
of source and observer. As we expect, there is no mention of motion
relative to a medium. The relativistic result plays no favorites with the
classical results; it disagrees with both Eqs. (12.10) and (12.11) but treats
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the case of moving source and moving observer symmetrically: it is the
geometric mean of the two classical results.

12.10.3 The Doppler Effect Off the Line of Motion
We have analyzed the Doppler effect when the source and observer move
along the line connecting them but this is not the most general situation.
For instance, consider a satellite broadcasting a radio beacon signal to a
ground tracking station that monitors the Doppler-shifted frequency.

θ
υ

We can readily generalize our method to find the Doppler effect for
an observer in a direction at angle θ from the line of motion. We again
visualize the source as a flashing light. The period of the flashes in the
observer’s rest frame is τ = γτ0, as before. The frequency seen by the
observer is c/λD. The source moves a distance vτ between flashes and it
is apparent from the sketch that

L

υτ

θ

cτ

λD = cτ − vτ cos θ
= (c − v cos θ)τ.

Hence

νD =
c
λD

=
c

(c − v cos θ)τ0γ

νD = ν0

√
1 − v2/c2

1 − (v/c) cos θ
(12.13)

where we have used τ0 = 1/ν0. In this result, θ is the angle measured in
the rest frame of the observer. Along the line of motion, θ = 0 and we
recover our previous result, Eq. (12.12). At θ = π/2 the relative velocity
between source and observer is zero. The classical Doppler effect would
vanish here, but relativistically there is a shift in frequency; νD differs
from ν0 by the factor

√
l − v2/c2. This “transverse” Doppler effect is due

to time dilation. The flashing lamp is effectively a moving clock and
moving clocks run slow.

The relativistic Doppler effect agrees with the classical result to order
v/c, so that any experiment to differentiate between them must be sen-
sitive to effects of order (v/c)2. Nevertheless, the relativistic expression
was confirmed by H.E. Ives and G.R. Stilwell in 1938 by observing small
shifts in the wavelengths emitted by fast-moving atoms.

A useful application of the Doppler effect is in navigational systems,
as the following example explains.

Example 12.9 Doppler Navigation
The Doppler effect can be used to track a moving body, such as a
satellite, from a reference point on the Earth. This provided the basis
for a navigational system that was created when the first satellites were
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flown. Although it has been superseded by the Global Positioning
System (GPS), the method is remarkably accurate; changes in the
position of a satellite 108 m away can be determined to a fraction of a
centimeter.

θ

r

vr̂ Consider a satellite moving with velocity v at some distance r from a
ground station. An oscillator on the satellite broadcasts a signal with
frequency ν0. Since v 
 c for satellites, we can approximate Eq.
(12.13) by retaining only terms of order v/c. The frequency νD received
by the ground station can then be written

νD ≈ ν0

1 − (v/c) cos θ

≈ ν0

(
1 +

v
c

cos θ
)
.

There is an oscillator in the ground station identical to the one in the
satellite. At rest, both oscillators run at the same frequency ν0 with
corresponding wavelength λ0 = c/ν0. In flight, the observed satellite
frequency is different, and by simple electronic methods the difference
frequency (“beat” frequency) νD − ν0 can be measured:

νD − ν0 = ν0
v
c

cos θ.

The radial velocity of the satellite is

dr
dt
= r̂ · v
= −v cos θ.

Hence

dr
dt
= − c

ν0
(νD − ν0)

= −λ0(νD − ν0).

νD varies in time as the satellite’s velocity and direction change. To find
the total radial distance traveled between times Ta and Tb, we integrate
the above expression with respect to time:∫ Tb

Ta

(
dr
dt

)
dt = −λ0

∫ Tb

Ta

(νD − ν0)dt

rb − ra = −λ0

∫ Tb

Ta

(νD − ν0)dt.

The integral is the number of cycles Nba of the beat frequency that occur
in the interval Ta to Tb. (One cycle occurs in a time τ = 1/(νD − ν0), so
that

∫
dt/τ is the total number of cycles.) Hence

rb − ra = −λ0Nba.
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This result has a simple interpretation: whenever the radial distance
increases by one wavelength, the phase of the beat signal decreases one
cycle. Similarly, when the radial distance decreases by one wavelength,
the phase of the beat signal increases by one cycle.

Satellite communication systems operate at a typical wavelength of
10 cm, and since the beat signal can be measured to a fraction of a cy-
cle, satellites can be tracked to about 1 cm. If the satellite and ground-
based oscillators do not each stay tuned to the same frequency, ν0, there
will be an error in the beat frequency. To avoid this problem a two-way
Doppler tracking system can be used in which a signal from the ground
is broadcast to the satellite, which then amplifies it and relays it back
to the ground. This has the added advantage of doubling the Doppler
shift, increasing the resolution by a factor of 2.

We sketched the principles of Doppler navigation for the classical case
v 
 c. For certain tracking applications the precision is so high that
relativistic effects must be taken into account.

As we have shown, a Doppler tracking system also gives the instanta-
neous radial velocity of the satellite vr = −c(νD − ν0)/ν0. This is par-
ticularly handy, since both velocity and position are needed to check
satellite trajectories. A more prosaic use of this result is in police radar
speed monitors: a microwave signal is reflected from an oncoming car
and the beat frequency of the reflected signal reveals the car’s speed.

12.11 The Twin Paradox
Among the paradoxes that add to the fascination of special relativity,
probably none has generated more discussion than the twin paradox.
The paradox is simple to state: two twins, Alice and Bob, have iden-
tical clocks. Alice sets out on a long space voyage while Bob remains
at home. Suppose that the spacecraft flies away in a straight line at con-
stant speed v for time T0/2 as measured by Alice using her onboard
clock. She quickly reverses speed and heads back, returning home at T0.
Alice would observe that she has aged by time T0, as measured with her
onboard clock.

Because of time dilation, Bob would observe that the time for the jour-
ney is

T ′B = γT0 ≈ T0

(
1 +

1
2

v2

c2

)
.

Consequently, Bob concludes that because of the time dilation he is older
than Alice by

ΔTA,B =
1
2

T0
v2

c2 , (12.14)

or, equivalently, that Alice is younger than he.
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If this same argument were applied by Alice, she would conclude that
she is older than Bob by

ΔTB,A =
1
2

T0
v2

c2 (12.15)

or that Bob is correspondingly younger than she.
Obviously they cannot both be right. Who is younger? Is there really

any difference?
The paradox arises from ignoring the fact that the situations for the

twins are not equivalent. Bob’s system is inertial but for part of the time,
Alice’s is not. She must reverse her velocity in order to return to the
starting point and while her velocity is changing, her system is not in-
ertial. During this interval the situation becomes asymmetric: there is
no question as to which twin is accelerating. If each were carrying an
accelerometer such as a mass on a spring, Bob’s would remain at zero
while Alice’s would show a large deflection as the spaceship reversed
direction.

In principle, analyzing events in an accelerating system requires gen-
eral relativity. Nevertheless, we can find the leading terms of the solution
by invoking the equivalence principle and the analysis of the gravita-
tional clock shift in Chapter 9. Recall that according to the principle of
equivalence, there is no way to distinguish between an acceleration a and
a uniform gravitational field g = −a. Due to the gravitational clock shift,
Alice sees Bob’s clock speed up during turnaround. We shall see that this
time advance brings the two observers into agreement.

During turnaround, let us suppose that Alice experiences a uniform ac-
celeration a applied for time τt. The time required to reverse the velocity
is aτt = 2v. During this time Alice experiences an effective gravitational
field geff = −a that points from Bob to her. As a result, Alice sees that
Bob’s clock has sped up due to the gravitational red shift (in this case, ac-
tually a blue shift). The fractional shift in the rate of the clock is geffh/c2,
where h is the “height” of the clock in the gravitational field. Turnaround
occurs at time T0/2, so h = vT0/2. The total advance Alice measures in
Bob’s clock during turnaround is

ΔTgrav =
geffh
c2τ

.

Inserting the values h = vT0/2, geff = a = 2v/τ , and τ = v/a, we have

ΔTgrav =
av2T0

c2a
= T0

v2

c2 . (12.16)

Before taking the gravitational frequency shift into account, Alice be-
lieved that Bob was younger than she by (1/2)T0(v2/c2). However, when
ΔTgrav is added to this time, she realizes that Bob is actually older by
that amount. Both twins agree: at the end of the trip Alice is younger
than Bob by T0v2/2c2. It appears that travel helps one stay relatively
youthful.
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Problems
For problems marked *, refer to page 524 for a hint, clue, or answer.

12.1 Maxwell’s proposal*
Section 12.3 mentioned Maxwell’s proposal for measuring the
effect of source motion on the speed of light, using Jupiter’s
moons as clocks. In the sketch (not to scale), the inner circle is
the Earth’s orbit and the outer circle is Jupiter’s orbit. The angle
θ is the position of Jupiter with respect to the Earth’s position.
Jupiter’s period is 11.9 years and the Earth’s period is 1 year, so
that θ̇ = 2π (11.9 − 1) rad/year = 2.2 × 10−6rad/s. The radius of
Jupiter’s orbit is RJ = 7.8 × 1011 m and the radius of Earth’s orbit
is RE = 1.5 × 1011 m.

θ

θ
RJ

RE

s

⋅

The problem is to find the time delay ΔT predicted by
Maxwell’s method. If s is the distance between Jupiter and Earth
then

ΔT =
s

(c − ṡ)
− s

(c + ṡ)
≈ 2sṡ

c2 .

Calculate the maximum value of ΔT .

12.2 Refined Michelson–Morley interferometer
The improved apparatus used in 1887 by Michelson and Morley at
the Case School of Applied Science (now Case-Western Reserve
University) could detect a 0.01 fringe using sodium light, λ =
590 nm.

What is the upper limit to the Earth’s velocity with respect
to the ether set by this experiment? For comparison, the Earth’s
orbital velocity around the Sun is 30 km/s.

12.3 Skewed Michelson–Morley apparatus
In Section 12.3 arm A of the Michelson–Morley interferometer
was assumed to be along the line of motion and arm B perpen-
dicular, and the predicted time difference according to the ether
theory was

Δτ =
l
c

(
v2

c2

)
.

Calculate the expected time difference if arm A is at angle θ to the
line of motion through the ether, as shown.

ar
m

 B

arm A

ν

y

xθ

12.4 Asymmetric Michelson–Morley interferometer
If the two arms of the Michelson interferometer have different
lengths l1 and l2, show that the fringe shift when the interferom-
eter is rotated by 90◦ with respect to the velocity v through the
ether is

N =
(

l1 + l2
λ

) (
v2c2

)
where λ is the wavelength of the source light.
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12.5 Lorentz–FitzGerald contraction
The Irish physicist G.F. FitzGerald and the Dutch physicist H.A.
Lorentz tried to account for the null result of the Michelson–
Morley experiment by the conjecture that movement through the
ether sets up a strain that causes contraction along the line of
motion by the factor 1 − 1

2 v2/c2.
Show that this hypothesis can account for the absence of fringe

shift in the Michelson–Morley experiment. (The hypothesis was
disproved in 1932 by experimenters who used an interferometer
with unequal arms.)

12.6 One-way test of the constancy of c
Light in a Michelson–Morley interferometer makes a roundtrip,
and the predicted time delay is second order, proportional to
v2/c2.

Here is an experiment that would give a first-order result pro-
portional to v/c. Consider a laboratory moving through the ether
with speed v in the direction shown. The observers have clocks
and light pulsers. At time t = 0 A sends a signal to B a distance l
away, sketch (a). B records the arrival time. The laboratory is then
rotated 180◦, reversing the positions of A and B. At time t = T , A
sends a second signal to B, sketch (b).

A

ν

B

l

(a)

B

ν

A

l

(b)

(a) Show that according to the ether theory, the interval that B
observes between the signals is T + ΔT , where

ΔT ≈ 2l
c

v
c

correct to order (v/c)3.
(b) Assume that one clock in this experiment is on the ground

and the other is in a satellite overhead. For a circular orbit with a
period of 24 hours, l = 5.6 Re, where Re is the Earth’s radius =
6.4×106 m. Using an atomic clock stable to within 1 part in 1016,
what is the smallest value of v this experiment could detect?

12.7 Four events
Note: S refers to an inertial system x, y, z, t and S ′ refers to an
inertial system x′, y′, z′, t′, moving along the x axis with speed v
relative to S . The origins coincide at t = t′ = 0. For numerical
work, take c = 3 × 108 m/s.

y

x x′

y′

S S′

υ

Assuming that v = 0.6c, find the coordinates in S ′ of the fol-
lowing events

(a) x = 4 m, t = 0 s.
(b) x = 4 m, t = 1 s.

(c) x = 1.8 × 108 m, t = 1 s.

(d) x = 109 m, t = 2 s.



474 THE SPECIAL THEORY OF RELATIVITY

12.8 Relative velocity of S and S ′
Refer to the note and the sketch in Problem 12.7.

An event occurs in S at x = 6×108 m, and in S ′ at x′ = 6×108

m, t′ = 4 s. Find the relative velocity of the systems.

12.9 Rotated rod
y B

A

x

υy′

x′

l0

θ0

A rod of length l0 lies in the x′y′ plane of its rest system and makes
an angle θ0 with the x′ axis. What is the length and orientation of
the rod in the lab system x, y in which the rod moves to the right
with velocity v?

12.10 Relative speed*
An observer sees two spaceships flying apart with speed 0.99c.
What is the speed of one spaceship as viewed by the other?

12.11 Time dilation
The clock in the sketch can provide an intuitive explanation of the
time dilation formula. The clock consists of a flashtube, mirror,
and phototube. The flashtube emits a pulse of light that travels
distance L to the mirror and is reflected back to the phototube.
Every time a pulse hits the phototube it triggers the flashtube.
Neglecting time delay in the triggering circuits, the period of the
clock is τ0 = 2L/c.

L

Phototube Flashtube

Mirror

Now examine the clock in a coordinate system moving to the
left with uniform velocity v. In this system the clock appears to
move to the right with velocity v. Find the period of the clock in
the moving system by direct calculation, using only the assump-
tions that c is a universal constant, and that distance perpendicu-
lar to the line of motion is unaffected by the motion. The result
should be identical to that given by the Lorentz transformation:
τ = τ0/

√
1 − v2/c2.

12.12 Headlight effect*
A light beam is emitted at angle θ0 with respect to the x′ axis in
S ′.

(a) Find the angle θ the beam makes with respect to the x axis
in S .

Rest frame
(b) A source that radiates light uniformly in all directions in its

rest frame radiates strongly in the forward direction in a frame in
which it is moving with speed v close to c. This is called the head-
light effect; it is very pronounced in synchrotron light sources in
which electrons moving at relativistic speeds emit light in a nar-
row cone in the forward direction. Using the result of part (a),
find the speed of a source for which half the radiation is emitted
in a cone subtending 10−3 rad. (The sketch is considerably exag-
gerated, because 10−3 rad is only about 0.06 degree.)υ

10−3 rad
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12.13 Moving mirror
The frequency of light reflected from a moving mirror undergoes
a Doppler shift because of the motion of the image. Find the
Doppler shift of light reflected directly back from a mirror that
is approaching the observer with speed v, and show that it is the
same as if the image were moving toward the observer at speed
2v/(1 + v2/c2).

12.14 Moving glass slab*
A slab of glass moves to the right with speed v. A flash of light
is emitted from A and passes through the glass to arrive at B a
distance L away. The glass has thickness D in its rest frame, and
the speed of light in the glass is c/n. How long does it take the
light to go from A to B?D

A B

L

υ

12.15 Doppler shift of a hydrogen spectral line*
One of the most prominent spectral lines of hydrogen is the Hα

line, a bright red line with a wavelength of 656.1 × 10−9 m.
(a) What is the expected wavelength of the Hα line from a star

receding with a speed of 3000 km/s?
(b) The Hα line measured on Earth from opposite ends of the

Sun’s equator differ in wavelength by 9× 10−12 m. Assuming that
the effect is caused by rotation of the Sun, find the period of rota-
tion. The diameter of the Sun is 1.4 × 106 km.

12.16 Pole-vaulter paradox*
The pole-vaulter has a pole of length l0, and the farmer has a barn
3
4 l0 long. The farmer bets that he can shut the front and rear doors
of the barn with the pole completely inside. The bet being made,
the farmer asks the pole-vaulter to run into the barn with a speed
v = c

√
3/2. In this case the farmer observes the pole to be Lorentz

contracted to l = l0/2, and the pole fits into the barn with ease.
The farmer slams the door the instant the pole is inside, and claims
the bet. The pole-vaulter disagrees: he sees the barn contracted by
a factor of 2, so the pole can’t possibly fit inside. Let the farmer
and barn be in system S and the pole-vaulter in system S ′. Call
the leading end of the pole A, and the trailing end B.
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(a) The farmer in S sees A reach the rear door at tA = 0, and
closes the front door at the same time tA = tB = 0. What is the
length of the pole as seen in S ?

(b) The pole-vaulter in S ′ sees A reach the rear door at t′A.
Where does the pole-vaulter see B at this instant?

(c) Show that in S ′, A and B do not lie inside the barn at the
same instant.

12.17 Transformation of acceleration
The relativistic transformation of acceleration from S ′ to S can
be found by extending the procedure of Section 12.9. The most
useful transformation is for the case in which the particle is in-
stantaneously at rest in S ′ but is accelerating at rate a0 parallel to
the x′ axis.

Show that for this case the x acceleration in S is given by ax =

a0/γ
3.

12.18 The consequences of endless acceleration*
The relativistic transformation for acceleration derived in Prob-
lem 12.17 shows the impossibility of accelerating a system to a
velocity greater than c. Consider a spaceship that accelerates at
constant rate a0 as measured by an accelerometer carried aboard,
for instance a mass stretching a spring.

(a) Find the speed after time t for an observer in the system in
which the spaceship was originally at rest.

(b) The speed predicted classically is v0 = a0t. What is the
actual speed for the following cases: v0 = 10−3c, c, 103c.

12.19 Traveling twin
A young man voyages to the nearest star, α Centauri, 4.3 light
years away. He travels in a spaceship at a velocity of c/5. When
he returns to Earth, how much younger is he than his twin brother
who stayed home?
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13.1 Introduction
In Chapter 12 we saw how the postulates of special relativity lead to new
kinematical relations for space and time. These relations can naturally
be expected to have important implications for dynamics, particularly
for the meaning of momentum and energy. In this chapter we examine
the modifications to the Newtonian concepts of momentum and energy
required by special relativity. The underlying strategy is to ensure that
momentum and energy in an isolated system continue to be conserved.
This approach is often used in extending the frontiers of physics: by
reformulating conservation laws so that they are preserved in new situa-
tions, we are led to generalizations of familiar concepts. We can also be
led to the discovery of unfamiliar concepts, for instance the concept of
massless particles that can nevertheless carry energy and momentum.

x

y
A

B

13.2 Relativistic Momentum
To investigate the nature of momentum in special relativity, consider a
glancing elastic collision between two identical particles A and B in an
isolated system. We want the total momentum of the system to be con-
served, as it is in non-relativistic physics. We shall view the collision in
two frames: A’s frame, the frame moving along the x axis with A so that
A is at rest while B approaches along the x direction with speed V , and
then in B’s frame, which is moving with B in the opposite direction so
that B is at rest and A is approaching. (The term “frame” is used synony-
mously with “reference system.”) We take the collisions to be completely
symmetrical. Each particle has the same y speed u0 in its own frame be-
fore the collision, as shown in the sketches. The effect of the collision is
to reverse the y velocities but leave the x velocities unchanged.

A’s
frame

B’s
frame

Before After

u0

u0/γ

u0/γ

u′/γ

u′/γ

u′

u′
A

u0

A

B

B

V

V

V

V

The relative x velocity of the frames is V . In A’s frame, the y velocity
of particle A is u0, and by the transformation of velocities, Eqs. (12.8)
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and (12.9), the y velocity of particle B is u0/γ where γ = 1/
√

1 − V2/c2.
The situation is symmetrical when viewed from B’s frame.

After the collision the y velocities have reversed their directions as
shown. The situation remains symmetric: if the y velocity of A or B in its
own frame is u′, the y velocity of the other particle is u′/γ.

Our task is to find a conserved quantity analogous to classical momen-
tum. We suppose that the momentum of a particle moving with velocity
w is

p = m(w)w,

where m(w) is a scalar quantity, yet to be determined, analogous to New-
tonian mass but which could depend on the speed w.

The x momentum in A’s frame is due entirely to particle B. Before

the collision B’s speed is w =
√

V2 + u2
0/γ

2 and after the collision it

is w′ =
√

V2 + u′2/γ2. Imposing conservation of momentum in the x
direction yields

m(w)V = m(w′)V.

It follows that w = w′, so that

u′ = u0.

In other words, y motion is reversed in the A frame.
Next we write the statement of the conservation of momentum in the

y direction as evaluated in A’s frame. Equating the y momentum before
and after the collision gives

−m0u0 + m(w)
u0

γ
= m0u0 − m(w)

u0

γ

which gives

m(w) = γm0.

In the limit u0 → 0, m(u0) → m(0), which we take to be the Newtonian
mass, or “rest mass” m0, of the particle. In this limit, w = V . Hence

m(V) = γm0 =
m0√

1 − V2/c2
. (13.1)

Consequently, momentum is preserved in the collision provided we de-
fine the momentum of a particle moving with velocity v to be

p = mv (13.2)

where

m =
m0√

1 − v2/c2
= γm0.

The quantity m = γm0 is referred to as the “relativistic mass” or more
often simply as the mass of a particle. If the rest mass is intended, that
needs to be made specific.
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In relativity there is an upper limit to speed: the speed of light. How-
ever, there is no upper limit on momentum. Once a particle is moving
with speed close to c, an increase in momentum comes about primarily
through an increase in mass. High energy particle accelerators do not
make particles go substantially faster and faster. A particle is quickly ac-
celerated to speed close to c. After that, the accelerator principally makes
the particle more and more massive with only a very small increment in
speed.

The expression p = mv = γm0v is sometimes taken as the starting
point for developing relativistic dynamics, but in the early days of rela-
tivity attention was focused not so much on momentum but on the appar-
ent dependence of mass on speed. Investigation of this problem provided
the first direct experimental evidence for Einstein’s theory.

Example 13.1 Speed Dependence of the Electron’s Mass
At the beginning of the twentieth century there were several specula-
tive theories based on various models of the structure of the electron
that predicted that the mass of an electron would vary with its speed.
One theory, from Max Abraham (1902), predicted m = m(u0)[1 +
2
5 (v2/c2)] for v 
 c and another from Hendrik A. Lorentz (1904) gave
m = m0/

√
1 − v2/c2 ≈ m(u0)[1 + 1

2 (v2/c2)]. The Abraham theory,
which retained the idea of the ether drift and absolute motion,
predicted no time dilation effect. Lorentz’s result, while identical in
form to that published by Einstein in 1905, was derived using the
ad hoc Lorentz contraction and did not possess the generality of
Einstein’s theory. Experimental work on the effect of speed on the
electron’s mass was initiated by Kaufmann in Göttingen in 1902. His
data favored the theory of Abraham, and in a 1906 paper he rejected
the Lorentz–Einstein results. However, further work by Bestelmeyer
(1907) in Göttingen and Bucherer (1909) in Bonn revealed errors in
Kaufmann’s work and confirmed the Lorentz–Einstein formula.

dV A
C S

P

C

Physicists were in agreement that the force on a moving electron in an
applied electric field E and magnetic field B is q(E + v × B) (the units
are SI), where q is the electron’s charge and v its velocity. Bucherer
employed this force law in the apparatus shown in the sketch. The ap-
paratus is evacuated and immersed in an external magnetic field B per-
pendicular to the plane of the sketch. The source of the electrons A is
a button of radioactive material, generally radium salts. The emitted
electrons (“beta-rays”) have a broad energy spectrum extending to 1
MeV or so. To select a single speed, the electrons are passed through a
“velocity filter” composed of a transverse electric field E (produced be-
tween two parallel metal plates C by the battery V) and the perpendic-
ular magnetic field. E,B, and v are mutually perpendicular. The trans-
verse force is zero when qE = qvB, so that electrons with v = E/B are
undeflected and are able to pass through the slit S.
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Beyond S only the magnetic field acts. The electrons move with con-
stant speed v and are bent into a circular path by the magnetic force
qvB. The radius of curvature R is given by mv2/R = qvB, or R = mv/
qB = (m/q)(E/B2).

The electrons eventually strike the photographic plate P, leaving a
trace. By reversing E and B, the sense of deflection is reversed. R is
found from a measurement of the total deflection d and the known ge-
ometry of the apparatus. E and B are measured by standard techniques.
Finding R for different velocities allowed the velocity dependence of
m/q to be measured. Physicists believe that charge does not vary with
velocity (otherwise an atom would not stay strictly neutral in spite of
how the energy of its electrons varied), so that the variation of m/q can
be attributed to variation in m alone.

The graph shows Bucherer’s data together with a dashed line corre-
sponding to the Einstein prediction m=m0/

√
1 − v2/c2. The agreement

is striking.

0.30
1.00

m/m0

υ/c

0.40

1.10

1.20

1.30

1.40

1.50

0.50 0.60 0.70

Today, the relativistic equations of motion are used routinely to design
high energy particle accelerators. For protons, accelerators have been
operated with m/m0 up to 104, while for electrons the ratio m/m0 = 105

has been reached. The successful operation of these machines leaves no
doubt of the validity of relativistic dynamics.

13.3 Relativistic Energy
By generalizing the Newtonian concept of energy, we can find a corre-
sponding relativistic quantity that is also conserved. Recall the argument
from Chapter 5: the change in kinetic energy K of a particle as it moves
from ra to rb under the influence of force F is

Kb − Ka =

∫ b

a
F · dr

=

∫ b

a

dp
dt
· dr.

For a Newtonian particle moving with velocity u the momentum is given
by p = mu, where m is constant. Then

Kb − Ka =

∫ b

a

d
dt

(mu) · dr

=

∫ b

a
m

du
dt
· u dt

=

∫ b

a
mu · du.
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Using the identity u · du = 1
2 d(u · u) = 1

2 d(u2) = u du, we obtain

Kb − Ka =
1
2

mub
2 − 1

2
mua

2.

It is natural to try the same procedure starting with the relativistic ex-
pression for momentum p = m0u/

√
1 − u2/c2:

Kb − Ka =

∫ b

a

dp
dt
· dr

=

∫ b

a

dp
dt
· dr

dt
dt

=

∫ b

a

d
dt

⎡⎢⎢⎢⎢⎢⎣ m0u√
1 − u2/c2

⎤⎥⎥⎥⎥⎥⎦ · u dt

=

∫ b

a
u · d

⎡⎢⎢⎢⎢⎢⎣ m0u√
1 − u2/c2

⎤⎥⎥⎥⎥⎥⎦ .
The integrand has the form u · dp. Using the relation u · dp = d(u · p) −
p · du gives

Kb − Ka = (u · p)
∣∣∣ba −

∫ b

a
p · du

=
m0u2√

1 − u2/c2

∣∣∣∣∣∣∣
b

a

−
∫ b

a

m0u du√
1 − u2/c2

,

where we have again used the identity u · du = u du. The integral is
elementary, and we find

Kb − Ka =
m0u2√

1 − u2/c2

∣∣∣∣∣∣∣
b

a

+ m0c2

√
1 − u2

c2

∣∣∣∣∣∣∣
b

a

.

Let point b be arbitrary and take the particle to be at rest at point a so
ua = 0:

K =
m0u2√

1 − u2/c2
+ m0c2

√
1 − u2

c2 − m0c2

=
m0[u2 + c2(1 − u2/c2)]√

1 − u2/c2
− m0c2

=
m0c2√

1 − u2/c2
− m0c2

or

K = (γ − 1)m0c2. (13.3)

This expression for kinetic energy bears little resemblance to its classical
counterpart. However, in the limit u 
 c, γ = 1/

√
1 − u2/c2 ≈ 1

2 u2/c2.
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Using the expansion 1/
√

1 − x = 1 + 1
2 x + · · · we obtain

K ≈ m0c2
(
1 +

1
2

u2

c2 − 1
)

=
1
2

m0u2.

The kinetic energy arises from the work done on the particle to bring it
from rest to speed u. Using the relation mc2 = γm0c2, we can rearrange
Eq. (13.3) to give

mc2 = K + m0c2

= work done on particle + m0c2. (13.4)

Einstein proposed the following bold interpretation of this result: mc2

is the total energy E of the particle. The first term arises from external
work; the second term, m0c2, represents the “rest” energy the particle
possesses by virtue of its mass. In summary,

E = mc2. (13.5)

It is important to realize that Einstein’s generalization goes far beyond
the classical conservation law for mechanical energy. Thus, if energy ΔE
is added to a body, its mass will change by Δm = ΔE/c2, irrespective of
the form of energy. ΔE could be mechanical work, heat energy, the ab-
sorption of light, or any other form of energy. In relativity the classical
distinction between mechanical energy and other forms of energy disap-
pears. Relativity treats all forms of energy on an equal footing, in con-
trast to Newtonian physics where each form of energy must be treated as
a special case.

The conservation of total energy E = mc2 is a consequence of the
structure of relativity. In Chapter 14 we shall show that the conservation
laws for energy and momentum are actually different aspects of a single,
more general, conservation law.

The following example illustrates the relativistic concept of energy
and the application of the conservation laws in different inertial frames.

Example 13.2 Relativistic Energy and Momentum in an
Inelastic Collision
Suppose that two identical particles each of mass M collide with equal
and opposite velocities and stick together. In Newtonian physics,
the initial kinetic energy is 2( 1

2 MV2) = MV2. By conservation of
momentum the mass 2M is at rest and has zero kinetic energy. In the
language of Chapter 4 we say that mechanical energy MV2 was lost as
heat. As we shall see, this distinction between these different classical
forms of energy does not occur in relativity.

Now consider the same collision relativistically, as seen in the original
frame x, y, and in the frame x′, y′ moving with one of the particles. By



484 RELATIVISTIC DYNAMICS

the relativistic transformation of velocities, Eqs. (12.8) and (12.9), the
relative velocity in the x′, y′ frame is

U =
2V

1 + V2/c2 (1)

in the direction shown.

Before After

V V

x

y

x

y

U V

x′

y′

x′

y′

Let the rest mass of each particle be M0i before the collision and M0 f

after the collision. In the x, y frame, momentum is obviously con-
served. The total energy before the collision is 2M0ic2/

√
1 − V2/c2,

and after the collision the energy is 2M0 f c2. No external work was
done on the particles, and the total energy is unchanged. Therefore

2M0ic2√
1 − V2/c2

= 2M0 f c2

or

M0 f =
M0i√

1 − V2/c2
. (2)

Physically, the final rest mass is greater than the initial rest mass be-
cause the particles are warmer. To see this, we take the low-velocity
approximation

M0 f ≈ M0i

(
1 +

1
2

V2

c2

)
.

The increase in rest energy for the two particles is 2(M0 f − M0i)c2 ≈
2( 1

2 M0iV2), which corresponds to the loss of Newtonian kinetic energy.
Now, however, the kinetic energy is not “lost”—it is present as a mass
increase.

By the postulate that all inertial frames are equivalent, the conservation
laws must hold in the x′, y′ frame as well. Checking to see if our as-
sumed conservation laws possess this necessary property, we have in
the x′, y′ frame

M0iU√
1 − U2/c2

=
2M0 f V√
1 − V2/c2

(3)
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by conservation of momentum and

M0ic2 +
M0ic2√

1 − U2/c2
=

2M0 f c2√
1 − V2/c2

(4)

by conservation of energy.

The question now is whether Eqs. (3) and (4) are consistent with our
earlier results, Eqs. (1) and (2). To check Eq. (3), we use Eq. (1) to
write

1 − U2

c2 = 1 − 4V2/c2

(1 + V2/c2)2

=
(1 − V2/c2)2

(1 + V2/c2)2 . (5)

From Eqs. (1) and (5),

U√
1 − U2/c2

=
2V

(1 + V2/c2)
(1 + V2/c2)
(1 − V2/c2)

=
2V

1 − V2/c2

and the left-hand side of Eq. (3) becomes
M0iU√

1 − U2/c2
=

2M0iV
1 − V2/c2 . (6)

From Eq. (2), M0i = M0 f

√
1 − V2/c2, and Eq. (6) reduces to

M0iU√
1 − U2/c2

=
2M0 f V√
1 − V2/c2

,

which is identical to Eq. (3). Similarly, it is not hard to show that Eq.
(4) is also consistent.

We see from Eq. (6) that if we had assumed that rest mass was un-
changed in the collision, M0i = M0 f , the conservation law for momen-
tum (or for energy) would not be correct in the second inertial frame.
The relativistic description of energy is essential for maintaining the
validity of the conservation laws in all inertial frames.

Example 13.3 The Equivalence of Mass and Energy
In 1932 J.D. Cockcroft and E.T.S. Walton, two young British physi-
cists, successfully operated the first high energy proton accelerator and
succeeded in causing a nuclear disintegration. Their experiment pro-
vided one of the earliest confirmations of the relativistic mass–energy
relation.

Briefly, their accelerator consisted of a power supply that could reach
600 kV and a source of protons (hydrogen nuclei). The power sup-
ply used an ingenious arrangement of capacitors and rectifiers to
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quadruple the voltage of a 150 kV supply. The protons were supplied
by an electrical discharge in hydrogen and were accelerated in vacuum
by the applied high voltage.

Screen

Lithium target

Proton beam Cockcroft and Walton studied the effect of the protons on a target of
7Li (lithium atomic mass 7). A zinc sulfide fluorescent screen, located
nearby, emitted occasional flashes, or scintillations. By various tests
they determined that the scintillations were due to alpha particles, the
nuclei of helium, 4He. Their interpretation was that 7Li captures a pro-
ton and that the resulting nucleus of mass 8 immediately disintegrates
into two alpha particles. We can write the reaction as

7Li + 1H→ 4He + 4He.

The mass–energy equation for the reaction can be written

Kinitial + Minitialc2 = Kfinal + Mfinalc2

where the masses are the particle rest masses. Applied to the lithium
bombardment experiment, this gives

K(1H) + [M (1H) + M (7Li)]c2 = 2K(4He) + 2M(4He)c2

where K(1H) is the kinetic energy of the incident proton, K(4He) is
the kinetic energy of each emitted alpha particle, M(1H) is the proton
rest mass, etc. (The initial momentum of the proton is negligible, and
the two alpha particles are emitted back-to-back with equal energy by
conservation of momentum.)

We can rewrite the mass–energy equation as

K = ΔMc2,

where K = 2K(4He) − K(1H), and where ΔM is the initial rest mass
minus the final rest mass.

The energy of the alpha particles was determined by measuring their
range in matter. Cockcroft and Walton obtained the value K =

17.2 MeV (1 MeV = 106 eV = 1.6 × 10−13 J.

The relative masses of the nuclei were known from mass spectrome-
ter measurements. In atomic mass units, amu, the values available to
Cockcroft and Walton were

M(1H) = 1.0072

M(7Li) = 7.0104 ± 0.0030

M(4He) = 4.0011.

Using these values,

ΔM = (1.0072 + 7.0104) − 2(4.0011)
= (0.0154 ± 0.0030) amu.
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The rest energy of 1 amu is ≈ 931 MeV and therefore

ΔMc2 = (14.3 ± 2.7)MeV.

The difference between K and ΔMc2 is (17.2 − 14.3) MeV = 2.9 MeV,
slightly larger than the experimental uncertainty of 2.7 MeV. However,
the experimental uncertainty always represents an estimate, not a pre-
cise limit, and the result from these early experiments can be taken as
consistent with the relation K = ΔMc2. It is clear that the masses must
be known to high accuracy for studying the energy balance in nuclear
reactions. Modern techniques of mass spectrometry have achieved an
accuracy of better than 10−10 amu, and the mass–energy equivalence
has been amply confirmed to within experimental accuracy. According
to a modern table of masses, the decrease in rest mass in the reaction
studied by Cockcroft and Walton is ΔMc2 = (17.3468 ± 0.0012) MeV.

13.4 How Relativistic Energy and Momentum
are Related

Often it is useful to express the total energy of a free particle in terms of
its momentum. In Newtonian physics the relation is

E =
1
2

mv2 =
p2

2m
.

To find the equivalent relativistic expression we can combine the rela-
tivistic momentum

p = mu =
m0u√

1 − u2/c2
= γm0u (13.6)

with the energy

E = mc2 = γm0c2. (13.7)

Squaring Eq. (13.6) gives

p2 =
m2

0u2

1 − u2/c2 .

We can solve for γ as follows:

u2

c2 =
p2

p2 + m2
0c2

γ =
1√

1 − u2/c2

=

√
1 +

p2

m0
2c2 .
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Inserting this in Eq. (13.7), we have

E = m0c2

√
1 +

p2

m0
2c2 .

The square of this equation is algebraically simpler and is the form usu-
ally employed:

E2 = (pc)2 + (m0c2)2. (13.8)

For convenience, here is a summary of the important dynamical formulas
we have developed so far.

p = mu = m0uγ (13.9)

K = mc2 − m0c2 = m0c2(γ − 1) (13.10)

E = mc2 = m0c2γ (13.11)

E2 = (pc)2 + (m0c2)2. (13.12)

13.5 The Photon: A Massless Particle
In 1905, in the annus mirabilis when Albert Einstein published four pa-
pers each worthy of a Nobel Prize, the first paper, and the only one to
actually receive the Prize, had the unlikely title On a Heuristic Viewpoint
Concerning the Production and Transformation of Light. A heuristic the-
ory is a theory based partly on guesswork, intended to stimulate think-
ing. The paper ostensibly provided an explanation for the photoelectric
effect, the process by which electrons are ejected from a surface when it
is irradiated with light. It is now recognized that the paper provided the
foundation for the quantum theory of light, contributed significantly to
the development of quantum mechanics, and made applications such as
the laser possible.

Because light is inherently relativistic, Einstein’s paper actually
opened a chapter on relativity even before relativity had been announced.
At the heart of his argument is a concept that makes little sense in New-
tonian physics but perfect sense in relativistic physics: massless particles
that carry momentum.

A little background is needed: In December, 1900, quantum physics
was born when Max Planck proposed that the energy of a harmonic os-
cillator cannot be varied at will but only by discrete steps. If the fre-
quency of the oscillator is ν, then the energy steps had size hν where h
is a constant, now called Planck’s constant, h ≈ 6.6 × 10−34 m2 kg2/s =
6.6 × 10−34joule · second. Planck proposed this idea to solve the mys-
tery of thermal radiation, often called blackbody radiation. The shape
of the spectrum of radiation emitted by a warm body could not be
accounted for by the known laws of physics, based on Newtonian
mechanics and Maxwell’s electromagnetic theory. Planck put forward
his hypothesis more in the spirit of a mathematical conjecture than
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a physical theory, but in 1905 Einstein came to a similar conclusion,
though by totally different reasoning, and his theory had some startling
implications.

Einstein was thoroughly aware of the wave nature of light. He knew all
about Maxwell’s equations and how they predicted the existence of elec-
tromagnetic waves—light waves—that can travel through empty space
with speed c. The wavelength of an electromagnetic wave λ and its fre-
quency ν are related by λν = c. There was a considerable body of ex-
perimental evidence that confirmed the wave nature of light, for instance
the colors in soap bubble films that are a signature of light waves in-
terfering, not to mention the fringes in Michelson’s interferometer. Ein-
stein, however, pointed out that these phenomena involve observations at
the macroscopic (large scale) level. Macroscopic behavior results from
the effect of many microscopic events. He pointed out that little was
known about how light interacted with matter at the atomic or indi-
vidual particle level. He went on to argue that light could also be un-
derstood from a particle point of view. He suggested that a light wave
could behave as if it were a gas of particles, each possessing energy
ε = hν = hc/λ, where ν is the frequency of the wave. This particle
hypothesis seemed to be in direct contradiction to the wave theory of
light.

We now understand that light displays either wave-like or particle-like
behavior depending on the situation. To understand light from the wave
point of view, one starts by writing Maxwell’s wave equations. Their
solution reveals that time-varying electric and magnetic fields in space
support each other to create an electromagnetic wave that travels at the
speed of light. Furthermore, no matter which inertial coordinate system
one chooses for describing the radiation process, the wave always prop-
agates at speed c. In other words, Maxwell’s equations are intrinsically
relativistic. Einstein showed that we can also understand the relativistic
behavior of light starting from a particle point of view, and that is the
approach we now follow.

A startling consequence of the relativistic energy–momentum relation
is the possibility of “massless” particles, particles that possess momen-
tum and energy but have zero rest mass. The essential point is that a
particle can possess momentum without possessing mass. This follows
from the definition of relativistic momentum

p = m0u
⎛⎜⎜⎜⎜⎜⎝ 1√

1 − u2/c2

⎞⎟⎟⎟⎟⎟⎠ .
If we consider the limit m0 → 0 while u → c, then p can remain finite.
Evidently a particle without mass can carry momentum, provided that it
travels at the speed of light. From Eq. (13.12),

E2 = (pc)2 + (m0c2)2,
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and if we take m0 = 0, then we have, denoting photon energy by the
symbol ε,

ε2 = (pc)2,

ε = pc. (13.13)

We have taken the positive square root because the negative solution
would predict that in an isolated system the momentum of a photon could
increase without limit as its energy dropped. Combining Eq. (13.13) with
Einstein’s relation ε = hν, we find that a photon possesses momentum p
of magnitude

p =
hν
c
. (13.14)

The direction of the momentum vector is along the direction of travel of
the light wave.

Einstein’s quantum hypothesis was designed to solve a theoretical
dilemma—the spectrum of blackbody radiation—but its first application
was to a totally different problem—the photoelectric effect.

Example 13.4 The Photoelectric Effect
In 1887 Heinrich Hertz discovered that metals can give off electrons
when illuminated by ultraviolet light. This process, the photoelectric
effect, represents the direct conversion of light into mechanical energy
(here, the kinetic energy of the electron). Einstein predicted that the
energy a single electron absorbs from a beam of light at frequency v
is exactly the energy of a single photon, hν. For the electron to escape
from the surface it must overcome the energy barrier that confines it to
the surface. The electron must expend energy W = eΦ to escape from
the surface, where e is the charge of the electron and Φ is an electric
potential known as the work function of the material, typically a few
volts. The maximum kinetic energy of the emitted electron is therefore

K = hν − eΦ.

The work function depends on the poorly known chemical state of the
surface, making the photoelectric effect difficult to investigate. Never-
theless, Robert A. Millikan overcame this problem in 1914 by working
with metal surfaces prepared in a high vacuum system. He plotted the
reverse voltage V needed to prevent the photoelectrons from reaching
a detector as a function of the frequency of light. The voltage is given
by

eV = K = hν − eΦ.

The slope of the plot of V versus ν is

dV
dν
=

h
e
. (13.15)
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The graph of Millikan’s results shows the linear relation between en-
ergy and frequency predicted by Einstein, and the slope of the line
provides an accurate value for the ratio of two fundamental constants,
Planck’s constant and the charge of the electron.

The fact that light can interfere with itself, as in the Michelson
interferometer, is compelling evidence that light has wave proper-
ties. Nevertheless, the photoelectric effect illustrates that light also
has particle properties. Einstein’s energy relation, E = hv, pro-
vides the link between these apparently conflicting descriptions of
light by relating the energy of the photon to the frequency of the
wave.

Example 13.5 The Pressure of Light
The photon picture of light provided an immediate explanation for a
phenomenon that was also predicted by Maxwell’s electromagnetic
theory: the pressure of light. If a beam of light is absorbed or reflected
by a body, it exerts a force on the body. The force per unit area, the
radiation pressure, is too small to feel when we are in sunlight but
it can have visible effects. Radiation pressure causes comets’ tails
to always point away from the Sun. On the astronomical scale, it
helps prevent stars from collapsing under their gravitational attraction.
In ultra-high intensity laser beams radiation pressure can be large
enough to compress matter to the high density needed to initiate fusion
reactions.

Energy flow in a light beam is often characterized by the beam’s inten-
sity I, which is the power per unit area of the light beam. If the number
of photons crossing a unit area per second is Ṅ and each photon carries
energy ε, then I = Ṅε.
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Consider a stream of photons in a monochromatic light beam striking
a perfectly reflecting mirror at normal incidence. The initial momen-
tum of each photon is p = ε/c directed toward the mirror, and the
total change in momentum after the reflection is 2p = 2ε/c. The to-
tal momentum change per unit area per second due to the reflection is
2Ṅ p=2Ṅε/c. This is the force on the light beam due to the mirror. The
reaction force is the pressure P on the mirror due to the light. Hence

P =
2Ṅε

c
=

2I
c
.

The average intensity of sunlight falling on the Earth’s surface at nor-
mal incidence, known as the solar constant, is ≈ 1000 W/m2. The
radiation pressure of sunlight on a mirror is therefore

P = 2I/c

= 7 × 10−6 N/m2

which is very small compared, for example, to atmospheric pressure
105 N/m2.

Newtonian particles can be neither created nor destroyed. If they are
combined, their total mass is constant. In contrast, massless particles can
be created and annihilated. The emission of light occurs by the creation
of photons, while the absorption of light occurs by the destruction of
photons. The familiar laws of conservation of momentum and energy,
as expressed in the theory of relativity, let us draw conclusions about
processes involving photons without a detailed knowledge of the inter-
actions, as the following examples illustrate.

Example 13.6 The Compton Effect
The photon description of light seemed so strange that it was not widely
accepted until an experiment by Arthur Compton in 1922 made the
photon picture inescapable: by scattering x-rays from electrons in
matter, and showing that the x-rays scattered like particles undergoing
elastic collisions, and that the dynamics were correctly described by
special relativity.

A photon of visible light has energy in the range of 1 to 2 eV, but pho-
tons of much higher energy can be obtained from x-ray tubes, particle
accelerators, or cosmic rays. X-ray photons have energies typically in
the range 10 to 100 keV. Their wavelengths can be measured with high
accuracy by the technique of crystal diffraction.

When a photon scatters from a free electron, the conservation laws re-
quire that the photon loses a portion of its energy due to the recoil of
the electron. The outgoing photon therefore has a longer wavelength
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than the incoming photon. The shift in wavelength, first observed by
Compton, is known as the Compton effect.

u
Ef

me

  f

  i θ

φ

∋

∋

Suppose that a photon having initial energy εi and momentum εi/c is
scattered at angle θ and has final energy ε f . The electron has rest mass
me and relativistic mass m = γme. The electron is assumed to be ini-
tially at rest with energy Ei = mec2. The scattered electron leaves at
angle φ with momentum p and energy E f = mc2. Here m = meγ =

m0/
√

1 − u2/c2, where u is the speed of the recoiling electron.

The initial photon energy εi is known and the final photon energy ε f

and the scattering angle θ are measured. The problem is to calculate
how ε f varies with θ.

Conservation of total energy requires

εi + mec2 = ε f + E f (1)

and conservation of momentum requires

εi

c
=
ε f

c
cos θ + p cos φ (2)

0 =
ε f

c
sin θ − p sin φ. (3)

Because Compton detected only the outgoing photon our object is
to eliminate reference to the electron and find ε f as a function of θ.
Equations (2) and (3) can be written

(εi − ε f cos θ)2 = (pc)2 cos2 φ

(ε f sin θ)2 = (pc)2 sin2 φ.

Adding,

εi
2 − 2εiε f cos θ + ε2

f = (pc)2. (4)

To solve for ε f , we introduce the energy–momentum relation in
Eq. (13.12), which can be written (pc)2 = (mc2)2 − (mec2). Combining
this with Eq. (4) gives

ε f
2 − 2εiε f cos θ + ε2

f = (εi + mec2 − ε f )2 − (mec2)2,
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which reduces to

ε f =
εi

1 + (εi/mec2)(1 − cos θ)
. (5)

Note that the photon’s final energy ε f is always greater than zero, which
means that a free electron cannot absorb a photon, but can scatter
it.

Compton measured wavelengths rather than energies in his experiment.
From the Einstein frequency condition, εi=hνi=hc/λi and ε f = hc/λ f ,
where λi and λ f are the wavelengths of the incoming and outgoing
photons, respectively. In terms of wavelength, Eq. (5) takes the simple
form

λ f = λi +
h

mec
(1 − cos θ).

The quantity h/mec is known as the Compton wavelength λC of the
electron and has the value

λC =
h

mec
= 2.426 × 10−12 m

= 0.02426 Å,

where 1 Å = 10−10 m. (Å, called the angstrom, is a non-SI unit
formerly used for wavelength measurements.)

The shift in wavelength at a given angle is independent of the initial
photon energy:

λ − λ0 = λC(1 − cos θ).

The figure shows one of Compton’s results for λ0 = 0.711 Å and
θ = 90◦. The peak P is due to primary photons while the peak T is for
photons scattered from a block of graphite. The measured wavelength
shift is approximately 0.0246 Å and the calculated value is 0.02426
Å. The difference is less than the estimated uncertainty due to the
experimental limitations.

P T

0.7110

In
te

ns
ity

0.7356
λ, Å

We have assumed that the electron was free and at rest. For sufficiently
high photon energies, this is a good approximation for electrons
in the outer shells of light atoms. If the motion of the electrons is
taken into account, the Compton peak is broadened or can have
structure.

If the binding energy of the electron is comparable to the photon
energy, momentum and energy can be transferred to the atom as a
whole, and the photon can be completely absorbed.
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Example 13.7 Pair Production
We have seen two ways by which a photon can lose energy in matter:
photoelectric absorption and Compton scattering. If a photon’s energy
is sufficiently high, it can also lose energy in matter by the mechanism
of pair production. The rest mass of an electron is m0c2 = 0.511 MeV.
Can a photon of this energy create an electron? The answer is no, since
this would require the creation of a single electric charge. As far as we
know, electric charge is conserved in all physical processes. However,
if equal amounts of positive and negative charge are created, the total
charge remains zero and charge is conserved. It is therefore possible to
create an electron–positron pair (e−, e+), two particles having the same
mass but opposite charge.

v+

v−

hν

A single photon of energy 2m0c2 or greater has enough energy to form
an e−, e+ pair, but the process cannot occur in free space because it
would not conserve momentum. To show why, imagine that the process
occurs. Conservation of energy gives

hν = m+c2 + m−c2 = (γ+ + γ−)m0c2,

or
hν
c
= (γ+ + γ−)m0c,

while conservation of momentum gives

hν
c
= |γ+v+ + γ−v−|m0.

These equations cannot be satisfied simultaneously because

(γ+ + γ−)c > |γ+v+ + γ−v−| .
Pair production is possible if a third particle is available for carrying off
the excess momentum. For instance, suppose that the photon collides
with a nucleus of rest mass M0 and creates an e−, e+ pair at rest. We
have

hν + M0c2 = 2m0c2 + M0c2γ.

e+

hν M

M

e− V

Since nuclei are much more massive than electrons, let us assume that
hν 
 M0c2. (For hydrogen, the lightest atom, this means that hν 
 940
MeV.) In this case the atom will not attain relativistic speeds and we can
make the classical approximation

hν = 2m0c2 + M0c2(γ − 1)

≈ 2m0c2 +
1
2

MV2.

To the same approximation, conservation of momentum yields

hν
c
= MV.
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Substituting this in the energy expression gives

hν = 2m0c2 +
1
2

(hν)2

Mc2 ≈ 2m0c2,

since we have already assumed hν 
 Mc2. The threshold for pair pro-
duction in matter is therefore 2m0c2 = 1.02 MeV. The nucleus plays an
essentially passive role, but by providing for momentum conservation
it allows a process to occur that would otherwise be forbidden by the
conservation laws.

Example 13.8 The Photon Picture of the Doppler Effect
In Chapter 12 we analyzed the relativistic Doppler effect from the
standpoint of waves but we can also understand it from the photon
picture. Consider first an atom with rest mass M0, held stationary. If
the atom emits a photon of energy hν0, the atom’s new mass is given
by M′0c2 = M0c2 − hν0.

M0

p

E

Next, we suppose that before emitting the photon the atom moves
freely with velocity u. The atom’s energy is E =Mc2 = γM0c2, where
γ =

√
1 − u2/c2 and the atom’s momentum is p = Mu = M0γu. After

emitting a photon of energy hν the atom has velocity u′, rest mass M′0,
energy E′, and momentum p′. For simplicity, we consider the photon
to be emitted along the line of motion.

M ′0

p ′
E ′

hν

By conservation of energy and momentum we have

E = E′ + hν (1)

p = p′ +
hν
c
. (2)

Rearranging Eqs. (1) and (2) gives

(E − hν)2 = E′2

(pc − hν)2 = (p′c)2.

Subtracting, and using Eq. (13.12), E2 − (pc)2 = (m0c2)2, we have

(E − hν)2 − (pc − hν)2 = E′2 − (p′c)2 = (M′0c2)2 (3)

by the energy–momentum relation. Expanding the left-hand side and
using E2 − (pc)2 = (M0c2)2, with M′0c2 = M0c2 − hν0, we obtain

(M0c2)2 − 2Ehν + 2(pc)(hν) = (M′0c2)2

= (M0c2 − hν0)2.

Simplifying, we find

v = v0
(2M0c2 − hν0)

2(E − pc)
.
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However,

E − pc = M0c2γ
(
1 − u

c

)

= M0c2

√
1 − u/c
1 + u/c

.

Hence

ν = ν0

(
1 − hν0

2M0c2

) √
1 + u/c
1 − u/c

.

The term hν0/2M0c2 represents a decrease in the photon energy due to
the recoil energy of the atom. Usually the recoil energy is so small that
it can be neglected, leaving

ν = ν0

√
1 + u/c
1 − u/c

,

in agreement with the wave analysis that led to Eq. (12.12). However,
the wave picture does not readily take into account the recoil of the
atom. In modern experiments using high precision lasers and ultra-cold
atoms, the recoil cannot be overlooked. On the contrary, it plays a cru-
cial role in many studies.

Example 13.9 The Photon Picture of the Gravitational
Red Shift
In Chapter 9 we derived an expression for the effect of gravity on
time—the gravitational red shift—by invoking the equivalence prin-
ciple. However, the effect of gravity on time can also be understood
using the photon description of light and the conservation of energy.

Atoms can absorb or emit photons at certain characteristic frequen-
cies. For a frequency ν0, the atom loses energy hν0 when it emits a
photon, going from an upper energy state E1 to a lower energy state,
E0, and it can gain energy hν0 when it absorbs a photon, reversing the
process.

Consider an atom with rest mass M0 in its ground state with energy
E0 = M0c2, in a gravitational field g. It absorbs a photon that increases
its energy to E1 = E0 + hν0. The mass of the atom is M1 = E1/c2 =

(E0 + hν0)/c2. If we lift the atom to height H in a gravitational field g
the work that we do is M1gH, so the final energy Wa of the atom is

Wa = E1 + M1gH

= (E0 + hν0)(1 + gH/c2)

= E0 + hν0 + hν0gH/c2 + E0gH/c2.
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Consider an alternative scenario: the atom is first lifted to height H
while it is in state E0, and then a photon of energy hν is radiated up-
ward to put the atom in state E1. The energy Wb of the atom with this
procedure is

Wb = E1 + M0gH = E0 + hν + E0gH/c2.

The final state of the system is the same in both scenarios. Conse-
quently Wa = Wb and it follows that

hν = hν0(1 + gH/c2).

In fractional form, the gravitational red shift is

ν − ν0

ν0
=

gH
c2 .

A word of explanation about the adjective “red.” Our result reveals that
if radiation travels outward from the Earth to a region of higher (less
negative) gravitational potential, its energy decreases. Consequently,
radiation emitted by a massive body such as the Sun is observed to
shift to lower energy, equivalently to longer wavelengths, toward the
red end of the spectrum. In contrast, radiation that comes down to the
Earth from a satellite, for instance the signal from an atomic clock, is
shifted to higher energy, which might be called a blue shift.

13.6 How Einstein Derived E = mc2

Einstein’s famous equation E = mc2 is not to be found in his historic pa-
per on relativity but only appeared a few months later in a short note
titled Does the Inertia of a Body Depend Upon Its Energy Content?
(translated from German). His argument was elegant in its simplicity,
based entirely on elementary considerations of energy, momentum, and
the Doppler shift.

Consider a body in system S at rest at the origin. The body has en-
ergy E0 initially, and then sends out a pulse of light with energy ε/2 in
the +x direction, and simultaneously a pulse with energy ε/2 in the −x
direction. The body remains at rest after the emission by conservation of
momentum, and its energy is then E1

E0 = E1 +
1
2
ε +

1
2
ε.

In system S ′ moving with velocity v with respect to S , the initial energy
of the body is H0 and its energy after the emission is H1. Taking the
Doppler shift into account,

H0 = H1 +
1
2
ε

⎛⎜⎜⎜⎜⎜⎝ 1 − v/c√
1 − v2/c2

⎞⎟⎟⎟⎟⎟⎠ + 1
2
ε

⎛⎜⎜⎜⎜⎜⎝ 1 + v/c√
1 − v2/c2

⎞⎟⎟⎟⎟⎟⎠
= H1 +

ε√
1 − v2/c2

.
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The energy differences in the two systems are

(H0 − E0) − (H1 − E1) = ε

⎛⎜⎜⎜⎜⎜⎝ 1√
1 − v2/c2

− 1

⎞⎟⎟⎟⎟⎟⎠ .
Einstein argued that the difference H − E must equal the kinetic energy
K of the body, to within an additive constant C that is independent of the
relative velocity

H0 − E0 = K0 +C

H1 − E1 = K1 +C.

Thus

K0 − K1 = ε

⎛⎜⎜⎜⎜⎜⎝ 1√
1 − v2/c2

− 1

⎞⎟⎟⎟⎟⎟⎠
≈ 1

2
ε

v2

c2 .

Classically,

K0 − K1 =
1
2
Δmv2.

Einstein then obtained his famous equation by comparing the two results
for K0 − K1:

Δm =
ε

c2 .

Einstein concluded his brief paper by asserting that the equivalence of
mass and energy must be a general law, holding for any form of energy,
not just radiation.

Problems
For problems marked *, refer to page 525 for a hint, clue, or answer.

13.1 Energetic proton
Cosmic ray primary protons with energy up to 1020 eV (almost
10 J) have been detected. Our galaxy has a diameter of about 105

light years.
(a) How long does it take the proton to traverse the galaxy, in

its own rest frame (proper time)? (1 eV = 1.6 × 10−19 J, Mp =

1.67 × 10−27 kg.) What is the proper time for a photon to traverse
our galaxy?

(b) Compare the proton’s energy to the kinetic energy of a base-
ball, mass = 145 g, traveling at 100 miles/hour.

13.2 Onset of relativistic effects
When working with particles it is important to know when rela-
tivistic effects have to be considered.
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A particle of rest mass m0 is moving with speed v. Its classical
kinetic energy is Kcl = m0v2/2. Let Krel be the relativistic expres-
sion for its kinetic energy.

(a) By expanding Krel/Kcl in powers of v2/c2, estimate the
value of v2/c2 for which Krel differs from Kcl by 10 percent.

(b) For this value of v2/c2, what is the kinetic energy in MeV
of

(1) an electron (m0c2 = 0.51 MeV)?
(2) a proton (m0c2 = 930 MeV)?

13.3 Momentum and energy
In Newtonian mechanics, the kinetic energy of a mass m moving
with velocity v is K=mv2/2= p2/(2m) where p=mv. The change
in kinetic energy due to a small change in momentum is dK =
p · dp/m = v · dp.

Show that the relation dK = v · dp also holds in relativistic
mechanics.

13.4 Particles approaching head-on*
Two particles of rest mass m0 approach each other with equal and
opposite velocity v in the laboratory frame. What is the total en-
ergy of one particle as measured in the rest frame of the other?

13.5 Speed of a composite particle after an inelastic collision*
A particle of rest mass m0 and speed v collides with a stationary
particle of mass M and sticks to it. What is the final speed of the
composite particle?

13.6 Rest mass of a composite particle*
A particle of rest mass m0 and kinetic energy xm0c2, where x is
some number, strikes an identical particle at rest and sticks to it.
What is the rest mass of the resultant particle?

13.7 Zero momentum frame*
In the laboratory frame a particle of rest mass m0 and speed v is
moving toward a particle of mass m0 at rest.

What is the speed of the inertial frame in which the total mo-
mentum of the system is zero?

13.8 Photon–particle scattering*
A photon of energy εi collides with a free particle of mass m0 at
rest. If the scattered photon flies off at angle θ, what is the scatter-
ing angle φ of the particle?

u

m0

θ

φ

  f

  i

∋

∋

Ef
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13.9 Photon–electron collision*
A photon of energy E0 and wavelength λ0 collides head-on with a
free electron of rest mass m0 and speed V , as shown. The photon
is scattered at 90◦.

(a) Find the energy E of the scattered photon.

E0

m0

V

(b) The outer electrons in a carbon atom move with speed v/c ≈
6 × 10−3. Using the result of part (a), estimate the broadening
in wavelength of the Compton scattered peak from graphite for
λ0 = 0.711 × 10−10 m and 90◦ scattering. The rest mass of an
electron is 0.51 MeV and h/(m0c) = 2.426×10−12 m. Neglect the
binding of the electrons. Compare your result with Compton’s
data shown in Example 13.6.

13.10 The force of sunlight
The solar constant, the average energy per unit area from the Sun
falling on the Earth, is 1.4 × 103 W/m2.

(a) How does the total force of sunlight compare with the Sun’s
gravitational force on the Earth?

(b) Sufficiently small particles can be ejected from the solar
system by the radiation pressure of sunlight. Assuming a specific
gravity of 5, what is the radius of the largest particle that can be
ejected?

13.11 Levitation by laser light
A 1-kW light beam from a laser is used to levitate a solid alu-
minum sphere by focusing it on the sphere from below. What is
the diameter of the sphere, assuming that it floats freely in the
light beam? The density of aluminum is 2.7 g/cm3.

Light beam

13.12 Final velocity of a scattered particle
A photon of energy εi = hν scatters from a free particle at rest of
mass m0. The photon is scattered at angle θ with energy ε f = hν′,
and the particle flies off at angle φ.

Find an expression for the final velocity u of the particle.
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14.1 Introduction
In 1908, three years after Einstein published the special theory of rel-
ativity, the mathematician Hermann Minkowski presented a geomet-
rical formulation of Einstein’s ideas based on the concept of a four-
dimensional manifold that he called “spacetime.” Minkowski famously
asserted “Henceforth space by itself, and time by itself, are doomed
to fade away into mere shadows, and only a kind of union of the two
will preserve an independent reality.” His claim may be a little exagger-
ated—we continue to move freely in a three-dimensional world while
being swept forward relentlessly in time—but his point of view has
been invaluable in extending the concepts of relativity to other areas of
physics.

Special relativity provides an orderly procedure for relating the coor-
dinates of events recorded by observers in different inertial systems. The
essence of the theory is embodied by the Lorentz transformation. To set
the stage for Minkowski’s spacetime description of this transformation,
let’s briefly review how vectors transform in Newtonian physics.

14.2 Vector Transformations
We are interested here in the transformation properties of vectors, for
instance some vector A that could represent a physical quantity such
as force or velocity, or simply be an abstract mathematical quantity. To
describe A in component form we introduce an orthogonal coordinate
system S with coordinates (x, y, z) and unit base vectors (î, ĵ, k̂). A can
then be written

A = Ax î + Ay ĵ + Azk̂. (14.1)

The coordinate system is not fundamental but merely a construct that we
introduce for convenience. We could use some other orthogonal coordi-
nate system S ′ with coordinates (x′, y′, z′) and base vectors (î′, ĵ′, k̂′). If
the two systems have the same origin, they must be related by a rotation.
In the primed system,

A = A′x î′ + A′yĵ′ + A′zk̂
′. (14.2)

Because Eqs. (14.1) and (14.2) describe the same vector, we have

A′x î′ + A′y ĵ′ + A′zk̂
′ = Ax î + Ayĵ + Azk̂. (14.3)

To find the coordinates in S ′ given the coordinates in S , take the dot
product of both sides of Eq. (14.3) with the corresponding unit vector:

A′x = A · î′ = Ax(î · î′) + Ay(ĵ · î′) + Az(k̂ · î′) (14.4a)

A′y = A · ĵ′ = Ax(î · ĵ′) + Ay(ĵ · ĵ′) + Az(k̂ · ĵ′) (14.4b)

A′z = A · k̂′ = Ax(î · k̂′) + Ay(ĵ · k̂′) + Az(k̂ · k̂′). (14.4c)
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The coefficients (î · î′), (ĵ · ĵ′), etc. are numbers that can be calculated
for any given rotation. For instance, for rotation by θ around the z
axis,

A′x = Ax cos θ + Ax sin θ (14.5a)
A′y = −Ax sin θ + Ay cos θ (14.5b)

A′z = Az. (14.5c)

As an example, if we let A be the position vector r for a point that has
coordinates (x, y, z) in system S and (x′, y′, z′) in system S ′ rotated by
angle θ around the z axis, then we have

x′ = x cos θ + y sin θ (14.6a)
y′ = −x sin θ + y cos θ (14.6b)
z′ = z. (14.6c)

Note that the x′ and y′ axes are both rotated in the same direction from
the respective x and y axes. This is a trivial observation for rotations in
three-dimensional space, but we will soon see that rotations in spacetime
behave quite differently.

r

x

y

(x, y)
(x ′, y ′)y ′

x ′

θ

θ

The transformation from S ′ back to S , by rotating the axes through
angle −θ, known as the inverse transformation, is

x = x′ cos θ − y′ sin θ (14.7a)
y = x′ sin θ + y′ cos θ (14.7b)
z = z′. (14.7c)

Rotating axes through angle θ has the same effect on a vector’s compo-
nents as keeping the axes fixed and rotating the vector through angle −θ.
However, in this chapter we will always keep the vector fixed and rotate
the axes.

14.2.1 Invariants and Scalars
Quantities that remain constant when a coordinate system changes are
called invariants. Clearly, the components of a vector are not invariants
but the vector itself is. Another invariant is the length of the vector A =
|A| defined by

A =
√

A2
x + A2

y + A2
z =

√
A′2x + A′2y + A′2z .

Quantities that do not change with a change in coordinate systems are
called scalars. Simple numbers such as mass, temperature, and Avo-
gadro’s number are scalars. The lengths of vectors are also scalars. Many
physical quantities are scalars, for instance mass, time intervals, and
speed (as contrasted to velocity). Such scalars play important roles in
Newtonian physics and they continue to play important roles in relativ-
ity, though their interpretation is different.
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14.3 World Lines in Spacetime
To start our exploration of the spacetime world let’s see how events
evolve on a spacetime plot.

Motion in three-space is unrestricted. As time evolves, the point
r = (x, y, z) can be anywhere. All of space is accessible to an observer,
and all time in the future is accessible to observation, given enough
time. Time, of course, moves in one direction only and is out of our
control.

In spacetime physics, an event is a physical happening that can be
specified by values for three spatial coordinates plus the time, (x, y, z, t).
The emission of a pulse of light from the origin at t = 0 is for example
an event with coordinates (0,0,0,0). Because coordinates with different
physical dimensions are awkward to use, we will write time in units of
length by multiplying it by a velocity. For this we naturally multiply
time by the velocity of light so that t → ct. Hence 1 µs corresponds
to ≈ “300 m of time” and “1 m of time” corresponds to ≈ 0.0033 µs.
With this convention we can speak of a four-dimensional spacetime with
coordinates (x, y, z, ct).

Focusing on linear motion with coordinates x and ct, we can plot the
evolution of an event on a spacetime diagram. By an awkward but uni-
versally accepted convention, time in spacetime diagrams is plotted ver-
tically. As time evolves, a point in spacetime traces an upward path called
a world line. The sketch shows two world lines: the vertical dashed line
is the world line for a particle at rest (x constant), and the solid line is for
a moving particle (x and t both increasing).

ct
At rest

Moving

x

Note that with this convention, speed—in units of c—is given by the
cotangent of the slope. A slope of ±1 corresponds to a speed of ±c. The
fastest event is a pulse of light whose world line is given by x = ct or x =
−ct. This line is at an angle π/4 with respect to the horizontal, as shown.
A world line at an angle less than π/4 would describe motion faster than
light, which is prohibited. A three-dimensional plot that shows (x, y, ct)
is in the form of two cones with their apexes at the origin, called light
cones.

ν < c  

ν > c  
x =

 ct
  

ct

x

π/4

All future events lie in the upper light cone, past events in the lower
light cone. The region of spacetime outside the light cones is physically
inaccessible to an observer at the origin. Other events would be described
by other light cones but for two events to be causally related their light
cones must overlap.

ct

Future

Past

x

We now turn to the question of how spacetime events appear to ob-
servers in different inertial systems. In Chapter 12 we derived the Lorentz
transformation for changing coordinates between our standard inertial
systems S and S ′. The origin of S ′ moves at speed v along the x axis.
Alternatively, the origin of S moves with speed −v along the x′ axis. Be-
cause time is now expressed in units of length ct, it is natural to express
the relative velocity of the coordinate systems by the variable β = v/c.
With this notation, the Lorentz transformation from S to S ′, Eqs. (12.3)



14.3 WORLD LINES IN SPACETIME 507

and (12.4), is

x′ = γ(x − βct) (14.8a)
y′ = y (14.8b)
z′ = z (14.8c)

ct′ = γ(−βx + ct). (14.8d)

The reverse transformation from S ′ to S is given by

x = γ(x′ + βct′) (14.9a)
y = y′ (14.9b)
z = z′ (14.9c)

ct = γ(βx′ + ct′) (14.9d)

where β = v/c and γ = 1/
√

1 − β2. The quantity β is always taken to be ≥
0, with algebraic signs shown explicitly. Because the y and z coordinates
are unchanged by the Lorentz transformation, we will concern ourselves
only with x and ct.

There is a parallel between the rotation of coordinates in three-space
and transformation in spacetime specified by Eqs. (14.8) and (14.9).

Rotations in three-space

x′ = x cos θ + y sin θ
y′ = −x sin θ + y cos θ
z′ = z
t′ = t

Lorentz transformation

x′ = γ(x − βct)
ct′ = γ(−βx + ct)
y′ = y
z′ = z

The Lorentz transformation is similar in form to the transformation of x
and y due to a rotation around the z axis. Equation (14.8d) shows that the
locus of the x′ axis (for which ct′ = 0), when plotted in the x-ct plane,
is given by ct = βx. This describes a counterclockwise rotation of the x′
axis from the x axis through angle θ = arctan β. In contrast, Eq. (14.8a)
reveals that the ct′ axis (for which x′ = 0) is given by x = βct, which
describes a clockwise rotation of the ct′ axis from the ct axis, through
the same angle. In the limiting case v = c, θ = π/4; the x′ and ct′ axes
become coincident because x′ = ct′.

ct
ct ′

x ′

x

θ

θ

According to these transformations, the axes are no longer orthogonal.
The lines of constant x′ and constant ct′ in the figure form a grid of
diamonds rather than squares. Furthermore, the scale of the coordinate
axes is changed by the factor of γ. These are fundamental differences
between the geometries of three-space and spacetime.

ct ′

x ′

The loss of orthogonality is a characteristic feature of transformations
in spacetime. Although we can describe time as a fourth dimension,
time is fundamentally different from the spatial dimensions, and that dif-
ference is crucial to the geometry of spacetime. The length-scales in a
spacetime diagram differ by a factor of γ and the appearance of a world



508 SPACETIME PHYSICS

line depends on the relative motion of the observer. Consequently, every
observer would describe events with a different diagram, so that care is
needed in extracting geometrical relationships from a diagram.

ct ′
ct

x′

x

a
b

c

d

The drawings show some events in spacetime in the systems S (x, ct)
and S ′(x′, ct′). In S ′, lines of constant time are dashed and lines of con-
stant position are dotted. Notice that events a and b are coincident in S ′
but occur at different times in S. Similarly, events c and d occur at the
same location in S ′ but at different locations in S.

14.4 An Invariant in Spacetime
In three-space, the length r of the position vector is r =

√
x2 + y2 + z2,

and is invariant under rotation. In spacetime, the quantity x2 + y2 + z2 −
(ct)2 is invariant under the Lorentz transformation. To prove this, we
have from Eqs. (14.8)

x′2 + y′2 + z′2 − (ct′)2 = γ2(x − βct)2 + γ2(−βx + ct)2 + y2 + z2

=
1

1 − β2

[
x2(1 − β2) − (ct)2(1 − β2)

]
+ y2 + z2

= x2 + y2 + z2 − (ct)2.

Hence

x′2 + y′2 + z′2 − (ct′)2 = x2 + y2 + z2 − (ct)2. (14.10)

Consider a world line between an event starting at R1 = (r, ct) and end-
ing at R2 = (r + Δr, ct + Δct). The displacement between the events
is ΔR = R2 − R1 = (Δr,Δct), where Δr = (Δx,Δy,Δz). The coordi-
nates for these displacements when viewed by an observer in S ′ are Δr′
and Δt′, which can be found using the Lorentz transformation. From
Eq. (14.10) we have

Δr′2 − Δ(ct′)2 = Δr2 − Δ(ct)2.

Note that by convention in relativity, Δx2 is interpreted as (Δx)2, not
Δ(x2). Because the Lorentz transformation depends on the relative ve-
locity v/c, and because the relative velocity can be chosen arbitrarily,
the only way that this equation can be satisfied is for the two sides to
separately equal a constant. Denoting this constant by Δs2, we have

Δs2 ≡ Δr2 − Δ(ct)2. (14.11)

Consequently, Δs2 is an invariant of the transformation. Δs2 is often
called the separation of the spacetime interval. Unlike the square of an
ordinary number, (Δs)2 can be negative.

14.4.1 Spacelike and Timelike Intervals
If Δs2 > 0, we can always find a coordinate system that satisfies
Δr2 = Δs2, with Δ(ct)2 = 0. Consequently, there is a coordinate sys-
tem in which the events are simultaneous, but there is no frame in which
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the events are coincident in space. Such an interval is called spacelike.
Similarly, if Δs2<0, there is a coordinate system in which the events can
coincide in space, but there is no frame in which they occur simultane-
ously. Such an interval is called timelike. IfΔs2=0, the events correspond
to the emission and reception of a pulse of light. The world line obeys
Δr = Δct and the separation is called null. A separation has the same
value in all inertial systems.

For a given spacetime interval, the geometry of possible displacements
looks entirely different from the geometry of a three-space interval,
where the displacements of a given magnitude lie on a sphere. In two di-
mensions, the locus of possible displacement is a circle, Δr2 = Δx2+Δy2.
In spacetime, the locus of an interval for the (x, y, ct) coordinates is a
hyperbolic surface of revolution.

x2 + y2 − (ct)2 = ±|Δs2|. (14.12)

14.5 Four-Vectors
We developed the Lorentz transformation to satisfy the need for a space-
time transformation that preserves the speed of light as a universal con-
stant. The reasoning behind the Lorentz transformation is more powerful
than this application might suggest. The ideas can be extended to de-
velop relativistic dynamics in a coherent fashion by general arguments
that can apply to new systems, for example to the dynamics of electric
and magnetic fields, though we will not pursue that development here.
The starting point for this generalization is the concept of a spacetime
vector, usually referred to as a four-vector.

A four-vector is a set of four numbers that transform according to the
Lorentz transformation. Such vectors have the potential to be physically
significant. Put another way, any set of four numbers that do not obey
the Lorentz transformation cannot enter into a physical law because the
law could not satisfy the principle of relativity. A good way to extend
our understanding of physics in the relativistic world is by searching for
four-vectors. A four-vector A has the general form

A = (a1, a2, a3, a4)

where the components (a1, a2, a3) are along the axes of the standard sys-
tem S = (x, y, z). Under a Lorentz transformation to a coordinate system
S ′ moving in the x direction with velocity v,A4 = (a′1, a

′
2, a
′
3, a
′
4), where

a′1 = γ(a1 − βa4) (14.13a)
a′2 = a2 (14.13b)
a′3 = a3 (14.13c)
a′4 = γ(−βa1 + a4). (14.13d)

As previously defined, β = v/c, γ = 1/
√

1 − β2. We shall use the
convention that four-vectors are printed in upper case bold, while
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three-vectors are in lower case bold. Thus, the four-vector for four-
position R can be written R = (r, ct) = (x, y, z, ct).

14.5.1 Lorentz Invariants
The sum of the squares of the components of a four-vector, with a neg-
ative sign for the square of the time component, is called the norm
of the four-vector. For example, the norm of A = (a1, a2, a3, a4) is
a1

2 + a2
2 + a3

2 − a4
2.

A true four-vector transforms according to the Lorentz transformation,
as in Eqs. (14.13). It is easy to show that the norm is the same in any
frame, and the norm is therefore called a Lorentz invariant.

a′1
2
+ a′2

2
+ a′3

2 − a′4
2
= a1

2 + a2
2 + a3

2 − a4
2.

We showed this invariance for the four-vector R in Section 14.4.

14.5.2 Four-Velocity
The simplest kinematical quantity after position is velocity, and so it is
natural to consider the rate of change of R. However, the concept of
rate requires the introduction of a clock, and the question then is whose
clock? The only time on which all observers could agree is the proper
time τ of a clock attached to the moving point. Of course, this would
differ from the observer’s time, but by a known amount.

Consequently, we can tentatively define the four-velocity U by

U ≡ dR
dτ
=

(
dr
dτ
,

d(ct)
dτ

)
. (14.14)

To connect the spatial part with the familiar three-velocity of a Newto-
nian observer, we can rewrite this as

U =
(

dr
dt

dt
dτ
,

d(ct)
dτ

)
.

From the discussion of proper time in Section 12.8.3, the relation be-
tween a local time interval and the proper time interval is

dτ = dt
√

1 − v2/c2 = dt/γ. (14.15)

Hence dt/dτ = γ and U = (γu, γc), or

U = γ(u, c). (14.16)

Consider the norm of the four-velocity U = γ(u, c):

U · U = γ2(u2 − c2)

= −c2.

The norm of U = −c2 is obviously a Lorentz invariant, the same in every
reference frame.
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Example 14.1 Relativistic Addition of Velocities
The relativistic law for the addition of velocities was derived in Section
12.9. Here we look at the same problem using the four-velocity
approach.

Consider for simplicity velocity along the x axis. If the initial speed is
u1 along x, then we can take the initial four-velocity to be U = γ(u1, c).
If we observe an event with this velocity in system S1 moving with
speed v1, then the Lorentz transformation Eqs. (14.8) shows that the
components of the four-velocity are

u′1 = γ1(u1 − β1c) (1a)
u′4 = γ1(−β1u1 + c), (1b)

where β1 = v1/c and γ1 = 1/
√

1 − β2
1.

If we now move into system S 2 moving with speed v2 relative to S 1,
we have

u′′1 = γ1(u′1 − β2u′4) (2a)
u′′4 = γ1(−β2u′1 + u′4), (2b)

where β2 = v2/c and γ2 = 1/
√

1 − β2
2. These two successive transfor-

mations are equivalent to a single transformation found by substituting
Eq. (1) in Eq. (2). The result, after some rearranging, is

u′′1 =
γ2γ2

1 + β1β2

(
u1 − β1 + β2

1 + β1β2
c
)

(3a)

u′′4 =
γ2γ2

1 + β1β2

(
− β1 + β2

1 + β1β2
u1 + u4

)
. (3b)

Comparing Eq. (3) with Eq. (1), we see that the form is equivalent to
moving into a coordinate system with speed β3 given by

β3 =
β1 + β2

1 + β1β2

or, in laboratory units,

v3 =
v1 + v2

1 + v1v2/c2 .

This is the rule for the relativistic addition of velocities that we found
in Section 12.9.

One might reasonably ask what purpose is served by introducing the
four-velocity U = γ(v, c), because the timelike component is simply a
constant, c. But as we shall see in the next section, the constant plays an
important role.
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14.6 The Energy–Momentum Four-Vector
The natural next step is to define the four-momentum P of a particle of
mass m moving with four-velocity U. Using Eq. (14.16), we have

P = mU = γm0(u, c). (14.17)

Here m0 is the mass observed when u 
 c and γ = 1/
√

1 − u2/c2 ≈ 1. In
Chapter 13 we employed the term rest mass for m0. This quantity would
more logically be called the proper mass since it is the mass measured in
the particle’s rest frame but because of historical circumstance the term
proper mass is not used. In relativity, the simple term mass always refers
to the relativistic mass m defined by

m ≡ γm0. (14.18)

Because U is a four-vector and m is a scalar, P = mU is also a four-vector.
The four-momentum can be written

P = (mU,mc) = (p,mc), (14.19)

where p = mu is the relativistic three-momentum. The norm of P is

P · P = p · p − (mc)2 = C (14.20)

where C is a constant. In the particle’s rest frame p = 0, C = −(m0c)2.
Thus the norm of the four-momentum is −(m0c)2 and we can rewrite
Eq. (14.20) as

p2 = (mc)2 − (m0c)2. (14.21)

To be useful, four-momentum must be conserved in an isolated system.
Three-momentum vanishes in a system in which a particle is at rest.
Consequently, in Eq. (14.20) p and mc must be separately conserved.
To make connections with Newtonian concepts, recall that in Newtonian
physics, in addition to the linear momentum of an isolated system, en-
ergy and angular momentum are also conserved. Four-momentum has
no evident connection with angular momentum so let us guess that mc,
the temporal component of the four-vector in Eq. (14.19), is related to
the energy E. To be dimensionally correct, we tentatively set

mc = E/c (14.22)

so that P takes the form

P = (p, E/c). (14.23)

P is sometimes called the energy-momentum four-vector, but more often
it is referred to simply as the four-momentum. Introducing Eq. (14.22)
into Eq. (14.21), we have

(pc)2 = E2 − (m0c2)2 (14.24)

or

E2 = (pc)2 + (m0c2)2, (14.25)
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a result we found in Chapter 13, Eq. (13.8). The term m0c2 is known as
the rest energy of the particle.

For a massless particle, m0 = 0, so pc = E or p = E/c, a result we
derived by different means in Chapter 13, Eq. (13.13). For massless par-
ticles (notably photons), the norm of the four-momentum is 0 and the
particle must move at the speed of light. The four-momentum for a mass-
less particle has the form

P =
E
c

(nx, ny, nz, 1), (14.26)

where n̂ is a unit vector in the direction of propagation.
For a particle of non-zero mass moving at low velocity

m = γm0 =

(
1 +

1
2

v2

c2 + · · ·
)
.

Consequently

E = m0c2 +
1
2

m0v2 + · · · = m0c2 + K + · · · (14.27)

where K is the Newtonian kinetic energy. In the low velocity approxi-
mation, the total energy of a free particle is the sum of its kinetic energy
and its rest energy. Whether this interpretation is reasonable depends on
the experimental evidence.

From Eq. (14.25), we have

E2 − (pc)2 = (m0c2)2. (14.28)

The rest energy of a particle is evidently the relativistic invariant of the
four-momentum.

Postulating mc = E/c led us directly to E = mc2, the most famous for-
mula in science. Of course, the validity of this formula does not depend
on its fame but rather on the role energy plays in relativistic dynamics, a
role that can be made meaningful only by experience.

In Chapter 13 we derived expressions for relativistic energy and mo-
mentum by applying the Lorentz transformation to observations of colli-
sions in an isolated system. Those arguments rested on our understanding
of collision processes and our intuition about the symmetry of views by
different observers. In this chapter we found the same results by totally
different reasoning—by examining the transformation properties of four-
vectors. This argument is mathematically elegant and also physically el-
egant, for it reveals a deep connection between energy and momentum.
Understanding phenomena from totally different lines of argument adds
to our confidence in the truth of the explanation and cannot fail to deepen
one’s pleasure in physics.

14.7 Epilogue: General Relativity
Einstein was dissatisfied with his 1905 paper on special relativity be-
cause it could not deal with gravity. For example, according to Newton’s
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law of universal gravitation, changes in a gravitational field, due, for
instance, to motion of the source mass, are felt instantaneously every-
where. According to special relativity, the effect could not propagate
faster than the speed of light.

There is, however, a more profound dilemma. Newtonian gravity rests
on the assumption that gravitational mass and inertial mass are identi-
cal. Einstein used this simple observation to motivate his new theory.
He explained his line of reasoning with one of his famous “gedanken”
(thought) experiments: the Einstein elevator. Because all things fall at
the same rate, an observer in a stationary elevator in a gravitational field
sees dropped objects accelerate downward, and would make the same
observation if the elevator were accelerating upward in the absence of a
gravitational field. Einstein pointed out that if the elevator were in space
far from other bodies, then except for looking outside, there was no way
to tell whether the elevator was accelerating up at rate g or at rest in a
gravitational field g. He concluded that in a local region, there is no way
to distinguish a downward gravitational field g from an upward accel-
eration of the coordinate system a. This observation is the principle of
equivalence.

The principle of equivalence poses an immediate obstacle to the spe-
cial theory of relativity. If a downward gravitational field is equivalent
to an upward acceleration, then motion in a gravitational field is indis-
tinguishable from motion in an accelerating coordinate system. Accel-
erating systems are inherently non-inertial. The crux of the dilemma is
that the special theory of relativity is restricted to observations in inertial
systems.

The special theory of relativity was published when Einstein was
young and he presented it in a single paper that was comprehensible
to all. In contrast, Einstein labored more than ten years to solve the prob-
lem of gravity, making a number of false starts. When he published his
general theory of relativity in 1916 the paper was so complex that few
readers could follow it. Furthermore, the only experimental confirma-
tion was his theory’s ability to account for the discrepancy of 43 arc-
second/century in the precession of the perihelion of Mercury that we
mentioned in Section 10.6.

Such a result might seem like a minor detail of planetary dynam-
ics. However, general relativity also made a dramatic prediction: light is
deflected by gravity. In particular, the path of light from a star would be
slightly bent as it passed near our massive Sun. The deflection would
be so small that it could be observed only during a solar eclipse when
the Sun’s brightness was blotted out for a short time, allowing stars in
the part of the sky near the Sun to be seen. Observations were delayed
by World War I but in 1919 two eclipse expeditions observed the effect.
The theory of general relativity made the front page of newspapers, and
the Einstein legend was born.

In 1919 cosmology was a topic for speculation but it was not part
of science. Today we are in a golden age of cosmology and Einstein’s
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general theory of relativity is its foundational paradigm. The expansion
of the universe is described by Einstein’s field equations and the signa-
ture of his theory is to be found everywhere. For example, he predicted
gravitational lensing—the focusing of light from a distance source that
passes around a star or through a gravitating medium such as a galaxy.
Today, gravitational lensing is a well-established tool in astrophysics.

Perhaps the most dramatic experimental prediction of general relativ-
ity is the existence of black holes. If the bending of light by gravity is
large enough, the light cannot propagate. This occurs when the energy
required to overcome the gravitational attraction of a mass, GMm/r,
exceeds the rest mass mc2. Equating these gives the radius of the black
hole as R = GM/c2. The radius is typically only a few km, but the
density is so great that the mass is huge. We saw in Example 10.9 that
the mass of the black hole Sgr A* at the center of our galaxy is 4 million
times the mass of the Sun. Not even light can escape from such an
intense gravitational field—hence the name black hole. Fortunately, ma-
terial falling inward radiates intensely and many black holes have been
identified. Measured data for the orbit of a star around Sgr A* appear in
Example 10.9.

Einstein launched two lines of progress in 1905: his photoelectric ef-
fect paper was seminal to the creation of quantum mechanics, and his
paper on special relativity inspired general relativity. Quantum theory
and gravitational theory are triumphs of twentieth century physics that
changed our world view. These separate theories have yet to be recon-
ciled: a quantum theory of gravity has yet to be formulated. Physics is
never finished.

Problems
For problems marked *, refer to page 525 for a hint, clue, or answer.

14.1 Pi meson decay*
A neutral pi meson (π0), rest mass 135 MeV, decays symmetrically
into two photons while moving at high speed. The energy of each
photon in the laboratory system is 100 MeV.

(a) Find the meson’s speed V as a ratio V/c.
(b) Find the angle θ in the laboratory system between the mo-

mentum of each photon and the initial line of motion.

πº

θ

θ

14.2 Threshold for pi meson production*
A high energy photon (γ-ray) collides with a proton at rest. A neu-
tral pi meson (π0) is produced according to the reaction γ + p →
p + π0.

What is the minimum energy the γ-ray must have for this reac-
tion to occur? The rest mass of a proton is 938 MeV, and the rest
mass of a π0 is 135 MeV.
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14.3 Threshold for pair production by a photon
A high energy photon (γ-ray) collides with an electron and pro-
duces an electron–positron pair according to the reaction γ+ e− →
e− + (e− + e+).

What is the minimum energy the γ-ray must have for the reac-
tion to occur?

14.4 Particle decay
A particle of rest mass M spontaneously decays from rest into two
particles with rest masses m1 and m2.

Show that the energies of the particles are E1 = (M2 + m1
2 −

m2
2)c2/2M and E2 = (M2 − m1

2 + m2
2)c2/2M.

14.5 Threshold for nuclear reaction*
A nucleus of rest mass M1 moving at high speed with kinetic en-
ergy K1 collides with a nucleus of rest mass M2 at rest. A nuclear
reaction occurs according to the scheme M1 + M2 → M3 + M4
where M3 and M4 are the rest masses of the product nuclei.

The rest masses are related by (M3 +M4)c2 = (M1 +M2)c2 +Q,
where Q > 0. Find the minimum value of K1 required to make the
reaction occur, in terms of M1,M2, and Q.

14.6 Photon-propelled rocket
A rocket of initial mass M0 starts from rest and propels itself for-
ward along the x axis by emitting photons backward.

(a) Show that the four-momentum of the rocket’s exhaust in the
initial rest system can be written P = γMf v(−1, 0, 0, i), where Mf

is the final mass of the rocket. (Note that this result is valid for the
exhaust as a whole even though the photons are Doppler-shifted.)

(b) Show that the final velocity of the rocket relative to the initial
frame is

v =
μ2 − 1
μ2 + 1

c,

where μ = M0/Mf is the ratio of the rocket’s initial mass to its
final mass.

14.7 Four-acceleration*
Construct a four-vector A representing acceleration. For simplic-
ity, consider only straight line motion along the x axis. Let the
instantaneous four-velocity be U = γ(u, 0, 0, c).

14.8 A wave in spacetime
The function f (x, t) = A sin 2π[(x/λ) − νt] represents a sine wave
of frequency ν and wavelength λ. The wave propagates along the
x axis with velocity = wavelength × frequency = λν.

f (x, t) can represent a light wave; A then corresponds to some
component of the electromagnetic field that constitutes the light
signal, and the wavelength and frequency satisfy λν = c.
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Consider the same wave in the coordinate system (x′, y′, z′, t′)
moving along the x axis at velocity v. In this reference frame the
wave has the form

f ′(x′, t′) = A′ sin 2π
(

x′

λ′
− ν′t′

)
.

(a) Show that the velocity of light is correctly given provided
that 1/λ′ and ν′ are components of a four-vector K given in the
(x, y, z, t) system by

K = 2π
(

1
λ
, 0, 0,

ν

c

)
.

(b) Using the result of part (a), derive the result for the lon-
gitudinal Doppler shift by evaluating the frequency in a moving
system.

(c) Extend the analysis of part (b) to find the expression for the
transverse Doppler shift, by considering a wave propagating along
the y axis.





HINTS,
CLUES, AND
ANSWERS TO
SELECTED
PROBLEMS

Chapter 1

1.1 Vector algebra 1
Ans. (a) 7î -2ĵ + 9k̂; (c) 21

1.2 Vector algebra 2
Ans. (b) 101; (c) 2704

1.3 Cosine and sine by vector algebra
Hint: cos θ = A · B/AB, sin θ = |A × B|/AB.

1.7 Law of sines
Hint: Consider the area of a triangle formed by A,B,C, where
A + B + C = 0.

1.9 Perpendicular unit vector
Ans. n̂ = ±(2î − ĵ + k̂)/

√
6

1.10 Perpendicular unit vectors
Hint: (a) The direction of a surface defined by two vectors is par-
allel to their cross product.

1.15 Great circle
Clue: If λ1 = 0, φ1 = 0, λ2 = 45◦, φ2 = 45◦, then θ = arccos(0.5)
and S = (π/3)R.

1.18 Elevator and falling marble
Clue: If T1 = T2 = 4 s, then h = 39.2 m.

1.19 Relative velocity
Ans. (a) vB = vA − dR/dt
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1.21 Particle with constant radial velocity
Ans. (a) v =

√
52 m/s

1.23 Smooth elevator ride
Clue: (d) If am = 1.0 m/s2 and T = 10.0 s, then D = 50.0 m.

1.26 Range on a hill
Hint: The rock hits the ground at the intersection of two curves.
Clue: If φ = 60◦, then θ = 15◦.

1.27 Peaked roof
Ans. v =

√
5/2
√

gh

Chapter 2

2.1 Time-dependent force
Clue: (c) If t = 1 s, then r × v = 6.7 × 10−3 k̂ m2/s.

2.2 Two blocks and string
Clue: If M1 = M2, then x = gt2/4.

2.5 Concrete mixer
Clue: If R = 2 ft, then ωmax = 4 rad/s ≈ 38 revolutions/minute.

2.8 Two masses and two pulleys
Clue: If M1 = M2, then ẍ = g/5.

2.11 Mass on wedge
Clue: If A = 3g, then ÿ = g.

2.12 Painter on scaffold
Clue: If M = m and F = Mg, then a = g.

2.13 Pedagogical machine
Clue: For equal masses, F = 3Mg.

2.14 Pedagogical machine 2
Ans. a1 = −M2M3g/(M1M2 + M1M3 + 2M2M3 + M3

2)

2.16 Planck units
Hint: Write dimension equations of the form [Lp] = [c]a[h]b[G]c.
Replace each factor with its independent dimensions M, L, and T,
and solve the three algebraic equations for a, b, c.
Ans. (a) Lp = 4.1 × 10−35 m
(b) Mp = 5.4 × 10−8 kg
(c) Tp = 1.3 × 10−43 s

Chapter 3

3.2 Sliding blocks with friction
Clue: If F = 30 N, MA = 5 kg, MB = 6 kg, then F′ = 25 N.

3.4 Synchronous orbit
Ans. 6.6Re
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3.5 Mass and axle
Clue: If lω2 =

√
2g, then Tup =

√
2mg.

3.8 Block and wedge
Ans. (a) tan θ = μ
Clue: (b ) If θ = π/4, then amin = g(1 − μ)/(1 + μ).
Clue: (c) If θ = π/4, then amax = g(1 + μ)/(1 − μ).

3.10 Rope and trees
Clue: If θ = π/4, Tend = W/

√
2,Tmiddle = W/2.

3.11 Spinning loop
Ans. T = Mω2l/(2π)2

3.17 Turning car
Clue: If μ = 1 and θ = π/4, all speeds are possible.

3.19 Mass and springs
Clue: If k1 = k2 = k, then ωa =

√
k/2m, ωb =

√
2k/m.

3.22 Mass, string, and ring
Clue: (a) If Vt = r0/2, then ω = 4ω0.

3.23 Mass and ring
Ans. (a) v0/[1 + (μv0t/l)]

3.24 Retarding force
Ans. v(t) = (1/α) ln [1/(αbt/m + e−αv0 )]

Chapter 4

4.1 Center of mass of a non-uniform rod
Ans. (a) M = 2Al/π
(b) X = l(1 − 2/π)

4.11 Freight car and hopper
Hint: There is a way to do this problem in one or two lines.
Clue: If M = 500 kg, b = 20 kg/s, F = 100 N, then v(10s) =
1.4 m/s.

4.16 Rope on table
Ans. (a) x = Aeγt + Be−γt, where γ =

√
g/l

4.20 Reflected particle stream
Hint: The answer is not λ(mv2 + mv′2).

4.23 Suspended garbage can

Clue: If
(Mg

2K

)2
= v2

0/2g, h = v2
0/4g.

Chapter 5

5.1 Loop-the-loop
Ans. z = 3R
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5.3 Ballistic pendulum
Ans. (b) v = [(m + M)/m]

√
2gl(1 − cos φ)

5.4 Sliding on a circular path
Clue: If m = M, then v =

√
gR.

5.6 Block sliding on a sphere
Ans. R/3

5.7 Beads on hanging ring
Clue: If M = 0, then θ = arccos (2/3).

5.8 Damped oscillation
Ans. (b) n = k

4 f (xi − x0)

5.10 Falling chain
Clue: The maximum reading is 3Mg.

5.12 Lennard-Jones potential
Hint: A power series expansion is useful. See Note 1.2.

5.16 Snowmobile and hill
Ans. 45 mi/hr

5.17 Leaper
Clue: > 1 hp, < 10 hp.

Chapter 6

6.4 Bouncing ball
Clue: If v0 = 5 m/s, e = 0.5, then T ≈ 1 s.

6.13 Nuclear reaction of α-rays with lithium
Ans. (a) neutron energy = 0.15 MeV

6.14 Superball bouncing between walls
Ans. (a) F = mv2

0/l
Hint: (b) Find the average rate at which the ball’s speed increases
as the surface moves.
Ans. (b) F = (mv2

0l2)/x3

6.16 Converting between C and L systems
Ans. (a) v f = [v0/(m + M)]

√
m2 + M2 + 2mM cosΘ

Clue: (b) If m = M, then (K0 − Kf )/K0 = (1 − cosΘ)/2.

Chapter 7

7.2 Drum and sand
Clue: If λt = MB, b = 2a, then ωB = ωA(0)/8.

7.3 Ring and bug
Clue: If m = M, then ω = v/3R.
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7.8 Moment of inertia of a sphere
Ans. I0 = (2/5)MR2

7.10 Cylinder in groove
Clue: If μ = 0.5, R = 0.1 m, W = 100 N, then τ = 5.7N ·m.

7.11 Wheel and shaft
Clue: If F = 10 N, L = 5 m, ω = 0.5 rad/s, then I0 = 400 kg ·m2.

7.14 Stick on table
Ans. (c) 3g/4
Ans. (d) Mg/4

7.21 Rolling cylinder
Ans. θ = arctan(3μ)

7.23 Disk, mass, and tape
Clue: (a) If A = 2a, then α = 3a/R.

7.25 Rolling marble
Clue: If v0 = 3 m/s, θ = 30◦, then l ≈ 1.3 m.

7.31 Sliding and rolling cylinder
Clue: If ω = 3 rad/s, then ω f = 1 rad/s.

7.34 Marble in dish
Ans. ω =

√
5g/7R

7.36 Two twirling masses
Clue: If mA = mB = 2 kg, ν0 = 3 m/s, l = 0.5 m, then T = 18 N.

7.37 Plank and ball
Clue: If m = M, then (a) v f = 3v0/5 and (b) v f = v0/2.

7.38 Collision on a table
Ans. ω = (4

√
2/7)(v0/l)

7.39 Child on ice with plank
Ans. (b) 2l/3 from the child

7.41 Leaning plank
Hint: Focus on the center of mass and make use of the energy
equation.

Chapter 8

8.4 Grain mill
Clue: If Ω2b = 2g, then the force is twice the weight.

8.6 Rolling coin
Ans. tan α = 3v2/2Rg

8.12 Euler’s disk
Ans. (a) Ωp = 2

√
g

R sinα
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Chapter 9

9.9 Train on tracks
Ans. (a) approximately 300 lbs

9.10 Apparent gravity versus latitude
Ans. g = g0

√
1 − (2x − x2) cos2 λ, where x = ReΩe

2/g0

Chapter 10

10.2 r3 central force
Ans. (c) r0 ≈ 2.8 cm

10.8 Projectile rise
Clue: If α = 60◦, then rmax = 3Re/2.

10.10 Satellite with air friction
Ans. (c) ΔK = +2π r f Note that friction causes the satellite to
increase its speed.

10.14 Speed of S2 around Sgr A*
Ans. 7600 km/s

Chapter 11

11.8 Scale spring constant
Ans. (a) 980 N/m
Ans. (b) γ = 2ω0 = 2

√
k/(M + m) = 18 s−1

11.9 Velocity and driving force in phase
Hint: The necessary condition is sin(ωt + φ) = − cosωt where ω
is the driving frequency.

11.12 Cuckoo clock
Ans. Q ≈ 68, and the clock runs for 6 hours on a 1 J battery

11.13 Two masses and three springs
Ans. (c) ω =

√
k/M

Chapter 12

12.1 Maxwell’s proposal
Hint: Use law of cosines.

12.10 Relative speed
Ans. 0.99995c

12.12 Headlight effect
Ans. (a) cos θ = (cos θ0 + v/c)/(1 + v/c cos θ0)
Ans. (b) v = (1 − 5 × 10−7)c
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12.14 Moving glass slab
Clue: If v = 0, then T = [L+ (n− 1)D]/c. If v = c, then T = L/c.

12.15 Doppler shift of a hydrogen spectral line
Ans. (a) 662.7 × 10−9 m
Ans. (b) 25 days

12.16 Pole-vaulter paradox
Hint: Consider events at the ends of the pole from the point of
view of each observer.

12.18 The consequences of endless acceleration

Hint:
∫

dx
(1 − x2)3/2 =

x√
1 − x2

Chapter 13

13.4 Particles approaching head-on
Clue: If v2/c2 = 1/2, then E = 3m0c2.

13.5 Speed of a composite particle after an inelastic collision
Ans. v f = γvm/(γm + M), where γ = 1/

√
1 − v2/c2

13.6 Rest mass of a composite particle
Clue: If x = 7, then m = 4m0.

13.7 Zero momentum frame
Clue: If v2/c2 = 3/4, then the speed is 2v/3.

13.8 Photon–particle scattering
Ans. cot φ = (1 + E0/m0c2) tan θ/2

13.9 Photon–electron collision
Ans. (a) E = E0(1 + v/c)/(1 + E0/Ei), where Ei =

m0c2/
√

1 − v2/c2

Ans. (b) |Δλ| ≈ 0.019Å

Chapter 14

14.1 Pi meson decay
Ans. (b) θ ≈ 42◦

14.2 Threshold for pi meson production
Ans. ≈ 145 MeV

14.5 Threshold for nuclear reaction
Clue: If M1 = M2 = Q/c2, then K1 = 5Q/2.

14.7 Four-acceleration
Ans. A = γ4a(1, 0, 0, ux/c), where a = dux/dt





APPENDIX A
MISCELLANEOUS
PHYSICAL AND
ASTRONOMICAL
DATA

Speed of light, c 3.00 × 108 m/s
Gravitational constant, G 6.67 × 10−11 N m2 /kg2

6.67 × 10−11 m3 kg−1 s−2

Mass of proton, Mp 1.67 × 10−27 kg
Planck’s constant, h 6.63 × 10−34 m2 kg /s
Mean solar constant, S solar 1.37 × 103 W/m2

Mass of Sun, Msun 1.99 × 1030 kg
Mass of Earth, Mearth 5.98 × 1024 kg
Mass of Moon, Mmoon 7.34 × 1022 kg
Mean radius of Sun, RS 6.96 × 108 m
Mean radius of Earth, Re 6.37 × 106 m
Mean radius of Moon, RM 1.74 × 106 m
Mean radius of Earth’s orbit, RE,orb 1.49 × 1011 m
Mean radius of Moon’s orbit, RM,orb 3.84 × 108 m
Period of Earth’s rotation, Tday 8.64 × 104 s
Period of Earth’s revolution, Tyear 3.16 × 107 s





APPENDIX B
GREEK
ALPHABET

A α alpha N ν nu
B β beta Ξ ξ xi
Γ γ gamma O o omicron
Δ δ delta Π π pi
E ε epsilon P ρ rho
Z ζ zeta Σ σ sigma
H η eta T τ tau
Θ θ theta Υ υ upsilon
I ι iota Φ φ phi
K κ kappa X χ chi
Λ λ lambda Ψ ψ psi
M μ mu Ω ω omega





APPENDIX C
SI PREFIXES

Factor Name Symbol Factor Name Symbol

1024 yotta Y 10−1 deci d
1021 zetta Z 10−2 centi c
1018 exa E 10−3 milli m
1015 peta P 10−6 micro μ
1012 tera T 10−9 nano n
109 giga G 10−12 pico p
106 mega M 10−15 femto f
103 kilo k 10−18 atto a
102 hecto h 10−21 zepto z
101 deka da 10−24 yocto y
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Abraham, M., 480
acceleration

as a vector, 16
may be discontinuous (Ex.), 7
Coriolis, 34
in a rotating system, 358
in polar coordinates, 34
in several dimensions, 15
instantaneous, 14
radial, 34
tangential, 34
units, 54

adding vectors, 3
addition of velocities in relativity,

463
additive constant to energy, 180
Adelberger, E., 355
aerosols, 99
air suspension gyroscope, 336
algebra of dimensions, 63

conversion factors, 63
converting systematically, 63

algebraic properties of vectors, 4
alpha-particles produced by nuclear

reaction, 486
alpha-ray scattering, 278
alpha-ray scattering (Ex.), 389
amplitude, 413

analyzing physical problems using
first-order terms, 140

angular frequency
units, 104

angular frequency, simple harmonic
oscillator, 413

angular momentum
analogous to linear momentum,

241
angular momentum and angular velocity

not necessarily parallel, 296
angular momentum and angular velocity

general relation, 312
angular momentum and torque, dynamics,

252
angular momentum depends on origin,

244
angular momentum is a vector,

292
angular momentum of a particle

definition, 241
angular momentum of sliding block 1

(Ex.), 243
angular momentum of sliding block 2

(Ex.), 257
angular momentum, units, 241
angular speed, 25
angular velocity, 18, 293

and angular momentum, 18, 293
general relation, 312
not necessarily parallel, 296

and infinitesimal rotations,
293

relation to translational velocity, 294
vector nature, 293; (Ex.), 295

anticommutative
cross product of vectors, 7

apogee, 395
apparent gravity in accelerating car (Ex.),

345
Appendices

A, miscellaneous data, 527
B, Greek alphabet, 529
C, SI system prefixes, 531

applying a force, 53
applying Newton’s laws, 64–66
applying the Galilean transformation

(Ex.), 448
approximation methods, 36

Taylor series, 37
area as a vector, 146
area as a vector (Ex.), 8
astronauts’ tug-of-war (Ex.), 67
atomic clocks

hydrogen maser (Ex.), 457
role of time dilation (Ex.), 456
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Atwood’s machine (Ex.), 72
with massive pulley (Ex.), 261

average force of particle stream, 143, 145
average velocity, 14
Avogadro’s number, 190
avoiding broken ankles (Ex.), 135

β = v/c, 506, 509
Balmer, J., 277
base units

artifacts, 60
operational definitions, 59
physical standards, 59
practical standards, 60
precision, 59

base vectors
constant in Cartesian coordinates, 16
definition, 11
time derivative in a rotating system, 357
time derivatives in polar coordinates, 29

bead, hoop, and spring (Ex.)
potential energy, 184

Bestelmeyer, A., 480
black hole, 515

at center of our galaxy (Ex.), 401
blackbody radiation, 488
block

and string (Exs.), 83, 89
on plane with friction (Ex.), 93, 188
radial acceleration, 73
radial and tangential acceleration, 73
sliding on wedge (Ex.), 70

Bohr, N., 277
atom model, 277

bola (Ex.), 118
Boltzmann, L., 191

Boltzmann constant, 190, 417
bound systems

and harmonic oscillator, 212
and simple harmonic motion, 212

Brahe, T., 374
Bucherer’s experiement, (Ex.), 480
Bucherer, A. B., 480
butterfly effect, 403

C center of mass system in collisions, 229
C, for planetary motion, 386
calorie, 195
capture cross-section of a planet (Ex.),

254
Cartesian coordinates, 11, 12
Casey, R. M., 461
center of mass

by integration, 121
coordinates, 124
definition, 120

experimental method, 124
motion (Ex.), 124
non-uniform rectangular plate, double

integration, 153
non-uniform rod (Ex.), 122
several extended bodies, 122
uniform solid hemisphere, integration,

154
uniform triangular plate (Ex.), 123
uniform triangular plate, double

integration, 152
center of mass motion, 120
central force

definition, 84
central force (Ex.)

potential energy, 183
central force motion as a one-body

problem, 374
motion of individual bodies, 376
no generalization, 376
reduced mass, 375

centrifugal force in a rotating system, 358
centrifugal potential, 378

not from real physical force, 381
change of vector with time, 16
chaos in mechanics, 403
characteristic time, 101
Chasles’ theorem, 240

proof, 280
circular frequency, simple harmonic

oscillator, 413
circular motion

rotating vectors (Ex.), 24
circular motion in polar coordinates (Ex.),

31
Cl2 molecule, 215

vibrational frequency, 215
classical Doppler effect, navigation (Ex.),

468
classical physics, 49
CO2 molecule

normal modes, 224
Cockcroft, J. D., 485
coefficient of friction, 92
collision system

center of mass C, 229
laboratory L, 229

collisions
and conservation laws, 225–233
elastic, 227
inelastic, 227
superelastic, 228

comet capture (Ex.)
effect of third body, 383

Commanders Earhart, and Wright, 55
complex numbers, 430–431

basic properties, 430
complex conjugate, 430
de Moivre’s theorem, 430
polar representation, 431
standard form x + iy, 431
and the critically damped oscillator, 433
and the damped oscillator, 431–434
and the driven oscillator, 434
and the heavily damped oscillator, 433
and the lightly damped oscillator, 432
and the overdamped oscillator, 433

components of a vector
definition, 9

Compton effect (Ex.), 492
Compton wavelength, 494
Compton’s experiments, 492
photon scattering from graphite, 494
shift in wavelength of scattered photon,

493
Compton wavelength, 494
Compton, A., 492
conic sections, 387
conical pendulum (Ex.), 75

angular momentum, 244
energy method, 171
two possible solutions, 76
unreasonable result, 76

conical pendulum dynamics (Ex.), 258
conservation laws

in classical physics, 192
in relativity, (Ex.), 484, 513
and the neutrino (Ex.), 194

conservation of
angular momentum, 153, 510

and central force, 311
an independent law, 312

charge, 193
energy, 162

comparison with momentum, 192
general properties, 192
heat energy, 189
Ideal gas law, 189
Joule experiment, 190
mechanical energy, 180
relativistic energy, 513
relativistic energy-momentum, 512
total energy, 192

linear momentum, 130, 131
conservative force, 174

work is path-independent, 176
zero work around closed path, 176

consistency of dimensions in equations,
64

constant energy surfaces
gradient, 202

constrained motion, 174
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constrained motion (Ex.), 70
constraint forces do no work, 174
constraints, 66

block sliding on plane, 70
block sliding on wedge (Ex.), 71
independent of forces, 71
masses and pulley (Ex.), 72
whirling block on table (Ex.), 75

contact forces, 89
contour lines

gradient, 202
conversion factor, 63
converting units (Ex.), 63
converting units systematically, 63
coordinates

Cartesian, 11, 12
polar, 27

Coriolis acceleration, 34
Coriolis force in a rotating system, 359
Coriolis force on a sliding bead (Ex.), 361
cosines, law of (Ex.), 5
cross product

angular and translational velocities, 295
angular momentum, 241
rate of change of rotating vector, 356
torque, 250

cross product (vector product), 6
anticommutative, 7
examples (Ex.), 7
right hand rule, 6

crossing gate (Ex.), 265
curl of conservative force is zero, 204
curl operator, 204
cylinder on accelerating plank (Ex.), 346

damped harmonic oscillator, 412–421
differential equation, 414
effect of ratio ω1/γ, 415
energy dissipation, 416
equation of motion

standard form, 414
graphical analysis (Ex.), 420
Q, definition, 418
viscous retarding force, 414

damping time, 416
damped harmonic oscillator,

416
dashpot, 429
de Moivre’s theorem for complex

numbers, 430
deflection of a falling mass (Ex.),

361
deflection of light by gravity, 515
dependence of electron mass on speed,

479
Abraham’s theory, 480

Bestelmeyer’s experiment, 480
Bucherer’s apparatus, 480
Kaufmann’s experiment, 480
Laurentz’s Theory, 480

derivation of Lorentz transformation
equations, 451

derivatives of base vectors in polar
coordinates, 29

derivatives of polar base vectors, 29
Descartes, R., 9
determinantal evaluation of angular

momentum, 242
Dicke, R., 355
differential equation

damped harmonic oscillator
solution by complex numbers,

431
driven harmonic oscillator

solution by complex numbers,
434

differential equations, 95
damped harmonic oscillator, 414
driven harmonic oscillator, 421

differentials, 39
change of variable, 163

differentiation rules for vectors, 26
dike at the bend of a river (Ex.), 150

dynamic pressure, 151
static pressure, 151

dimensions
algebra, 63
consistency in equations, 64
converting units, 63

direction of angular momentum,
241

disk on ice (Ex.), 271
displacement vector, 13
divergence operator, 203
Doppler effect, 466

classical, for sound, 466
classical, navigation (Ex.), 468
off the line of motion, 468
photon picture (Ex.), 496
relativistic, 467
relativistic, confirmed experimentally,

468
transverse, time dilation, 468

Doppler navigation, classical (Ex.), 468
dot product of vectors

result is a scalar, 4
work (Ex.), 5

driven harmonic oscillator, 412, 421–430
definition, 421
demonstration (Ex.), 423
differential equation, 421
general solution, 426

harmonic analyzer (Ex.), 426
Q, quality factor, 425
resonance

Lorentzian line shape, 424
resonance curve, 424
resonance frequency, 424
resonance width, FWHM, 424

response speed vs. spectral resolution,
427

steady-state behavior, 426
stored energy, 423
time response vs. frequency response,

427
Heisenberg uncertainty principle,

427
transient behavior, 425
vibration attenuator

dashpot, 429
shock absorber, 429

vibration attenuator (Ex.), 427
work–energy theorem, 423

driving force of the tides (Ex.), 349
Earth is a non-local system, 349

drum major’s baton (Ex.), 120
equations of motion, 120

drum rolling down plane (Ex.), 272
energy method (Ex.), 275

dynamic viscosity, 98
dynamics of fixed axis rotation, 260

ε, eccentricity, 387, 393
Eötvös, R., 355
eccentricity ε, 387, 393

experimental data, 394
Eddington, A., 82
effective potential, 378

a mathematical trick, 378
effective spring constant in bound

systems, 212
Einstein, A.

general theory of relativity 1916, 514
mass, a form of energy, 193, 498
miraculous year 1905, 192
photoelectric effect, 278; (Ex.), 490
precession of perihelion of Mercury,

403, 514
publication of special theory of

relativity 1905, 440
special theory of relativity, 445
synchronizing clocks, 445

elastic collision of two balls (Ex.), 228
elastic collisions, 227
electric charge

positive or negative, 88
units, 88

electric field, 88
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electric field of charge ball
divergence, 203

electron mass depends on speed (Ex.), 480
electron motion due to radio wave (Ex.),

21
electron motion in ionosphere (Ex.), 21
electrostatic force, 88

Coulomb’s law, 88
electric charge, 88

ellipse
properties, 405

elliptic orbits, 391
apogee, maximum, 391
major axis, 391
perigee, minimum, 391
period, 392

Empire State Building run-up (Ex.), 173
energy

additive constant, 180
rest energy of particle, 513

energy consumption, table, 195
energy diagrams, 185

harmonic oscillator, 186
interatomic force, 186
inverse square force, 381
non-interacting particles, 379
perturbed circular orbit (Ex.), 384
repulsive inverse-square force, 186

energy dissipation in damped harmonic
oscillator, 416

damping time, 416
from work–energy theorem, 417

energy equation for central force motion
independent of θ, 379

energy of simple harmonic oscillator, 414
energy production, table, 195
energy transfer between two coupled

pendulums (Ex.), 221
energy units for mass, 226
energy, satellite into elliptic orbit (Ex.),

395
energy–momentum four-vector

norm
rest energy, 512

epilogue
general relativity, 513

equation of motion
damped harmonic oscillator, 414
driven harmonic oscillator, 421
simple harmonic oscillator, 412

equations of motion in several
dimensions, 168

equilibrium height of tides (Ex.), 351
equilibrium of quadrant rod (Ex.), 252
equilibrium, torque and force (Ex.), 252
equinoxes, precession, 304

equipartition theorem, 191, 417
equivalence principle, 87, 347–356, 368,

514
escape velocity, 167
escape velocity (Ex.)

Earth’s rotation, 172
general, 171

ether and light propagation
contradictory properties, 442
speed should depend on observer’s

motion, 442
Euler’s equations, 323–329

dynamical stability (Ex.), 325
meaning, 325
torque-free precession (Ex.)

exact solution, 327
Euler, L., 325
exoplanets, (Ex.), 125

Gliese 876, 127
orbit about star, 125

experimental uncertainty, 41

falling raindrop (Ex.), 101
falling stick (Ex.), 276
Fermat, P., 9
fictitious forces, 57

in a linearly accelerating system, 345
in a rotating system, 356

centrifugal force, 358
Coriolis force, 359

finding the mass of the Earth, 86
FitzGerald, G. F., 445
fixed axis rotation, 245

rigidly fixed axis, 260
summary, 271, 282
summary of dynamics, 282
translating axis, 282

fixed axis rotation with translating axis,
267

flux and momentum flow, 147
flux density, 146
force from potential energy, 185

general, 201
force on pulley 97; (Ex.), 98
forces

fundamental, 89
phenomenological, 89

formal solution for the orbit, 379
formal solution of central force motion,

378
formal solution of kinematical equations,

19
Foucault pendulum, 366

Earth, a non-inertial system, 366
precession, 366
profound mystery, 367

four-vectors, 509
energy–momentum four-vector, 512
four-momentum, 512
four-position, 510
four-velocity, 510

relativistic addition of velocities
(Ex.), 511

norm, 510
Franklin, B., 88
freight car and hopper (Ex.), 138
freight train (Ex.), 69
friction, 91, 92

coefficient of friction, 92
empirical rules, 92
independent of contact area, 92
not always dissipative (Ex.), 275
sliding, 93
static, 93
summary of empirical rules, 93
work is path dependent, 177

fundamental forces, 82
electromagnetism, 82
gravity, 82
strong interaction, 82
weak interaction, 82

FWHM
driven harmonic oscillator resonance

width, 424

G, gravitational constant, 84
g, acceleration due to Earth’s gravity,

85
variation with altitude, 86

Galilean transformation, 342, 448
acceleration the same in all inertial

systems (Ex.), 449
applying (Ex.), 448
incompatible with finite speed of light

(Ex.), 449
inertial systems are equivalent (Ex.),

449
transformation equations, 344, 448

γ = 1/
√

1 − v2/c2, 453
γ = 1/

√
1 − β2, 507, 509

gas constant, 190
gauchos, 118
Gay-Lussac law (ideal gas law), 190
gedanken experiment, 348
general relativity, 514, 515

deflection of light by gravity, 514
black holes, 515
gravitational lensing, 515

epilogue, 513
precession of perihelion of Mercury,

514
geostationary orbit (Ex.), 394
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geosynchronous orbit, 394
Gibbs, W., 2
Glashow, S., 82
Gliese, 127
gradient and force, 201
gradient operator, 201
gradient, perpendicular to contour lines,

203
graphical analysis of damped harmonic

oscillator (Ex.), 420
gravitational force, 83

spherical shell, 85, 107
uniform sphere, 85

gravitational red shift, 368
measured by

atomic clock, 370
Pound, Rebka, Snider, 370

photon picture (Ex.), 497
Greek alphabet, Appendix B, 529
Griffiths, D., 455
gyrocompass (Ex.), 305

equations of motion, 307
experiment (Ex.), 306
motion on the Earth, 307

gyroscope, 300–304, 331–337
nutation, 331, 335
small-angle approximation, 331
torque-free precession, 335
uniform precession, 334

Hall, D. B., 460
hanging rope, 90
harmonic analyzer (Ex.), 426
harmonic oscillator, 103

and bound systems, 212
damped, 412, 414
driven, 412, 421
energy diagram, 186
initial conditions (Ex.), 413
simple, 412

HCl molecule vibrations, 214
heat capacity of a gas (Ex.), 191
heavily damped harmonic oscillator
ω1/γ small, 415

Hertz, H., 490
Hints, Clues, and Answers,

519–525
Hooke’s law, 102

intermolecular force model,
103

linear restoring force, 102
Hooke, R., 102
Hoover Dam (Ex.), 195
hyperbolic orbits, 388

Rutherford (Coulomb) scattering of
α-rays (Ex.), 389

ideal gas law, 189
law of Gay-Lussac, 190

IKAROS, (Ex.), 148
impulse, 132
inelastic collision (Ex.)

“lost” kinetic energy is mass increase,
484

relativistic energy, 483
relativistic energy and momentum, 483
relativistic momentum, 483

inelastic collisions, 227
inertial and gravitational mass

Newton’s pendulum experiment, 88
inertial and non-inertial systems (Ex.), 55
inertial systems, (Ex.), 342, 343

definition, 51
enigma of absolute rest, 343
special relativity, 343

time depends on velocity, 343
inertial systems in three dimensions, 57
infinitesimal rotations

commutative, proof, 329
infinitesimal rotations commute, 293
initial conditions, differential equation,

100
instantaneous acceleration, 14
instantaneous velocity, 14
integral form of Newton’s second law, 131
integrating equations of motion, 169
integration of orbit equation, 403
interatomic force

energy diagram, 186
intermolecular forces, 91
interpretation of Lorentz transformation,

453
invariants

definition, 505
energy–momentum

four-vector, 513
four-momentum, 512
four-velocity, 510

examples, 505
Lorentz invariant, 510
under Lorentz transformation, 508

inverse square law motion, 373
escape velocity, (Ex.), 166
Rutherford scattering, (Ex.), 369

inverted pendulum (Ex.), 174
isobars, 364
Ives, H. E., 468

Jaffe, R., 194
Joule, J. P., 189

Kater’s pendulum (Ex.), 264
Kater, H., 264

Kaufmann, W., 480
Kelvin temperature scale, 190
Kepler, J., 253, 374

laws of planetary motion, 126, 374
first law: orbits are ellipses, 374
second law: law of equal areas, 374
third law: T 2 ∝ A3, 374

planetary data, 392
proof from Newtonian mechanics,

392
kinematical equations, formal solution, 19
kinetic energy

definition, 170
kinetic energy lost in a collision Q, 228
kinetic energy of rigid body rotation, 317
kinetic theory, 190

L laboratory system in collisions, 229
Lagrange points (Ex.), 400
Lagrange, J. L.

three-body problem, special case, 398
Lagrange points (Ex.), 400
Trojan asteroids (Ex.), 400

LASER acronym, 145
laser slowing of atoms (Ex.), 144
law of cosines (Ex.), 5
law of equal areas and angular momentum

(Ex.), 253
leaky freight car (Ex.), 138
Leibniz, G.

independently invented calculus, 14
length standards, 61
length contraction, 457

geometric analysis, 458
simultaneous measurements, 458

Lennard-Jones potential (Ex.), 214
effective spring constant, 214
vibrational frequency, 214
vibrational frequency Cl2 molecule,

215
light cones, 506

future, upper light cone, 506
overlap for causally related events, 506
past, lower light cone, 506

light pulse according to Galilean
transformation (Ex.), 449

light pulse in railway car (Ex.), 461
lightly damped harmonic oscillator
ω1/γ � 1, 415

limitations to damped motion (Ex.), 417
line integral, 169, 173

parametric evaluation, 178
semicircle (Ex.), 179

path-dependent example (Ex.), 177
linear air track, 49

collisions, 227
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linear combinations of normal modes, 221
linear momentum, 116
linearly accelerating system

apparent gravity in car (Ex.), 345
cylinder on plank (Ex.), 346
pendulum in car (Ex.), 347

locus of event displacements in spacetime
a hyperbolic surface of revolution, 509

locus of event displacements in
three-space

a sphere, 509
Lorentz contraction, 343
Lorentz invariant

norm of energy–momentum four-vector
rest energy, 512

norm of four-momentum, 512
norm of four-velocity, 510

Lorentz transformation
a rotation, 507

space axis rotates counterclockwise,
507

time axis rotates clockwise, 507
derivation of transformation equations,

451
in terms of β = v/c, 506
interpretation of transformation

equations, 453
invariant, 508
keeps speed of light the same in all

systems, 451
light pulse in railway car (Ex.), 461

Lorentz, H. A., 445, 453, 480
Lorentz–FitzGerald contraction, 445
Lorentzian lineshape

resonance in driven harmonic oscillator,
424

Lyapounov characteristic exponent, 403

Mach’s principle, 368
Mach, E., 48

possible flaws in Newtonian thought
The Science of Mechanics, 440

principle, 368
rotating water bucket, 368
space depends on properties of

measuring rods, 441
time depends on properties of clocks,

441
magnitude of a vector, 3
mass

definition, 52
energy units, 226
standards, 61
unit mass, 52

mass flow and momentum, 136
procedural approach, 137

mass is a form of energy, 193, 483
Cockcroft and Walton, experimental

verification (Ex.), 485
nuclear reaction experiments (Ex.),

486
mass number, 193
mass, dependence on speed, 479
mass–energy relation

Einstein’s derivation, 498
masses and pulley (Ex.), 71

constraint, 72
Maxwell, J. C., 82

clock proposal, 442
notation for dimensions, 64

Mayer, R., 189
measuring speed of a bullet (Ex.), 132
Mercury

precession of perihelion, 402, 514
Michelson, A. A., 61

interferometer apparatus, 442
light and dark fringes, 443

Michelson–Morley experiment, 442
analysis according to ether hypothesis,

443
analysis according to Lorentz

transformation, 454
no observable fringe shift, 444
refined apparatus

no observable fringe shift, 444
Millikan, R. A., 490
Minkowski, H., 504

four-dimensional spacetime, 504
miscellaneous data, Appendix A, 527
modern physics, 49
mole unit, 190
molecular vibrations (Ex.), 213

HCl molecule, 214
NO molecule, 214
vibrational frequency, 213

moment of inertia, 246
analogous to mass, 246
fixed axis rotation, 246
uniform sphere (Ex.), 249
uniform thin disk (Ex.), 247

double integration, 248
uniform thin ring (Ex.), 247
uniform thin stick (Exs.)

axis through midpoint, 248
axis through end, 249

momentum, 115
flow and force, 143
flow and impulse, 143
Newton’s second law, 116
of a photon, 144, 489
zero in C system, 230

Morley, E., 444

motion in one dimension, 163
constant gravity (Ex.)

energy method, 163
initial conditions, 164

motion on the rotating Earth (Ex.), 363
multiplying vectors by a scalar, 3
muon decay (Ex.), 460

according to length contraction, 461
according to time dilation, 460

∇, 201
nabla, 201
Neary, G., 193
neutrino, (Ex.), 194

flux from the Sun, 194
Newton’s laws of motion, 49–59

first law and inertial systems, 51
second law, 54

integral form, 131
momentum, 116

third law, 54
Newton’s law of universal gravitation, 83
Newton, I.

definition of time, 60, 441
invented calculus, 14
notation for time derivatives, 14
pendulum experiment, 355
rotating water bucket, 367

Newtonian mechanics and modern
physics, 48

nomenclature for simple harmonic
motion, 413

amplitude, 413
angular frequency, 413
circular frequency, 413
period, 413

non-conservative forces
work–energy theorem, 187

non-inertial systems, 341
fictitious force, 345
rotating systems, 359
uniform acceleration, 344

non-interacting particles (Ex.), 380
NO molecule vibrations, (Ex.), 214
norm of a four vector, 510

a Lorentz invariant, 510
energy–momentum four-vector, 513
four-momentum, 512
four-velocity, 510

normal force, 66, 91
idealized molecular model, 91

normal modes, 219–225
carbon dioxide molecule, (Ex.), 224
definition, 221
diatomic molecule, 222
general method, 225
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normal modes of two coupled pendulums,
219

normal modes, linear combinations, 221
notation for dimensions, 64
nuclear decay

alpha-decay, 193
alpha-ray, 193

scattered, 225
beta-decay, 193
beta-ray, 193

nutation, 331, 335
cyclic, 336
cycloidal, 335
simple harmonic motion, 334

off-center circle (Ex.), 33
one-dimensional collisions and

conservation laws, 228
one-dimensional motion, 163
operational definitions, 52
optical interferometer, 443
orbit equation

Cartesian coordinates, 387
formal solution, 379
polar coordinates, 387

orbit shape for various ε, 387
circle, 387
ellipse, 387
hyperbola, 387
parabola, 387

orbital angular momentum, 268
orbits

geostationary, 394
geosynchronous, 394

order of events (Ex.), 462
overdamped harmonic oscillator, 416

pair production (Ex.), 495
paradoxes

pole-vaulter, 459
twin paradox, 470

parallel axis theorem, 249
examples, 250

Pauli, W., 194
pendulum

conical, 171
coupled, 219
effect of amplitude on period, 198
in accelerating car, (Ex.), 347
inverted, (Ex.), 174
Kater’s, (Ex.), 264
physical, 263
simple (Ex.), 180, 261
solution by energy method (Ex.), 180

perigee, 395
period, simple harmonic oscillator, 413

perturbed circular orbit (Ex.), 384
ellipse, exact solution, 386
energy diagram, 384

phenomenological forces, 82, 95
photoelectric effect, 192; (Ex.), 490

Einstein’s explanation, 490
Millikan’s experiments, 490
Compton effect, scattering (Ex.), 492
Doppler effect (Ex.), 496
energy and frequency, 489, 491
gravitational red shift (Ex.), 497
massless particle, 131
momentum, 144, 489
pair production (Ex.)

need for third body, 495
threshold, 496

photoelectric effect (Ex.), 490
radiation pressure (Ex.), 491

photon picture
photoelectric effect (Ex.), 490
Compton effect (Ex.), 492
Doppler effect (Ex.), 496
gravitational red shift (Ex.), 497
radiation pressure (Ex.), 491

physical pendulum, 262, 263
physical standards and base units, 59
physics in a rotating system, 356–368

centrifugal force, 358
Coriolis force, 359

on a sliding bead (Ex.), 361
deflection of a falling mass (Ex.), 361
fictitious forces, 356
Foucault pendulum (Ex.), 366
inertia, a mystery, 367
motion on the rotating Earth (Ex.), 363
rotating water bucket (Ex.), 360
velocity and acceleration, 358
weather systems (Ex.), 364

Planck’s constant, 488
Planck, M., 278, 488
plane of scattering, 230
planetary motion, 386

centrifugal potential at small r, 382
energy diagrams, 381
evaluation of C, 386
gravitational potential at large r, 382
motion for various E, 382

Poincaré, H.
chaos in mechanics, 403

polar coordinates, 27
contrast with Cartesian, 27

polar representation of complex numbers,
431

position vector, 12
position in angular coordinates, not a

vector (Ex.), 292

potential energy, 179
potential energy and force, 185, 201
power, 172

SI units, 172
precession

equinoxes, 304
Foucault pendulum, 366
perihelion of Mercury, 402, 514
torque-free, 321

precession model (Ex.)
two masses and rod, 303

rate, 304
pressure, 150

gradient, 364
of dynamical flow, (Ex.), 15
of a gas (Ex.), 149

principal axes, 317
cylindrical symmetry, 317
rotational kinetic energy, 318
tensor of inertia

diagonal form, 317
uniform sphere, 317

principle of equivalence, 88, 347–356,
368, 514

Eötvös experiment, 355
a fundamental physical law, 356
definition, 348
driving force of the tides (Ex.), 349
gravitational red shift, 368
local systems, 348, 349
Newton’s pendulum experiment, 355
real physical fields are local, 349
twin paradox, 470

principle of relativity, 344, 446
proper length, 459
proper time, 459, 510
properties of ellipse, 405
pulley system (Ex.), 71
push me–pull you (Ex.), 128

simple harmonic motion, 129

Q kinetic energy lost in collision, 228
Q, quality factor

for damped harmonic oscillator, 418
for driven harmonic oscillator, 424, 425
tuning fork and rubber band (Ex.), 419

quadratic forms, 215
quadratic forms of energy and simple

harmonic motion, 215

radial acceleration, 34, 72
radiation pressure (Ex.), 491
radiation pressure and photon momentum

flow (Ex.), 491
railwayman on flatcar with lantern (Ex.),

451
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rate of gyroscope precession, 302
reduced mass, 213, 375
Reid, M. J., 402
relations between systems of units, 62
relativistic addition of velocities, 463

four-velocity, 511
relativistic Doppler effect, 467
relativistic energy, 481

analogy with classical kinetic energy,
481

Einstein’s generalization, 483
relation to relativistic momentum, 487,

513
relativistic kinematics, 454
relativistic mass, 512
relativistic momentum, 478

conservation, 479
in model collision, 478
no upper limit, 480
relation to relativistic energy, 487, 513

repulsive inverse-square force, 186
resonance in driven harmonic oscillator,

424
resonance curve, 424
resonance frequency, 424

rest energy, 512
rest mass, 226

definition, 512
electron, 226
proton, 226

restrictions on scattering angles in L (Ex.),
231

ρ perpendicular distance to axis, 246
right-hand rule, 6
rigid bodies, 120
rigid body dynamics, advanced topics,

320–329
rigid body rotation, 312–320

about a fixed point, 319
rocket in free space (Ex.), 140
rocket in gravitational field (Ex.), 141
rocket motion, 138

center of mass, 139
equations of motion, 139

rolling wheel (Ex.), 269
Rossi, B., 460
rotated axes in three-space, 504
rotating dumbbell (Ex.), 314

angular momentum, 315
rotating machinery

dynamically balanced, 299
statically balanced, 299

rotating systems, 359
rotating uniform rod (Ex.), 327
rotating vector, 23

rate of change, 356

rotating water bucket, (Ex.), 360
Mach, 368
Newton, 367

rotation in the x−y plane (Ex.), 295
rotational kinetic energy, 317
rubber ball rebound (Ex.), 133

average force due to floor, 133
instantaneous force, 133

Rutherford (Coulomb) scattering (Ex.),
389

deviations, size of nuclei, 391
evidence for atomic nucleus, 389
Geiger, H. and Marsden, E., 389
hyperbolic orbits, 389
strong dependence on scattering angle,

390
Rutherford, E., 225, 278
Rydberg constant, 278

Salaam, A., 82
satellite transfer from elliptic to circular

orbit (Ex.), 397
Saturn V (Ex.)

Apollo mission to Moon, 142
exhaust velocities, 142
first stage burn rate, 142

scalar (dot) product of vectors, 4
scalars, 505

examples, 505
second derivative with respect to t, 15
Sgr A* (Ex.), 401

mass relative to the Sun, 402
orbiting stars, 401

SHM, simple harmonic motion, 103
shock absorber, 429
SI system

prefixes, Appendix C, 531
significant figures, 40
simple harmonic motion, 102

amplitude, 104, 413
angular frequency, 104, 413
in bound systems, 212
circular frequency, 104, 413
differential equation, 103, 412
equation of motion, 103
gyrocompass, 308
initial conditions, (Ex.), 165
nutation, 334
period, 103
phase angle, 104
and quadratic energy forms, 215
and torque-free precession, 322
review, 412
solution by energy method, 164

simple harmonic oscillator
energy, 414

nomenclature, 413
amplitude, 413
angular frequency, 413
circular frequency, 413
period, 413

simple pendulum (Ex.), 104, 262
simultaneity

railwayman on flatcar with lantern
(Ex.), 451

spacelike events, 451; (Ex.), 462, 509
timelike events, 451; (Ex.), 462, 509

simultaneity of events, 450
skew rod

angular momentum, (Ex.), 296
tensor of inertia (Ex.), 316
torque, (Ex.), 298

sliding bead in a rotating system (Ex.),
361

sliding block 1 (Ex.)
angular momentum, 243

sliding block 2 (Ex.)
angular momentum, 257

slug, 62
solar constant, 148
solar sail spacecraft (Ex.)

IKAROS, 148
solving by complex numbers

critically damped oscillator, 433
damped oscillator, 431–434
driven oscillator, 434
heavily damped oscillator, 433
lightly damped oscillator, 432
overdamped oscillator, 433

spacecraft and dust cloud (Ex.), 136
spacelike events (Ex.), 463
spacetime, 503

four-dimensional geometry of relativity,
504

four-vectors, 509
locus of event displacements

hyperbolic surface of revolution,
509

spacetime diagram, 506
event specified by (x, y, z, ct), 506
events coincident in space, 508
events simultaneous in time, 508
light cones, 506
space and time axes not orthogonal, 507
space axis rotates counterclockwise,

507
speed: cotangent of the slope, 506
time axis rotates clockwise, 507
world line, definition, 506

special relativity
addition of velocities, 463
kinematics, 454
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length contraction, 457
geometric analysis, 458
simultaneous measurements, 458

paradoxes
pole-vaulter, 459
twin paradox, 470

postulates, 344
speed of light in a moving medium

(Ex.), 465
time dilation, 455

geometric analysis, 455
in atomic clocks (Ex.), 456

specific impulse, 142
speed, 15

of a bullet, (Ex.), 132
speed of light in a moving medium (Ex.),

465
spin angular momentum, 268

electron, 311
independent of coordinates, 269

Spinning Terror, (Ex.), 94
spontaneous emission, 144
spring constant, 102

effective, in bound systems, 212
spring force, 102
spring gun (Ex.), 106

initial conditions, 106
spring gun recoil (Ex.), 130
stability, 217

frequency of oscillation, 219
pendulum, 218
saucer and cigar (Ex.), 318
spinning objects (Ex.), 309
teeter toy (Ex.), 218

stacked blocks, 66
standard form x + iy for complex

numbers, 431
standard co-ordinate systems

S = (x, y, z, t), 448
S ′ = (x′, y′, z′, t′) moving with speed v

relative to S , 448
steady-state behavior of driven harmonic

oscillator, 426
steepest descent

gradient, 203
Stilwell, G. R., 468
stimulated emission, 144
Stokes’ law

viscous retarding force, 98
stored energy in a driven harmonic

oscillator, 423
straight line motion in polar coordinates

(Ex.), 32
string force, 89
subtracting vectors, 3
summary of fixed axis rotation, 271

superelastic collisions, 228
synchronizing clocks, 445
system of particles, 116

equations of motion, 118
properties, 117

systems of units, 62
CGS system, 62
converting, 62
English system, 62
relations, 62
SI system, 62

powers of ten, 63
prefixes, Appendix C, 531

table, 62

tangential acceleration, 34
Taylor series, 37

common functions, 38
differentials, 39

Taylor, W., 194
teeter toy (Ex.)

rocking, period, 216
stability, 218

tension, 90
idealized molecular model, 90
in dangling rope, (Ex.), 90
in whirling rope (Ex.), 95

tensor of inertia, 312, 314
compact notation, 315
fixed axis rotation, 314
generalized parallel axis theorem, 320

uniform sphere example, 320
matrix form, 315
moment of inertia, 314
products of inertia, 314
skew rod (Ex.), 316

terminal velocity (Ex.)
differential equation, 99
motion of falling raindrop, 99

Thomson, J. J., 278
discovered electron, 278

three-body collisions
molecular formation, 187

three-dimensional spring (Ex.)
potential energy, 183

three stages of a collision, 226
threshold for pair production by photon

(Ex.), 496
tides

driving force (Ex.), 349
Earth in free fall toward the Sun, 353
equilibrium height (Ex.), 351
Moon’s effect greater than Sun’s, 353
Newton’s equilibrium model (Ex.), 351
spring, neap, 353
twice daily

evidence for Earth’s free fall, 353
twice daily (Ex.), 351

time
standards, 60

time derivative of a vector, 22
time derivative of a vector in a rotating

system, 357
time derivative of base vectors in a

rotating system, 357
time derivatives

Newton’s notation, 14, 29
time dilation, 455

geometric analysis, 455
timelike events (Ex.), 463
torque

analogous to force, 250
compared to force, 251
definition, 250
sense of rotation, 250

torque and angular momentum, dynamics,
252

torque due to gravity (Ex.), 251
torque on gyroscope, 301
torque on skew rod (Ex.), 317

analytical method, 298
geometric method, 299

torque-free precession, 321, 335
frequency, 323
of the Earth, 323
simple harmonic motion, 322

torque-free precession (Ex.)
Euler’s equations

exact solution, 327
total mechanical energy, 180
trajectory, 168

integral in the limit, 169
transformation equations

Galilean transformation, 448
Lorentz transformation, 452

transient, 424
transient behavior of a driven harmonic

oscillator, 425
transverse Doppler effect, 468
trial solution of differential equation, 100
trivial solution of collision equations,

229
Trojan asteroids (Ex.)

equilateral triangle,
Sun–planet–asteroid, 398

turtle in elevator (Ex.), 87
weightless, 87

twin paradox, 470
two coupled pendulums (Ex.)

energy transfer, 221
two coupled pendulums, normal modes,

219
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uniform circular motion (Ex.), 18
uniform force field (Ex.)

potential energy, 182
uniform gravitational field, motion (Ex.),

21
uniform precession of gyroscope,

300
orbital angular momentum is constant,

301
rate, 302

uniform sphere
gravitational force, 85
moment of inertia, 249

uniform thin disk (Ex.)
moment of inertia, 247
moment of inertia, double integration,

248
uniform thin ring (Ex.)

moment of inertia, 247
uniform thin stick (Ex.)

moment of inertia
axis through end, 249
axis through midpoint, 248

units (physical)
acceleration, 54
angular momentum, 241
converting, 63
energy, 166

table of energy units, 196
force, 54
length, 61
mass, 54, 61
power, 172, 196
time, 60
weight, 86
work and energy

CGS system, 166
English system, 166
SI system, 166

unit vectors, 11
universal features of central force motion,

376
law of equal areas, 377
motion confined to a plane, 376
work–energy theorem, 377

validity of classical mechanics, 226
van der Waals force, 91, 186
vector decomposition of angular

momentum, 242
vector nature of angular momentum, 292
vector nature of angular velocity, 293
vector operators, 200
vector product, 6
vector transformations in three-space, 504

rotated coordinate systems, 504
vectors, 2

addition, 3
algebraic properties, 4
area as a vector (Ex.), 8
base vectors, 11
change with time, 16
components, 9
cross product

anticommutative, 7
examples (Ex.), 7
right-hand rule, 6

displacement vector, 13
magnitude, 3
multiplication

scalar (dot) product, 4
vector cross product, 6

multiplication by a scalar, 3
position, 12
subtraction, 3
unit vectors, 11
work and the dot product (Ex.), 5

velocity
as a vector, 16
average, 14
from acceleration (Ex.), 19
in a rotating system, 358
in polar coordinates, 29, 31
in several dimensions, 15
instantaneous, 14

vibration attenuator (Ex.), 427
viscosity, 98
viscous force, 98
viscous retarding force

damped harmonic oscillator, 414
Stokes’ law, 98

viscous retarding force
differential equation, 99
formal solution, 101

volume integral, 121

Walton, E.T.S., 485
weather systems (Ex.), 364

Coriolis force, 365
difference between highs and lows,

366
hurricane

a compact low, 365
always a low, 366
pressure gradient, 365

weight, 53
definition, 86
units, 86

whirling block on table (Ex.), 74
constraint, 75

whirling rope (Ex.), 95
whirlpool rotational flow and curl, 205
work by a force, 170
work function, 490
work–energy theorem, 162

applying, 173–179
central force is conservative (Ex.),

177
driven harmonic oscillator, 423
extended system, 170
friction

work is path dependent, 177
general, 170
in one dimension, 166
inverted pendulum (Ex.), 174
kinetic energy

definition, 170
non-conservative forces, 187
usefulness

conservative forces, 174
constrained motion, 174

work by uniform force (Ex.), 175
work–energy theorem and rotational

motion, 273
world energy usage, 194
world line, 506
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