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Evan Oman
MATH 5371
Joe Gallian

September 16, 2013

Homework 1

Gallian 2.6: In each case, perform the indicated operation:

a) In C∗, (7 + 5i) (−3 + 2i)

(7 + 5i) (−3 + 2i) = −21 + 14i− 15i + 10i2

= −21− i + 10 (−1)

= − (i + 31) ∈ C∗

b) In GL (2, Z13), det

[(
7 4
1 5

)]
First recall the definition of the determinant of a 2× 2 matrix:

det

[(
a b
c d

)]
= a · d− b · c

So in our case we would have:

det

[(
7 4
1 5

)]
= 7 · 5− 4 · 1

= 31

≡13 5 ∈ Z13

c) In GL (2,R),

(
6 3
8 2

)−1

Recall the definition of the inverse of a 2× 2 matrix:

A−1 =

(
a b
c d

)−1

=
1

detA

(
d −b
−c a

)

So if we let B =

(
6 3
8 2

)
, we find that

det[B] = 6 · 2− 8 · 3
= 12− 24

= −12 ∈ R
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Therefore

B−1 =
−1

12

(
2 −3
−8 6

)
=

(
−1

6
1
4

2
3
−1

2

)
∈ GL(2,R)

d) In GL (2, Z13),

(
6 3
8 2

)−1

Here we use the same formula but since the entries are elements of Z13, we must adjust
the values according to this new modulus. So from part c): det[B] = −12 ≡13 1.

So our inverse becomes:

B−1 =
1

1

(
2 −3
−8 6

)
≡13

(
2 10
5 6

)
∈ GL(2, Z13)

�

Gallian 2.20: For any integer n > 2, show that there are at least 2 elements in U(n) that
satisfy x2 = 1.

Let n ∈ Z such that n > 2. Then we know that that U(n), the group of integers modulo n
under multiplication, contains only the elements which are relatively prime to n. So we can
write

U(n) = {x mod n| gcd(n, x) = 1}

So clearly 1 ∈ U(n) because the gcd(n, 1) = 1(which is true for any number) and because
1 = e under multiplication which must be an element of U(n) by U(n) being a group.
Then since 1 is the identity it follows that (1)2 = 1 giving one element satisfying x2 = 1.
The next element we will consider is n− 1. By Lemma 0.1 we know that n and (n− 1) are
relatively prime so n− 1 ∈ U(n).
Then squaring (n− 1)2 yields:

(n− 1)2 = n2 − 2n + 1

= n2 − 2n + 1

≡n 1

Therefore we have found two elements that satisfy x2 = 1, guaranteeing at least 2 elements
∀U(n).

Lemma 0.1
Let n ∈ Z such that n > 2. Assume by contradiction that n, n− 1 are not relatively prime.
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Then ∃a ∈ N\{1} such that a|n and a|(n − 1) which is to say that ∃l,m ∈ N{1} such that
m · a = n and l · a = (n− 1).

Rearranging we have ma = la + 1⇒ a =
1

m− l
.

However since a, l,m ∈ N\{1}, we arrive at a contradiction. Therefore we conclude that
n, n− 1 must be relatively prime for n > 2.

�

Gallian 2.34: Prove that in a group, (ab)2 = a2b2 if and only if ab = ba.

(⇒)
Assume (ab)2 = a2b2.
Then

(ab)2 = a2b2 ⇒ abab = a2b2

⇒ a−1abab = a−1a2b2

⇒ bab = ab2

⇒ babb−1 = ab2b−1

⇒ ba = ab

Therefore (ab)2 = a2b2 ⇒ ab = ba.
(⇐)
Assume ab = ba.
Then

ab = ba⇒ a(ab) = a(ba)

⇒ a2b = aba

⇒ (a2b)b = (aba)b

⇒ a2b2 = (ab)2

Therefore ab = ba⇒ (ab)2 = a2b2.
Then since we have proven both directions we can conclude that (ab)2 = a2b2 iff ab = ba. �

Gallian 2.42: Suppose F1 and F2 are distinct reflections in a dihedral group Dn such that
F1F2 = F2F1. Prove that F1F2 = R180.

Let F1, F2 ∈ Dn be distinct reflections and assume F1 6= F2 and F1F2 = F2F1. Then since
every flip is its own inverse,

(F1F2)(F1F2) = F1F2F1F2 = F2F1F1F2 = F2R0F2 = R0

which is to say that (F1F2)
2 = R0 or equivalently (F1F2)

−1 = F1F2.
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Then since F1F2 is a composition of flips, it represents some manipulation of the front side
of our regular n-gon. Therefore F1F2 can be written as a rotation in the form of Rx.
Then since F1F2 = Rx, (F1F2)

2 = R0 ⇒ (Rx)2 = R0.
Then by Lemma 0.2, we know that F1F2 6= R0 so the only other rotation who is its own
inverse is R180.
Therefore we conclude that Rx = R180 and ultimately that F1F2 = R180. �

Lemma 0.2
Let F1, F2 ∈ Dn and assume that F1 6= F2.
Now assume by contradiction that F1F2 = R0. Then left multiplying by F−1

1 we see that

F1F2F
−1
2 = F−1

2

Then since F2 is a flip, F2 = F−1
2 .

Therefore we are left with F1 = F2 which contradicts our premise that F1, F2 are distinct
flips. Ergo F1F2 6= R0.

Gallian 2.44: Let R be a fixed rotation and F any fixed reflection in a dihedral group.
Prove that FRkF = R−k. Why does this imply that Dn is non-Abelian?

Let F,R ∈ Dn.
Now consider the element FRk(which is in Dn by closure of composition). Since the result
of this composition is the reverse face of the regular n-gon, we can say that it is equivalent
to some flip of the original shape.
Then, since FRk is a flip, we know that (FRk)(FRk) = R0 because every flip in Dn is its
own inverse.
So

(FRk)(FRk) = R0 ⇒
(
FRk

) (
FRk

)
R−k = (R0)R

−k

⇒ FRkF = R−k

Therefore ∀F,R ∈ Dn, FRkF = R−k.
To see that this implies that Dn is non-Abelian, we assume by contradiction that every
element commutes. Then using the above equality,

FRkF = R−k ⇒ FRkFRk = R0

⇒ FFRkRk = R0

⇒
(
Rk

)2
= R0

However this last line is only true for R0 and R180 but since R ∈ Dn was arbitrary, we arrive
at a contradiction.
Therefore Dn is non-Abelian. �
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Gallian 2.50: In a finite group, show that the number of nonidentity elements that satisfy
the equation x5 = e is a multiple of 4. If the stipulation that the group be finite is omitted,
what can you say about the number of nonidentity elements that satisfy the equation
x5 = e?

Let G be an arbitrary finite group. Then we can say that there are two basic cases:

Case 1: ¬∃x ∈ G : x 6= e and x5 = e
In this case we say that there are no elements which satisfy the equation. So, since 4 · 0 = 0,
we say that there is a multiple of 4 elements which satisfy the equation x5 = e.

Case 2: ∃x1, . . . , xn ∈ G : xi 6= e and x5
i = e where n ≥ 1

Consider some xi ∈ G where x5
i = e. Then we know that x2

i ∈ G by closure and that

(x2
i )

5 = (x5
i )

2 = e2 = e

To see that x2
i 6= xi it is clear that

x2
i = xi ⇒ xi = e

which is a contradiction. So x2
i is a new, unique element which satisfies x5 = e.

Now consider the element x3
i (which is in G by closure) where x3

i 6= x2
i because x3

i = x2
i ⇒

xi = e(a contradiction). Then we have

(x3
i )

5 = (x5
i )

3 = e3 = e

so x3
i is a new, unique element which satisfies x5 = e.

Now consider the element x4
i (which is in G by closure) where x4

i 6= x3
i because x4

i = x3
i ⇒

xi = e(a contradiction). Then we have

(x4
i )

5 = (x5
i )

4 = e4 = e

so x4
i is a new, unique element which satisfies x5 = e.

However if we consider x5
i , we already have x5

i = e so this would not add to the list of
nonidentity elements.
Additionally xm

i where m > 4 would also not add to the list because these would be repeats
of elements already found.
For example x6

i = xix
5
i = xie = xi. Hence we take xm

i as xm mod 5
i .

Therefore for each xi where x5
i = e there are 3 additional elements(x2

i , x
3
i , x

4
i ) that also satisfy

x5 = e.
Consequently if ∃x1, . . . , xn ∈ G : xi 6= e and x5

i = e where n ≥ 1 then we can say that the
total number of elements that satisfy x5 = e would be 4 · n which is clearly a multiple of 4.

If the finite condition were to be removed we would simply have an additional case where
there are x1, x2, . . . ∈ G : xi 6= e and x5

i = e. Here we would say that there are an infinite
number of solutions to x5 = e. �
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Homework 2

Gallian 3.26 Prove that a group with two elements of order 2 that commute must have a
subgroup of order 4.

Let G be an arbitrary group.
Now assume a, b ∈ G such that a2 = b2 = e and ab = ba so it has two elements of order 2
that commute.
Now consider H = 〈a, b〉 = {e, a, b, ab}∗⊆ G. First we know that H is non-empty and
contains an identity.
Then to see that H is closed consider the multiplication of any two elements, any combination
of elements would be equivalent to one of the existing elements because

· · · a−3 = a−1 = a1 = a3 · · ·
· · · b−3 = b−1 = b1 = b3 · · ·

· · · (ab)−3 = (ab)−1 = (ab)1 = (ab)3 · · ·

since the elements a, b commute and are of order 2.
Then we can see that inverses exist for each element:

• e−1 = e

• a−1 = a

• b−1 = b

• (ab)−1 = ab

Therefore since H is closed, has inverses and identity, we say that H is a subgroup of G.
Then since |H| = | 〈a, b〉 | = 4 we can say that for any group G where a, b ∈ G such that
a2 = b2 = e and ab = ba, there exists a subgroup H where |H| = 4, namely, H = 〈a, b〉. �

Gallian 3.28 Suppose that H is a proper subgroup of Z under addition and H contains
18,30, and 40. Determine H.

The proper subgroups of Z come in the form 〈n〉 where 〈n〉 is the set of all multiples of n.
We can see that these are subgroup of Z because under addition, the operation of a multiple
of n with another multiple of n necesarily produces another multiple of n. So we need to
find the subgroup of Z containing 18, 30, and 40. Then since gcd(18, 30, 40) = 2 we say that
the proper subgroup containing these elements is 〈2〉 ≤ Z. �

∗Note that ab = ba so we write ab once.
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Gallian 3.30 Prove that the dihedral group of order 6 does not have a subgroup of order
4.

Consider some subset H of the group D3 where |H| = 4 andf R0 ∈ H. Then H the only
possibilities for H would be one of the following cases:

• Case 1: H1 = {R0, F1, F2, F3}
Since F1F2 = R120 /∈ H, we know that H is not closed under the operation of compo-
sition so we know that it can not be a subgroup of G.

• Case 2: H2 = {R0, R120, R240, Fn}
Because FnR120 = Fm where Fm 6= Fn, Fm /∈ H which implies that H is not closed.
Therefore it can not be a subgroup of G.

• Case 2: H3 = {R0, Rx, Fn, Fm}
If we consider the element Rx ∈ H we know that R2

x = R2·x 6= Rx
† so clearly R2

x /∈ H
so again H is not closed and consequently not a group.

So every possible subset of D3 with order 4 is not closed and fails to satisfy the subgroup
criteria. Therefore D3 has no subgroups of order 4. �

Gallian 3.32 If H and K are subgroups of G, show that H ∩K is a subgroup of G. Can
you see that the same proof shows that the intersection of any number of subgroups of G,
finite or infinite, is again a subgroup of G?

Let G be a group and assume H,K ≤ G. Then we can see that there are two possibilities
for H ∩K:

• Case 1: H ∩K = {e}
Assume H∩K = {e}. Then H∩K would be the trivial subgroup which is by definition
a subgroup of G. So H ∩K ≤ G.

• Case 2: H ∩K is nontrivial.

Assume H ∩K is a nontrivial set. Then since H,K are subgroups we know that e ∈ H
and e ∈ K so e ∈ H ∩K which implies that H ∩K is non-empty.

Now assume a, b ∈ H ∩ K. Then since H ∩ K is defined as all elements that are in
H and K we know that a, b ∈ H and a, b ∈ K. Then since H and K are subgroups,
ab−1 ∈ H and ab−1 ∈ K. Therefore ab−1 ∈ H ∩K.

Therefore H ∩K passes the one-step subgroup test and consequently H ∩K ≤ G.

So we conclude that for all H,K ≤ G, H ∩K ≤ G. �

†Since we are working in D3 the possibilities here for x are 120 and 240 which when doubled do not
equal themselves modulo 360
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Gallian 3.34 Let G be a group, and let a ∈ G. Prove that C(a) = C (a−1)

Let G be a group and let a ∈ G.
First recall that the definition of the centralizer of an element a in G:

C(a) = {g ∈ G|ga = ag}

Assume c ∈ C(a) such that c is arbitrary. So we have:

ca = ac⇒ (ca)a−1 = (ac)a−1 (right multiply by a−1)

⇒ c = aca−1

⇒ a−1(c) = a−1(aca−1) (left multiply by a−1)

⇒ a−1c = ca−1

So c ∈ C (a−1) and since c was arbitrary, C (a) ⊆ C (a−1).
Now assume d ∈ C (a−1) such that d is arbitrary. So we have:

da−1 = a−1d⇒ (da−1)a = (a−1d)a (right multiply by a)

⇒ d = a−1da

⇒ a(d) = a(a−1da) (left multiply by a)

⇒ ad = da

So d ∈ C (a) and since d was arbitrary, C (a−1) ⊆ C (a).
Therefore C(a) and C (a−1) are inverses of each other so we can conclude that C(a) =
C (a−1). �

Gallian 3.68 Let H = {A ∈ GL (2,R) | detA is an integer power of 2}. Show that H is a
subgroup of GL (2,R).

Let H =
{
A ∈ GL (2,R) | detA = 2l where l ∈ Z

}
.

Then I ∈ H because

det

[(
1 0
0 1

)]
= 1 · 1− 0 · 0 = 1 = 20

So I has a determinant which is a integer power of 2. Therefore H is non-empty.
Now assume A,B ∈ H where

A =

(
a1 a2
a3 a4

)
and B =

(
b1 b2
b3 b4

)
Then by definition of H,

detA = a1 · a4 − a2 · a3 = 2n where n ∈ Z
detB = b1 · b4 − b2 · b3 = 2m where m ∈ Z

3



Then to see that AB−1 ∈ H, we first find B−1 which is defined as:

B−1 =
1

detB

(
b4 −b2
−b3 b1

)
Then calculating AB−1 we find that:

AB−1 = C =

((
a1 a2
a3 a4

))
·
(

1

detB

(
b4 −b2
−b3 b1

))
=

1

detB

(
a1 a2
a3 a4

)
·
(

b4 −b2
−b3 b1

)
=

1

detB

(
b4a1 − b3a2 a2b1 − a1b2
a3b4 − a4b3 a4b1 − a3b2

)
Then to see that AB−1 = C ∈ H we must calculate the determinant of C:

detC = det

[
1

detB

(
b4a1 − b3a2 a2b1 − a1b2
a3b4 − a4b3 a4b1 − a3b2

)]
=

(
1

detB

)2

· det
[(

b4a1 − b3a2 a2b1 − a1b2
a3b4 − a4b3 a4b1 − a3b2

)]
(since we have a 2× 2 matrix)

=

(
1

detB

)2

· [(b4a1 − b3a2) · (a4b1 − a3b2)− (a2b1 − a1b2) · (a3b4 − a4b3)]

=

(
1

detB

)2

· [b4a1a4b1 − b4a1a3b2 − b3a2a4b1 + b3a2a3b2 − (a2b1a3b4 − a2b1a4b3 − a1b2a3b4 + a1b2a4b3)]

=

(
1

detB

)2

· [a1a4b1b4 + a2a3b2b3 − a2a3b1b4 − a1a4b2b3]

=

(
1

detB

)2

· [a1a4 (b1b4 − b2b3)− a2a3 (b1b4 − b2b3)]

=

(
1

detB

)2

· (a1a4 − a2a3) · (b1b4 − b2b3)

=

(
1

detB

)2

· (detA) · (detB)

=
detA

detB
=

2n

2m
= 2n−m

Then since n−m ∈ Z we can say that det [C] = det [AB−1] is equal to an integer power of
2 and consequently AB−1 ∈ H.
Therefore we have satisfied the conditions of the one-step subgroup test and consequently
H is a subgroup of G. �
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Homework 3

Gallian 4.18: If a cyclic group has an element of infinite order, how many elements of
finite order does it have?

Let G be a cyclic group generated by some g ∈ G such that 〈g〉 = G.
Now assume that ∃a ∈ G such that |a| =∞.
Then by closure we know that |G| = ∞ and additionally, by Corollary 1 of Theorem 4.2,
that |G| = | 〈g〉 | = |g|. Thus in our case |g| =∞.
Then sinceG is cyclic we know that every element ofG can be written as gn where n ∈ Z\ {0}.
Now consider some b ∈ G and assume that b 6= e and bm = e where m ∈ Z\ {0} such that b
has finite order.
Then we have bm = (gn)m = e so |g| ≤ n · m by Corollary 2 of Theorem 4.1 which says
ak = e⇒ that (|a|)|k which, by extension, says that |a| ≤ k.
However this is a contradiction because |a| =∞ and there are no m,n ∈ Z where n ·m ≥ ∞.
Therefore there are no non-identity elements in G with finite order. If we consider e however
we see that |e| = 1 which is finite. So we conclude that any cyclic group G with an element
of infinite order has only one element∗ of finite order: the identity. �

Gallian 4.36: Prove that a finite group is the union of proper subgroups if and only if the
group is not cyclic.

(⇒)
Let G be a finite group and assume that G is the union of all of its subgroups. Now assume
by contradiction that G is cyclic such that ∃g ∈ G such that 〈g〉 = G.
Then we can consider 3 different cases:

1. G = {e}
We can see that {e} is a cyclic group but has no proper subgroups. Therefore we
contradict our premise that G is the union of all of its proper subgroups so in this case
G can not be cyclic.

2. |G| = n where n is prime

Assume that |G| = n where n is prime. Then since G is cyclic, by Theorem 4.4 we
know that the number of elements in G with order n would be equal to n− 1 because
φ(n) = n− 1 when n is prime. So every element gi would have order n.

∗Since there can only be one identity
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Then we can say that each gi ∈ G would be a generator of G because each 〈gi〉 would
have order n(which is to say that they generate n elements).

Thus we conclude that the only proper subgroup of G would be the trivial subgroup
{e}, which, when unioned with itself, is clearly not equal to G.

Therefore our assumption that G is cyclic has contradicted our premise that G is the
union of all its proper subgroups. Thus in this case G can not be cyclic.

3. |G| = n where n is composite

Assume that |G| = n where n is composite. Then by theorem 4.3 we know that G has
exactly 1 subgroup of order k ∈ Z where k is a divisor of n, namely,

〈
g

n
k

〉
.

Thus in this case there are n−φ(n)− 1 proper subgroups of G because this represents
the number of elements whose powers are not relatively prime to n, the order of G.

However when we consider some such subgroup〈
g

n
k

〉
=
{
e, g

n
k , g

2n
k , . . . , g

k·n−1
k

}
we see that the power of each element is not relatively prime to n because it each power
is a divisor of n.

Thus these subgroups will never contain an element al ∈ G where l is relatively prime
to n because no divisor of n can be relatively prime to n.

Then we can see that proper subgroups of the form
〈
g

n
k

〉
are the only proper subgroups

of G by a similar argument as the case where n is prime because any element gl where l
is relatively prime to n would be a generator of the entire group G and would therefore
not be a proper subgroup.

Therefore the union of these proper subgroups do not form G because powers of our
generator g that are relatively prime to n would never be generated. So G would not
equal the union of its proper subgroups and we contradict our premise so in this case
G can not be cyclic.

Thus in each case we arrive at a contradiction so we conclude that if G is the union of all
its subgroups, G must not be cyclic.
(⇐)
Let G be a finite group and assume that G is not cyclic.
Then we can say that ∀gi ∈ G, 〈gi〉 6= G. Then we know that 〈gi〉 ⊂ G and by Theorem 3.4,
〈gi〉 is a proper subgroup of G.
Therefore we can see that

n−1⋃
i=0

〈gi〉 = G

because each 〈gi〉 contains at least gi and never all of G.
Ergo if G is finite and not cyclic it is equal to the union of all of its proper subgroups. �
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Gallian 4.44: Let F and F ′ be distinct reflections in D21. What are the possibilities for
|FF ′|.

Let F, F ′ ∈ D21. Then since F 6= F ′, we can say that FF ′ = Rx 6= R0 where Rx is some
rotation in D21.
So we have |FF ′| = |Rx|. Then we can rewrite Rx as Rk

360
21

where 0 < k < 21 because

∀Rx ∈ D21, Rx ∈
〈
R 360

21

〉
.

Then by Theorem 4.2. we know that given some a where |a| = n, |ak| = n

gcd (n, k)
.

So in our case we know that
∣∣∣R 360

21

∣∣∣ = 21 so we have
∣∣∣Rk

360
21

∣∣∣ =
21

gcd (21, k)
.

Therefore we can case out the possible orders of Rk
360
21

= Rx = FF ′ in the table below:

k Order of Rk
360
21

= FF ′

3,6,9,12,15,18 7
7,14 3

Otherwise 21

Table 1: Possible orders of FF ′ ∈ D21

�

Gallian 4.50: Prove or disprove that H = {n ∈ Z|n is divisible by both 8 and 10} is a
subgroup of Z.

Let H ⊂ Z be defined as the the set above. First, we know that the elements of H will take
the form of m · l where l = lcm (8, 10) = 40.
So we have the set H = {40 ·m|m ∈ Z} which is clearly equal to 〈40〉 ⊂ Z.
Then by Theorem 3.4, we know that 〈40〉 < Z so we conclude that H = 〈40〉 is a subgroup
of Z. �

Gallian 4.64: Let a and b belong to a group. If |a| and |b| are relatively prime, show that
〈a〉 ∩ 〈b〉 = {e}

Let G be a group and assume that a, b ∈ G such that |a| = m and |b| = n where gcd (m,n) =
1 (which is to say that m,n are relatively prime).
Now suppose by contradiction that ∃ a non-identity element c ∈ 〈a〉 ∩ 〈b〉.
Then we can say that aj = c = bk where j, k ∈ Z+. Then ∃l > 1 ∈ Z such that |c| = l. Note
that l > 1 because we have defined c such that c 6= e. So:(

aj
)l

= cl = e = cl =
(
bk
)l ⇒ aj·l = e = bk·l

⇒ m = j · l, n = k · l
where m = |a| and n = |b|.
Then we have that m,n share a common factor l contradicting our premise that gcd (m,n) =
1.
Therefore ¬∃c ∈ 〈a〉 ∩ 〈b〉 where c 6= e so we conclude that 〈a〉 ∩ 〈b〉 = {e}. �
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Gallian 4.78: If n is odd, prove that Dn has no subgroup of order 4.

Consider the group Dn where n is odd. First we can note that there are n flips and n
rotations. Then there are really only 4 possible forms of subsets of Dn with order 4 which
include the identity(so we can check if these subsets can possibly be subgroups).

• H1 = {e, Rx, Ry, Rz}
Consider the subset H1 of Dn where H1 = {e, Rx, Ry, Rz}. Then we know that the

subgroup of all rotations,
〈
R 360

n

〉
, in Dn is cyclic. So in order for H1 ≤ Dn it must

also be a subgroup of
〈
R 360

n

〉
.

Then by Theorem 4.3, if H! ≤
〈
R 360

n

〉
, then |H1| must divide the order of

〈
R 360

n

〉
.

However since
∣∣∣〈R 360

n

〉∣∣∣ = n where n is odd, clearly |H1| = 4 does not divider any odd

number n.

Therefore the subset H1 containing the identity and 3 rotations is not a subgroup of
Dn.

• H2 =
{
e, F l, Fm, F n

}
Consider the subset H2 of Dn where H2 =

{
e, F l, Fm, F n

}
. Clearly this subset is not

a subgroup of Dn because, for example, F lFm = Rx /∈ H so the subset is not closed
under composition.

Thus H2 is not a subgroup of Dn.

• H3 =
{
e, F l, Fm, Rx

}
Consider the subset H3 of Dn where H3 =

{
e, F l, Fm, Rx

}
. However since n is odd,

we know that ¬∃R−1x ∈ H3 because R180 /∈ Dn when n is odd. Thus for any Ry ∈ Dn,
Ry 6= R−1y .

Therefore H3 is not a subgroup of Dn

• H4 =
{
e, F l, Rx, Ry

}
Consider the subset H4 of Dn where H4 =

{
e, F l, Rx, Ry

}
. To show that this subset is

not closed it suffices to show that {Rx, Ry} is not closed.

Clearly this subset is not closed because every subgroup(or equivalently closed subset

for our purposes) of
〈
R 360

n

〉
must divide n(see the argument for H1).

Thus the subset {Rx, Ry} is not a closed subset of
〈
R 360

n

〉
because 2 - n when n is odd.

So we can conclude that H4 is not a closed subset of Dn because there are only the 2
rotations in H4.

Therefore H4 is not a subgroup of Dn

Then since every identity containing subset of Dn with order 4 fails the subgroup criteria,
we conclude that Dn contains no subgroup of order 4. �
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Gallian 4.18: If a cyclic group has an element of infinite order, how many elements of
finite order does it have?

Let G be a cyclic group generated by some g ∈ G such that 〈g〉 = G.
Now assume that ∃a ∈ G such that |a| =∞.
Then by closure we know that |G| = ∞ and additionally, by Corollary 1 of Theorem 4.2,
that |G| = | 〈g〉 | = |g|. Thus in our case |g| =∞.
Then sinceG is cyclic we know that every element ofG can be written as gn where n ∈ Z\ {0}.
Now consider some b ∈ G and assume that b 6= e and bm = e where m ∈ Z\ {0} such that b
has finite order.
Then we have bm = (gn)m = e so |g| ≤ n · m by Corollary 2 of Theorem 4.1 which says
ak = e⇒ that (|a|)|k which, by extension, says that |a| ≤ k.
However this is a contradiction because |a| =∞ and there are no m,n ∈ Z where n ·m ≥ ∞.
Therefore there are no non-identity elements in G with finite order. If we consider e however
we see that |e| = 1 which is finite. So we conclude that any cyclic group G with an element
of infinite order has only one element∗ of finite order: the identity. �

Gallian 4.36: Prove that a finite group is the union of proper subgroups if and only if the
group is not cyclic.

(⇒)
Let G be a finite group and assume that G is the union of all of its subgroups. Now assume
by contradiction that G is cyclic such that ∃g ∈ G such that 〈g〉 = G.
Then we can consider 3 different cases:

1. G = {e}
We can see that {e} is a cyclic group but has no proper subgroups. Therefore we
contradict our premise that G is the union of all of its proper subgroups so in this case
G can not be cyclic.

2. |G| = n where n is prime

Assume that |G| = n where n is prime. Then since G is cyclic, by Theorem 4.4 we
know that the number of elements in G with order n would be equal to n− 1 because
φ(n) = n− 1 when n is prime. So every element gi would have order n.

∗Since there can only be one identity

1



Then we can say that each gi ∈ G would be a generator of G because each 〈gi〉 would
have order n(which is to say that they generate n elements).

Thus we conclude that the only proper subgroup of G would be the trivial subgroup
{e}, which, when unioned with itself, is clearly not equal to G.

Therefore our assumption that G is cyclic has contradicted our premise that G is the
union of all its proper subgroups. Thus in this case G can not be cyclic.

3. |G| = n where n is composite

Assume that |G| = n where n is composite. Then by theorem 4.3 we know that G has
exactly 1 subgroup of order k ∈ Z where k is a divisor of n, namely,

〈
g

n
k

〉
.

Thus in this case there are n−φ(n)− 1 proper subgroups of G because this represents
the number of elements whose powers are not relatively prime to n, the order of G.

However when we consider some such subgroup〈
g

n
k

〉
=
{
e, g

n
k , g

2n
k , . . . , g

k·n−1
k

}
we see that the power of each element is not relatively prime to n because it each power
is a divisor of n.

Thus these subgroups will never contain an element al ∈ G where l is relatively prime
to n because no divisor of n can be relatively prime to n.

Then we can see that proper subgroups of the form
〈
g

n
k

〉
are the only proper subgroups

of G by a similar argument as the case where n is prime because any element gl where l
is relatively prime to n would be a generator of the entire group G and would therefore
not be a proper subgroup.

Therefore the union of these proper subgroups do not form G because powers of our
generator g that are relatively prime to n would never be generated. So G would not
equal the union of its proper subgroups and we contradict our premise so in this case
G can not be cyclic.

Thus in each case we arrive at a contradiction so we conclude that if G is the union of all
its subgroups, G must not be cyclic.
(⇐)
Let G be a finite group and assume that G is not cyclic.
Then we can say that ∀gi ∈ G, 〈gi〉 6= G. Then we know that 〈gi〉 ⊂ G and by Theorem 3.4,
〈gi〉 is a proper subgroup of G.
Therefore we can see that

n−1⋃
i=0

〈gi〉 = G

because each 〈gi〉 contains at least gi and never all of G.
Ergo if G is finite and not cyclic it is equal to the union of all of its proper subgroups. �

2



Gallian 4.44: Let F and F ′ be distinct reflections in D21. What are the possibilities for
|FF ′|.

Let F, F ′ ∈ D21. Then since F 6= F ′, we can say that FF ′ = Rx 6= R0 where Rx is some
rotation in D21.
So we have |FF ′| = |Rx|. Then we can rewrite Rx as Rk

360
21

where 0 < k < 21 because

∀Rx ∈ D21, Rx ∈
〈
R 360

21

〉
.

Then by Theorem 4.2. we know that given some a where |a| = n, |ak| = n

gcd (n, k)
.

So in our case we know that
∣∣∣R 360

21

∣∣∣ = 21 so we have
∣∣∣Rk

360
21

∣∣∣ =
21

gcd (21, k)
.

Therefore we can case out the possible orders of Rk
360
21

= Rx = FF ′ in the table below:

k Order of Rk
360
21

= FF ′

3,6,9,12,15,18 7
7,14 3

Otherwise 21

Table 1: Possible orders of FF ′ ∈ D21

�

Gallian 4.50: Prove or disprove that H = {n ∈ Z|n is divisible by both 8 and 10} is a
subgroup of Z.

Let H ⊂ Z be defined as the the set above. First, we know that the elements of H will take
the form of m · l where l = lcm (8, 10) = 40.
So we have the set H = {40 ·m|m ∈ Z} which is clearly equal to 〈40〉 ⊂ Z.
Then by Theorem 3.4, we know that 〈40〉 < Z so we conclude that H = 〈40〉 is a subgroup
of Z. �

Gallian 4.64: Let a and b belong to a group. If |a| and |b| are relatively prime, show that
〈a〉 ∩ 〈b〉 = {e}

Let G be a group and assume that a, b ∈ G such that |a| = m and |b| = n where gcd (m,n) =
1 (which is to say that m,n are relatively prime).
Now suppose by contradiction that ∃ a non-identity element c ∈ 〈a〉 ∩ 〈b〉.
Then we can say that aj = c = bk where j, k ∈ Z+. Then ∃l > 1 ∈ Z such that |c| = l. Note
that l > 1 because we have defined c such that c 6= e. So:(

aj
)l

= cl = e = cl =
(
bk
)l ⇒ aj·l = e = bk·l

⇒ m = j · l, n = k · l
where m = |a| and n = |b|.
Then we have that m,n share a common factor l contradicting our premise that gcd (m,n) =
1.
Therefore ¬∃c ∈ 〈a〉 ∩ 〈b〉 where c 6= e so we conclude that 〈a〉 ∩ 〈b〉 = {e}. �
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Gallian 4.78: If n is odd, prove that Dn has no subgroup of order 4.

Consider the group Dn where n is odd. First we can note that there are n flips and n
rotations. Then there are really only 4 possible forms of subsets of Dn with order 4 which
include the identity(so we can check if these subsets can possibly be subgroups).

• H1 = {e, Rx, Ry, Rz}
Consider the subset H1 of Dn where H1 = {e, Rx, Ry, Rz}. Then we know that the

subgroup of all rotations,
〈
R 360

n

〉
, in Dn is cyclic. So in order for H1 ≤ Dn it must

also be a subgroup of
〈
R 360

n

〉
.

Then by Theorem 4.3, if H! ≤
〈
R 360

n

〉
, then |H1| must divide the order of

〈
R 360

n

〉
.

However since
∣∣∣〈R 360

n

〉∣∣∣ = n where n is odd, clearly |H1| = 4 does not divider any odd

number n.

Therefore the subset H1 containing the identity and 3 rotations is not a subgroup of
Dn.

• H2 =
{
e, F l, Fm, F n

}
Consider the subset H2 of Dn where H2 =

{
e, F l, Fm, F n

}
. Clearly this subset is not

a subgroup of Dn because, for example, F lFm = Rx /∈ H so the subset is not closed
under composition.

Thus H2 is not a subgroup of Dn.

• H3 =
{
e, F l, Fm, Rx

}
Consider the subset H3 of Dn where H3 =

{
e, F l, Fm, Rx

}
. However since n is odd,

we know that ¬∃R−1x ∈ H3 because R180 /∈ Dn when n is odd. Thus for any Ry ∈ Dn,
Ry 6= R−1y .

Therefore H3 is not a subgroup of Dn

• H4 =
{
e, F l, Rx, Ry

}
Consider the subset H4 of Dn where H4 =

{
e, F l, Rx, Ry

}
. To show that this subset is

not closed it suffices to show that {Rx, Ry} is not closed.

Clearly this subset is not closed because every subgroup(or equivalently closed subset

for our purposes) of
〈
R 360

n

〉
must divide n(see the argument for H1).

Thus the subset {Rx, Ry} is not a closed subset of
〈
R 360

n

〉
because 2 - n when n is odd.

So we can conclude that H4 is not a closed subset of Dn because there are only the 2
rotations in H4.

Therefore H4 is not a subgroup of Dn

Then since every identity containing subset of Dn with order 4 fails the subgroup criteria,
we conclude that Dn contains no subgroup of order 4. �
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Gallian 5.10: What is the maximum order of any element of A10?

Since we are working with A10 we only have to worry about even permutations. So the only
cycle length that we need to consider are 1, 2, and odd numbers less than 10.
So we can consider the following cases which would make up any element of A10 since they
are the additive factors of 10:

• (9, 1) ⇒ lcm(9,1) = 9

• (7, 3) ⇒ lcm(7,3) = 21

• (9, 1) ⇒ lcm(5,5) = 5

• Else ⇒ lcm(n1, n2, . . . , nm) ≤ 12 when ni ≤ 4

So we can see that the largest order in the above list of possibilities is 21. �

Gallian 5.26: Let α and β belong to Sn. Prove that α−1β−1αβ is an even permutation.

Let α, β ∈ Sn. Then we know by Theorem 5.4 that α, β can be rewritten as some composition
of two cycles in the form:

α = γ1γ2γ3 · · · γn
β = δ1δ2δ3 · · · δm

where γi, δi are 2-cycles and n,m ∈ Z+.
Then since every 2-cycle is its own inverse we can say that:

α−1 = γnγn−1γn−2 · · · γ1
β−1 = δmδm−1δm−2 · · · δ1

Thus we have:

α−1β−1αβ = (γnγn−1 · · · γ1)︸ ︷︷ ︸
n 2-cycles

(δmδm−1 · · · δ1)︸ ︷︷ ︸
m 2-cycles

(γ1γ2 · · · γn)︸ ︷︷ ︸
n 2-cycles

(δ1δ2 · · · δm)︸ ︷︷ ︸
m 2-cycles

1



So we have a total of
n+m+ n+m = 2 (n+m)

2-cycles and since n,m are positive integers we know that we have an even number of 2-cycles.
Therefore α−1β−1αβ can be rep[resented by an even number of 2-cycles which, by Theorem
5.5, guarantees that every other representation will also be even.
So α−1β−1αβ is an even permutation. �

Gallian 5.28: How many elements of order 5 are in S7?

In order for an element of Sn to have an order of 5 the lcm of the lengths of all the n-cycles
of that element must be 5.
So from the ordering given in the chapter we need only consider elements of the form
(5) (1) (1).
So an arbitrary element of this form would look like:

(α1α2α3α4α5) (α6) (α7)

In order to find the total number of possible elements of this form we need only consider the
5-cycle(since the 2 1-cycles would just be what is left over from the 5-cycle). Clearly there
are 7 ·6 ·5 ·4 ·3 possible orderings of (α1α2α3α4α5). However simply counting by this method
counts the same permutation 5 times since:

(α1α2α3α4α5) = (α2α3α4α5α1) = (α3α4α5α1α2) = (α4α5α1α2α3) = (α5α1α2α3α4)

Thus we have
7 · 6 · 5 · 4 · 3

5
= 504 elements of order 5. �

Gallian 5.30: Prove that (1 2 3 4) is not the product of 3-cycles.

Consider α = (1 2 3 4) ∈ Sn. First we know that α can be rewritten as

α = (1 4) (1 3) (1 2)

so we can say that α is an odd permutation.
Now assume by contradiction that α can be written as the product of some sequence of
3-cycles βi ∈ Sn so that

α = β1β2β3 · · · βm
where each βi = (γi δi εi).
However since each βi is a 3-cycle it can be rewritten as

βi = (γi δi εi) = (γi εi) (γi δi)

indicating that α can be written as:

α = β1β2β3 · · · βm = [(γ1 δ1 ε1)] [(γ2 δ2 ε2)] [(γ3 δ3 ε3)] · · · [(γm δm εm)]

= [(γ1 ε1) (γ1 δ1)] [(γ2 ε2) (γ2 δ2)] [(γ3 ε3) (γ3 δ3)] · · · [(γm εm) (γm δm)]

2



giving us a total of 2 ·m 2-cycles, which is clearly even.
However by Theorem 5.5 we know that every representation of α must contain an odd number
of 2-cycles so we arrive at a contradiction of α being odd.
Therefore (1 2 3 4) is not the product of 3-cycles. �

Gallian 5.38: Let H = {β ∈ S5|β(1) = 1 and β(3) = 3}. Prove that H is a subgroup of
S5. How many elements are in H? Is your argument valid when S5 is replaced by Sn when
n ≥ 3? How many elements are in H when S5 is replaced by An for n ≥ 4?

H is a Subgroup of S5

Let H = {β ∈ S5|β(1) = 1 and β(3) = 3}.
Then we know that the identity element is in H because the identity “fixes” every value,
including 1 and 3. So H is non-empty.
So α ∈ H ⇒ α−1 ∈ H.
Now assume that α, β ∈ H.
Then we can easily see that α−1 is in H because α−1 (α(1)) = 1 ⇒ α−1(1) = 1 since the
identity element fixes every value.
Now consider the composition α ◦ β:

α ◦ β(1) = β(α(1)) = β(1) = 1

α ◦ β(3) = β(α(3)) = β(3) = 3

Thus α ◦ β fixes both 1 and 3 so α ◦ β ∈ H.
So α, β ∈ H ⇒ αβ ∈ H.
Therefore H passes the two-step subgroup test and consequently H ≤ S5.

Cardinality of H
Any α ∈ H ≤ S5 would have the form:

α = (1) (2) (3) (4) (5) (1)

OR (a1a2) (a3) (1) (3) (2)

OR (a1a2a3) (1) (3) (3)

So we can now look at how many elements would satisfy each case:

1. 1 Element: Only one element can take this form, the identity.

2. 3 Elements: In a similar manner to #28 we can see that there would be
3 · 2

2
= 3

elements of this form.

3. 2 Elements: Similarly there would be
3 · 2 · 1

3
= 2 elements of this form.

3



So |H| = 1 + 3 + 2 = 6.

Would this argument apply to Sn?
Clearly the cardinality argument would not apply to Sn because instead of only those cases
listed above there would be considerable more because we are only fixing 2 elements.
However we can think of |H| when H ≤ Sn as a system where we have 2 fixed values
leaving open possibilities for the remaining n− 2 values. So we would be working with the
permutations of n− 2 symbols, which we know from the chapter to be (n− 2)!.
Therefore if H ≤ Sn, then |H| = (n− 2)!
The proof that H ≤ S5 would however also prove that H ≤ Sn because the fact that 1, 3 ∈ S5

has no bearing on the validity of the proof.

What is |H| when S5 is replaced by An for n ≥ 4? From the previous sub-question we know
that when H ≤ Sn, |H| = (n − 2)!. Then from the chapter we also know that half of the
(n− 2)! permutations would be even and the other half would be odd.

Therefore would only consider half of the (n− 2)! permutations giving |H| = (n− 2)!

2
when

H ≤ An for n ≥ 4.
Note that when n < 4 we would only consider n = 3(since A2 could not possibly fix 3). So

we would have
3− 2)!

2
= 1.5 /∈ Z+.

When n = 3 we would have |H| = 1 because it would contain only the identity element.
�

Gallian 5.54: Let n be an even positive integer. Prove that An has an element of order
greater than n if and only if n ≥ 8.

(⇒)
Assume An has an element of order greater than n where n is even and assume by contra-
diction that n < 8.
Then we would simply have the following cases:

• n = 6

When n = 6 every element would take the form

◦ (5) (1) where lcm(1,5) = | (5) (1) | = 5 < 6

◦ (3) (3) where lcm(3,3) = | (3) (3) | = 3 < 6

◦ (1) (1) (1) (1) (1) (1) where lcm(1,1,1,1,1,1) =| (1) (1) (1) (1) (1) (1) | = 1 < 6

Then there are no elements with order greater than 6 so we arrive at a contradiction.

• n = 4

When n = 4 every element would take the form

4



◦ (3) (1) where lcm(1,3) = | (3) (1) | = 3 < 4

◦ (1) (1) (1) (1) where lcm(1,1,1,1) =| (1) (1) (1) (1) | = 1 < 4

Then there are no elements with order greater than 4 so we arrive at a contradiction.

• n = 2

When n = 2 we would only have the identity element:

◦ (1) (1) where lcm(1,1) =| (1) (1) | = 1 < 2

Then there are no elements with order greater than 2 so we arrive at a contradiction.

Thus we arrive at a contradiction in every case so we can see that if An has and element of
order greater than n, then n ≥ 8 .
(⇐)
Consider An where n is an even integer such that n ≥ 8. Then we can consider the following
2 cases:

1. n
2

is Even

Assume n
2

is even. Then we know that n
2
± 1 will be odd so

(
n
2

+ 1
)(

n
2
− 1
)
∈ An.

Then since d
(
n
2

+ 1, n
2
− 1
)

= 2, we know that gcd
(
n
2

+ 1, n
2
− 1
)
≤ 2. However since

both are odd, we say that the gcd is 1.

Then since n
2

+ 1, n
2
− 1 are relatively prime, we know that

lcm
(n

2
+ 1,

n

2
− 1
)

=
(n
2

+ 1)(n
2
− 1)

1
=
n2

4
− 1

which is clearly greater than n for n ≥ 8.

2. n
2

is Odd

Assume n
2

is odd. Then we know that n
2
, n
2
− 2 will be odd so

(
n
2

)(
n
2
− 2
)
∈ An.

Then since d
(
n
2
, n
2
− 2
)

= 2, we know that gcd
(
n
2
, n
2
− 2
)
≤ 2. However since both are

odd, we say that the gcd is 1.

Then since n
2
, n

2
− 2 are relatively prime, we know that

lcm
(n

2
,
n

2
− 2
)

=
(n
2
)(n

2
− 2)

1
= n

(n
4
− 1
)

which is clearly greater than n for n ≥ 8.

Therefore in every case we have found an element with an adequate order so we conclude
that given An where n ≥ 8, ∃ an element whose order is greater than n. �
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Gallian 6.6: Prove that isomorphism is an equivalence relation. That is, for any groups
G, H, and K, G ∼= G, G ∼= H implies H ∼= G, and G ∼= H and H ∼= K implies G ∼= K.

Let G, H, K be groups.
G ∼= G
Consider ϕ : G→ G defined by ∀g ∈ G, ϕ(g) = g.
Then clearly the map is one to one and onto so we say it is bijective.
Also ϕ(g1g2) = g1g2 = ϕ(g1)ϕ(g2) so the map ϕ is structure preserving.
Therefore ϕ is an isomorphism so G ∼= G.
G ∼= H ⇒ H ∼= G
Assume ϕ : G→ H.
Then clearly the function ϕ−1 is also bijective since ϕ is bijective.
Then we can see that ϕ−1 is structure preserving since, letting a, b ∈ G:

ϕ−1(ϕ(a)ϕ(b)) = ϕ−1(ab) = ab = ϕ−1(ϕ(a))ϕ−1(ϕ(b))

So ϕ−1 is structure preserving.
Therefore ϕ−1 is a structure preserving bijection making it an isomorphism. So G ∼= H ⇒
H ∼= G.
G ∼= H and H ∼= K implies G ∼= K.
Assume ϕ : G→ H and ψ : H → K such that ϕ and ψ are isomorphisms.
Then to see that ∃ a homomorphism σ : G→ K defined as σ = ψ ◦ϕ. Then letting a, b ∈ G
we have:

σ(a)σ(b) = ψ(ϕ(a))ψ(ϕ(b)) (since σ = ψ ◦ ϕ)

= ψ(ϕ(a)ϕ(b)) (since ψ is structure preserving)

= ψ(ϕ(ab)) (since ϕ is structure preserving)

= σ(ab)

Thus σ(a)σ(b) = σ(ab) so σ is structure preserving.
Then we know that σ is bijective because the composition of bijective maps is also bijective.
Therefore G ∼= H and H ∼= K implies that there exists some map σ : G → K that is a
structure preserving bijection so it is an isomorphism.
Therefore G ∼= H and H ∼= K implies G ∼= K.

Thus isomorphism is reflexive, symmetric, and transitive so we conclude that it forms an
equivalence relation on groups.

�
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Gallian 6.10: Let G be a group. Prove that the mapping α(g) = g−1 for all g in G is an
automorphism if and only if G is Abelian.

(⇒)
Assume that α : G→ G defined by α(g) = g−1 is an automorphism.
Then since α is an isomorphism we know that given any g1, g2 ∈ G,

α(g1)α(g2) = α(g1g2)

then based on the definition of α, we see that

α(g1g2) = (g1g2)
−1 = g−1

2 g−1
1

and
α(g1)α(g2) = g−1

1 g−1
2

giving us:
g−1
1 g−1

2 = g−1
2 g−1

1

This in turn implies that
g1g2 = g2g1

Therefore we conclude that if α is an automorphism, G must be Abelian.
(⇐)
Assume that G is Abelian and consider the function α defined by α(g) = g−1.
Then we can see that the function is clearly a bijection since it maps every element to its
own inverse, which we know to be unique.
Then to see that α is structure preserving let g1, g2 ∈ G:

α(g1g2) = (g1g2)
−1

= g−1
2 g−1

1

= g−1
1 g−1

2 (since G is abelian)

= α(g1)α(g2)

So α(g1g2) = α(g1)α(g2).
Therefore α is a structure preserving bijection so we conclude that if G is Abelian then α is
an automorphism. �

Gallian 6.18: Let H be the subgroup of all rotations in Dn and let φ be an automorphism
of Dn Prove that φ(H) = H

Let φ : Dn → Dn. Then consider the subgroup H of Dn consisting of all rotations in Dn.
Then we know that the subgroup H is cyclic with order n since the set of all rotations is
cyclic.
Thus the only elements in Dn that are cyclic with an overall order of n in Dn are the elements
of the set of all rotations.
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Additionally, we know that automorphism must map subgroups to subgroups. Then the
only possible place that φ could send H is H because Dn has only one subgroup of order
n(which is significant because |H| = n).
Therefore the only way we can preserve the structure of the group with an isomorphism is
by mapping the elements within the cyclic group to other elements within the cyclic group.
So φ(H) = H. �

Gallian 6.34: Prove or disprove that U(20) and U(24) are isomorphic.

To see whether or not U(24) and U(20) are isomorphic, consider the following tables:

n Elements of order n Total # of elements with order n
1 {1} 1
2 {3, 5, 7, 11, 13, 17, 23} 7

Table 1: Orders of elements of U(24)

n Elements of order n Total # of elements with order n
1 {1} 1
2 {9, 11, 19} 3
3 ∅ 0
4 {3, 7, 13, 17} 4

Table 2: Orders of elements of U(20)

So we can see that the orders of the elements of the 2 groups are not compatible so there
can not exist an isomorphism between U(20) and U(24).
Thus U(24) and U(20) are not isomorphic. �

Gallian 6.42: Suppose that G is a finite Abelian group and G has no element of order 2.
Show that the mapping g → g2 is an automorphism of G. Show, by example, that there
is an infinite Abelian group for which the mapping g → g2 is one to one and operation
preserving but not an automorphism.

Automorphism
Let G = {e, g1, g2, g3, . . . , gn} such that ∀gi ∈ G, g2i 6= e. To see that ϕ : G → G is an
automorphism we must show the following:

1. Injective

To see that ϕ is injective, consider g1, g2 ∈ G and assume that ϕ(g1) = ϕ(g2).
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Then

ϕ(g1) = ϕ(g2)⇒ g21 = g22
⇒ g21g

−2
2 = e

⇒ g1g1g
−1
2 g−1

2 = e

⇒ g1g
−1
2 g1g

−1
2 = e

⇒ (g1g
−1
2 )2 = e

However G has no elements of order 2 so the only way this could happen is if g1g
−1
2 = e.

Thus we would have
g1g

−1
2 = e⇒ g1 = g2

So ϕ(g1) = ϕ(g2)⇒ g1 = g2 and consequently ϕ is injective.

2. Surjective

To see that ϕ is surjective, we must show that every element of G is the sqaure of
another element.

Consider gi ∈ G. Then we know from the above injective proof that g2i is a distinct,
non-identity element of G. However by closure we know that g2i is in G so we can say
that ∀gi ∈ G, g2i 6= g2j and g2i = gk for some gk ∈ G.

Therefore every element in G can be uniquely written as the square of some other
element so ϕ is surjective.

3. Structure Preserving

To see that ϕ is structure/operation preserving consider g1, g2 ∈ G:

ϕ(g1)ϕ(g2) = g21g
2
2

= g1g2g1g2

= (g1g2)
2

= ϕ(g1g2)

Therefore ϕ(g1)ϕ(g2) = ϕ(g1g2) and we conclude that the map is structure preserving.

Thus ϕ is a structure preserving bijection from G to G so we can conclude that ϕ is an
automorphism of G.
Example
For an example of a group meeting the requirements, consider the integers under addition,
(Z,+).
Then we can see that ϕ : (Z,+) → (Z,+) is clearly injective since if n ∈ (Z,+), ϕ(n) = 2.
Thus there are no other elements in Z that could possible map to 2n so ϕ is injective.
The map ϕ is also structure preserving since:

ϕ(n1) + ϕ(n2) = 2 · n1 + 2 · n2

= 2(n1 + n2)

= ϕ(n1 + n2)

4



Then finally the map can not possibly be surjective since any odd number would not be
mapped to because n

2
/∈ Z if n is odd.

Therefore (Z,+) is an infinite abelian group that is injective and operation preserving but
not surjective. �

Gallian 6.58: Show that every automorphism φ of the rational numbers Q under addition
to itself has the form φ(x) = xφ(1).

Let φ : Q→ Q be an arbitrary automorphism of Q.

Then consider some x ∈ Q. Then we know that x can be written as x =
p

q
where p, q ∈ Z

and q 6= 0.
Then since 〈1〉 = Z, we know that if p > 0

p = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
p times

and if p < 0
p = −1− 1− · · · − 1︸ ︷︷ ︸

p times

The same argument applies to q. Then using the fact that q · x = p, we can see that

φ(q · x) = φ (p)

= ±φ (1)± φ (1)± φ (1)± · · · ± φ (1)︸ ︷︷ ︸
p times

= p · φ(1)

Note that we can say that φ(±1) = ±φ(1) because first φ(1) = 1 · φ(1). Then since φ is an
automorphism, for any x ∈ Q, φ(x−1) = φ(x)−1. Then since we are in Q under addition it
follows that φ(x−1) = φ(−x) = −φ(x) = φ(x)−1. Thus φ(−1) = −φ(1).
Then usthe equality φ(q · x) = p · φ(1). Then we can see

p · φ(1) = φ(q · x)

= ±φ (x)± φ (x)± φ (x)± · · · ± φ (x)︸ ︷︷ ︸
q times

= q · φ(x)

Thus we conclude that

q · φ(x) = p · φ(1)⇒ φ(x) =
p

q
φ(1)⇒ φ(x) = x · φ(1)

Then we can see that this is true for any x ∈ Q except 0. However we do know that φ(0) = 0
since φ is a homomorphism which must map the identity to the identity which is 0 in Q
under addition. Then clearly:

φ(0) = 0 = 0 · φ(0)

Therefore since φ was arbitrary we can see that for any automorphism of Q, φ(x) = x ·φ(x).
�
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Gallian 7.16: Suppose that K is a proper subgroup of H and H is a proper subgroup of G. If
|K| = 42 and |G| = 420, what are the possible orders of H?

Assume K ≤ H ≤ G and |K| = 42, |G| = 420.
Then we know by LaGrange’s Theorem that (|K|)|(|H|) and (|H|)|(|G|). So we know that 42|(|H|),
(|H|)|420, and, since K is a proper subgroup of H and H is a proper subgroup of G, |H| 6= 42 and
|H| 6= 420.
Thus |H| must be a multiple of 42 less than 420 that is also a divisor of 420. Since 42 · 10 = 420,
we know that the divisors of 10, when multiplied by 42, are possible orders of H.
Therefore the possible orders of G are 84 and 210. �

Gallian 7.26: Suppose that G is a group with more than one element and G has no proper,
nontrivial subgroups. Prove that |G| is prime. (Do not assume at the outset that G is finite.)

Let G be a group where |G| > 1 and suppose that G has no proper, non-trivial subgroups.
Then by closure we know that no element has order less than |G| because otherwise we would get
a subgroup generated by that element. Therefore we can see that G is a cyclic group where every
g ∈ G is a genterator.
Then by Lemma 0.1 we can see that G must be finite so |G| = n for some n ∈ N\{0, 1}.
Then by the Fundamental Theorem of Finite Cyclic Groups we know that for each divisor k of n,〈
g

n
k

〉
must be a subgroup of G.

However since G has no proper, nontrivial subgroups we know that ¬∃k where k ∈ N and k > 1
such that k|n. This is precisely the definition of a prime number.
Therefore we can conclude that n is a prime number and ultimately that if G is a group with no
proper, nontrivial subgroups then G must be cyclic with prime order.

Lemma 0.1 (A cyclic group G with no nontrivial, proper subgroups must be finite)
Let G be a cyclic group and assume that G has no nontrivial, proper subgroups and assume by
contradiction that G is infinite.
Then ∃g ∈ G such that 〈g〉 = G. Now consider the set

〈
g2
〉
∈ G.

Then the set
〈
g2
〉

forms a subgroup of G because e ∈
〈
g2
〉
, for any a, b ∈

〈
g2
〉

we can see that
a = g2n, b = g2m so

ab−1 = g2ng−2m = g2n−2m = g2(n−m) = g2l ⊂
〈
g2
〉

for some l ∈ Z.
Thus

〈
g2
〉

forms a proper subgroup of G and arrive at a contradiction. Therefore if G is cyclic and
has no proper, nontrivial subgroups then G must be finite.

�
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Gallian 7.28: Let G be a group of order 25. Prove that G is cyclic or g5 = e for all g ∈ G.
Generalize to any group of order p2 where p is prime. Does your proof work for this generalization?

Let G be a group such that |G| = 25 and assume that ∀g ∈ G, |g| 6= 5.
Then by the Corollary 2 of LaGrange’s Theorem, we know that |g| | |G|. However since the only
divisors of 25 are 1, 5, and 25, the only possible order for some element g ∈ G is 1 or 25.
However since the identity is unique we know that for any element g ∈ G where g 6= e, |g| = 25.
Then since the order of every element is 25, by closure we know that every element is a generator
of G which clearly implies that 〈g〉 = G so G is cyclic.
Therefore if the order of G is 25 and no element has order 5, we know that G is cyclic.

The argument above could easily be expanded to work for the general case:
Let G be a group such that |G| = p2 where p is prime and assume that ∀g ∈ G, |G| 6= p.
Then by the Corollary 2 of LaGrange’s Theorem, we know that |g| | |G|. However since the only
divisors of p2 are 1, p, and p2(since p is prime), the only possible orders for some element g ∈ G is
1 or p2.
However since the identity is unique we know that for any element g ∈ G where g 6= e, |g| = p2.
Then since the order of every element is p2, by closure we know that every element is a generator
of G which clearly implies that | 〈g〉 = G so G is cyclic.
Therefore if the order of G is p2 and no element has order p, we know that G is cyclic. �

Gallian 7.40 Prove that a group of order 63 must have an element of order 3.

Let G be a group such that |G| = 63 and assume by contradiction that ¬∃g ∈ G such that |g| = 3.
Then since the order of G is 63, we know that the possible order of any element of G is 1, 6 3, 7, 21, 63
where we can automatically eliminate 3 since we assumed there are no elements of order 3.
Then for some g ∈ G we have the following situations:

• If |g| = 63, then |g21| = 3, a contradiction. Thus 63 is not a possible order.

• If |g| = 21, then |g7| = 3, a contradiction. Thus 21 is not a possible order.

• If |g| = 9, then |g3| = 9, a contradiction. Thus 9 is not a possible order.

Thus we are only left with the possible orders of 1 and 7. However identities are unique so there is
only one element of order 1. Thus there would have to be 62 elements of order 7.
However by Corollary 1 to Theorem 4.4 we know that in any finite group the number of elements
of order d is an integer multiple of φ(d). But φ(7) = 6 and since 6 - 62, we arrive at a contradiction
since 62 is not a multiple of 6.
Therefore in any group of order 63, there must exists some element of order 3. �

Gallian 7.44: Prove that every subgroup of Dn of odd order is cyclic.

Consider some H ≤ G. Then we know that there are two possible cases for H:

• H has reflections

IfH has reflections, we know thatH must have an equal number of rotations and reflections(by
property of dihedral groups).

Thus if H has m rotations and m reflections(where R0 is assumed to be a rotation) then
|H| = 2m which is even. Therefore no subgroup with a reflection can have odd order.
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• H has no reflections

If H has no reflections when we know that H must consist entirely of rotations. Thus we
know that H is a subgroup of rotations and since the set of all rotations is cyclic, H must be
cyclic.

Therefore the only candidate for a subgroup of Dn with odd order is a cyclic subgroup of set of the
rotations so every subgroup of Dn with odd order is cyclic. �

Gallian Grad Problem: Suppose that G is a group of order p3, where p is prime, and G has
exactly one subgroup for each divisor of p3. Show that G is cyclic.

Let G be a finite group of order p3 where p is prime and assume that G has exactly one subgroup
for each divisor of p3.
Then H1, H2 ≤ G where |H1| = p and |H2| = p2 are the only proper subgroups of G.
Then since p is prime, we know that H1 is cyclic since every group of prime order is cyclic. Then
we can see that every element of order p is in H1, otherwise the other element of order p would
generate another subgroup of order p, which is not allowed.
Thus we have found exactly p− 1 elements of order p in G and these are the only elements of order
p.
Now consider H2 ≤ G where |H2| = p2. Then by problem 7.28 we know that either a) gp = e ∀g ∈
H2 or b) H2 is cyclic.
However, a) implies that there are p2 − 1(the number of nonidentity elements in H2) elements of
order p which we know to be false. Thus b) must be the case that H2 is cyclic.
Then by the Fundamental Theorem of Finite Cyclic Groups we know that H2 has one subgroup of
order p(its only nontrivial divisor since p is prime) and since G has only one subgroup of order p,
we know that H1 ≤ H2.
Then examining the number of elements of each order in H2, we know that H2 has 1 element of
order 1, p− 1 elements of order p which tells us that there are p2 − (p− 1)− 1 = p2 − p elements
of order p2.
Then we can see that in the entire group, there are (1) + (p− 1) + (p2 − p) elements of order (1),
(p), and (p2) respectively. Thus we have a total of p2 elements of order less than p3 which implies
that there must be some elements of order p3(since it is the only remaining possible order for any
element).
Therefore ∃ an element of order p3 in G so we can conclude that G is cyclic. �
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Gallian 8.26: The group S3⊕Z2 is isomorphic to one of the following groups: Z12,Z6⊕Z2, A4, D6.
Determine which one by elimination.

First we know by property of external direct products that |S3 ⊕ Z2| = 6 · 2 = 12| so based off of
cardinality all four options are viable.
However we know that the group S3 ⊕Z2 is not cyclic(since S3 is not cyclic and every subgroup of
a cyclic group should be cyclic) so we can rule out Z12, which is clearly cyclic.
Then we know that since S3 is not abelian, S3 ⊕Z2 can not be abelian(since every every subgroup
must be abelian) so we can rule out Z6 ⊕ Z2 which is abelian(since abelian groups can not be
isomorphic to non-abelian groups).
Then finally [(1 2 3), 1] ∈ S3 ⊕ Z2 has order 6 while the maximal order of any element in A4 is 3.
Therefore the only remaining option is D6 so we conclude that S3 ⊕ Z2 is isomorphic to D6. �

Gallian 8.36: Find a subgroup of Z12 ⊕ Z4 ⊕ Z15 that has order 9.

Since Z12,Z15 have subgroups of order 3 and the trivial subgroup is a subgroup of every group, we
can say that H = 〈(1, 0, 5)〉, which is isomorphic to Z3 ⊕ Z1 ⊕ Z3, is a subgroup of Z12 ⊕ Z4 ⊕ Z15

with order 3 · 3 = 9. �

Gallian 8.42: Determine the number of cyclic subgroups of order 15 in Z90 ⊕ Z36. Provide a
generator for each of the subgroups of order 15.

In order to be a subgroup of order 15, we begin by looking for elements of order 15 in Z90 ⊕ Z36.
The table below enumerates possible elements of the form (a, b) which have order 15 in the external
direct product group:

Order of a ∈ Z90 Order of b ∈ Z36 Number of Possibilities

15 1 φ(15) · φ(1) = 8 · 1 = 8

15 3 φ(15) · φ(3) = 8 · 2 = 16

5 3 φ(5) · φ(3) = 4 · 2= 8

Table 1: Possible elements of order 15 in Z90 ⊕ Z36

where each pair of values has a lcm of 15 and each order is possible by property of cyclic groups.
Then since Z90 ⊕ Z36 is not cyclic, we need to determine which elements of these forms generate
distinct subgroups in Z90 ⊕ Z36. The number of elements of order 15(enumerated by type above)
is 32 and since φ(15) = 8, we know that there should be 32/8 = 4 subgroups of this form.
Then clearly 〈(a, b)〉 = 〈(6, 0)〉 forms a subgroup of order 15 of the first form listed above. But
since 15 and 1 are relatively prime we know that this is the only distinct subgroup of this form.
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Additionally 〈(a, b)〉 = 〈(6, 12)〉 forms a subgroup of order 15 of the second form listed above.
However, since 15 and 3 are not relatively prime we know that this is not the only subgroup of this
form. We can see that the subgroup 〈(6, 24)〉 is also of the second form in the table but is distinct
from 〈(6, 12)〉 since the a value will be different even if the b value is the same multiple times.
Finally 〈(a, b)〉 = 〈(18, 12)〉 forms a subgroup of order 15 of the last form listed above. However,
since 5 and 3 are relatively prime, we know that this is the only distinct subgroup of this form.
Thus we have found the four subgroups of order 15 in Z90 ⊕ Z36:

1. 〈(6, 0)〉

2. 〈(6, 12)〉

3. 〈(6, 24)〉

4. 〈(18, 12)〉

�

Gallian 8.56: Suppose that φ is an isomorphism from Z3⊕Z5 to Z15 and φ(2, 3) = 2. Find the
element in Z3 ⊕ Z5 that maps to 1.

Let φ : Z3 ⊕ Z5 → Z15 and assume φ(2, 3) = 2. Now let φ(a, b) = 1.
Then since 1 is a generator of Z15, we know that (a, b) must generate Z3 ⊕ Z5 since isomorphisms
map generators to generators.
Then we also know that, by property of isomorphisms, that the following must be true:

φ(2, 3) = 2 = (1)2 = (φ(a, b))2 = φ(a2, b2)

and since φ is bijective we get the following:

a2 = 1 and b2 = 3

where a is mod 3 and b is mod 5.
Therefore a must be 1 and b must be 4(since 42 = 8 ≡5 3) which both generate their respective
groups. Thus we conclude that φ(1, 4) = 1. �

Gallian 8.66: Express U(165) as an external direct product of cyclic groups of the form Zn.

By Corollary to Theorem 8.3 we have

U(165) ∼= U(3)⊕ U(5)⊕ U(11)

Additionally we have from the chapter that U(pn) ∼= Zpn−pn−1 if p is a prime number. Therefore
we can conclude that

U(165) ∼= Z2 ⊕ Z4 ⊕ Z10

which is an expression of U(165) in terms of the product of cyclic groups as desired. �

2



Gallian 8.78: Find a subgroup of order 6 in U(700).

In order to simplify this problem we will consider this group in terms of the product of finite cyclic
groups. By Corollary to Theorem 8.3 we have

U(700) ∼= U(22)⊕ U(52)⊕ U(7)

and then by a property from the chapter we can further simplify:

U(700) ∼= U(22)⊕ U(52)⊕ U(7) ∼= Z42−2 ⊕ Z52−5 ⊕ Z7− 70 ∼= Z2 ⊕ Z20 ⊕ Z6

Thus it is clear that 〈(0, 0, 1)〉 ≤ Z2 ⊕ Z20 ⊕ Z6 is a subgroup of order 6. The equivalent in
U(22)⊕ U(52)⊕ U(7) would be 〈(1, 1, 6)〉 which we are guaranteed to also have order 6.
Finally to translate this element back into an element in U(700) we will use the translation defined
in the text:

U100(7) = {1, 101, 201, 401, 501, 601}

where we omit the term 301 since it is divisible by 7.
Thus we have found a subgroup of order 6 in U(700), namely U100(7) stated explicitly above. �
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Gallian 9.24: The group (Z4⊕Z12)/ 〈(2, 2)〉 is isomorphic to one of Z8,Z4⊕Z2, or Z2⊕Z2⊕Z2.
Determine which one by elimination.

First we know that |Z4 ⊕ Z12/ 〈(2, 2)〉 | = |Z4⊕Z12|
|〈(2,2)〉| = 48

6 = 8 so by order alone all three groups are
a possibility.
First consider the group 〈(2, 2)〉:

{(2, 2), (0, 4), (2, 6), (0, 8), (2, 10), (0, 0)}

Then we know that Z8 only has one element of order 2, the element 4. However the group (Z4 ⊕
Z12)/ 〈(2, 2)〉 has more at least elements 2 elements of order, namely (1, 1) 〈(2, 2)〉 since (1, 1)2 ·(0, 0)
is (2, 2) which is in the original set(meaning that the cosets are the same) indicating that we are
at the identity so the element has order 2, and the other element would be (1, 3) 〈(2, 2)〉 since
(1, 3)2 · (0, 0) = (2, 6) which is also in the original coset so it has order 2.
Next we know that the element (2, 3) 〈(2, 2)〉 has order 4 because

• (2, 3)(0, 0) = (2, 3) /∈ 〈(2, 2)〉

• (2, 3)2(0, 0) = (0, 6) /∈ 〈(2, 2)〉

• (2, 3)3(0, 0) = (2, 9) /∈ 〈(2, 2)〉

• (2, 3)4(0, 0) = (0, 6) ∈ 〈(2, 2)〉

Thus after 4 iterations we arrive at the identity element so (2, 3) 〈(2, 2)〉 has order 4, but Z2⊕Z2⊕Z2

has no elements of order 4 so Z2 ⊕ Z2 ⊕ Z2 is not a possibility.
Therefore we can conclude that (Z4 ⊕ Z12)/ 〈(2, 2)〉 ∼= Z4 ⊕ Z2. �

Gallian 9.36: Determine all subgroups of R∗ (nonzero reals under multiplication) of index 2.

The index of a subgroup is the number of distinct left cosets in R∗. The only subgroup with two
distinct left cosets is the positive reals R+ where the cosets are 1 · R and −1 · R+. �

Gallian 9.38: Let H be a normal subgroup of G and let a belong to G. If the element aH has
order 3 in the group G/H and |H| = 10, what are the possibilities for the order of a?

Since (aH)3 = H we know that a3 ∈ H by property of cosets. Then since the order of an element
divides the order of the group so the possible orders of a3 are 1, 2, 5, 10.
Thus the possibilities for the order of a are 3, 6, 15, or 30. �
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Gallian 9.42: An element is called a square if it can be expressed in the form b2 for some b.
Suppose that G is an Abelian group and H is a subgroup of G. If every element of H is a square
and every element of G/H is a square, prove that every element of G is a square. Does your proof
remain valid when “square” is replaced by “nth power,” where n is any integer?

Part 1
Let G be a group and assume that every element in H is a square and assume that every element
in G/H is a square.
Then since every element in the factor group is a square, for some element g ∈ G, we know that
gH = (bH)2 = b2H.
Thus we can see that since gH = b2H, by property of factor groups g ∈ b2H.
Then we know that some arbitrary element of b2H would take the form b2c = b2d2 since every
element of H is a square.
Then since G is abelian and b, d ∈ G, we know that we can write

b2d2 = bbdd = bdbd = (bd)2

Thus any of element b2H is a square and since g ∈ G and g ∈ b2H we can conclude that every
element of G can be written as a square.
Part 2
Yes, let G be a group and assume that every element in H is a nth power and assume that every
element in G/H is a nth power.
Then since every element in the factor group is a nth power, for some element g ∈ G, we know that
gH = (bH)n = bnH.
Thus we can see that since gH = bnH, by property of factor groups g ∈ bnH.
Then we know that some arbitrary element of bnH would take the form bnc = bndn since every
element of H is a nth power.
Then since G is abelian and b, d ∈ G, we know that we can write

bndn = b . . . b︸ ︷︷ ︸
n times

d . . . d︸ ︷︷ ︸
n times

= bd . . . bd︸ ︷︷ ︸
n times

= (bd)n

Thus any element of bnH is a square and since g ∈ G and g ∈ bnH we can conclude that every
element of G can be written as a nth power. �

Gallian 8.66: Let |G| = pnm, where p is prime and gcd(p,m) = 1. Suppose that H is a normal
subgroup of G with order pn. If K is a subgroup of G of order pk, show that K ⊆ H.

Let G,H,K be defined as above and consider the element x ∈ K. Then by Lagrange we know that
|x|
∣∣pk which in turn implies that |x|

∣∣pn.
Then we know that gcd(|x|,m) = 1(since |x| is a divisor of a prime power). Then we know that

|G H| = |G|
|H| = pnm

pn = m so we can say that

gcd(|x|, |G H|) = 1⇒ gcd(|xH|, |G/H|) = 1

where the implication is from the fact that |xH|
∣∣|x|, a result from problem number 37( a proof of

which could be shown on requested).
However since xH ∈ G H, we know again by Lagrange that |xH|

∣∣|G H| which in turn implies
|xH| = 1 which finally implies that x ∈ H.
Therefore since x ∈ K was arbitrary we can conclude that K ⊆ H. �
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