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PREFACE

Today there is a growing recognition of computer science as a laboratory science.
In addition to the mathematical theory that supports techniques in subareas
such as artificial intelligence, the student needs to work with actual programs

and problems to get a feel for the technology. This book grew out of the percep-
~ tion that hands-on experimentation coordinated with textbook explanations of
principles and of actual programs can provide an ideal learning combination for
students of artificial intelligence.

The purpose of this book is to provide an up-to-date and didactically coherent
introduction to the principles and programming methods of artificial intelligence.
It is appropriate for an undergraduate or first-year graduate course. While it is
possible for the student to get acquainted with artificial intelligence in a single
quarter or semester, a sequence of two to three quarters or semesters is prefer-
able. The author covers most of the material in two academic quarters at the
University of Washington. During the first quarter, Chapters 1 through 6 or 7 are
tackled, laying a foundation of symbol manipulation, knowledge representation
and inference. The second quarter takes on the more advanced topics: learning,
natural language understanding, vision and the integration of Al technology into
expert systemns.

If programming is to be given a heavy emphasis, the material can be spread
over more than two quarters; more of the problems may be assigned, and the
instructor may wish to spend some time discussing various aspects of the assign-
ments. In the final term of a two- or three-course sequence, a term project by
each student, which can grow out of one of the programs provided in the text,
can be very successful.

Unlike other Al texts, The Elements of Artificial Intelligence integrates the
presentation of principles with actual runnable LISP llustrations. I have at-
tempted to implement a large enough fraction of these ideas in fully-presented
LISP programs to allow the student to gain enough intuition through experiment
to support his/her understanding of all the principles covered.

While the LISP examples encourage an experimental study of the subject,
theory is not avoided. The student needs to gain an appreciation for the interplay
between theory and practice. Logical reasoning plays a key role in much of Al
today, and other formalisms such as various probabilistic reasoning methods are



alde 3T peortant. Various mathematical ideas come up in practically all areas of
Al, and a study of Al can serve as an invitation to the student to investigate
sojne of these formalisms further.
The prerequisites for a course based on this book are: {a) an intuitive under-
standing of how a computer works; this is normally the result of programruing
experience, (b) an exposure to mathematical logic, at least at the level of the
pipp ositional calculus, and preferably some experience with the predicate calcu-
lup, (<) iigh-school algebra, and (d) some familiarity with data structures such
strings, trees, arrays and graphs. Some of the techniques and examples in
this book may require an understanding of essential aspects of other subjects:
aif understanding of what it means to take a derivative of a function {something
ndrmally taught in freshman caleulus) is needed to appreciate the LEIBNIZ pro-
m in Chapter 3; some exposure to mathematical logic would facilitate an
udderstanding of Chapter 6; an exposure to elementary concepts of probability
islre commended for students embarking on Chapter 7; and Chapter 10 makes
odcasional use of several kinds of mathematics, including the integral calculus
ajd computational geometry. However, most of the examples do not require
mpre than common knowledge (e.g., the rules of chess) to understand.
The Elements of Artificial Intelligence is designed to be a self-contained text.
Hbwever, if a separate, deeper treatment of LISP is desired, there are several
hioks on LISP that could be used in a supplementary fashion. One of these is
L§SP by Winston and Horn; another is by D. Touretsky, and a book particu-
larly suited to students using the Franz Lisp implementation was written by R.
filensky.
The use of programs to illustrate elements of artificial intelligence seems
efsential if students are to get a practical view of the field. Courses in Al today
more and more easily have access to sufficient computational facilities, and in
e opinion of the author, it is inadvisable to neglect the experience of interaction
ith computers in introducing AL
At the same time, a course on artificial intelligence should be an enjoyable
ohe. A primary source of students’ pleasure is the chance to write, play with,
d modify programs that seem to be clever, and to undetstand what makes
them work or not work. To this end, many of the exercises in the book consist
experimentation with or modification of the programs presented in the text,
explaining aspects of their behavior.

Various implementations of LISP may be used to run the examples, including
veral excellent microcomputer LISP’s. One implementation has been devel-
ed by the author specifically to support the examples used in this text; it is
the intemntion of the author and publisher to make this software available at a
st much less than what commercial systems typically cost.

The chapters are intended to be treated in the order given. However, the
ihstructor may choose to omit or supplement material to his or her own taste,
artificial intelligence is a subject of broad scope.

Chapter 1 provides a general intreduction addressing the popular question of

=
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what intelligence is and the question of how Al is related to other fields. Chap-
ter 2 is a brief but self-contained introduction to interactive programming with
the LISP language. This chapter can be skipped by students already familiar
with the language. Programming tools and methodology are further developed
in Chapter 3. There, a pattern-matching function, MATCH, is described that
facilitates several subsequent programs. The chapter illustrates the application
of LISP to simple Al problems: carrying on a dialog, and manipulating mathe-
matical formulas according to rules of the differential calculus. The emphasis is
on programming techniques.

In Chapter 4 {Knowledge Representation), we begin to explore possibilities
for structuring simple factual knowledge to support subsequent inference, using
concrete LISP data structures. The example program LINNEUS, described at
length, builds upon the MATCH function of the previous chapter to illustrate
both the representation of knowledge in an ISA hierarchy, and elementary in-
ference based on that knowledge. The program includes a simple conversational
interface. Several issues are raised here which are discussed further in subsequent
chapters: search, theorem proving and natural language undersianding.

The notion of search, introduced briefly in the previous chapter, is elaborated
in Chapter 5 with concepts of state space, evaluation functions, etc. The impor-
tance of pruning to fight the combinatorial explosion is explained. Alternative
algorithms for searching are presented and compared. Planning is presented as
direct application for search algorithms. The chapter closes with a discussion of
minimax search and its application in programs to play games such as checkers
and chess.

The subject of Chapter 6 is reasoning with the propositional and predicate
logics. This is taken to include the more general issue of mathematical logic as
a means for representation and inference in Al. To show how search applies to
deduction, automatic techniques are presented based on both the propositional
calculus and the predicate calculus. The “Logic-Theory Machine” is presented to
show a more “human” way to find proofs: to search using subgoals. Presenting
unification, we elaborate on the notion of pattern matching (from Chapter 3)
and introduce the PROLOG language. A “mock-PROLOG” interpreter written
in LISP is presented, and several of the chapter’s exercises require the student
to use it or modify it. The subject of non-monotonic reasoning wraps up the
chapter.

Chapter 7, in contrast to 6, deals with knowledge in which probabilities or
certainty values play a crucial role. Bayes’ rule is presented, as are some of
the epistemological considerations for applying it. We illustrate probabilistic
inference networks in the style of PROSPECTOR, and give some guidelines for
constructing them. A complete example program is presented which computes
probabilities for various hypotheses about the quality of a restaurant, given the
values of some ohservable variables. Finally, the Dempster-Shafer calculus is
described.

In Chapter 8 (Learning) we change our perspective. In preceding chapters the



Loncern was with using general knowledge to prove specific theorems, diagnose
barticular symptoms and solve particular puzzles and problems. Not treated was
bhe question of where the general knowledge comes from. Here the problem of
boing from specific facts to general knowledge is treated. Starting with empirical
Hata, one can derive hypotheses, rules of inference and classification rules using
utomatic means. A logical approach to single-concept learning is described, and
his leads into a presentation the version-space method. Automatic theory for-
ation is.described, and a program PYTHAGORUS is presented which explores
space of concepts about geometry using a heuristic search algorithm.

Chapter 9 addresses the subject of natural-language understanding. Begin-
ning with design criteria for language understanding systems, the notions of
Eyntax‘ semantics and pragmatics are discussed. Augmented transition networks

nd semantic grammars are presented as two powerful techniques for building
useful systems. An interactive program “Stone World” that allows the user to
| ommunicate with a simulated character to achieve action through a subset of
matural English demonstrates the power of these methods as well as their limi- .
tations.
Machine vision is the subject of Chapter 10. The chapter covers the under-
lying image representation problems as well as high-level vision techniques. The
complexities of interpreting scenes in the midst of ambiguities and incomplete
information require that vision call upon many other areas of artificial intel-.
ligence to help solve its problems. Computer-vision research has pursued two
related but fundamentally different approaches. One of these is the development
of algorithmic or architectural models to explain how human vision works; this
approach has been labelled “computational vision” by some of its proponents.
The other approach is the inventing of techniques for performing useful tasks;
this approach includes image processing and robotic vision. While this chapter
presents ideas from both approaches, the emphasis is distinctly on the machine,
rather than the human, side of vision. This is consistent with the theme of
the book that artificial intelligence is in large part a design and programming
activity. Two LISP programs are included in Chapter 10, one for connected-
components analysis of binary images, and another for polygonal approximation
of two-dimensional shapes.

While Chapters 2 through 10 present “elements” of artificial intelligence,
Chapter 11 (Expert Systems) discusses the problem of combining the elements
into useful compounds. This chapter touches upon such issues as tools and shells
for building expert systems, special hardware, and limitations of expert systems.

A closing chapter suggests directions in which artificial intelligence may move
in the future, and it mentions some of the technical and social challenges that
artificial intelligence raises or may help solve.

S.L.T.

Seattle, Washington
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Chapter 1

Introduction

1.1 An Intellectual and Technical Challenge

The practice of designing systems that possess and acquire knowledge and reason
with that knowledge is perhaps the ultimate intellectual challenge. What could
be a more intense intellectual experience than creating an intellect? Human
intelligence is applied in every aspect of our culture. In building an intelligent
machine, one might become involved in any aspect of human culture.

Like statistics, artificial intelligence brings a collection of technigues that can
be applied in other fields such as history, biology, or engineering. Like philosophy
and mathematics, it is concerned with reasoning, but unlike either statistics
or philosophy, artificial intelligence gets deeply involved with the theories and
meanings in the subjects to which it is applied. The application of artificial
intelligence to history might easily require that a theory of the rise and fall of
nations be reworked and formalized and that new representations be designed
for describing historical events such as battles. Whereas statistics may help to
justify or refute a hypothesis, artificial intelligence may produce the hypothesis
or show an inconsistency with it. Its wide applicability and the great depth with
which it can embrace a subject make artificial intelligence unique and powerful,
and for this reason artificial intelligence may be the most interdisciplinary field
of study taught in universities.

1.1.1 They Said It Couldn’t Be Done

It is not possible for a machine to think.
Computers can only deal with zeros and ones.
Only natural things like people and animals can have intelligence. .

The prospect of intelligence in machines has produced widespread skepti-
cism. There are two main reasons for this. First, until recently, there have been
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relatively few examples of machine expertise that were in the public eye. Fur-
thermore, Al is sufficiently complicated that it is difficult for the uninitiated to
understand. Without seeing any artificial thing behave intelligently, and with-
out understanding how Al techniques work, it is hard to believe that it could be
possible.

A second teason for the skepticism has to do with people’s perception of
themselves. Most people hold their own intelligence close to their hearts. People
often feel that intelligence is what gives them their significance and their identity
in our complicated world. The possibility that a machine might possess intel-
ligence can be frightening. “If intelligence is something mechanical, then am I
nothing better than a machine?” Machines are supposed to be subservient to
humans. What is to be the status of human beings if we can no longer claim to
be the smartest of earthly beings? Many people would rather believe that ma-
chine intelligence is impossible than try to answer some of these questions.

1.1.2 Artificial Intelligence In Action

Let's consider some systems that have been developed in research centers which
incorporate artificial intelligence.

MOLGEN is a program that assists a molecular geneticist in planning scien-
tific experiments. It was developed by M. Stefik at Stanford University in 1979.
A typical experiment for which MOLGEN successfully devised a plan was one
for the production of insulin by bacteria. Since no natural bacteria can do this,
it was necessary to provide a way to splice an insulin-production gene into the
genetic material of a bacterium. MOLGEN used a problem-solving technique
called “planning” guided by “means-ends analysis” to generate a small sequence
of general steps, and then it expanded these general steps into detailed ones, in-
troducing constraints and propagating them as it progressed. A large knowledge
base about molecular genetics is built into MOLGEN, and this was consulted
frequently by the program as the plan was refined. MOLGEN was actually able
to devise four different plans for the insulin-production experiment.

ACRONYM was developed by R. Brooks and T. Binford at the Stanford
Artificial Intelligence Laboratory around 1981. Provided with an image (such as
an aerial photograph of an airport} and geometric models for each of a set of ob-
jects (such as Boeing 747 and Lockheed L-1011 planes), ACRONYM is capable
of locating objects {in the image) for which it has models. In order to accomplish
this, it uses each model to predict invariant features of the corresponding object
that will occur in an image, it computes a description of the image in terms of
line segments and other graphical primitives, and finally, it determines an inter-
pretation of the image by putting portions of the image description into portions
of the models. Two subsystems are employed: a geometric reasoning system and
an algebraic reasoning system. ACRONYM has been successful in interpreting
airport images; it distinguished airplanes from surrounding structures such as
gate ramps and pavement markings, and it correctly identified a plane as an
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L-1011 rather than a Boeing 747.

AM is an experimental program which performs a kind of automatic theory
formation in mathematics. Given a starting knowledge base containing concepts
about elementary set theory and arithmetic, AM produced new concepts and
conjectures by using a heuristic-search algorithm to explore a concept space.
AM is guided by a mechanism that directs it to perform the task on its list of
things to do that has the highest “interestingness” value. In this way it attempts
to explore the most interesting examples and concepts, and to find the most
interesting conjectures it can. The program managed to synthesize the concept
of prime numbers and to make conjectures about them. AM was developed as
part of the doctoral research of D. Lenat, also of Stanford, in 1976.

These three systems exemplify relatively recent progress in three areas of AL
plan-generation systems, computer vision, and machine learning. Much progress

- ~ has also been made in other areas of Al including logical inference and consis-

tency systems, probabilistic reasoning, speech understanding, and text under-
standing. Let us mention just a few of the many other accomplishments of Al.

In the late 50’s and early 60’s, much of the research that went by the name
of artificial intelligence was concerned with getting machines to play games. An
early success was the checkers-playing program of Samuel!. It could beat most
humans at the game, and it could improve its technique through automatic
learning. Today computers play good games of chess, backgammon, and many
other games.

Al programs have demonstrated that computers can reason effectively with
uncertain information using Bayesian methods. The program MYCIN prescribes
treatment for infectious diseases, after gathering information about symptoms
in dialog with users. Another program, PROSPECTOR, analyzes geological
information obtained from field observations, and makes predictions about min-
erals that might be found at a site. Both programs employ extensive knowledge
bases built with the help of specialists (“experts™). Yet another program, called
XCON, whose development was sponsored by Digital Equipment Corporation,
automatically determines optimal configurations of VAX computers according
to customer needs and the available options.

Translation of written documents from one language to another requires deep
knowledge of both languages as well as about the subject matter under discus-
sion. Machine-aided German/English translation is now performed in a practical
way, combining the human’s deep knowledge with the computer’s speed and fa-
cility with dictionaries and syntax. Computers are also handling semantics; they
translate questions phrased in English into database queries. This eliminates
the need for users of a database to know a strange query language or to write
programs. :

130e Computers and Thought mentioned at the end of this chapter.
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1.2 What Intelligence 1Is

1.2.1 Aspects of Human Intelligence

“She's intelligent.” Different people will interpret this sentence in different ways.
Some take this to mean, “she knows a lot.” Others would say this means, “she
thinks fast.” People who have thought about thinking would probably find
these interpretations somewhat lacking. Someone can be fast, yet stupid; and
yet one can know a lot of facts, but be incapable of putting things together
in a creative fashion. A somewhat more satisfactory interpretation would be,
“her actions are appropriate to each situation.” One, of course, might complain
that this statement is overly general and does not concentrate on the concept of
intelligence sufficiently.

Important aspects of human intelligence seem to be the following: the use
of intuition, common sense, judgment, creativity, goal-directedness, plausible
reasoning {“if A happens, then B might happen, and if so, then C might ..."),
knowledge and beliefs. While human intelligence is powerful and deep, there
certainly are limits to it; humans are intellectually fallible, they have limited
knowledge bases (no man or woman can read every book or have every kind of
experience), and information processing of a serial nature proceeds very slowly
in the hurman brain when compared with today's computers. Thus, the meaning
of “intelligence” is not the same as “the human brain’s information-processing
ability.” However, intelligence is a quality that much of human information pro-
cessing has and which one might hope to find in other creatures or in machines.

Two of the ways that people demonstrate their intelligence are by communi-
cating effectively (through text, pictures, verbal expression, or other medium),
and by learning; that is, acquiring new knowledge through experience, and then
demonstrating that they have learned the knowledge by communicating.

1.2.2 Communication

Effective communication requires skills both in analysis of messages {reception)
and in synthesis of messages (transmission). In order to communicate something
effectively, one must be able to synthesize a message, whether that be a letter, a
paper, poem, musical composition, painting, or other form of communication, in
such a way as to express one’s meaning to one’s intended recipient or audience.
Doing this well may require making judgments about the level of sophistication
of a recipient, careful use of language, and proper speed of presentation.

.. On the other hand, understanding a message also requires intelligence. A
listener must know the meanings of most of the words a speaker is using, and
the listener must have some knowledge of the context for the message. It is
usually necessary for the listener to use contextual knowledge to constrain the
possible interpretations of a message. In addition, the receiving person may
need to be able to formulate pointed questions to gather any bits of lacking
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information that are necessary to understand the message. In either synthesis
or analysis of a message, skills are generally required in determining context and
in altering the representation of information.

1.2.3 Learning

The ability to learn or adapt one’s behavior to new situations is considered by
many to be a vital component of intelligence. Those animals which can change
in response to changes in their environment are considered generally to be more
clever than those unable to change their behavior. The kind of learning that
people do seems to be much more sophisticated than that which animals do;
however, it is likely that many of the basic mechanisms of learning are common
to both humans and lower animals.

What is involved in learning how to deal with a new kind of stimulus? One
must first learn what the major concerns are in the new context. For example, a
new soldier suddenly thrust into war must quickly perceive what his side’s objec-
tives are and use that information as a framework in which to insert knowledge
he gains later. Another part of learning is finding out what the basic descrip-
tive units are in a situation. For example, in learning language one must learn
that phonemes (and at the next level words and then phrases and sentences} are
structural units with which descriptions of experience can be formed. Learning
these structural units is essential in all kinds of learning experience. In learning
to see, one gradually becomes acquainted with such distinctive features as cor-
ners of man-made objecis {such as buildings and furniture). Colors, textures,
and shape features are gradually acquired as tools with which to describe (con-
sciously or subconsciously) visual experience. The third part of learning is the
acquisition of the rules for combining primitive descriptors. How do words go
together? How can a description of an object be composed from shape, color,
and texture features? Both syntactic models and semantic models must be ac-
quired for each knowledge domain. Learning progresses as such models become
more and more sophisticated in order to understand the domain more deeply.

Organizing knowledge is an important component of the learning process.
Just how pieces of information are related to one another and arranged in a
machine or person’s memory is a very important issue. Facts must be accessible
when needed. Skills must come into play readily when the appropriate situation
arises. Knowledge must be structured in such a way that further learning can
take place smoothly. Part of knowledge is a framework in which various facts
and aspects of experience can be stored. The framework must make it possible
for associations to be made between old and new when the old and new are
related. The kinds of knowledge which must be stored in the framework must
include both specific facts and general rules.
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1.3 What Artificial Intelligence Is
1.3.1 A Field of Study

Artificial intelligence is a field of study that encompasses computational tech-
hiques for performing tasks that apparently require intelligence when performed
by humans. Such problems include diagnosing problems in automobiles, com-
puters and people, designing new computers, writing stories and symphonies,
finding mathematical theorems, assembling and inspecting products in factories,
land negotiating international treaties. It is a technology of information process-
ing concerned with processes of reasoning, learning, and perception.
Fundamental issues of artificial intelligence involve knowledge representation,
search, perception and inference. Knowledge can be available in many forms: col-
lections of logical assertions, heuristic rules, procedures, statistical correlations,
etc. Much of Al is concerned with the design and understanding of knowledge-
representation schemes. How can knowledge be represented so that it (a) can be
easily used in reasoning, (b) can be easily examined and updated, and (c) can
be easily judged as relevant or irrelevant to particular problems?

Search is a key issue because it is usually easy to invent brute-force algorithms
to solve problems, but they fail on all but “toy” problems. An understanding
of search techniques can help us to avoid the “combinatorial explosion” that
swamps the brute-force attempts.

Inference is the process of creating explicit representations of knowledge from
implicit ones. It can be viewed as the creation of knowledge itself. Deductive
inference proceeds from a set of assumptions called axioms to new statements
that are logically implied by the axioms. Inductive inference typically starts
with a set of facts, features or observations, and it produces generalizations,
descriptions and laws which account for the given information and which may
have the power to predict new facts, features or observations.

1.3.2 AI: Art or Science?

One difference between a science and an art is that a science consists, in good
part, of a body of proved principles that have been abstracted from nature
through processes of empirical inquiry and logical deduction. That physics is
a science is not contested. On the other hand, an art is for the most part a
collection of techniques, developed pragmatically to a sophisticated level, but
not necessarily in a logical way. Most cooks would agree that cooking is an art
rather than a science.

Artificial intelligence is both an art and a science. The activity of devel-
oping intelligent computer systems employs both proved mathematical princi-
ples, empirical results of studying previous systems, and heuristic, pragmatic
programming techniques. Information stored in relational data structures can
be manipulated by well-studied techniques of computer science such as tree-
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searching algorithms. At the same time, experimental or vaguely understood
“rules of thumb” for problem solving are often crucial to the success of a system
and must be carefully accommodated in intelligent systems.

The field of Al is fascinating because of this complementarity of art and
acience. There is a lot of room for creativity in Al and yet there is a growing
body of mature ideas that are beginning to give more rigorous support to the
practice of AL

1.3.3 A Purpose

The most important purpose of artificial intelligence is to increase man’s under-
standing of reasoning, learning, and perceptual processes. This understanding
i8 desirable for two reasons: it is needed in order to build useful new tools and
it is needed in order to achieve a more mature view of human intelligence than
_ currently exists. The development of new tools is important because they may
have commercial value, they may improve the quality of our lives through better
products or entertainment, or they may increase the efficiency of governments
and companies. In the author’s opinion, a deeper understanding of human intelli-
gence and its limitations is extremely important, for it might lead to suggestions
for partially resolving many of the political and religious disagreements in the
world that currently pose a great threat to the human race.

1.4 Artificial Intelligence Comes of Age

1.4.1 Growth of the AI Research Community

While the intellectual challenge to designers of artificial intelligence has been with
western civilization for centuries, it is only very recently that a glint of practical
feasibility has shown on a wide variety of applications. During the early and mid-
nineteen-sixties, overly ambitious projects in automatic English/Russian trans-
lation not only failed to produce the promised systems, but dampened respect
and enthusiasm for Al as a field. Critics of Al, of whom some were very “anti-
computer” as well, lambasted these early failures and claimed that Al is impos-
gible, although their arguments, typically couched in the vague terminology of
Phenomenological philosophy, have always been fallacious.

Today, however, the field has recovered. Many scientists, engineers, and
Programmers are studying Al techniques and building Al systems. National and
international organizations dedicated to Al have been formed and are growing.
In the U. S., the American Association for Artificial Intelligence now holds a
conference each three out of four vears, at which research results are reported,
tutorials are offered, and an exhibition of equipment and books is held.

The pendulum may even have swung back too far. Amidst the current ex-
citement about Al, some voices are making claims that cannot be substantiated.
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[t is the hope of the anthor that this book will kelp in some small way to keep
the field on an even keel by presenting the elements of artificial intelligence as
they are, describing their limitations as well as their assets.

1.4.2 The Industrialization of Al

[Unlike the early sixties, today a much deeper understanding of the problems
and solutions in the major domains of Al provides a solid base for many Al
bystems and ventures. The intricacies of natural language translation are not
yet completely understood. However, enough is known to permit useful systems
to be constructed; several commercial ventures have recently been launched in
computer-assisted language translation. Machine vision is now practical in areas
of robotics, biomedical microscopy, and materials analysis, even though a good
many basic questions of vision have yet to be answered. The market for expert
systems has begun to open up, and now we see only the first few houses of what
will become a large metropolis.

1.4.3 What An Al Practitioner Does

[For the next decade, the majority of artificial intelligence engineers are likely to
be designing expert systems. Their jobs will often be to work with experts in
particular fields such as medicine, corporate finance, astrophysics and anthro-
pology to develop suitable representations for the knowledge in each field. The
|Jknowledge must be put into a form on which useful inferences can be made au-
tomatically. Such work is challenging and at the forefront of the information
revolution.

In addition to developing knowledge representations, suitable displays and

|means of access must be designed for users. Natural language and CRT interfaces
must be designed, often with capabilities particular to each application.
After an expert system has been designed and debugged it may require main-
[tenance. New knowledge must be added; heuristics found to be inferior need to
be replaced; new technology may need to be incorporated. There is usually room
for improvement in fields such as medical diagnosis, mathematical theorem prov-
ing, anthropology, etc. Post-installation changes to expert systems are likely to
keep Al practitioners in work for a long time to come.

Some Al people will be scientists continuing to study basic mechanisms of
machine learning and problem solving. The field is sufficiently rich that many
[basic issues, such as optimal search, probabilistic reasoning and inductive infer-
ence, will provide open problems for many years.

1.5 Philosophical Challenges

The existence of artificial intelligence puts a new light on much of philosophy.
“Can a machine think?" People often feel threatened by the possibility that a
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machine can think. It suggests that they, too, are machines or no better than
machines, Without an understanding of how the machine works, the intelligence
of the machine is a mystery to them, and the machine may seem to be an
instrument by which the machine’s creators might replace or overpower and
control them.

People argue this question at higher levels of sophistication than in the past,
but the debate continues. An excellent presentation of some of the views on this
may be found in Pamela McCorduck’s book Machines Who Think.

1.5.1 Turing’s Test

One of the philosophical problems of Al is also a practical problem. How can
one tell when artificial intelligence has been achieved? A manager who wants
to evaluate an Al project may well need a way to answer this question. The
_ traditional answer to this question is that artificial intelligence is manifested in
a machine when the machine’s performance cannot be distinguished from that
of a human performing the same task. This answer is based on a suggestion by
Dr. Alan Turing that comparison with a human be the criterion by which it is
decided whether or not a machine can think. Turing’s test is to put a human and
a machine in one room, and another human, the “interrogator,” in a separate
room, perhaps as illustrated in Fig. 1.1. The interrogator may ask questions

A B
machine intermediary human

system ~
XS

interrogator % )\3

Figure 1.1: Turing’s test. The interrogator {(a human) must distinguish the
other hutnan from the machine.

to either the other human or the machine, referring to one as A and the other
as B. However, the interrogator is not told which of A or B is the human or
which is the machine. The interrogator cannot see or hear the others but passes
messages through an intermediary, which could be an electronic mail system or
could be another person. As they respond to questions, A and B each compete
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with one another to convince the interrogator that he/she or it is the human.
If the machine can win, on the average, as often as the human, then it passes
the “Turing test,” and, by this particular criterion, can think. In practice, the
outcome of such a test would probably depend heavily on the humans involved,
as well as the machine.

As we grow more sophisticated, we realize that the question of whether a
system is intelligent is a shallow one. We should be asking about the kinds,
quality and quantity of knowledge in a system, the kinds of inference that it
can make with this knowledge, how well-directed its search procedure is, and
what means of automatic knowledge acquisition are provided. There are many
dimensions of intelligence, and these interact with one another.

1.5.2 Al and Human Beliefs

Studies in several areas of Al—concept formation, abstraction hierarchies, belief
representation, and truth maintenance systems—provide plausible explanations
for some intellectual limitations of human beings. People develop prejudices
by automatically forming generalizations even when it is statistically invalid to
do so. People are willing to adopt fantastic beliefs and maintain them in light
of serious inconsistencies, provided the beliefs supply plausible explanations for
certain questions that are emotionally central. What are beliefs? Can they or
should they be represented in systems as if they were knowledge? Is a man
or a woman just the sum of his or her beliefs? Can a person or personality be
represented in a machine? If so, does this permit a kind of morality or immorality
to be manufactured? What kinds of laws should there be to regulate societies of
intelligent machines?

The fact that AI brings up so many questions like these contributes to the
excitement of an involvement with artificial intelligence. For years, most scien-
tists have treated computers as fairly stupid tools. More and more people are
realizing not only that computers are changing the way our society processes
data, but that the ideas of computing are bringing some intellectual traditions
into question, changing how we think about ourselves. Al is at the forefront of
this computer revolution.

1.6 The Reference Literature

Beginning with the volume of collected papers, Computers and Thought, edited
by E. Feigenbaum and J. Feldman in 1963, there has been a gradual growth of
books that can be considered basic books in Al. Computers and Thoughtis not a
text, but it introduced the subject of Al using two kinds of papers: (1) method-
ological articles such as A. Turing's “Computing Machinery and Intelligence,”
and M. Minsky’s “Steps Toward Artificial Intelligence;” and (2) descriptions of
computer programs. Some of the programs are (a) the “Logic Theory Machine”
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of A. Newell, J. Shaw, and H. Simon, and (b) a geometry theorem-proving pro-
gram by H. Gelernter.

The first textbook was Artificial Intelligence: The Heuristic Programming
Approach, by J. Slagle. This book surveys some of the programs for game-
playing and problem-solving that had been completed by the early 1960’s. The
principle of minimax analysis of a game tree is presented there in a clear way.

A text by N. J. Nilsson entitled Problem Solving Methods in Artificial Intel-
ligence appeared in 1971. It presented two key topics in a straightforward and
pleasing way. The first topic is that of searching through a space of problem
configurations called states. The second topic is the use of the predicate calculus
in automatic reasoning. This text is mathematical in style when compared with
most of the other Al texts.

The books by Slagle and Nilsson each treated relatively specific parts of Al as
might be expected for the time. A book that covers cognitive models, perception
and inductive methods such as clustering of patterns for subsequent recognition,
in addition to theorem proving, was the book Artificial Intelligence by E. Hunt.
This book covers a much greater variety of mathematical techniques than did its
predecessors. Occasionally the treatment is dense, but the variety and depth of
topics treated continue to make the book useful.

An introduction to Al suitable to readers who want a flavor for the issues
and applications of Al without getting deeply involved in technique was written
by P. Jackson in 1974. A book giving a similar variety of topics but including
the basic techniques of Al was written by B. Raphael. It appeared in paperback
form in 1976, and it was entitled The Thinking Computer: Mind Inside Matter.

A course for college undergraduates at MIT was developed by P. Winston,
currently director of the AT laboratory there. This course concentrated on the
systems and studies done at the MIT laboratory, nonetheless spanning a con-
siderable range of topics. The course notes developed into the text Artificial
Intelligence (bearing the same title as Hunt’s book). This was the first Al text
to include LISP programming techniques as part of the core material.

In 1981, Nilsson published a second Al text, entitled Principles of Artificial
Intelligence. Like his earlier Al text, this one emphasizes search and the predicate
calculus as the key components of Al systems. The treatment of both topics is
expanded in the new book. In addition, the programming methodology called
“production systems” is examined as a means of implementing the search and
deduction methods espoused. Extensive bibliographical material on production
systems, problem-solving, plan-generation and theorem proving is given.

A text, Artificial Intelligence by Elaine Rich, was published in 1983. Tt
surveys Al in a style comparable to Raphael’s The Thinking Machine. Although
there is a relatively scanty treatment of vision, Rich’s text has particular strength
in knowledge representation. A graduate-level text Introduction to Artificial
Intelligence by E. Charniak and D. McDermott emphasizes the computational
modelling of human faculties.

The majority of writings on Al are research papers. Some good collections
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of these papers are the following:

1. IJCAI Proceedings. Every two years starting in 1969 there has been an
“International Joint Conference on Artificial Intelligence.” The proceed-
ings of these contain many papers covering all the major topics in AL

2. AAAI Proceedings. Starting in 1980, there has been a conference each
year, {except years when the IJCAI is held in North America) sponsored
by the American Association for Artificial Intelligence.

3. Technical Reports from major centers. During the 1970's most of the
published research on Al came out of large centers that were sponsored
by the Department of Defense. Some of these centers were the Stanford
Artificial Intelligence Lab., the MIT AI Lab., and the Computer Science
Department at Carnegie-Mellon University.

4. Journal of Artificial Intelligence. A limited number of papers of high aca-
demic quality are published in this journal by North-Holland Publishers.

5. IEEE Transactions on Pattern Analysis and Machine Intelligence. The
majority of the papers published here have focussed on computer vision
and pattern recognition, and this publication has more of an engineering
orientation than the Journal of Artificial Intelligence.

6. The AI Magazine. This periodical contains semi-academic articles, book
reviews, news items, and paid advertising. It is published by the AAAIL

7. SIGART Neuwsleiter. News items and unrefereed articles can be found
several times a year in this publication by the Association for Computing
Machinery Special Interest Group on Artificial Intelligence.

The three Al programs mentioned earlier, MOLGEN, ACRONYM, and AM,
are described in more detail in Volume 3 of the Al Handbook (edited by Cohen
and Feigenbaum).
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Chapter 2

Programming in LISP

2.1 Introduction

The programming language LISP was developed at the Massachusetts Institute
of Technology in the late 1950’s under the direction of J. McCarthy. It was
designed specifically for list processing: that is, the manipulation of symbolic
information (it does have a capability for numerical data handling as well, but
it was designed primarily for non-numerical computation). The language was
based in part on the “lambda calculus” of A. Church; the lambda calculus is
a formal, applicative language with interesting theoretical properties. LISP is
especially good for applications in artificial intelligence, and is the most widely
used language for this purpose.

LISP gives the programmer great flexibility and power. Data structures are
created dynamically without need for the programmer to explicitly allocate mem-
ory. Declarations for data are not necessary, and a LISP atom, acting as a
variable, may represent one kind of object (e.g., an integer) at one time and a
completely different kind of object (e.g., a binary tree} a little later. Using one
basic data-structuring concept, the “S-expression,” both programs and data are
easily represented. Execution of programs written in LISP is normally accom-
plished by an interpreter program; thus a compiler is not necessary. Occasionally
a compiler is used to optimize relatively fixed parts of a particular software col-
lection.

A LISP program consists of several function definitions together with other
statements which work together to perform the desired task. Usually, one writes
the function definitions using a text editor or a structure editor. In MACLISP
{and some of its derivatives) one edits function definitions in an external text
editor. In UCILISP and most versions of INTERLISP there is a structure editor
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built into the LISP system which may be used. In either case the programming
process usually proceeds through iterations of program modification and program
testing. The interactive nature of LISP makes it possible to enter definitions
directly into the LISP system, without the use of an editor. However, if there
is no editor within the LISP environment (of the implementation you are using)
as in MACLISP, it is usually too inconvenient to edit the functions within the
LISP system. :

The program statements of LISP are essentially functional forms. However,
since these functional forms can and usually are nested to a large extent, one
normally does not refer to particular lines of LISP code as statements.

In this chapter the LISP language is presented, beginning with the underlying
representation for LISP programs and data: S-expressions. We then describe
how operations are expressed as functional forms. Gradually, we increase our
vocabulary of functional forms until we can conveniently understand and write
functions in LISP that are useful in artificial intelligence experiments.

2.2 S-Expressions

All data and program statements in LISP are represented in terms of S-
expressions. S-expressions often appear as lists of items enclosed in parentheses,
but they are actually more general. An S-expression is either an “atom” (see
below), a list of S-expressions, or a “dotted pair” (see below) of S-expressions.
(The definition for S-expression which will be stated more formally later is re-
cursive.) Before defining each of these three types of S-expressions, let's consider
some examples of S-expressions.

A a literal atom
SAMPLELITERALATOM a literal atom

4 a numeric atom

(ABCD a list of S-expressions

(A (DOG CAT) 7) a list of S-expressions

(4 . B) a dotted pair of S-expressions
(DOG . (CAT . MOUSE)) a dotted pair of S-expressions

The first three of these examples are atomic S-expressions while the last four are
composite.

“Atoms” are the basic building blocks of S-expressions. An afom is either a
“numeric atom” such as an integer {e.g., —25) or a floating point number {called
a FLONUM, e.g., 107.3), or a “literal atom,” very much like an “identifier” of
other programming languages such as PASCAL. A literal atom is described as
a string of characters beginning with a letter, the characters generally being
restricted to letters, digits and a few other characters.
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Let us now give a formal definition of “S-expression.” The definition is re-
cursive, and in its course are also defined the terms “dotted pair”’ and “list.”

1. Any atom is an S-ezpression.

9. If X and Y are S-expressions then (X . Y) is an S-expression and is also
called a dotted pair.

3. If 51, 54,..., S are S-expressions, then (S; Sz - -+ Si) is an S-ezpression
and is also called a list.

4. Only an object formed by a finite number of applications of rules 1, 2 and
3 is an S-expression.

Thus atoms may be put together to form more complicated S-expressions
using either the dotted-pair construction or the list construction. Although the
" list construction is far more common in actual usage of LISP, we begin here
describing the dotted pair construction because understanding it gives a clear
jdea of how S-expressions are represented in a computer’s memory, and it is then
easy to understand how lists are represented, too. A LISP system can seem
mysterious without some good notions of how its structures fit into the machine.
A dotted pair (as we have defined it) consists of an ordered pair of S-
expressions, which by convention are written separated by a period and sur-
rounded by parentheses. For example, two atoms A and B may be written in
the following way to represent the dotted pair of A and B:

(A . B)

The resulting pair is an S-expression which may be further combined with other
S-expressions to build larger ones.

2.2.1 Machine Representation of S-expressions

The main memory of a LISP system is logically divided up into “cells.” A cell is
typically two machine words of storage and represents a dotted pair. Denoting
€ach cell by a rectangle with two halves containing arrows or atoms, the printed
and the diagrammed representations for two dotted pairs are shown in Fig. 2.1.
The letters A through D within the rectangles indicate the presence of pointers
to literal atoms. The arrows represent pointers to subexpressions.

Before we expand on the nature of lists in LISP, we must mention a literal
atom “NIL” which has special significance. The atom NIL is used in LISP for
several purposes. The most important of these is as a marker at the end of a
chain of pointers in memory. (In other words, NIL is used to terminate lists.
Later in this chapter we shall see how NIL also serves to represent the boolean
value “false” in many contexts.) The third diagram in Fig. 2.1 contains such a
chain, and the diagonal slash is used to indicate NIL.
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ATE @ .8)

(A.B).(C.D)

[A]B - [¢]p

(A B C)

Al? BJ¢ CIN

Figure 2.1: Printed and diagrammed representations of S-expressions in mem-
ory.

As defined above, a list is a sequence of S-expressions, separated by spaces,
and surrounded by a pair of parentheses. When the number of S-expressions in
the sequence is zero, the list is empty and may be written as:

0

The atom NIL is an alternative way to indicate the empty list. “NIL” and *()”
are equivalent.

2.2.2 Correspondence Between Lists and Dotted Pairs

Except for the empty list, NIL, a list is always equivalent to some dotted pair of
a particular kind. The machine representation for a list and its corresponding
dotted pair are identical. For example the list illustrated in the third diagram
of Fig. 2.1 is equivalent to the dotted pair

(4 . (BC)

Eliminating the sublists by converting into dot notation as far as possible yields
the S-expression below, which is the dot-notation equivalent of the original list.

(A . (B . (C.NIL))

Note that the last atom in the dotted-pair representation of a list is always the
special atom NIL.

Using the fact that NIL is equivalent to {} and the fact that an expression
of the form (X . NIL) is equivalent to one of the form {X), it is not difficult to
see that the following three S-expressions are equivalent:
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(NIL . NIL)
0 - O

(0)

Here are some additional examples of dotted-pair expressions which have
equivalent list forms:

in dot notation in list notation

(8 . NIL) (a)

(CXE . NILY . (Y . {2 . NIL))) [ (DD Y 2)

((APPLE . BANANA) . NIL) ((APPLE . BANANA))

Any list can be re-expressed in dot notation (also called dotted-pair notation}.
However, only certain S-expressions in dot notation can be converted into list
notation!. For example, the dotted pair (A . B) is not equivalent to any list. It
doesn’t even contain the atom NIL, which is a required terminator for any list.
The third example above shows an S-expression which cannot be completely
converted to list notation. The right-hand version is clearly a list, but one of its
elements is a dotted pair that cannot be expressed as a list. Any S-expression
which is not an atom is composite. In practice, lists probably account for 98%
of all composite S-expressions that are actually used. Arbitrary dotted pairs,
once common because they are more space-efficient, are used infrequently today,
since list notation is a more convenient representation for the programmer to
work with than is dot notation.

2.3 Functional forms

2.3.1 Some Forms and Their Evaluation

In order to get a computer system to perform operations, it is necessary to give
it some instructions. In LISP, one does this by presenting the computer with
special S-expressions called “functional forms.” A functional form consists of
a list whose first component is the name of a function and whose subsequent
components are arguments to that function. An example is the following:

(ADD1 5)

Here “ADD1" is the name of a function and 5 is an S-expression that plays the
role of an argument to the function. By typing in such an S-expression to the
LISP system the programmer is requesting that LISP evaluate that function on
those arguments. After typing it, LISP responds with “6.”

1By examining the memory diagram for an S-expression in dot notation, we can deter-
mine whether or not it can be converted into list notation (such that the resulting expression
contains no dots). The diagram may be viewed as an ordered binary tree. Each chain con-
sisting only of arrows leaving right-hand sides of memory cells must terminate at a cell whose
tight-hand side contains NIL.
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Most of the functions commonly provided in LISP systems are shown in
Fig. 2.2. The various kinds of functions are described throughout this chapter.
An alphabetical listing of LISP functions with brief descriptions is given in an
appendix.

2.3.2 Nested Forms

Arguments to functional forms can themselves be functional forms. For example,
the following form produces the value 47:

(PLUS 2 (TIMES 5 9))

Thus, subexpressions such as (TIMES 5 9) in the form above are treated as
functional forms themselves. When the LISP system computes the value of the
whole expression, it first evaluates the subexpression (getting 45 in this example)
and then this partial result is used as an argument to the outer function (here
PLUS) and the final value is computed.

2.4 CONS, CAR and CDR

In our definition of “S-expression” we gave rules for composing dotted pairs and
lists. There are functional forms that perform such construction and also for
taking out the parts of a composite S-expression. The name for the operation of
putting two S-expressions together to form a dotted pair is “CONS.” CONS is
a binary operation takijng two S-expressions and returning a new S-expression.
Here are two examples using CONS to build larger S-expressions:

(CONS 1 2) produces the value (1 ., 2)
(CONS 1 NIL) produces the value (1)

When the CONS operation is performed, a cell of memory is allocated, and
[the contents of the left and right halves are set to the values of the two arguments.
When the second argument to CONS is a list, the effect of the CONS is to
create a new list in which the first argument to CONS is the element of the
[list, and the second argument is the remainder of the list. Thus, if x and y are
S-expressions whose values are 1 and (4 5 6), respectively, then (CONS z y)
produces the value (1 4 5 6).

Functions which extract the components of a dotted pair {(and therefore also
|access parts of lists) are CAR and CDR. CAR takes a composite S-expression and
returns as value the first component S-expression. Applying the CAR function
to the dotted pair (A . B) produces A as value. The effect of CAR on a list is
[also to produce the first element of the list as value. Thus CAR applied to the
list (X Y Z) produces X as value.
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Predicates:
Input and Outpul: (§ULL 8)
(READ §) (ATOM 5)
(TYI) (NUMBERP 5)
(PRINT 5) (EQ 41 A2)
(TERPRI) (EQUAL S1 82)
(TYD N} {LESSP N1 N2}
(GREATERP N1 N2)
List Structure Manipulation: (ZEROFP N}
{CONS 81 S2) (DNEP N)
{CAR 8) (MEMBER 51 32)
(CDR S)
(CAAR 5) Logical Punclions:
(CADR 8) (AND 81 52 ... 3k)
(CDAR S) {OR S1 52 ... S5k
{CDDR S) (NOT S)
(APPEND L1 L2 ... Lk}
(RPLACA S1 52) Arithmetic:
{RPLACD S1 52) (ADD1 N}
(NCONC L1 L2) (SUB1 N}
{(PLUS W1 N2 ... Nk)
Evaluation-related: (TIMES N1 N2 ... HNK)
(EVAL 32) (DIFFERENCE Ni N2)
(APPLY F L) (QUOTIENT N1 N2)
(MAPCAR F L) (REMAINDER N1 N2}
{LIST S1 52 ... 3k) (MAX N1 K2 ... Nk)
(QUOTE S5} (MIN Ni N2 ... Mk}
(FUNCTIOR S)
(SET S1 82) Function and Property Definition:
(SETQ A §) (DEFUN A L S)
{DEFEXPR A L 3)
Control Forms: (LAMBDA L 5}
(COND (S1a S1b) (PUTPROP A 51 S2)
(S2a 32b) (GET & 5)
e {PLIST &)
(Ska Skb) )
(PROG L 81 52 ... Sk) Debugging:
(GO A) (THACE F1 F2 ... FK)
(RETURN 8) (UNTRACE F1 F2 ... Fk)
L (BREAK)

-— an S-expression
—  alist

a number

—  a function

— a literal atom

2w
|

Figure 2.2: Functions commonly provided in LISP systems. Note that the values
of arguments have the types indicated.
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Similarly, CDR produces the second component of the dotted pair as value.
CDR applied to (A . B) produces B. Applied to a list, CDR returns as value the
list, missing its first element. Thus the CDR of the list (X Y Z) is the list (Y 2).

In a sense, each of CAR and CDR is a partial inverse of CONS. Evaluating
the following functional forms illustrates this

(CAR (CONS 1 2)) produces the value 1
{CDR (CONS 1 2)) produces the value 2

However, as we shall see later when we discuss the special functional form
SETQ, neither CAR nor CDR nor both taken together necessarily undo the
effect of CONS,

Functional forms built up using CONS, CAR and CDR can be used to create
and access parts of arbitrarily complex S-expressions. By putting S-expressions
together with CONS, arbitrarily large S-expressions may be formed.

(COKS 5 (CONS (CONS 6 (CONS 1 2)) 8))

produces (5. ((6 . (1. 2)}. 8)).

Combinations of CAR and CDR are needed so often to access various com-
ponents of S-expressions that additional functions are provided in most LISP
systems to abbreviate the more common combinations. The following twelve are
standard; some implementations provide more. Each combination is shown in
the left column and its corresponding abbreviation is in the right-hand column:

(CAR (CAR X)) (CAAR X)
(CAR (CDR X)) (CADR X)
(CDR (CAR X)) (CDAR X)
(CDR (CDR X)) (CDDR X)
(CAR (CAR (CAR X))) (CAAAR X)
(CAR (CAR (CDR X))) (CAADR X)
(CAR (CDR (CAR X))) (CADAR X)
(CAR (CDR (CDR X))} (CADDR X)
(CDR (CAR (CAR X))) (CDAAR X)
(CDR (CAR (CDR X))) (CDADR X)
(CDR (CDR (CAR X))) (CDDAR X)
(CDR (CDR (CDR X}}) (CDDDR X)

The general rule for combining several CARs and CDRs together is that one
[forms a string by concatenating the middle letters (A’s or D’s) of all the instances
in the same order that they appear in the expanded form, and then a C is prefixed
and an R suffixed to the string.
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2.5 QUOTE and SETQ

There are exceptions to the general pattern of evaluating functional forms that
has been described so far. For example, a special functional form is QUOTE.
The QUOTE of something evaluates to itself. Another special form is SETQ,
used for saving a value by associating it with an atom.

2.5.1 QUOTE

QUOTE is used to suppress the evaluation of an S-expression in a place in which
it would otherwise be evaluated. Here are examples:

(PLUS 1 2) produces 3

(QUOTE (PLUS 1 2))} produces (PLUS 1 2)
(QUOTE &) produces A

(CAR (CONS 1 2)) produces 1

(CAR (QUOTE (CONS 1 2))) produces CONS
'(PLUS 1 2) produces (PLUS 1 2)

As the last example shows, there is an abbreviation for the QUOTE form.
This is the single quote mark. Thus, 'X is equivalent to (QUOTE X). Note
that the quote mark avoids having to use one pair of parentheses needed by the
canonical version of the QUOTE form. It is often useful to precede an argument
to a function by a quote mark so that the argument will evaluate to itself before
the function is applied. Consider the next example.

(CONS (CAR *(A . B)) (CDR *(C . D)))

Here the top-level function in this functional form is CONS. There are two ar-
guments to it. In this case the first is the smaller functional form (CAR ’(A .
B)) and the second is the functional form (CDR *(C . D)). Before the top-level
function CONS can be applied to the arguments, those arguments must be eval-
uated. The first subexpression (CAR (A . B)) produces A upon evaluation. The
second subexpression, (CDR *(C . D)), produces D. The value of the top-level
form is now equivalent to that of the form (CONS A °D) which in turn is (A.
D).
Note that the form

(CAR (X Y))

will usually cause an error (unless the programmer defines X to be a function},
unlike the form

(CAR ' (X Y))
which yields the value X.
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R.5.2 SETQ

s we have already seen, (PLUS 5 7) is a sample functional form in LISP, When
LISP interprets this form, the function PLUS will be applied to the arguments
p and 7. The value of this form, 12, will then be computed and returned. Such
. functional form may be typed directly into LISP and the system will evaluate
t and print its value.

If it is desired to have the system remember a value, a form such as the
ollowing could be used.

[SETQ X (PLUS § 7)).

['his form first evaluates the PLUS expression and then assigns its value to the
ptom X. After this form has been evaluated, the expression X may be evaluated
o recall the value 12. Note that there is no need to declare X to be a variable.
ts mere mention in the expression is sufficient to make LISP treat it as one.
Also, note that there is no need to quote the argument X here. The first
grgument to SETQ is automatically quoted; in fact, SETQ is short for “SET
DUOTE.”

The expression above has the same effect as the following one using SET,
vhich is not a special form:

SET X (PLUS 5 7)).

.6 Special Forms

ertain functional forms are called “special” forms. Special forms are either
ose that take a variable number of arguments, rather than a number fixed by
e function definition, or those that do not have their arguments evaluated at
qntry in the standard way. We have already seen two special forms, QUOTE and
$ETQ. The single argument to QUOTE is not evaluated, and the first of the two
grguments to SETQ is not evaluated. An example of a form that is considered
gpecial even though all its arguments are evaluated uses the arithmetic function
MAX. Any number (1 or more) of arguments may be supplied to MAX. For
qrample, (MAX 3 7 2 10 -3) produces the value 10. Actually, PLUS is also a
gpecial form in most LISP implementations, so that, for example, (PLUS 1386
10) is legal and produces the value 20.

Another special form is the AND function form. Evaluation of (AND
¥\ E; - E}) proceeds by successive evaluation of subexpressions E\, E;, until
qne is found with value NIL, at which point the value NIL is returned as the
}fﬁue of the whole form. If none of the subexpressions evaluates to NIL, then T
]

ip returned as the value of the whole form. Like MAX, AND takes one or more
rguments. Unlike MAX, it is possible that some of the arguments to AND are
fever evaluated.
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LIST is a special form which takes any number of arguments and returns a
list of their values.

(LIST 2 (PLUS 2 7) (CONS 'A ’B)) produces (2 9 (A . B))

Other special forms are COND and PROG, which control the evaluation of
their enclosed subexpressions. These are described later.

2.7 Predicates

Predicates are functions that return values normally interpreted as Boolean truth
values. For example, (LESSP 3 5) returns the value T, whereas (LESSP 3 3)
returns value NIL. This predicate tests to see whether its first argument is less
than its second argument. Another predicate (GREATERP 3 5) returns NIL in

3 this instance. The special form AND described earlier may be considered tobe a

predicate. It is interesting to note that in most LISP implementations, any value
not explicitly NIL is taken to mean “true” in any logical test. Consequently, a
predicate may return any value except NIL to indicate a true condition. Thus
(AND A 'B) may evaluate to T, to B or to any non-NIL value depending upon
the implementation. Like AND, OR is a special form which produces a logical
result. Other examples of predicates that are standard are ATOM and NULL.
(ATOM X) evaluates to T if X is an atom, NIL otherwise. (NULL X) evaluates
to T only if X is NIL, and NIL otherwise. Most LISP systems recognize NOT
as a synonym for NULL. (NUMBERP X)) yields T if X evaluates to a numeric
atom.

The predicate EQUAL can be used to compare any S-expression with another.
For example (EQUAL *(A B (C)) (A B (C))) returns T. There is a more efficient
function, EQ, that can be used if the arguments are literal atoms. For example,
(EQ’A’A) produces T and (EQ A 'B) produces NIL. However, EQ may produce
NIL even if given two arguments that are EQUAL, if the arguments are numeric

or non-atomic?.

2.8 COND

Several special forms are particularly useful in controlling the execution of LISP
programs. One of these is COND. A COND form {or “conditional form”) takes
an arbitrary number of arguments called clauses, each of which is a list of two
S-expressions. The general format of a COND form is as follows:

(COND (Cy Ey) (Cy Ep) --- (Cn En))

2y most LISP systems, EQ returns T if the two pointers that result from evaluating the
two arguments are the same; thus two different pointers to similar structures would lead to
EQ returning NIL.
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The subexpressions C; represent conditions, and the subexpressions E; rep-
resent corresponding actions or results.

The value returned by the COND form depends upon the values of one or
more of the C; and precisely one of the E;. Suppose that the first C; whose
value is not NIL is C,. Then the value returned by COND is the value of
Ey. If none of the C; are true, the value returned by COND is undefined. In
programming practice usually the last C; is the constant T. Programming in this
manner is analogous to the use of an ELSE clause with the IF construction in
other programming languages.

For example,

(COND (NIL 1) (T 2) (T 3))

produces the value 2. As another example, the following sequence results in the
value B.

(SETQ X )
(SETQ Y NIL)
(COND (X ’B) (Y 'C))

Most modern LISP interpreters accept a more general format for COND.
[nstead of requiring that each E; be a single S-expression, they permit one or
more expressions to follow each C;. A clause then has the form:

(C E, Ey -+ Ep).

After a C; is found to be the first condition that is not null, the corresponding
sequence of expressions is evaluated in order, and the last one’s value gives the
value for the entire COND form. This feature is sometimes referred to as the
“implicit PROG,” and the reason for this will be clear later when the PROG
[form is discussed. We will occasionally rely on this feature in subsequent chapters
because it helps make pregrams shorter and easier to read.

Many function definitions are based upon the COND form. In order to illus-
trate this, we turn now to the general problem of defining functions in LISP.

2.9 Defining Ordinary Functions

A LISP program consists primarily of a set of function definitions. The pro-
grammer writes these functions so that they work together to perform a given
Lask. There are several ways in which functions can be defined, but the most
common method is using DEFUN. (Later sections describe how special forms
hind LAMBDA expressions can be defined.)
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2.9.1 DEFUN

To define a new function in LISP, the programmer gives the system a special
form. The usual general format for a function definition is as follows:

(DEFUN function-name argument-list function-body)

When this form is evaluated, the LISP system will enter a function definition
into the LISP system under the name represented by function-name. The list of
arguments indicates what parameters used by the function are to be bound to
values when the function is called. The body is a functional form which expresses
the value that the function is to return in terms of its argument values when it
is called. For example, we can define a function which computes the square of a
number as follows:

E  (DEFUN SQUARE (X) (TIMES X X))

Once the definition has been evaluated, we can make use of it; for example,
typing

(SQUARE 7)

would result in the value 49 being returned.

In most respects a LISP function is conceptually similar to a function or sub-
routine in a programming language such as PASCAL, FORTRAN, or PL /1. An
interesting difference is that the arguments are not constrained by declarations to
particular types; that is, each argument need only be some S-expression. When
a function is called, the arguments in the calling form are paired {“bound”) with
the formal arguments in the definition. Then the body is evaluated. (If there is
an incompatibility between an S-expression and an operation to be performed
on it, such as in trying to add 5 to the literal atom A, a run-time error will be
reported.)

2.9.2 Recursive Definitions of Functions

Functions to perform complex operations are generally defined in terms of sim-
pler ones. However, it is often useful to define a function in terms of itself. More
particularly, the function applied to a complex object can be defined as a com-
bination of results of applying the same function to components of the complex
object. Such function definitions are recursive.

Below is a function definition based upon COND. The function computes the
length of a list (i.e., the number of top-level S-expressions}.

(DEFUN LENGTH (LST)
(COND ((NULL LST) 0}
(T (ADD1 (LENGTH (CDR LST)))) )} )



28 CHAPTER 2. PROGRAMMING IN LISP

This function may be applied to any list to return an integer. For example, the
length of (A B C D) is 4, and the length of '(THIS (IS (A (NESTED (LIST)))))
is 2. The function has one formal parameter, namely LST. The body consists
of a conditional form (a “COND"), in this case having two clauses. Each clause
has two parts, a condition and a result. The first clause has as its condition
the expression (NULL LST) and the result 0. This specifies that when the
functional form is evaluated, the argument, LST, is tested to see if it is null, and
if s0, the result 0 is returned. The second clause is there in case the first fails.
[ts condition is T, which is always true and thus forces its result to be returned
if LST is not null. This second result expression, “(ADD1 (LENGTH (CDR
LST)})”, contains a recursive call to LENGTH, the function being defined. The
rgument for the recursive call is the original LST minus its first element. To
evaluate the recursive call, the LISP system evaluates the argument, binds the
gument value to LST after saving the old value of LST on a stack, and then
tarts a fresh pass through the body of the function, possibly making additional
ecursive calls, if the list whose length is to be determined is long enough. When
he recursive call is finished, the value returned gets 1 added to it by the function
DD1, and this value is the result of the LENGTH computation. The sequence
f recursive calls in such a situation is sometimes called a spiral of recursion. In
his function, the spiral of recursion eventually starts to unwind when the list

ound to the atom LST gets down to NIL.
A spiral of recursion for the LENGTH function applied to the list (ABQ)

s shown in Fig. 2.3.

LENGTHABC

LENGTH (BC)

LENGTH(C)
:-r LENGTH) )
0

1

2

3
Figure 2.3: A spiral of recursion.

A similar but more interesting example of a recursive function is one that
ounts the number of sublists in a list. The list '(MEAT VEGETABLES
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SWEETS) has no sublists, but the list
» ((BEEF PORK) (POTATO CARROTS) ( (APPLEPIE CHERRYPIE) CANDY))

contains four sublists (three of them at the top level, and one at the next level}.
A function to count the number of sublists in a list would be awkward to define
without recursion. Here is a recursive definition of COUNTSUBLISTS.

(DEFUN COUNTSUBLISTS (LST)
(COND ({NULL LST) 0)
((ATOM LST) 0)
((ATOM (CAR LST)) (COUNTSUBLISTS (CDR LST)))
(T (PLUS 1
(COUNTSUBLISTS (CAR LST))
(COUNTSUBLISTS (CDR LST)) )) ) )

If we call COUNTSUBLISTS with the S-expression above with 4 sublists,
first the test for null list fails, then the test for atomic argument fails, then the
test for atomic CAR fails, since the CAR of that expression is (BEEF PORK).
Finally the T clause of the COND has to succeed, with the result that three
quantities are added together: the constant 1, the result of calling COUNTSUB-
LISTS recursively on {BEEF PORK) which gives 0, and the result of call-
ing COUNTSUBLISTS recursively on {{POTATO CARROTS) ((APPLEPIE
CHERRYPIE) CANDY)) which returns 3.

Since the definition of COUNTSUBLISTS contains two recursive calls rather
than one, not a spiral of recursion but a tree of recursive calls is followed. Each
recursive call generates a separate branch of the tree. An example is shown in
Fig. 2.4.

As a third example of recursive function definition, consider the function
MATCHKTH below. This function takes three arguments: an “element,” a list
and an integer. It compares the element to the k** one in the list where k is
specified by the integer. It returns the element if the match was successful and
returns NIL otherwise,

(DEFUN MATCHKTH (ELT LST K)
(COND ((NULL LST) NIL)
((LESSP K 1) NIL)
((AND (EQUAL K 1)
(EQUAL {CAR LST) ELT) )
ELT)
(T (MATCHKTH ELT
(CDR LST)
(SUB1L K) ) ) ) )

We have defined MATCHKTH as a function of the arguments ELT, LST,
and K. The body is a COND having four clauses. The first clause tests for LST
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73
((AB)(CD)E)))
NS

({(CDE) ) .

/ = recursive call to the CAR of current expression

\ = recursive call fo the CDR of current expression

Figure 2.4: A tree of recursive calls for the evaluation of (COUNTSUBLISTS
((A B)(C D) E))).

being null and returns NIL if so. Otherwise, the next clause checks for K less
than 1 and returns NIL if this is the case. If neither of those two hold, then
he third clause tests first for K equal to 1. If this fails, control falls through
o the fourth clause. However, if K equals 1 then an additional test is made to
jee il ELT is equal to the first item of LST. If this is true, the value of ELT is
eturned. If not, the fourth clause with condition T invokes a recursive call to
MATCHKTH with a list one element shorter and with K reduced by one. The
lepth of the deepest recursive call will be the smaller of K and the length of
JST.

Here are some examples of the behavior of MATCHKTH:

[(MATCHKTH *CROISSANT ’(BREAD ROLL CROISSANT) 2)
produces NIL.

MATCHKTH 'CROISSANT ’(BREAD ROLL CROISSANT) 3)

T
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| produces CROISSANT. The first result is NIL because CROISSANT does not
[ appear as the second element of the list. If the last argument were changed to a
| 3, as shown in the second example, then the result would be CROISSANT.

i 2.9.3 Appending Lists Recursively

[ A useful function for concatenating two or more lists is provided by most LISP
§ systems. To show how recursive definitions may help with list manipulation, a
f two-list version is defined below:

(DEFUN APPEND (L1 L2}
(COND ((NULL L1) L2}
(T (CONS (CAR L1)
(APPEND (CDR L1} L2) }) ) )

£ This definition says that in order to append list L2 onto the end of list L1, we

. first check to see if L1 is null. If it is, the answer is just L2. Otherwise, the
| answer is the result of appending L2 to the CDR of L1 and then CONS’ing the
I CAR of L1 back on.

It is possible to define APPEND as a special form so that it can take any
E number of arguments; to do this, one could use the function DEFEXPR, de-
B ccribed later. In most LISP systems, APPEND is predefined and can take any
number of arguments.

2.9.4 Commenting LISP Programs

Most LISP systems allow comments to be embedded in LISP functions. Com-
ments have no effect on the functions; the LISP interpreter ignores them. How-
ever, they are helpful to the programmer in documenting and annotating the
functions. The use of comments is encouraged. In this book, a semicolon is used
to indicate that the remainder of a line of LISP code is a comment. For example,
we could write

(SETQ X 5) ; Set X equal to 5.

2.10 PROG

The LISP language was developed soon after FORTRAN. Some programiners,
fluent in FORTRAN, found it difficult to design their programs as nested function
calls. They thought in terms of a set of statements expressed and executed in a
sequence, with possible branching using the GOTO statement. The PROG form
allows FORTRAN-like control structure to be embedded in LISP programs. A
sequence of functional forms may be grouped together to function like statements
of a conventional programming language by the use of the PROG form. The
general format of a PROG is:

e Nl = =T I 17 4
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(PROG L F} F» -+ F,)

Here L is a list of local variables, and Fy through F,, are individual functional
forms (or they may be atomic “labels”), which may include nested forms within
them. When the PROG is evaluated, local variables will be set up for all the
elements in the list L. Note that L may be NIL. The values of these local
variables will be initially undefined. (The values of any variables external to the
PROG having the same names will be inaccessible within the PROG.) Then the
forms F1 through Fy, will be evaluated in sequence unless special provisions have
been made to alter that sequence.

In order to alter the flow of control within a PROG, one may use special
control flow statements such as GO or RETURN. For example, (GO LOOP)
when evaluated, results in control being transferred to the first functional form
following the label LOOP. By nesting GO statements inside of COND arguments,
it is possible to conditionally transfer control within a PROG.

The example PROG below contains two “PROG variables,” X and Y, which
are local to the PROG and have values that are accessible only within the PROG.
The first expression in the PROG’s sequence is (SETQ X 10), which causes X’s
value to be set to 10. The tag, “LOOP" is not evaluated but passed over, and it
serves only to indicate a position in the sequence for use in the later expression
“(GO LOOP)". The expression “(PRINT {TIMES Y Y))" first causes the square
of Y to be computed and then causes that value to be printed (on the screen).
The next expression first computes X—1. That value would be lost, if it weren't
then put somewhere; it is then made the new value of X, as prescribed by the
SETQ form. Similarly, the value of Y is changed. The COND first has X checked
to see if it is 0, and if so the RETURN causes the execution of the entire PROG
to be terminated with the current value of Y passed back as the value of the
PROG. If X is not zero, the second clause is activated. Here T evaluates to
itself and forces (GO LOOP) to be evaluated. This simply causes a transfer of
execution back to the expression (PRINT (TIMES Y Y}).

(PROG (X Y)
(SETQ X 10)
(SETQ Y 0)
LOOP (PRINT (TIMES Y Y))
(SETQ X (SUB1 X))
(SETQ Y (ADD1 Y))
(COND ((ZEROP X) (RETURN Y))
(T (GO LOOP}) ) )

The result of evaluating this PROG is the following being printed out:

(=
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9
16
26

36

49
64
81

and then the value 10 is returned.

When the evaluator leaves the PROG (in this case via the RETURN), the
values of the local variables are disposed of, and any previous values of atoms
with the same names are accessible again (the local contexts are nested as exe-
cution enters functions and PROGs having local variables). Execution may exit
a PROG not only by evaluating a RETURN expression, but also by “falling
through.” In this case, the value of the PROG is (for most implementations of
LISP) the value of the last expression in it. For example, the following PROG
returns the value 5:

(PROG (X)
(SETQ X 10)
(ADD1 4) )

However, the following PROG is preferable because it is less implementation
dependent, and it makes the programmer’s intentions more specific.

(PROG (X)
(SETQ X 10)
(RETURN (ADD1 4)) )

A PROG need not have any local variables:

(PROG NIL
(PRINT ’NO)
(PRINT ’LOCALS)
(RETURN (SETQ X (ADD1 X))) )

The variable X here is from an outer context, either the global, or a local one
in which this PROG is either embedded statically {via its physical placement
within the S-expressions containing it) or embedded dynamically via function
evaluation. The value of this PROG clearly depends upon the value of that X;
it’s the value of X plus 1.

2.11 EVAL and APPLY
2.11.1 EVAL

Before arguments are passed to most functions, they are evaluated. In fact,
what happens is that a special function in LISP is applied to each argument
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S-expression. That special function is called EVAL. EVAL computes the value
of an S-expression differently depending on whether the expression is a numeric
atom, a literal atom, or a functional form. If the S-expression consists of a
numeric atom, the value is the atom itself. If the expression is a literal atom, its
value is looked up using the current bindings. The S-expression may also be a
functional form. EVAL will first {recursively) evaluate all of the arguments in the
functional form, and then it will apply the function to the results of evaluating
the arguments. The final result will be returned as the value of the functional
[form.

EVAL may also be used by the programmer directly to cause an extra eval-
uation to take place. For example, if the value of X is Y, and the value of Y is
7, then the functional form (EVAL X) would evaluate to Z. (The S-expression
X by itself would evaluate to Y.) EVAL could be helpful in retrieving the value
of an atom whose name is not known until runtime.

EVAL can also be useful in letting LISP evaluate a functional form that
is constructed by the program at runtime rather than by the programmer at
programming time. For example, we could have:

(EVAL (LIST FN ARG1 ARG2))

2.11.2 APPLY

Fart of EVAL's job is actually handled by the built-in function APPLY. The
function APPLY takes two arguments (and in some implementations a third),
pnd the form of a call is (APPLY function arglist). When this is evaluated, the
function which is the value of function is applied to the arguments that are the

Plements of the list arglist. For example, the following form produces the value
b.

(APPLY 'DIFFERENCE ’ (12 7))

Some LISP systems allow APPLY to take a third argument which specifies a
Jist of bindings of variables to values, that are to be used during the application
bf the function.

2.11.3 LAMBDA Expressions

[t is possible to specify a function in a LISP program without giving it a name or
Calling it by name. This is sometimes convenient when a function is only needed
n one specific place, so that there is no economical advantage to defining it with
ts own name. There is also an advantage of “locality”; it is easier to understand
programs whose functions are specified at the point of use than somewhere far
hway.

A local function specification is accomplished by making a “LAMBDA ex-
bression.” A LAMBDA expression is of the form,
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(LAMBDA argument-list body)
" For example, the function z? + 2y is computed by
(LAMBDA (X Y) (PLUS (TIMES X X) (TIMES 2 Y)))

LAMBDA expressions are most commonly used as arguments to APPLY. For
example, the following computes y°:

(APPLY (FUNCTION (LAMBDA (X) (TIMES X X X))) (LIST )
Here the special form FUNCTION serves to quote the LAMBDA expression,
preventing it from being evaluated.

2.11.4 Closures of Functions

" A feature of some implementations is the ability to specify a “closure” of a

function in which all or a selected set of free variables of the function receive
values from the environment in which the closure is performed, rather than the
values they might get in the middle of evaluating the body of the function. Such
a closure, if performed, is executed as an effect of FUNCTION. An example
where closure makes a difference is the following:

(PROG ()
(SETQ Y 5)
(RETURN (APPLY (FUNCTION (LAMBDA (X) (PLUS X Y)))
(LIST (SETQ Y 7)) )) )

Without closure, the value of Y at the time the PLUS operation is performed is
7, as is the value of X. This is because the evaluation of (SETQ Y 7) takes place
before the LAMBDA expression is actually applied to anything. The overall re-
sult is 14. However, with closure, when the FUNCTION expression is evaluated,
the result is not merely that which would have been obtained by quoting the
LAMBDA expression. It is a special LISP object referred to as a funarg (which
is an abbreviation of “functional argument”). In creating the [unarg, the free
variable, Y, gets bound to its current value, 5, and that value is “closed into”
the function. When the PLUS is performed, the value of X is 7 but that of Y
is still 5 within the funarg, even though it has changed to 7 in the surrounding
environment. The result of PLUS and of the overall expression is then 12 rather
than 14.

Closure tends to be computationally expensive, and binding of all free vari-
ables at closure time is seldom necessary in practice. It is one solution to the
so-called “funarg problem,” where there may be a conflict between intended bind-
ings of variables in a function definition, and the actual bindings those variables
may get upon evaluation in an unforeseen environment, '

An alternative solution is to allow FUNCTION to take an arbitrary number
of arguments; the first is either the name of a function or a LAMBDA expression,



and successive arguments are particular free variables in the function specifica-
tion whose values are to be closed into the funarg. Any free variables not listed
are treated as if there were no closure. This method is compitationally more
efficient yet allows the programmer to prevent binding conflicts.

2.12 Defining Special Forms

Functions (for user-defined functions) are of two types. Most frequently used are
those of the “EXPR” variety. The other type is the “FEXPR” variety. Functions
of the EXPR type are those having a fixed number of arguments. Functions of the
FEXPR type have no restrictions on the numbers of arguments they can take. In
addition, EXPR's always have their arguments evaluated as they are called. On
the other hand, FEXPR'’s do not necessarily have their arguments evaluated; the
evaluation is controlled in the definition of the FEXPR. In a FEXPR's definition,
only a single formal parameter is given. When the FEXPR is called, all of the
[preuments in the call are bound as a list to the formal parameter.

The way to define a FEXPR is dependent upon one’s LISP system. We
use the convention that a special form DEFEXPR similar to DEFUN is used. A
Eimple example of a FEXPR is the function MYSETQ below, which has behavior
imilar to that of the built-in function SETQ.

(DEFEXPR MYSETQ (L) (SET (CAR L) (EVAL (CADR L))))

A call such as (MYSETQ X 5) binds L to the list (X 5) and applies the function
body, setting the value of X to be the result of evaluating 5 {which is 5). Note
that if MYSETQ is called with fewer than two arguments, an error wil! result.
[f there are more than two arguments, the extra ones are ignored.

A more novel example of a FEXPR is a function we can call SETQ2 which,
Jike SETQ. takes two arguments and assigns from right to left. However, where
BETQ automatically quotes its first argument and evaluates the second, SET(Q2
loes the converse. It evaluates the first and quotes the second. Then, for exam-
ple, we could have the following interactive sequence:

(SETQ X *Y) ; produces value Y

(SETQ2 X (CAR Y)) ; produces value {CAR Y)

y ; produces value (CAR Y) and
(EVAL Y) ; produces value CAR.

In order to define SETQ2, as with MYSETQ, we need control of argument
pvaluation. Therefore, we choose the FEXPR type of function rather than the
hormal EXPR. Qur definition is as follows:

(DEFEXPR SETQ2 (L) ; here L represents a list of the arguments.
(COND ((NOT (EQUAL (LENGTH L) 2)) (PRINT ’(ERROR IN SETQ2)))
(T (SET (EVAL (CAR L))
(CADR L) )) ) )
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Since there is no way for the LISP interpreter to know how many arguments we
intend SETQ?2 to be called with, the first clause of the COND above checks to
make sure the number is 2, causing an error message (which is specific to the
problem) to print if not. Then, the arguments are accessed from the list L using
CAR and CADR to pick off the first and second ones, respectively. The first one
is evaluated as per our requirement. Since the second is not evaluated, we may
think of it as automatically quoted. The assignment is acually performed by the
l  general function SET.

_ Suppose we wish to define a special form taking any number of nurmeric
arguments which computes the average of them. We may do this as follows:

 (DEFEXPR MEAN (L)
(QUOTIENT
(APPLY (FUNCTION PLUS)
(MAPCAR (FUNCTION EVAL) L) )}
(LENGTH L) ) )

i The atom 1. gets bound to the entire list of unevaluated arguments when MEAN
i is called. In our case, we want those arguments evalnated. Therefore we use the
E  subexpression (MAPCAR (FUNCTION EVAL) L) to give us this list of evalu-
E ated arguments (the function MAPCAR is described in the following section of
. this chapter}. To get the sum of this list we apply the function PLUS toit. Note
¥ that the form (PLUS (MAPCAR (FUNCTION EVAL) L)) would produce an
£ error since there would be only one argument to PLUS and this would be a list,
E not a number. Thus, we APPLY the function PLUS to the list of arguments.
Y Finally, the length of L is unchanged by evaluating the elements of L, and we
can therefore take LENGTH of L itself. The quotient of the sum and the length
is the average.

- 2.13 MAPCAR

Sometimes one wants to apply a single function to each of the several elements

in a list. Although one could use a PROG including a loop to iteratively process

first one argument, then the next and so on, LISP provides a special form,

“MAPCAR,” to accomplish this in one fell swoop. For example, the form (ADD1

5) which returns value 6 can be expanded upon with MAPCAR to yield a form
such as

(MAPCAR (FUNCTION ADD1) ’(5 10 7 -2 101))

which returns as its value the list (6 11 8 -1 102). We see here that MAPCAR
requires two arguments: the first is a function description, in this case the ex-
pression (FUNCTION ADD1). The second argument to MAPCAR is a list of
inputs for the function.
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It is often convenient to operate on lists using MAPCAR. The next example
takes a list of words and changes some of them, so that if the input is an English
sentence in the present tense, then the output will be in the past tense. This
example shows how an embedded function definition can be included within a
MAPCAR expression. The embedded definition uses the keyword “LAMBDA."
The function could have been separately defined and named but was embedded
instead (as a matter of style).

(DEFUN MAKEPAST (PRESENT)
(MAPCAR (FUNCTION (LAMBDA (WORD)
(COND ((EQ WORD ’AM) ’WAS)
((EQ WORD ’ARE) 'WERE)
((EQ WORD ’IS) ’WAS)
(T WORD) ) ))
PRESENT) )

The function MAKEPAST takes a single argument, PRESENT, which is
assumed to be a list of atoms. MAPCAR successively causes each word to be
tested with the embedded function, and the word or a replacement for it is
returned in the output list. Here is an example application of MAKEPAST to a
data list:

(MAKEPAST ’(MT ST HELENS IS AN ACTIVE VOLCANG))
which yields
(MT ST HELENS WAS AN ACTIVE VOLCANQ)

2.14 READ and PRINT

A LISP function may obtain data in several ways: {a) the data may be passed
as one or more arguments, (b) the data may be represented as global values
of properties and accessed within the function by referencing the appropriate
atoms, or (c) the function may accept data directly from the user or from a data
channel connected through the operating system. In order to obtain data this
third way, the function READ (or one of its variations) is used. READ takes
no arguments. When it is called, evaluation is suspended until the user types in
a syntactically valid S-expression at the console. When the input operation is
complete, the value typed in is returned as the value of READ. For example, we
might type

(CONS (READ) *(TWO THREE))
ONE

and get the result (ONE TWO THREE).

N
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The results of a computation are commonly printed on the screen because
} LISP automatically prints the result of any top-level evaluation. However, any
| available S-expression can be printed at almost any point within a function using
. PRINT. PRINT takes one argument and prints the value of the argument on a
| sew line on the screen or printer. For example, (PRINT '(A B (C))) produces
output (A B (C)) and then returns a value. Consider also:

.1. (MAPCAR (FUNCTION PRINT) ’(A B (c. DN
b which produces the output:

t B

} (C . D)

j and then the value of PRINT is returned. In some systems, PRINT always
| teturns T. In others, it always returns NIL. In others, the value printed is what
f is returned.

'~ An important variation of PRINT is PRIN1, which is like PRINT but does
j. not go on to a new line.

b Additional functions for reading and printing data are system dependent.
E However, two are described here which are very useful for interactive experi-
ments.
f TYlis a function of no arguments which waits for one character to be typed
f at the keyboard (or read from a data channel, in some systems) and returns a
¥ FIXNUM giving the ASCII code for the character typed. This function is useful
¥ for building keystroke-driven command interpreters.

£ TYO is a function which takes a single FIXNUM argument representing an
ASCII character code. TYO causes that character to be “typed out” on the
screen, printer, or data channel. It provides a simple way to get punctuation,
special symbols, and control characters.

Some LISP systems provide functions for opening and manipulating logical
windows on the display screen. One function used later in this book is LOCATE,
invoked as (LOCATE 1 J). This positions the screen’s cursor at row I, column
J, where 1 and J must evaluate to FIXNUMs.

. 215 The Property List of an Atom

- Bach literal atom such as MTRAINIER is automatically given a property list by
“. the LISP system as soon as the atom is first seen. The property list is a list of
Pairs of S-expressions which store information related to the atom. The built-in
function PUTPROP is used to place such a pair on the list. For example, to
associate with MTRAINIER a HEIGHT property of 14410, the following call
could be used:
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(PUTPROP *MTRAINIER 14410 ’HEIGHT)

The general format of this call is (PUTPROP atom value property-type)3,
Subsequently, the information may be retrieved with the call:

(GET ’MTRAINIER ’HEIGHT)

which returns the value 14410. Any number of pairs may be associated with an
atom. However, giving a new value for a previously stored property type will
overwrite the previous value. Thus, evaluating the form

(PUTPROP ’MTRAINIER 4392 *HEIGHT)

which gives the height of Mt. Rainier in meters, effectively deletes the old value
stored for the HEIGHT of MTRAINIER. Notice that the order in which the
arguments are given is important. The result of evaluating

(GET ’HEIGHT 'MTRAINIER)

will be NIL, unless additional information is explicitly stored on the property
list of the atom HEIGHT.

2.16 Replacing Pointers in LISP Memory

Normally, when a new list or dotted pair is created by LISP (as the result of
a CONS or LIST form, for example) one or more new cells are allocated and
pointers copied into their left and right halves, in such a way that no previous
cells are altered. Thus if the value of X is the list (A B C) and the form (SETQY
(CONS °N (CDR X)}}) is evaluated, Y will receive the value (N B C) without any
change being made to the value of X. On the other hand, there exist functions
that have the effect of rewriting a pointer into a LISP cell, causing an alteration
rather than allocation of new memory. The form (SETQ Y {RPLACA X 'N)}
causes the CAR of X to be replaced by a pointer to the atom N, and the value
of Y is this altered version of X. If X is now evaluated, the result is (N B C).

The function RPLACD is similar to RPLACA but causes the CDR rather
than the CAR to be replaced. Note that circular lists can easily be created
with RPLACA and RPLACD that may cause problems when they are given to
PRINT. For example, (SETQ X '(A B C)) creates the list structure shown in
Fig. 2.5. Evaluating the form (RPLACA X X) changes this to the structure
shown in 2.6.

This structure prints as a long sequence of left parentheses, CCCCCCe - -
until the system stack overflows or the user turns off the computer. In a similar
fashion, the sequence (SETQ X '(A B C)), (RPLACD X X) causes LISP to emit
(AAAAA. . without ever getting to a closing parenthesis.

3Note that some systems require that the property type be an atom.



| 9 17. DEBUGGING a1

o o ok

Figure 2.5: List structure created by (SETQ X '(A B ).

F ok

Figure 2.6: List structure resulting from (RPLACA X X).

t  The function (NCONC X Y) applied after (SETQ X (A B Q) and (SETQ
E Y (D E F)) makes a non-copying concatenation of X and Y. The last pointer in
f. X (which points to NIL) is replaced by a pointer to the value of Y. The result is
& similar to that given by (APPEND X Y). However, as a side effect, X has been
altered. The value of Y remains the same.

These functions are not recommended for general or casual use, since they eas-
ily create structures which are unprintable and make debugging difficult. How-
ever, they have some merits. It is possible to construct fairly compact represen-
tations in memory of arbitrary directed graphs, cycles permitted, using them.
v Also, since they do not cause new storage to be allocated, they may reduce the
amount of time spent by LISP in garbage collection for some applications.

~2.17 Debugging

.+ Errors and oversights seem to be the rule in Al programming, largely because of
- the experimental nature of the field. Although the programming methodology
. ideas discussed elsewhere in this chapter will greatly assist in program devel-
opment, the need still exists for occasional detailed observation of a program.
Tools for examining the progress of a program are useful both in finding errors,
in verifying correctness, and for human understanding.
LISP systems usually provide two kinds of debugging aids: TRACE capability
* for viewing function calls, and BREAK capability for examining the values of
" variables at selected breakpoints during the execution. _
TRACE is a special form which takes any number of function names as
(unevaluated) arguments. The general format for invoking it is (TRACE F
B F,). It causes those functions to be marked for automatic “tracing” when-
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ever they are called. For example, (TRACE LENGTH) marks the LENGTH
function, so that each time it is called, the name of the function and the particu-
lar values of the arguments in the call will be displayed. Also, when the function
returns, the returned value is displayed. In some LISP systems, only EXPR's
can be TRACEd. In others, any function can be traced.

The related form (UNTRACE Fy F: .- F,)) turns off trace mode for each F;.
If no arguments are given, all traced functions are made untraced.

Suppose, for example, that we define FACT to compute the factorial of its
argument. An appropriate definition is the following:

(DEFUN FACT (N)
(COND ((ZEROP N) 1)
(T (TIMES N (FACT (SUBL N)) ))) )

If we cause FACT to be traced, and then invoke it:

(TRACE FACT)
(FACT 3)

we get a display such as the following one:

1 FACT:(3)

2 FACT: (2)
3 PACT: (1)
4 FACT: (0)
4 FACT=1
3 FACT=1

2 FACT=2

1 FACT=§

6

Such a display typically shows not only the function name, argument values
and return value, but also the level of invocation of the function (here shown
both with printed integers and with corresponding indentation). These extra
features make it easy to see the correspondence between an entry to a function
and the value which results.

Using TRACE, one can easily determine whether a particular function is ever
reached, or ever reached with a particular set of arguments. TRACE is easy to
use because no editing and subsequent un-editing of the functions to be traced
are necessary, as they usually are with other debugging methods.

As convenient and useful as it is, TRACE does not provide a means of viewing
the state of a computation at other than function entry and exit. It doesn’t pro-
vide any way to see values of variables not directly connected with the function
call, and it does not, provide a way for the programmer to change variable values
interactively during the computation. A function which permits these things to
be done is BREAK. In a typical LISP system, when (BREAK X) is evaluated,
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| t{he interpreter stops further evaluation and prints “BREAK:” followed by the
. result of evaluating X. It then enters a “Read-Eval-Print” loop similar to that at
i {op-level. Local variable values can be examined or changed, and functions can
be executed as if at top-level. To continue the evaluation of an expression after
a BREAK, the programmer types a control character or a special atom such as
RESUME.

If a BREAK function is not available in your LISP system, the following
definition gives you one.

'(DEFUN BREAK (8) :program break utility function
(PROG (BREAKVAL) ;local variable
(PRIN1 'BREAK) ;print out message
(TYD 58) ;type a colon
(TYO 32) ;type a space
(PRINT S) jprint the argument

(PRINT *(TYPE RESUME TO CONTINUE))
LOOP (SETQ BREAKVAL (READ)) ;get an S-exp from the user
(COND ((EQ BREAKVAL 'RESUME)
(RETURN NIL))) ;return if it’s RESUME
(PRINT (EVAL BREAKVAL));otherwise evaluate and primt it
(GO LDOOP) )} ) ;repeat

2.18 Programming Methodology

‘One tends to be concerned with slightly different issues when writing LISP pro-
grams than when writing payroll programs, or statistical packages. LISP pro-
grams are usually experimental, to test out new ideas, to model something one
might not fully understand. Consequently, getting the program to work, gaining
a better understanding of one’s problem, and ease of development are usually
more important to LISP programmers than speed.

2.18.1 Benefits of Programmiﬁg in LISP

Some of LISP’s strengths are the following:

~ Modularity: Since a LISP program consists of a set of function definitions,
‘and it is very easy to have one function call another, it is also easy to fit a hier-
archy of modules {functions) to the natural structure of a problem or problem-
solving procedure.

Speed of development: LISP requires very few “declarations” of data or data
types, as do languages such as PASCAL. There is time saved in not having to
declare data and in not having to debug consistencies between data declarations
and data usages. On the other hand, the LISP programmer is not prevented
from writing procedures that test data for proper formats. The fact that LISP is

_ usually interpreted means that the programmer can easily and frequently make
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changes and try them without having to wait for a compiler to translate his
entire program each time. Debugging aids available in LISP allow location of
problems faster than do those for conventional languages. This is because the
debugging tools are integrated into the programming environment, have access
to all symbols and function definitions, and have the full power of LISP available
to them.

Functional Programming: It is relatively easy in LISP to write programs
whose correctness is relatively easy to prove mathematically. A style of pro-
gramming in which no assignments or global properties are manipulated is called
“functional programming.”

2.18.2 Stepwise Refinement

To have an orderly development of a program larger than a couple of pages, the
following suggestions are offered.

Use dummy functions in the beginning stages of coding, as “syntactic scaf-
folding™ to verify correct data formats of functions that communicate with the
dummies. The dummies also serve to help verify proper execution order.

Alter only as many things at a time as you can mentally keep in mind at
once. Add roughly one new feature at a time, to make debugging simpler.

Thoroughly test each new feature under a variety of input configurations,

2,18.3 Ways to Keep Complexity Manageable

The potential confusion grows more than linearly with the size of a program.
This is just as true for LISP as for any other language. Here are some tips for
fighting the tendency.

Use simple functions (with good names) to construct and access data objects
of the types you need. For example, if dates are to be represented as lists of
the form (DAY MONTH YEARY), it clarifies programs to have defined special
accessing functions:

(DEFUN DAY (DATE) (CAR DATE))
(DEFUN MONTH (DATE) (CADR DATE))
(DEFUN YEAR (DATE) (CADDR DATE))

Keep function definitions from getting too big. For most functions, a screen-
ful is a good limit. The programmer’s eye can then take in the entire function
definition at once. If needed, create helping functions. This also helps to keep
parenthesis balancing easy, and reduces the need for a large number of “inden-
tation levels” for neatly formatting function definitions.

Use a formatting scheme in the source file that clarifies the structure of each
expression. A convention used in formatting the LISP expressions in this book
is that in a sequence of closing (right) parentheses, there is a space between
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two right parentheses if the two left parentheses that they correspond to lie on
! separate lines. This makes it easier to see the right-to-left correspondences.
e Comment the function definitions.

_' 2.18.4 Pragmatics

k- Here are some general edicts of good programming practice:

¥ Keep backups of your files and document them. Since they tend to be ex-
perimental, you may have more versions of your LISP programs around than
- one usually would have with programs in other languages. A backup should be
L made at the end of a day’s work, after a bug has been completely eliminated,
B, or after a certain amount of work. Usually, software backups suffice {(e.g., extra
[ disk files). But when in danger of magnetic media erasure, etc., an occasional
g paper printout is wise.

2 Al is almost by definition a field in which people try to automate intellectual
f- tasks that are more and more difficult. When you bite off more than you can
g chew, spit it out and start over. That is, back off from your original ambiticus
. plans when necessary.

2.19 Implementation of LISP

2.19.1 Representations of Literal Atoms, Numbers and
CONS Cells

LISP interpreters generally consist of a memory management unit, a collection
of core functions usually implemented in a low-level language for speed, and a
library of functions that augment the core functions. Such functions may be
written in LISP themselves. The core functions generally must include READ,
EVAL, APPLY and PRINT or variants of them. Also CONS, CAR, CDR, SET,
and DEFUN are core, as are NULL, ATOM, and various arithmetic functions
and predicates. COND and PROG are core. The core functions form a basic
" group in terms of which the library functions can be implemented.

‘5__} Memory is usually organized into cells, although some implementations pro-
*. vide a number of memory areas including non-cellular ones. The cells initially
form a large pool of available storage. They are chained together into a long
list called the freelist. Cells are taken off the freelist as needed to build atoms,
build lists, ete. Literal atoms may require several cells to hold their definitions.
Typically a cell consists of two or three machine words of memory. Small inter-
Preters on microcomputers may use 4 bytes per cell, while larger lisp systems
might use more than 8 bytes (64 bits) per cell. Each cell must be capable of
being addressed by a pointer that fits in half a cell. This is because a “CONS
cell” or cell representing a dotted pair, must store pointers to two other cells,
one representing the CAR and one representing the CDR.
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2.19.2 Garbage Collection

As evaluation in a LISP environment proceeds, cells are continually taken off
the freelist to make the list structure to represent results of function evaluations,
Many of these results are temporary and of no use after a brief moment. If there
were no way of reclaiming the space taken up by these old values, only LISP
programs making very light use of memory could run before the freelist would
be exhausted and all evaluation terminated. Thus, practically all LISP systems
have a “garbage collector” facility which causes the cells no longer in active use
to be identified and linked back into the freelist for reallocation.

The simplest kind of garbage collector uses a “mark and sweep” procedure.
Whenever the freelist becomes exhausted, evaluation is temporarily suspended,
Then the garbage collector begins its work by marking all literal atoms and the
cells accessible from them through their values and their property lists. Then all
temporary cells (in use by the evaluator) and their values are marked. All bind-
ings of literal atoms must be marked (not just current local bindings). Marking
a CONS cell usually consists of the following: (1) checking to see if it is already
marked and passing it by if so, (2) setting a special bit in the cell {the mark bit)
to 1, (3) recursively marking the cell pointed to be the CAR pointer in the cell,
and (4) similarly marking the CDR cell. After the marking stage is complete, a
sweep is begun by starting at (say) the high end of cell memory space and exam-
ining the mark bit in each cell. Each cell not marked is assumed to be garbage,
and it is linked into the freelist. Each marked cell is assumed to be potentially
useful and is not changed (except that the mark bit is cleared in anticipation of
the next garbage collection).

A variation on the mark and sweep algorithm is to perform “compaction”
during the sweep phase. With this scheme the sweep is performed starting with
two pointers: one at the high end of cell memory and the other at the low
end. The pointer at the low end is advanced to locate a vacant (unmarked)
cell. Then the pointer at the top is moved down to find a marked cell. The
contents of the marked cell are moved to the vacant cell in low memory, and a
“forwarding address” is stored in place of the information that was just copied
down. The process continues until the pointers meet somewhere in the middle of
cell memory. Then all references to marked cells in the higher part of memory are
updated by replacing the referencing pointers by the forwarding addresses left
at each marked upper-part cell. Finally, all upper-part cells are joined to form
the new freelist. The main advantage of compacting is that it becomes easier
to allocate large-sized blocks of memory in LISP systems which can make use
of larger blocks. Another advantage may accrue in LISP systems having disk-
based virtual memory. By moving values of relatively permanent importance to
resident areas of memory (or by moving them close together), the frequency of
page faults may sometimes be reduced.

If the memory space is very large (as it often is on LISP machines using
disk-based virtual memory), a mark-and-sweep garbage collection might take
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E ceveral minutes, causing an annoying interruption to the user. In response to
f this problem, designers of LISP machines have developed “incremental” garbage
| collection algorithms that perform a little bit of the work of recycling memory
| every time memory is allocated, rather than waiting to do it all at once. The
b result of this is slightly slower execution 95% of the time, but no long waits
b occurring as a result of a sudden need for a little memory to be allocated. The
¥ incremental algorithms are considerably more complicated than non-incremental
[ ones.

Some LISP systems save some memory by storing lists in chunks bigger than
' CONS cells, when possible. For example, if a list of 7 elements is to be created,
f and a block of 5 contiguous half-cells {pointer containers) is available, a spare
k' bit in each half-cell is used to indicate whether the next half-cell contains the
k' pointer to the CDR (conventional) or it contains {a pointer to) the next element
t on the list. This technique is known as “CDR-coding” and can save almost 50%
£ of memory when many long lists are represented with large blocks of memory.

2.20 Bibliographical Information

. LISP was invented by McCarthy [McCarthy 1960], and it was based in part on the
lambda calculus [Church 1941]. A clear introduction to the lambda calculus may
be found in [Wegner 1968). An early collection of application-oriented discussions
of LISP is [Berkeley 1964]. Primers devoted to LISP are: [Weissman 1967), and
{Friedman 1974] (both of these concentrate on basic aspects of the language
which can be learned without experience on a computer). More advanced books
on LISP (in order of increasing sophistication) are: [Siklossy 1976], [Winston
and Horn 1981}, [Charniak et al 1979] and [Allen 1978] (which deals in depth
-with the theory and implementation of LISP).

e The methodology of structured programming in LISP was explained well
.+ in [Sandewall 1978]. Techniques of functional programming are presented in
- [Henderson 1980] (which also includes guidelines for implementing parts of LISP).
"’ Since 1980 there has been a biennial conference sponsored by the Association
-+ for Computing Machinery on LISP and applicative programming. Research pa-

. pers about new developments in LISP can be found in the proceedings of those

. “tonferences.
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Exercises

1. Which of the following are LISP atoms?
ATOM 17 5
(0) () NIL
(A . B) T 44

2. Convert the following S-expressions into list notation {insofar as it may

be possible):

4. B . (C.NL)
(X . (Y. 2) .NILY
((a . B) . (C.DD
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3. Convert the following S-expressions into dot notation:

)
((B))
IS

. Describe the values of the following expressions:

(ADD1 (TIMES 4 5))

(CAR (QUOTE (A LIST)))

(CAR ’(& LIST))

(CDR ’(& LIST))

(CONS ’TO ’(BE OR NOT TO BE))

(CONS (CDR ’(CATS . DOGS))(CAR ’(BEARS . LIONS)))
(COND (NIL 1)(T 2)(NIL 3)(T 4))

_ For the function COUNTSUBLISTS defined on page 29 determine how

many recursive calls are made in order to evaluate the following expression:
(COUNTSUBLISTS ’(A (B) (C (D))))

What is the argument to COUNTSUBLISTS in each case?

. Write a recursive function EXIFY which takes any S-expression and con-

verts it to a new one in which all atoms other than NIL have been replaced
by X. Thus (EXIFY ’(A (B . C) X Y NIL Z}) should produce (X (X . X)
X X NIL X).

. Write a recursive function REPLACE which takes three S-expressions (call

thern S1, S2 and S3). It replaces $2 by S3 wherever it occurs in S1. Use
EQUAL to test for occurrences of 82 in S1. For example,

(REPLACE ’((THIS 1) CONTAINS (2 OCCURRENCES (THIS 1)))
*(THIS 1)
’ (THAT ONE))

should yield the value

((THAT ONE) CONTAINS (2 OCCURRENCES (THAT ONE})).

. Using a recursive approach, write a function which prints the first fifteen

cubes (1, 8, 27, 64, ..., 3375). Now write a non-recursive version, using
PROG. Compare the lengths of the two definitions by counting the number
of atom occurrences in each.

. What is the result of evaluating the following?
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10.

11.
12,

13.

14.

15,

16.

17.
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(SETQ X ’(EVAL ’(SETQ X 'EVAL)))

What would be the value if the first quote mark were omitted?

Suppose an atom ILIST is bound to a list of integers such as 371
13) and a function is needed which returns the sum of all the elements
of ILIST; that is, a function SUM is desired such that in our case (SUM
ILIST} = 34. Use APPLY to define such a summation function.

Explain the difference between an EXPR and a FEXPR.

Define a LISP function (PALLINDROMEP LST) which returns T if and
only if LST is a pallindrome; that is, if LST is the same after its top level
elements have heen put into reverse order.

Assume that (REVERSE L) takes a list L and reverses its top-level ele-
ments; for example (REVERSE '(A B (C D) E) produces the value {E(C
D) B A). What is the value produced by the expression below?

(MAPCAR (FUNCTION REVERSE) ’((A B) (C (D E)) (F G)))

Use MAPCAR to write a function that takes a list and creates a new
list whose elements are lists obtained by repeating original elements, For
example, if the old list was (X Y (Z W)) then the new list would be (X
X) (Y Y) ((Z WYZ W))).

Define a function (EQUALELTS LST) which returns T if and only if all
the top-level elements of LST are EQUAL to each other.

The list ({A B)(C D){E F)) represents a “quasi-balanced” tree in the sense
that:
¢ all top-level sublists have the same length,

+ all top-level sublists have the same depth (depth is the maximum
path length from the root to a leaf node), and

¢ each sublist is also quasi-balanced.
Write a function (QUASI_BALANCEDP LST) which returns T if and

only if LST represents a quasi-balanced tree. You may use the function
EQUALELTS of the previous problem.

A function may be recursive even though it does not contain a direct call

to itself. Consider the tree structure of Fig. 2.7 and its representation as
the list:

(3 28N 3 Y

Y
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18.

19.

2 5 2 1

Figure 2.7: A tree for manipulation by indirectly recursive functions.

Suppose we want to compute a value at the root which is the marimum
value for its two children, where each of those values is the mintmum
of its two children’s, etc., alternating maximization and minimization at
each level of the tree. Write definitions for two functions TREEMAX and
TREEMIN that call each other to come up with the desired value. Your
function should be able to handle binary trees of any depth. Note that
the correct value for the example illustrated is 3. That is, (TREEMAX
'((3 {2 5))(7 (2 1)))) should yield 3. Test your function on the example
above and on the following two:

(((1 2)(3 4))({5 (6 7)) 8))
(1 (8 (27 (3(6 (45BN

This method of processing trees is developed further in Chapter 5 in con-
nection with automatic game-playing programs.

Using the function MAKEPAST (described on page 38) as an example,
write a function MAKEOPPOSITES which replaces some common words
by their opposites.

Write and debug a LISP function “NEXT” which finds the next element
in a sequence. The sequence is assumed to be a list of FIXNUMs. NEXT
should perform correctly on arithmetic and geometric progressions, and it
should give up gracefully on others. For example

e (NEXT (246 8)) =10

o (NEXT ’(4 -12 36 —108)) = 324

o (NEXT '(3141)) = UNKNOWN

Show the results your function gives on these examples and on five other
diverse examples of your own fabrication.
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Describe how property lists could be used in order to represent the infor-
mation that daffodils are yellow and belong to a group of plants called
bulbs. What is then necessary to retrieve this information?

Suppose that an arithmetic expression is any functional form using only
PLUS and TIMES as functions, and using only constant numbers, vari-
ables (literal atoms), and (nested) arithmetic expressions as arguments.
An example is the following:

(PLUS X 3 6 (TIMES (TIMES X Y Z) 0))

Write a function SIMPLIFY which takes an arithmetic expression and re-
turns a new one in which the following improvements are made, if they
are possible: (a} any subexpression consisting of the function TIMES fol-
lowed by a list of arguments, one of which is 0, is replaced by 0; (b)
any occurrence of 1 as an argument to TIMES is eliminated, and then, if
possible, the occurrence of TIMES is eliminated, leaving only the other
factor at that level; and (c) any occurrence of 0 as an argument to PLUS
is eliminated, and if only one argument remains, the occurrence of PLUS
is eliminated. If SIMPLIFY were run on the arithmetic expression above,
it should give the expression:

(PLUS X 3 B)



 Chapter 3

| Production Systems and
 Pattern Matching

3.1 Overview

In this chapter we further develop LISP programming methodology, and at the
d same time, we examine conceptual tools for designing Al systems. The previous
} chapter presented the main features and functions of LISP. However, in order to
E solve interesting problems, we need to be able to write LISP programs that are
E more complicated than those of Chapter 2. This chapter begins by describing
i “production systems,” which provide a scheme for structuring Al programs. We
L then develop several LISP examples to illustrate the implementation of produc-
- tion systems. Next, pattern-matching techniques are presented and illustrated
¥ in LISP. In order to show how these ideas can be used in larger programs, we
£ then apply both production systems and pattern matching in each of two simple
k- Al systems: “SHRINK,” a conversational simulator for a Rogerian psychiatrist,
[ and “LEIBNIZ,” a program which performs symbolic differentiation and simpli-
£ fication of mathematical formulas. The chapter closes with an introduction to
[ unification, a pattern-matching technique for logical reasoning that is developed
¥ further in Chapter 6.

3.2 Production System Methodology
3.2.1 Modularity Revisited

As was mentioned in the previous chapter, LISP programs should be built up
out of relatively small and understandable parts (modules). This necessity for
simplicity and clarity becomes a challenging problem as the size of a program
grows. One way to combat the problem is to adopt a simple structure for the
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control scheme
("interpreter")

i

condition action

. ) database
or 0332300': condition | action of
rules . . state
("rule base") ° ° information

condition action

Figure 3.1: The structure of a production system.

entire program, called a “production system.” A production system consists
of a collection of condition-action pairs called production rules, together with
a database of “state information” and a procedure for invoking the production
rules. The overall structure of a production system is shown in Fig. 3.1.

Each production rule is much like a clause in a COND form. It contains a
condition which must be satisfied before the action part is performed. In fact,
we will often implement our production rules as actual COND clauses. The
database of state information is just a collection of information tested and acted
upon by the production rules. In LISP the database may consist of a list of
variables {atoms), their values and their properties. The invoking procedure is
often just a program loop which repeatedly tests the conditions of production
rules and executes their actions when satisfied.

A simple example of a production system is now described. The job accom-
plished by the system is to take an integer  and produce its Roman numeral
representation.

1. Production Rules:

(a) If 2 is null then prompt the user and read z.

(b) If z is not null and is bigger than 39 then print “too big” and make
z null.

{c) If z is not null and is between 10 and 39 then print “X” and reduce
x by 10. '

Y
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(d) If £ is not null and is equal to 9 then print “IX” and reduce z to {}.

(e) If x is not null and is between 5 and 8 then print “V” and reduce
by 5.

(f) If « is not null and is equal to 4 then print “IV” and reduce z to 0.
(g) If z is not null and is between 1 and 3 then print “I” and reduce T

by 1.

(h} If £ is not null and is equal to O then print an end-of-line and make
z null.

2. Database; The value of the sole variable x.

3. Control scheme: Test conditions in an arbitrary order until one is true;
execute corresponding action; repeat indefinitely.

The control scheme here works by having an interpreter scan through a list
of the production rules. The rules may be in the order given, or any other order.
The condition part of each rule is tested in turn, until one of the conditions is
found to be true. When one is true, we say that the production rule “fires”
or “triggers.” Then, the action for that rule is executed by the interpreting
procedure. For example, if = has the value 7, then production rule e above
would fire, causing the action

print “V” and reduce x by 5

to be performed. After the action is taken, the interpreting procedure starts test-
ing production rule conditions once again. This process is repeated indefinitely
(i.e., forever or until the interpreter is turned off).

An alternative to the indefinite repetition scheme could be to repeat until
either no conditions are true any more or an action is taken which explicitly
- halts the interpreter. However, the particular set of production rules might not

- allow halting anyway.

The program ROMANI1 is a straightforward (though not the most efficient)

implementation of this production system. Here is the LISP program ROMANTI:

; ROMAN1 .LSP - unordered production system to
;convert to Roman numerals.

(DEFUN ROMAN1 ()
(PROG(X)

LOOP

(COND
((NULL X) (PRINTM ENTER NUMBER) (SETQ X (READ)))
(CAND (NOT (NULL X)) (GREATERP X 39))
(PRINTM TOO BIG) (SETQ X NIL))
((AND (NOT (NULL X)) (LESSP X 40) (GREATERP X 9))
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(PRIN1 ’X) (SETQ X (DIFFERENCE X 10)) )
((AND (NOT (NULL X)) (EQUAL X 9))
(PRIN1 ’IX) (SETQ X 0) )
((AND (NOT (NULL X)) (LESSP X 9) (GREATERP X 4))
(PRIN1 ’¥) (SETQ X (DIFFERENCE X 5)) )
((AND (NOT (NULL X)) (EQUAL X 4))
(PRIN1 ’IV) (SETQ X 0) )
. ((AND (NOT (NULL X))} (LESSP X 4) (GREATERP X 0))
(PRIN1 °I) (SETQ X (SUB1 X)) )
((ZEROP X) (SETQ X NIL) (TERPRI))
)
(GO LOOP) ) )

Thus ROMAN1 is defined as a function of no arguments (it gets its inputs
through the action of one of the production rules — rule a}. The body of RO-
MANI1 consists of a PROG form, which allows the repetition of the control
s.heme to be easily implemented as a loop. There is a single local variable, X,
for the PROG, and it is used to hold all the state information for this simple
production system. The portion of the procedure for testing conditions and ex-
ecuting actions is implemented in ROMANT1 as a COND form. Each production
rule is represented as one of the clauses of the COND form. (There are other
Wways to represent production rules in LISP; one alternative is used near the end
of this chapter in the LEIBNIZ program). The production rules are examined
in a fixed order here: the order in which they appear in the COND form. The
repetition loop is completed by the form (GO LOOP).

3.2.2 Ordered Production Systems

The often-repeated test for X being not null is a symptom of LISP’s need
for arguments of the numeric type for its numeric predicates like LESSP and
GREATERP. As we shall shortly see, the imposition of a planned ordering on
bhe production rules can greatly reduce the redundancy of testing for such sub-
Conditions as whether or not a value is null, atomic, of a certain length, numeric,
ete. The placing of the ordering on the production rules is no inconvenience in
LISP, since the testing of conditions of production rules cannot be run in parallel
fvithout unusual hardware and nonstandard extentions to LISP,

ROMAN2 is a solution to the Roman numeral problem which uses & planned
brdering in the production rules to streamline the condition-testing process. RO-
MAN?2 appears to be a better solution than ROMANL. Now, in ROMAN2, only
he first rule need test for X being null. If X is null, execution does not reach
he production rules that follow, during this particular iteration of the PROG.

ROMAN2.LSP - ordered production system to
convert to Roman numerals.
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} (DEFUN ROMAN2 ()
F (PROG(X)
LOOP
(COND
((NULL X) (PRINTM ENTER NUMBER) (SETQ X (READ}))
((GREATERP X 39) (PRINTM TOO BIG) (SETQ X NIL))
((GREATERP X 9)(PRIN1 *X) (SETQ X (DIFFERENCE X 10}) )
((EQUAL X 9) (PRIN1 ’IX) (SETQ X 0) )
((GREATERP X 4) (PRIN1 °V) (SETQ X (DIFFERENCE X 5)) )
((EQUAL X 4) (PRIN1 ’IV) (SETQ X 0) )
((GREATERP X 0)(PRIN1 ’I) (SETQ X (SUB1 X)) )
((ZEROP X) (SETQ X NIL) (TERPRI))
)
(G0 LOOP) ) )

3.2.3 Limitations of Linear Production Systems

Any program can be reexpressed as some kind of production system, although
perhaps in only a trival way. For example, if we have a LISP function
(BLACK _BOX X) that does something arbitrary, we can rewrite it in the pro-
duction rule:

If true then compute (BLACK_BOX X).

This would seem to indicate that production systems per se do not buy us
anything special. But, like “structured programming,” the production system,
when used appropriately, can be helpful in structuring large systems.

A problem with production systems, as we have presented them in examples
. ROMANI1 and ROMAN?2, is that the selection of the rule to apply is done by
-+ making, in effect, a linear search through the list of productions each time one is

"~ needed. The amount of time spent testing each condition varies with the com-
plexity of the condition and, in the case of a conjunction of subconditions, with
the likelihood that the AND can be aborted early by a subcondition evaluating
to NIL.

3.2.4 Discrimination Nets

It is well known that linear searching is usually slower than some sort of tree
search. By making the subconditions select a path through a search tree that is
balanced or nearly balanced, a lot of unnecessary computation can be avoided.
To this end, builders of big production systems have employed “discrimination
nets” of conditions to select production rules. The structure of such a net is like
that of a decision tree, where the actions are all located at the leaf nodes.

We can reformulate our Roman-numeral conversion program as a discrimi-
nation net as shown in Fig. 3.2.
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print “IX* and
print "oo big  X»9 X=9 set Xto 0
and set X to NIL orint "V and
X O reduce Xbys
print "IV* and
set X100

print "1" and

X0 reduce X by 1

print an end-
of-line and set
XtoNIL

Figure 3.2: A discrimination net for the Roman Numerals problem.

This discrimination net reduces the maximum number of subcondition tests
required from the eight of ROMAN2 to five in the process of determining the
production rule which fires next. A program implementing this discrimination
net is ROMANS, and is shown in Fig. 3.3.

In using a discrimination net, we have reduced the redundancy of condition
testing in our program. However, we have also lost some of the simplicity and
modularity of the original production system. It is now a more complicated
matter to add or delete a production rule from the program, because we have
many nested COND’s to keep balanced, and the placement of each clause bears
heavily on the semantics of the program. By contrast, in our original system
(ROMANT1) the adding or deletion of a rule could be done with relative ease.

Researchers have looked into ways to obtain both the modularity of pure
production systems and the efficiency of discrimination networks. Qne solution
is “compiled production systems” for which production rules are written in such a
way that a compiling program can automatically transform them into an efficient
program such as a discrimination net,

We shall be concerned less with efficiency than with making things work, and
we will usually express production systems in the clearer “uncompiled” form.

3.3 Pattern Matching
3.3.1 Pattern Matching in Production Rules

As we shall see later in various examples, a good way to specify a condition in
a production rule is by providing a pattern which the input should match if the
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. ROMAN3.LSP -- discrimination net implementation

(DEFUN ROMAN3 ()
(PROG (XD
LOOP
{COND
; 1st decision node:
((NULL X) (PRINTM ENTER NUMBER) (SETQ X (READ}))
(T
(COND
: 2nd decision node:
((GREATERP X 39) (PRINTM TOO BIG) (SETQ X NIL))
(T (COND
; 3rd decision node:
( (GREATERP X 4)
(COND
: level 4, first node:
((GREATERP X 9)
(PRIN1 *X)(SETQ X (DIFFERENCE X 10)})
(T (COND
; level 5, first node:
((EQUAL X 9)
(PRIN1 *IX)
(SETQ X 0} )
(T
(PRIN1 *V)
(SETQ X (DIFFERENCE X 5)} )} )) ))

(T (COND
: level 4, second node:
((EQUAL X 4) (PRIN1 'IV) (SETQ X 0))
(T (COND
; level 5, second node:
((GREATERP X O)
(PRIN1 ')
(SETQ X (SUB1 X)) )
(T (TERPRI) (SETQ X NIL))
NN N
(G0 LOOP)) )

Figure 3.3: ROMAN3: An implementation of a discrimination net.

59
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condition is to be satisfied. Such a pattern may be a very particular one such
as NIL which only matches the input NIL or a general one such as ({* X) YES
(* Y)) which matches any (finite) list containing the atom YES as a top-level
element. We assume here that (* X) and (* Y) each match arbitrary sublists.
The act of matching is a comparison of a pattern S-expression with a subject
S-expression to find whether the subject has the form or elements required by
the pattern.

We will soon introduce a particular pattern-matching function MATCH which
has enough “power” to act as the basis for two interesting programs that we
describe later in this chapter. In order to test two S-expressions for similar
structure there are many possibilities. Some of these are demonstrated by the
functions MATCH1 through MATCHS.

3.3.2 The MATCH Function

The function (MATCH] P S) defined below is too strict for our purposes and is
no better than EQUAL since it is EQUAL!

(DEFUN MATCH1 (P 8) (EQUAL P §))

However, it should be clear that testing for equality is a form of matching, but
that we usually need more general capabilities for matching.

The next matcher, MATCH2, returns T if the list structures, disregarding
atom equality, of P and S are the same.

(DEFUN MATCH2 (P 8)
(COND
((ATOM P) (ATDM 8))
((ATOM 8) NIL)
({(MATCH2 (CAR P) (CAR 8))
{MATCH2 (CDR P) (CDR §)) )

(T NIL) ) )
Thus
(MATCH2 (A (B) C) (X (Y) NIL) i vields T, but
(MATCH2 *(a (B) ¢) *(A B C)) ; yields NIL.

This is an interesting notion of matching but is still not very useful.

Rather than concern ourselves with isomorphism of list structures (which
MATCH?2 essentially does) we shall assume that top-level structure is the im-
portant part, and that a greater degree of control is wanted in the matching of
pattern elements to subject elements at this level. We shall permit control of
matching at this level through the following mechanisms: equality, “variable”
constructs to match any element, match any sequence of elements, and match
any element satisfying a predicate. This assumption that top-level structure is

o
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i the only important one for matching is a powerful one, and it allows us to spec-
k ify simple patterns that can match fairly complicated expressions, yet give the

. degree of control desired.
1 We first present a simple matcher which is capable of matching by equality
' and by a match-any-element construct in the pattern.

(DEFUN MATCH3 (P S)

(COND
((NULL P) (NULL 8)) ;null clause
((OR (ATOM P)(ATOM S))} NIL) ;atom clause
((EQUAL (CAR P) (CAR S)) ;equal CAR clause

(MATCH3 (CDR P} (CDR S)) )

;joker clause...
((EQ (CAR P) ’?) (MATCH3 (CDR P) (CDR 8)) )}
(T NIL) ) ) ;extremal clause

E The “joker” clause provides a “match-any-element” feature. When a question
I mark appears in the pattern, it matches whatever element occurs at the same
E position in the subject.

Thus MATCH3 says P matches S under the following conditions: {a) they
f- are both null; (b) the CAR of P equals the CAR of S and their CDR’s match
E (recursively); (c} the CAR of P is a question mark and the CDR’s of P and
£ S match recursively. Note: the atom clause rules out the possibility of any
* matching if P is not null and either P or S is an atom. This clause also “protects”
. successive clauses from the possibility of crash due to taking the CAR or CDR
- of an atom. Finally, the extremal clause declares that P and S do not match if
" none of the previous conditions holds. For example,

(MATCH3 (A B 7 D) (A B CD)) ; yields T, but

(MATCH3 '(AB CD) '(AB 7 D)) ; results in NIL. Also,
(MATCH3 ’A ’A) ; gives NIL but

(MATCH3 °({(&)) *((A))) ; yields T.

An improvement in MATCH3 would be the addition of a facility to remember
the element(s) matched by the question marks in the pattern. We can provide
such a capability. This would permit, for example, the form

- {(MATCH4 "((? ) B C (? Y)} (A B C D))

" to not only return T, but have the side effects of setting the value of X to be
A and setting the value of Y to be D. In that way, if the match is used as
a condition in a production rule, the action part of the rule can manipulate
the values matching the variable elements in the pattern. To change MATCH3
into MATCH4, we replace only one clause of the COND: the joker clause. The
* replacement for the joker clause is:
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( (AND
(EQUAL (LENGTH (CAR P)) 2) ; Subcondition a
(EQ (CAAR P) *7) ; subcondition b
(MATCH4 (CDR P) (CDR %)} ) ; subcondition ¢

(SET (CADAR P) (CAR S))

T)

Now, when the three subconditions are satisfied, the variable associated with
the question mark in the pattern can receive a value equal to the first element
of 8. The three conditions are: (a) the first element of P must be a (sub)list of
length 2 - this prevents a possible error later in computing the CAAR of P; (b)
the first element of that sublist must be the question mark; and {c} the CDR of
P must match the CDR of S. The use of the AND form here is an example of
using “logic” forms to effect control structures. The outcome of the AND form
here controls whether the SET form is evaluated (since the whole expression
here is a clause of the big COND). At the same time, the AND plays the role of
several nested COND forms in the sense that only if subcondition a is not NIL
will there be an evaluation of subcondition b; and only if both subconditions a
and b are not NIL will there be an evaluation of subcondition . MATCHA4 looks
as follows:

(DEFUN MATCH4 (P 8)

(COND ((NULL P} (NULL 8)) inull clause
({OR (ATOM P)(ATOM 8)) NIL) ;atom clause
((EQUAL (CAR P) (CAR 8)) ;equal CAR clause

(MATCH3 (CDR P} (CDR 8)) )
ynew joker clause...

( (AND
(EQUAL (LENGTH (CAR P) 2)) :subcondition a
(EQ (CAAR P) '7) ;subcondition b

(MATCH4 (CDR P) (CDR S)) ) :subcondition ¢
(SET (CADAR P) (CAR 8))
T)
(T NIL) ) ) ;extremal clause

We still want two more features for our MATCH function. The first of these
permits pattern elements similar to “(? X)” but gives us a finer degree of con-
trol over what it matches. The question-mark construct matches any element
appearing in the appropriate position in S. By specifying the name of a predicate
(the name must not be “?” or “*", which are reserved) in place of the question
mark, we may indicate a class of elements that can match. For example, we
would like

(MATCHS *(A B (NUMBERP X) D) ’(A B C D))
to yield NIL, but for
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(MATCHS ’(A B (NUMBERP X) D) ’(A B 17 D))

to give T, with the side effect of having the value of X set to be 17,

1 To obtain this feature, we add another clause to the COND of MATCHA,
. very much like the new clause in MATCH4. The difference is that instead of
L the second subcondition (labelled b above) (EQ (CAAR P) '7), we have the two
subconditions:

(WULL (EQ (CAAR P) °7)) : subcondition bl

. (APPLY (CAR P) (LIST (CAR S))) : subcondition b2

} making a total of four subconditions in the new AND form. The new clause is as
L follows, and it is added to the COND form of MATCH4, rather than replacing
b a clause.

((AND
(EQUAL (LENGTH (CAR P) 2)) ; subcondition a
(NULL (EQ (CAAR P) *7)) : subcondition bl
(APPLY (CAR P) (LIST (CAR 3))) ; subcondition b2

(MATCH4 (GDR P) (CDR S)) )
(SET (CADAR P) (CAR S))
T)

; subcondition ¢

; Thus, a pattern element of the form (P X), where P is a predicate, matches
E an element S of the subject if P applied to § is T. When the entire match is suc-
. cessful, the value of S is assigned to X. Since MATCHS is identical to MATCH4
t except for the addition of this new clause, a complete listing for MATCHS is
[ not given. The function MATCHS, for which a complete listing is given below,
F includes the clause just discussed.

Our final feature is a new pattern construct to match any sequence of elements
of S. We write this form (* X), and we call it a wild sequence construct. Unlike
(? X) which matches one element of S and assigns it to X, the element (* X) may
match zero or more elements of S and assigns a list of the matched elements to
X. This feature makes the matching more powerful, although at the same time
reducing the speed of matching. Once again, we are concerned now more with
functionality than with efficiency.

The wild sequence construct is implemented by adding an additional clause
to the COND of MATCHS. This clause is itself a COND with three clauses
handling the various subcases. The new matching function is MATCHS, and is
described in Fig. 3.4.

How the “*" construct works is as follows: subcase 1 allows the construct
to match exactly one element of S, as if the construct were the “?” construct.
Subcase 2 handles the situation in which the * construct should match zero
elements of S, and so the overall match depends upon whether the (CDR P)
matches S. Finally, subcase 3 takes care of the case when the * construct should
match more than one element of S; it permits this by “eating up” one element of
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; MATCH6.LSP -- a recursive pattern-matching function
; for use in production-gystems programming.

(DEFUN MATCHEé (P 8)
{COND
((NULL P){NULL 8)) icase with both P and $ null
;from here on we can assume P is not null.
((ATOM (CAR P)) ;case when CAR P is an atom
(AND 8 ;8 must not be mull.
(EQUAL (CAR P) (CAR 8))
(MATCH6 (CDR P) (CDR $)) )} )
;from here on CAR of P is non atomic.
( (AND ;case vhen P starts with ? form.
S ;3 must not be null.
(EQ (CAAR P) '7) )
(COND ((MATCH6 (CDR P)(CDR 8)) ; rest much match, too.
(SET (CADAR P) (CAR 3))
™
(T NIL) )} )
({EQ (CAAR P) '#) ;case when P starts with * form.
(COND
((AND 8 {MATCH6 (CDR P)(CDR ) ;Subcase 1
(SET (CADAR P) (LIST (CAR S))) T)

((MATCH6 (CDR P) 8) ;subcase 2
(SET (CADAR P) NIL) T)
((AND S (MATCH6 P (CDR £))) ;subcase 3
(SET (CADAR P) (CONS (CAR S)(EVAL (CADAR P)))) T)
(T NIL) ) )
((AND ;case vhen P starts with predicate form.
S ;8 must not be null.

(APPLY (CAAR P) (LIST (CAR S)))
(MATCH6 (CDR P) (CDR 8)) )
(SET (CADAR P)(CAR $)) T)

(T NIL) } )

Figure 3.4: The definition for pattern-matching function MATCHS.
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¢ S (that is, calling recursively on its CDR), while not eating up the * construct
itself, which is implemented by calling recursively with P rather than (CDR P).
2 MATCHS® is an implementation for a pattern matcher that is very much

“in the production-system style. The different cases for matching are handled
independently. As a result, it is easy to add new pattern-matching features, while
at the same time, there is some inefficiency, because the same subconditions
may be tested repeatedly. It would not be difficult to rewtite MATCHS as a
discrimination net.

From this point on, we shall use the name MATCH to refer to the function
defined in MATCH6 (one must imagine all occurrences of “MATCH6” as being
replaced by “MATCH” in the definition).

The example use of MATCH below produces the value T:

(MATCH *((* X) WILD (? Y) (% Z))
»(+ SPECIFIES A WILD CARD SEQUENCE ELEMENT) )

Here (* X) matches and assigns to X everything up to WILD, and {? Y)
matches and assigns to Y the atom CARD which follows WILD in the subject,
and (* Z) matches and assigns to Z the rest of the subject.’

3.4 The “SHRINK”

We are now ready to describe a LISP program which simulates a Rogerian
psychiatrist?. The simulation is crude, but illustrates well how the MATCH
function can be put to good use. The program tries to make constructive com-
ments in response to the patient’s (the user’s) input, to encourage him or her to
reveal all inner conflicts and possible sources of frustration.

A session with the psychiatrist is started by typing

{SHRINK)

after the program has been loaded into LISP. Then the patient follows the doc-
tor’s instructions. The program enters an endless loop which repeatedly reads
in a sentence and makes a response. It makes its response by trying to match
patterns to the input. When a match is found, the corresponding scheme is used
to construct a response. When no match is found, the DOCTOR. “punts,” and
responds with a general remark such as “THATS VERY INTERESTING.”

11t should be noted that MATCH treats the variables X, Y and Z as global variable. Tt
is possible to write a matching function that passes the bindings of the matched fragments
in a list returned by the matching function to avoid the potential name conflicts that
can arise with the use of globals.
2SHRINK is inspired by the ELIZA program of J. Weizenbaum.
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3.4.1 Implementation of SHRINK

As in ROMAN2, SHRINK is implemented as an ordered production system ip
wmmemhmmmmwnmhmrwm%mwbyammmmaCONDthAnmn
loop which includes the COND form is executed until a production rule fires that
causes a return {the “BYE” rule).

The main procedure here is SHRINK. MATCH is called by it and plays 3
major role. PRINTL outputs a list without the usual enclosing parentheses.
WWORD returns a word like “WHEN,” “WHERE,"” etc, GETNTH selects the
Nth element of a list. PUNTS is a list of pat phrases the psychiatrist uses to
keep the conversation going even though it hasn't found a more appropriate rule
to apply to the input. It always manages to at least blunder its way through
a conversation. YOUME translates any pronoun or BE-verb from first person
to second person or vice-versa. It is used by YOUMEMAP to roughly invert
a sentence so that the psychiatrist may incorporate parts of it in his response.
VERBP is a predicate which is T for any of a collection of commonly used verbs.
Here i3 the main function:

(DEFUN SHRINK () i Simple Rogerian therapist simulation
(PROG ()
(SETQ WWORDCOUNT 0) ; initialize counters
(SETQ PUNTCOUNT 0)
(PRINTM WELCOME TO MY SOFA) ; welcome message
(PRINTM PLEASE ENCLOSE YOUR INPUT IN PARENTHESES)
LOOP (SETQ S (YOUMEMAP (READ))) ; get user input, invert person.
(COND
; the production rules follow:
((MATCH *(BYE) 8)
(RETURN *GOODBYE))
((MATCH ’(YOU ARE (% X)) &)
(PRINTL (APPEND ’(PLEASE TELL ME)
(LIST (WWORD))
*(YOU ARE)
0
((MATCH ’(YOU HAVE (x X)) 8)
(PRINTL (APPEND ’(HOW LONG HAVE YOU HAD) X)) )
((MATCH ’(YOU FEEL (* X)) 8)
(PRINTM I SQMETIMES FEEL THE SAME WAY) )
((MATCH ’(BECAUSE (* X))} 8)
(PRINTM IS THAT REALLY THE REASON) )
((MATCH NIL S) (PRINTM PLEASE SAY SOMETHING))
((MATCH *(YES (* X)) 8)
(PRINTL (APPEND ’(HOW CAN YOU BE SO SURE) 0y
({(MATCH ’>(ME ARE (* X)) 8)
(PRINTL (APPEND °’(OH YEAH I AM) X)) )
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((MATCH ’((VERBP V} (* X)) S)
(PRINTL (APPEND ’(0Y YOI YOI HE WANTS THAT
1 SHOULD GO AND) (LIST V) X) ) )
((MATCH *((WPRED W) (* X)) S}

(PRINTL (APPEND ’(YOU TELL ME)(LIST W)) )} )
((MATCH ’({DPRED W)} ME (* X))} %)

(PRINTL (APPEND ’(PERHAPS I)(LIST W) X) ) )
((MATCH ’ (DO ME THINK (+ X)) S)(PRINTM I THINK YOU

SHOULD ANSWER THAT YOURSELF))
((MEMBER ’DREAM S)

(PRINTM FOR DREAM ANALYSIS SEE FREUD))
((MEMBER ’LOVE S)

(PRINTM ALL IS FAIR IN LOVE AND WAR))
((MEMBER °NO S) (PRINTM DONT BE SO NEGATIVE))
((MEMBER ’MAYBE S) (PRINTM BE MORE DECISIVE))
((MEMBER ’YOU 8) (PRINTL S))

; here’s the rule that can’t fail:
(T (SETQ PUNTCOUNT (ADD1 PUNTCOUNT))
(COND ((EQUAL PUNTCOUNT 7)
(SETQ PUNTCOUNT 0)}))
(PRINTL (GETNTH PUNTCOUNT PUNTS)) ) )
(GO LOOP) ))

The next function, PRINTL, prints a list without outer parentheses. It helps

~ by making the output look more attractive than it would if PRINT were used
in its place.

. (DEFUN PRINTL (MESSAGE)
(PROG O
{MAPCAR
(FURCTION (LAMBDA (TXT)

(PROG () (PRIN1 TXT) (TYD 32)) ))
MESSAGE)

(TERPRI) ) )

WWORD is a function that returns WHEN, WHY or WHERE. It is used to
make questions out of the user's input.

(DEFUN WWORD ()
(PROG () (SETQ WWORDCOUNT (ADD1 WWORDCOUNT))
(COND ((EQUAL WWORDCOUNT 3) (SETQ WWORDCOUNT 0)))
(RETURN (GETNTH WWORDCOUNT
' (WHEN WHY WHERE) )) ) )

The predicate WPRED is true of the atoms WHY, WHERE, WHEN and
WHAT, and it is used to help analyze an input sentence.
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(DEFUN WPRED (W)
(MEMBER W ’(WHY WHERE WHEN WHAT)) )

The predicate DPRED is true of DO, CAN, SHOULD and WOULD. It is
also used in input analysis.

(DEFUK DPRED (W)
(MEMBER W *{(DO CAN SHOULD WOULD)) )

The next function returns the Nth element of LST.

(DEFUN GETNTH (N LST)
(COND ((NULL LST) NIL)
((ZEROP N)(CAR LST))
(T (GETNTH (SUB1 N)(CDR LST))) ) )

The atom PUNTS is used to store the list of phrases that are used as responses
of last resort.

(SETQ PUNTS
* ((PLEASE GO ON)
(TELL ME MORE)
(I SEE)
(WHAT DOES THAT INDICATE)
(BUT WHY BE CONCERNED ABOUT IT)
(JUST TELL ME HOW YOU FEEL) ) )

The function YOUME translates some words from 1st to 2nd person or from
2nd to 1st person. For example, if the input is YOU, then the output is ME.

(DEFUN YOUME (W)
(COND ((EQ W *I) ’YOU)

((EQ w ’ME) ’YOU)
((EQ ¥ ’YOU) 'ME)
((EQ ¥ *MY) ’YOUR)
((EQ ¥ ’YOUR) ’MY)
({EQ W ’*YOURS) °MINE)
((EQ W *MINE) ’YQURS)
((EQ W ’AM) ’ARE)
(TwW) ))

In order to convert an entire sentence from the user's viewpoint to the
SHRINK’s viewpoint, the function YOUMEMAP applies the function YOUME
to each word in the list that is input.

(DEFUN YOUMEMAP (LST) (MAPCAR (FUNCTION YOUME) LST))
VERBP is a predicate that is true of certain verbs.
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| (DEFUN VERBP (V)

E  (MEMBER W ’(GO HAVE BE TRY EAT TAKE HELP MAKE GET JUMP
WRITE TYPE FILL PUT TURN COMPUTE
THINK DRINK BLINK CRASH CRUNCH ADD) ) )

3.4.2 A Session with the SHRINK

‘3' The following is a sample dialog between a human user (the “patient”) and the
f SHRINK. The patient’s input is shown in lower case text while the SHRINK’s
- responses are shown in capital letters.

E (shrink)
¥ WELCOME TO MY SOFA
b PLEASE ENCLOSE YOUR INPUT IN PARENTHESES
¥ (hello)
L TELL ME MORE
F' (i have a small problem)
& HOW LONG HAVE YOU HAD A SMALL PROBLEM
P (ever since my girlfriend discovered my true love)
§ ALL IS FAIR IN LOVE AND WAR
(1 see)
-YOU SEE
yes)
BOW CAN YOU BE SO SURE
because i understand your comment)
S THAT REALLY THE REASON
perhaps not)
SEE
B (she vants me to give up computers)
& SHE WANTS YOU TO GIVE UP COMPUTERS
{you got it)
WHAT DOES THAT INDICATE
(i cant see you anymore)
YOU CANT SEE ME ANYMORE
{no but)
DONT BE SO NEGATIVE
(but i will dream of you)
FOR DREAM ANALYSIS SEE FREUD
- (bye)
~ GOODBYE

* This session illustrates the flavor of a conversation with the SHRINK. One should
~ hot expect too much from a program as simple as the SHRINK; it doesn’t have
-~ much of a knowledge base: eighteen production rules and a few odd bits of
. 8yntactic information, no grammar, and no dictionary.
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On the other hand, this program illustrates at a simple level how a production
system approach may be used to build a conversational program.

3.5 Mathematical Formula Manipulation

3.5.1 Motivation

While the SHRINK program shows how the production systems approach and
pattern matching may be employed in building an AI program, the example does
not illustrate how the database may be gradually transformed by a sequence of
production-rule firings to work towards the solution of a problem. The SHRINK
has a short attention span, using only one production rule on each new “problern”
{i.e., the problem of generating a response to the user's input).

In this section, a program called “LEIBNIZ” is presented which shows how a
production system may be set up so that each time a rule fires, a little progress
is made towards the solution of a relatively complicated problem. The LEIBNIZ
program also illustrates several other techniques, including:

1. the explicit representation of production rules as data rather than as
clauses of a COND form;

2. the use of the function MATCH in examining the top two levels of list
structure, rather than only the top level;

3. the use of production rules that can potentially be applied at any level of
a data structure in the database; and

4. the use of the database to store the current goal that the system works
toward, and the use of production rules to change that goal,

The LEIBNIZ program is capable of solving some of the following kinds
of mathematical problems: (a) taking the derivative of a function such as a
polynomial, and (b} simplifying an expression. For example, the function

fla) =22+ 2z
has the derivative
£ 1(z)=2+2.

When f(r) is suitably represented, LEIBNIZ can find a representation for its
derivative. The representation for f({x) above, that LEIBNIZ can work with, is:

(PLUS (EXP X 2) (TIMES 2 X)).
To express that we wish the derivative of f(z), we write for LEIBNIZ:
D FIDD
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L and in the case of our example, we would have

(0 (PLUS (EXP X 2) (TIMES 2 X)) 1).

. Given this starting formula, LEIBNIZ would gradually transform it into the
E desired answer,

b (PLUS (TIMES 2 X 2).

} LEIBNIZ also can simplify formulas. For example, it can reduce the formula
 (TIMES (EXP X 1) (PLUS 7 -6))

':;E to the much simpler formula,

X

E Differentiation of algebraic expressions is something commonly done by col-
I lege freshmen in an introductory calculus course. Perhaps because it is rare to
i find much younger people doing it, differentiation has been thought to require in-
E telligence. Differentiation and integration of formulas were items of study by Al
b researchers in the early 1960s. Today, techniques for mathematical formula ma-
. nipulation are well understood and are not commonly discussed in the research

b literature. Nonetheless, the topic still provides suitable material for illustrating
E pattern matching and production systems in action.

3.5.2 Overall Structure of LEIBNIZ

LEIBNIZ is a collection of function definitions and SETQ forms which implement
- the three components of a production system: rule base of production rules, con-
: trol scheme, and database of state information. Each of these three components
is explicitly represented by some of the definitions and forms. In the next three
subsections, these components and their implementations are described.

£3.5.3 Production Rules for LEIBNIZ

E The production rules for LEIBNIZ contain knowledge about how to take deriva-
§. tives and simplify formulas. Therefore, most of these rules correspond to math-
£, ematical formulas; these are shown in Fig. 3.5.

Each production rule is represented as a 4-tuple of the form,

( current_goal pattern transformation rule_name }

© Where the current goal and pattern make up the “condition,” the transformation
" specifies the action for the production rule, and the rule name is used in reporting
- progress. An example rule is the following:
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Differentiation Rules
DIFF_PLUS_RULE £ [u(@) + v(z)) = fu() + Loia)

DIFF_X_RULE 4o

—y

DIFF_CONST_RULE fic =0
DIFF_PRODUCT_RULE 4 [u(z) . v(z)] = v(@) L u(z) +u(z) Lo(a)

DIFF_POWER_RULE 4 [u(2)]" = n[u(z)]"! A u(z)

Simplification Rules

EXPO_RULE 2 =1
EXP1_RULE =z
TIMES1_RULE z-l=2
ONE_TIMES_RULE l.z=2x
PLUSO_RULE r+0=z
ZERO_PLUS_RULE O+tz=2
TIMESO_RULE z-0=0

ZERQO_TIMES_RULE 0.z=0

Figure 3.5: Mathematical rules used in LEIBNIZ. Not shown are three simpli-
fication rules that work by performing calculations rather than symbolic trans-
formations. There is also a “goal-change” rule used for control.

A
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If the current goal is DIFFERENTIATE and there is a subformula of
the form (D (PLUS E1 E2) V1) then replace the subformula by one of the
form (PLUS (D E1 V1) (D E2 V1)); this is called DIFF_PLUS_RULE.

In this example, E1, E2, and V1 are arbitrary subexpressions; normally V1
b represents the variable of differentiation, X. This rule says that in order to find
b the derivative of a sum, take the sum of the derivatives of the constituents to

L the sum. In other words,

a%[“(-’”) +v{z)] = a%u(:c) + adiv(:r).

: As illustrated again in this rule, LEIBNIZ works with formulas expressed in
f a LISP-like form. The following operations are supported as binary operations
. (taking only two arguments): PLUS, TIMES, and EXP. Making LEIBNIZ work
l with PLUS and TIMES allowing any number of operands is an exercise left to
b the reader. The unary operation SUBL is also supported, and it is useful in the
L intermediate stages of differentiating polynomials.

I We now give the LISP representations for all the production rules that LEIB-
| NIZ uses. There are five rules for differentiation, one rule for changing the goal,
' and eleven rules for simplification of formulas. The first representation is for the
| rule just discussed. It uses a helping function PLUSFORM, which is a predicate
j that is true whenever its argument has the form (PLUS El1 E2).

k. (SETQ DIFF_PLUS_RULE ’(

DIFFERENTIATE

(D (PLUSFORM F1) (7 V1))

(LIST ’PLUS (LIST °D E1 V1) (LIST ’D E2 V1))

DIFF_PLUS_RULE
})

Next, PLUSFORM, a helping function for DIFF_PLUS_RULE, is defined.
It is used to match certain second-level expressions:

[ (DEFUN PLUSFORM (F)
. (AND (NOT (ATOM F))
(MATCH ’(PLUS (7 E1) (7 E2)) F) ) )

The next rule says that the derivative of X with respect to X is 1. It will
work for X or any other variable.

(SETQ DIFF_X_RULE ’(
DIFFERENTIATE _
(D ((LAMBDA (V)(SETQ E1 V)} E1) ((LAMBDA (V) (EQ V E1)) E2))
1
DIFF_X_RULE ) )
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The pattern for DIFF_X_RULE uses two local functions. The first causes the
second subexpression {the function to be differentiated) to be immediately ag.
signed as the value of E1. The second local function only succeeds if the subex-
pression there (telling which variable differentiation is with respect to) is the
same as that saved in El.

The rule DIFF_CONST_RULE says that if F is not a function of X, then its
derivative with respect to X is 0.

(SETQ DIFF_CONST_RULE ’(
DIFFERENTIATE
(D ({LAMBDA (F)(SETQ Ef F)) F)
((LAMBDA (V1) (NO_V1 E1 V1)) V1) )
0
DIFF_CONST_RULE ) )

The pattern for this rule also uses two local functions. The first saves the function
to be differentiated (as in the previous rule). The second function is a predicate
that is true only if the variable that differentiation is with respect to does not
appear in the function to be differentiated.

The function NO_V1 is a helping function for DIFF_CONST_RULE: it re-
turns T if V1 does not oceur in F.

(DEFUN NO_V1 (F V1)

(COND ((NULL ) T)
((ATOM F) (NOT (EQ F V1)))
((NO_V1 (CAR F)} V1) (NO_V1 (CDR F) V1))
(T NIL) ) )

The next rule is for differentiating products:

(SETQ DIFF_PRODUCT_RULE ’(
DIFFERENTIATE
(D
((LAMBDA (F)
(AND (NOT (ATOM F))
(MATCH ’ (TIMES (7 E1) (? E2)) F)) ) E3)
V1))
(LIST 'PLUS
(LIST ’TIMES E2 (LIST ’D E1 V1))
(LIST 'TIMES Ei (LIST ’D E2 V1)) )
DIFF_PRODUCT_RULE
))

The rule for differentiating powers is DIFF_POWER_RULE; it says that the
derivative of [u{z)]" with respect to 7 is equal to nju(r)]" ! times the derivative
of u(z) with respect to .

Y
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j (SETQ DIFF_POWER_RULE ’(
' DIFFERENTIATE
(@
((LAMBDA (F)
(AND (NOT (ATOM F))
(MATCH ’(EXP (7 E1) (NUMBERP E2)} F}) ) E3)
(* v1) )
(LIST ’TIMES E2
(LIST *TIMES (LIST ’EXP E1 (LIST ’SUB1 E2))
(LIST D E1 V1) ) )
DIFF_POWER_RULE
1)

The production rules for simplification are of two general kinds. Some actu-
F ally perform arithmetic on constants. Others make use of properties of arithmetic
E to eliminate the need for operations in certain contexts. Here is a rule that ac-
. tually performs arithmetic on constants; it’s a simplification rule for subtracting
E 1:

f (SETQ SUB1_RULE °{(

] SIMPLIFY

(SUB1 (NUMBERP E1))

(SUB1 E1)

SUB1_RULE

))

3 A rule that makes use of a property of an operation is the following rule for
i simplifying an exponentiation by 0. It represents the fact that 20 is 1.

¥ (SETQ EXPO_RULE °*(
] SIMPLIFY

(EXP (? E1) 0)
1

EXPO_RULE

Y )

: It is also useful to use the fact that ! = x; here is the rule for exponentiation
F by 1
(SETQ EXP1_RULE ’{

SIMPLIFY

(EXP (7 E1) 1)

El

EXP1_RULE

>)

A rule that eliminates multiplications by 1 is the following:
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(SETQ TIMES1_RULE ’(
SIMPLIFY

(TIMES (? E1) 1)
E1l

TIMES1_RULE

1)

Since the pattern-matching technique will match operands in the order spec-
ified, we need a variation of the rule for multiplication by 1 to handle the cage
of (TIMES 1 X), rather than the case (TIMES X 1).

(SETQ ONE_TIMES_RULE *(
SIMPLIFY
(TIMES 1 (7 E1))
E1l
ONE_TIMES_RULE
))

The rules for adding 0 are the next two:

(SETQ PLUSO_RULE °(
SIMPLIFY
(PLUS (? E1) 0)
E1
PLUSO_RULE
})

i variation on rule for adding O
(SETQ ZERD_PLUS_RULE *(

SIMPLIFY

(PLUS 0 (? E1))

El

ZERO_PLUS_RULE

))

Multiplication by 0 is another case where simplification can be made:

(SETQ TIMESO_RULE ’(
SIMPLIFY
(TIMES (? E1) 0)
0
TIMESO_RULE
)

; variation on rule for multiplication by O
(SETQ ZERO_TIMES_RULE ’(

Y
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SIMPLIFY

(TIMES 0 (? E1))
0
ZERD_TIMES_RULE
)

. More rules that do arithmetic on constants are the following ones. The next
b rule attempts to add constants when possible.

} (SETQ CONSTANT_ADDITION_RULE ’(

1 SIMPLIFY

(PLUS (NUMBERP Ei) (NUMBERP E2))
(PLUS E1 E2)
CONSTANT_ADDITION _RULE

))

Here is the rule to multiply constants when possible.

E (SETQ CONSTANT_MULTIPLICATION_RULE °(
5 SIMPLIFY

(TIMES (NUMBERP E1) (NUMBERP E2))
(TIMES E1 E2)

CONSTANT _MULTIPLICATION_RULE

))

L' The next rule is one which plays a role in directing the activities of the
f production system as a whole. It is placed after all the rules of differentiation,
Eand when it fires, it causes the current goal to be changed to SIMPLIFY.

¥ (SETQ GOAL_CHANGE_RULE ’(
&  DIFFERENTIATE

((* F))

(PROG () (SETQ CURRENT_GOAL ’SIMPLIFY) (RETURN F))
GOAL_CHANGE_RULE

})

. Now that all seventeen production rules are represented in LISP, they can
| be listed as the value of an atom RULES for easy manipulation by the contrel
E-scheme. The following SETQ form makes a list of all the production rules.
§ There is a certain amount of ordering that is intentional; the differentiation
f rules precede the simplification rules, and the goal-change rule separates them.

(SETQ RULES (LIST DIFF_PLUS_RULE DIFF_X_RULE DIFF_CONST_RULE
DIFF_PRODUCT _RULE DIFF_POWER_RULE

GOAL _CHANGE_RULE ; this rule follows the DIFF rules
SUB1_RULE EXPO_RULE EXP1i_RULE

TIMES1_RULE ONE_TIMES_RULE
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TIMESO_RULE ZERO_TIMES_RULE

PLUSO_RULE ZERO_PLUS_RULE

CONSTANT_ADDITION_RULE CONSTANT_MULTIPLICATION_RULE
)

This rule base can easily be enlarged, without a need to modify any of the

rest of the production system.

3.5.4 Control Scheme for LEIBNIZ

In order to apply the production rules in an effective fashion to solve problems, a
control scheme is needed. In the SHRINK program, all the rules were sequenced
inside a COND form. By contrast, in LEIBNIZ, the rules are applied explicitly
by a set of functions: CONTROL, TRY_RULES, TRY_RULE, TRY_RULE],
and TRY_RULE_ON_LIST. To make the production system start running, the
function CONTROL is invoked with no arguments:

(CONTROL) .

CONTROL causes TRY_RULES to try rules until one succeeds, then it starts
again; when no rules fire, the current formula is returned.

(DEFUN CONTROL ()

(PROG )
LOOP (COND ((NOT (TRY_RULES RULES))

(RETURN CURRENT_FORMULA) ))
(GO LOOP) ) )

TRY_RULES is a function that tries each rule on the list given to it until

one succeeds, or the end of list is reached, or the current formula is no longer a
list. If a rule fires, it returns the current formula; otherwise it returns NIL.

(DEFUR TRY_RULES (RULES_LEFT)

{COND ((NULL RULES_LEFT) NIL)

((ATOM CURRENT_FORMULA) NIL)
((SETQ TEMP
(TRY_RULE (CAR RULES_LEFT) CURRENT_FORMULA) )
(SETQ CURRENT_FORMULA TEMP) )
(T (TRY_RULES (CDR RULES_LEFT))) ) )

The next function, TRY_RULE, is one that tries to apply a single rule to an

expression or one of its subexpressions. If the rule is successful, the transformed
expression is returned; otherwise NIL is returned.

(DEFUN TRY_RULE (RULE EXPRESSION)

(PROG (RULE_GOAL PATTERN ACTION)

(SETQ RULE_GOAL (CAR RULE))
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(SETQ PATTERN (CADR RULE))

(SETQ ACTION (CADDR RULE))

(COND ((NOT (EQ CURRENT.GOAL RULE_GOAL)) (RETURN NIL}))
(RETURN (TRY_RULE1 EXPRESSION)) ) )

3 The recursive slave of TRY_RULE, the function TRY_RULE1 does the real
 work of searching down through the current expression to see if the rule can be
t applied anywhere in it

L (DEFUN TRY_RULE1 (EXPRESSION)

¥ (COND ; make sure EXPRESSION is a list; return if not...
({ATOM EXPRESSION) NIL)
: attempt to apply rule to whole EXPRESSION...
((MATCH PATTERN EXPRESSION)
(FIRE} )
; try rule on subexpressions...
(T (TRY_RULE_ON_LIST EXPRESSION)} ) )

Helping in the recursive search of the expression is the following function that
t tries to apply the rule to each element on EXPRESSION_LIST. It returns NIL
b if the rule cannot be applied in any of the expressions or their subexpressions.
f- Otherwise it returns the original list with one replacement: the first expression
. in which the rule can be applied is replaced by the result of applying the rule in
 it.

E (DEFUN TRY_RULE_ON_LIST (EXPRESSION_LIST)
& (COND ((NULL EXPRESSION_LIST) NIL)
((SETQ TEMP (TRY_RULEi {(CAR EXPRESSION_LIST)))

(CONS TEMP (CDR EXPRESSION_LIST)) )

((SETQ TEMP (TRY_RULE_ON_LIST (CDR EXPRESSION_LIST)))
(CONS (CAR EXPRESSION_LIST) TEMP) )
(T NIL) ) )

¢ The next function is evaluated when a production rule fires. Its main purpose
b i to print a message on the console showing that a rule is firing and which rule
it is.

j (DEFUN FIRE ()

(PROG ()
(PRIN1 (CADDR (CDR RULE))) ; print name of rule
(TYD 32) ; print a space
(PRINT ’FIRES) ; print ‘FIRES’

(RETURN (EVAL ACTION)) ; do ACTION

))
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3.5.5 Database of State Information in LEIBNIZ

The database of state information consists of two items: the current formyly
and the current goal. The current formula reflects any transformations that
have been made by the production rules, and it is the object being transformeq
into a solution to the original problem.

The current goal indicates whether the system is attempting to differentiate
within the current formula or to simplify the current formula. This goal helps
control the firing of production rules to implement a strategy for solving dif.
ferentiation problems. The strategy is to do as much differentiation as possible
first, and then simplify the result. The goal mechanism also serves to improve
the efficiency of simplification by disabling the detailed condition testing for the
differentiation rules.

Initializing the database is simply a matter of assigning values to two litera)
atoms CURRENT_GOAL and CURRENT_FORMULA. This can be accom-
plished by a set of SETQ forms such as the following three.

(SETQ CURRENT_GOAL ’DIFFERENTIATE)
(SETQ FO ’(D (PLUS (EXP X 2) (TIMES 2 X)) 1)
(SETQ CURRENT_FORMULA F0)

3.5.6 Performance of LEIBNIZ

A sample run of LEIBNIZ solving a differentiation problem is now shown. Let us
assume that the database of state information has been initialized as explained
above. This indicates that we want LEIBNIZ to compute the derivative of the
function 22 + 22, and to simplify its result. After the user types (CONTROL),
the following messages are displayed:

DIFF_PLUS_RULE FIRES
DIFF_PRODUCT_RULE FIRES
DIFF_X_RULE FIRES
DIFF_CONST_RULE FIRES
DIFF_POWER_RULE FIRES
DIFF_X_RULE FIRES
GOAL_CHANGE_RULE FIRES
SUB1_RULE FIRES
EXP1_RULE FIRES
TIMES1_RULE FIRES
TIMES1 _RULE FIRES
TIMESO_RULE FIRES
ZERO_PLUS_RULE FIRES

and finally the simplified derivative of the original formula is returned as the
value:
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(PLUS (TINES 2 X) 2).

f¥yom the record of rule firings we can see that only rules for differentiation fire
hefore the change of goal. Thereafter, only rules for simplification fire. Interest-
ingly enough, some of the rules fire more than once; DIFF_X_RULE fires twice,
¢ does TIMES1_RULE. Other rules do not fire at all on this particular example.
. Because the production rules of LEIBNIZ are in a fairly pure, uncompiled
Lgorm {we have not used a discrimination net, for example), LEIBNIZ spends a lot
of time testing and retesting production rule conditions that have little chance
of being true. Thus it is not very efficient. However, the beauty of a production
faystem is that one can easily introduce more production rules to expand the
Erange of problems that the program can handle. The reader can add rules to
LEIBNIZ without much trouble that will enable it to handle many formulas

b involving trigonometric functions, for example.

3.6 The Notion of Unification

i'; 1 the function MATCH, a pattern is compared with a subject. At each step, the
‘elements should be equal, or the pattern should have a “wild-card” element of the
propriate type. In the case of the “(* X) type of element, in a successful match,
£Y would receive a value indicating what the element was put into correspondence
Bwith. The element (? X) can be considered as a variable, to which a value is
ven during the course of matching.

Let us now consider a different kind of matching problem: one in which no
istinction is made between pattern and subject. Suppose we wish to match two
pressions:
1= (AB (7 X) D) and
=4 (7Y CD).

Then, with the right kind of matching function, we shouid find that they can
indeed be matched, and that X corresponds to C and Y corresponds to B. On
e other hand, if we bhad

=AY CE

ere is a problem in matching El with E3. Even though at each position we
 have either an equality between elements or an element matched with a wild
card, Y would have to have the value B at the same time as it has value D, an
consistency! The pair E1 and E2 is said to be unifiable while the pair El.and
- E3 is not unifiable. Suppose

B4 = ((? 2) BCD).

Then the set {E1, E2, E4} is unifiable since there exists a set of assignments
- of values to variables such that all the correspondences are consistent. We shall
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treat the subject of unification in Chapter 6 in detail when we see that this king
of pattern matching plays a crucial role in two areas: theorem proving using the
“resolution” method, and general problem solving using the predicate calculus,

3.7 Bibliographical Information

Production systems are described in an article by Davis and King. The more
general notion of pattern-directed control is treated in a book edited by Wa-
terman and Hayes-Roth. Nilsson stresses production systems in his Principles
of Artificial Intelligence. Discrimination nets are described in [Charniak et a]
1979].

Pattern matching was recognized as important in the language SNOBOL.
The function MATCH developed in this chapter is modelled after one presented
by Winston, but avoids the use of functions that decompose atom names (EX-
PLODE, ATOMCAR, ATOMCDR).

Dialog was used as a means of demonstrating Al systems with Weizenbaum’s
ELIZA and later with Colby’s PARRY. Today it is studied as a special topic in
natural language understanding.

Early studies in formula manipulation for the calculus include [Slagle 1963).
A LISP-based system that has found widespread use for symbolic mathemat-
ics is MACSYMA [Mathlab 1975], [Moses 1976), [NASA 1977). A more recent
software system for symbolic mathematics is SMP, which is especially useful in
scientific applications such as theoretical physics [Wolfram 1983, 1984], The
LEIBNIZ program presented in this chapter uses some of the differentiation and
simplification rules used in a program in [Weissman 1967]; Weissman’s program
does not use the production-system approach, and was written for a dialect of
LISP incorporating an “EVALQUOTE" feature, seldom found in today’s imple-
mentations of LISP. Weissman'’s program, unlike LEIBNIZ, also supports the
conversion of the mathematical formulas from infix notation to prefix notation
and vice versa.

Unification is described further in Chapter 6, and references for it may also
be found in that chapter.
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| Exercises

The production-system method of program organization is commonly used
in Al systems.

(a) List the components of a production system.
(b} What is a production rule?
{c) What is the principal advantage in using a production system?

Add new production rules (COND clauses) to ROMANZ so that it handles
numbers up to 399 instead of 39.
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. Modify ROMAN3 to handle numbers up to 3999. What is the maximug

number of subcondition tests in the resulting discrimination net?

. Production systems to determine representations for integers in the words

of various foreign languages can range from straightforward to fairly com-
plex. The case of German is not very difficult.

{a) Write production rules to translate an integer in the range 0 to 99
into German words.

{b) Implement your system in LISP.

. French is slightly more complicated.

{(a) Make up a set of production rules for translating integers in the range
0 to 99 into the appropriate French-language words. For example 2
becomes DEUX and 75 becomes SOIXANTE QUINZE.

(b} Implement your production system in LISP and demonstrate it on
the numbers 0, 1, 9, 10, 16, 17, 19, 20, 21, 22, 30, 59, 60, 70, 76, 77,
80, 90, and 99. How many clauses are there in your principal COND
form?

- Using the TRACE option in LISP, determine the number of times the

fanction MATCH is invoked {including all the recursive invocations} in
evaluating the form

(MATCH "({(* X) BC (* Y)) "(ABCD E)).

. The function MATCH assigns values to variables in successful matches

involving joker, predicate, and wild sequence constructs. Is it possible
for one (or more) of these variables ever to be assigned a value when the
overall match is not successful? Explain.

. As suggested on page 65, reimplement that MATCH function as a dis-

crimination net.

. Modify MATCHS (creating MAT'CHY) in such a way that the application

of predicates, rather than only to individual elements of S, can be to
sequences of elements of S. For example, suppose that {INCREASING L)
returns T if L is a list of increasing integers. Then we would like

(MATCH7 °(101 (INCREASING X) (INCREASING Y))
(101 246835 7))

to return T and have the side effects of assigning the list (2 4 6 8) to X
and the list (35 7) to Y.
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After completing the previous problem, define a function DECREASING
and a function SAME in the same spirit as INCREASING. These functions
all will take a single argument, assumed to be a list, and return either T
or NIL. For example,

(SAME (3 3 3 3)) ; produces T
(SAME *(2 5)) ; produces NIL
(SAME ’(4)) ; produces NIL
(SAME *( )) ; produces NIL
(DECREASING ’(5 4 1)) ; produces T
(DECREASING ’(2)) ; produces NIL

(DECREASING (10 10 9)) produces NIL
Then test your function MATCH7 with the following examples:

(SETQ P1 ’((INCREASING X)(SAME Y){(DECREASING Z)))
(SETQ P2 ’((DECREASING X)(SAME Y) (INCREASING Z)))
(SETQ 81 *(1 23332 1)

(SETQ S2 (54 4 4 4 5))

(MATCH7 P1 S1)
(LISTX Y 2)
(MATCH7 P1 82)
(LISTX Y 2)
(MATCH7 P2 S1)
(LISTX Y 2)
(MATCH7 P2 52)
(LISTX Y 2)

Write a matching function MATCHS whose behavior is similar to that of
MATCHS except that it passes the bindings (of matched fragments of the
subject to variables in the pattern) back as a value, rather than by setting
the global values of the variables.

Modify the SHRINK so that instead of always using a “punt” when no
other productions match, it alternately uses a punt or a reference to pre-
vious items of the dialog. To do this you need the following: a way to
remember some of the conversation (perhaps by using a SETQ to store
some matched fragment in one of the production rules), a way to get alter-
ation of the actions in the punt preduction rule {(save a flag telling which
action to next time, and complement the flag each time the punt pro-
duction is reached), and a way to make reference to the stored fragment.
The result of this enhancement might be the Shrink saying something like
“EARLIER YOU MENTIONED YOU HATE HOMEWORK” or “LETS
DISCUSS THE FACT THAT YOU ADORE VAN GOGH.”
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Design a new version of SHRINK which employs a discrimination net,
Alter the production rules so that the net leads to a substantial increage
in efficiency in finding the most suitable rule to fire.

Develop a dialog program in the style of SHRINK which portrays a person-
ality of its own. Some suggestions: (1) a political candidate (or particular
office-holder) who answers all questions in his/her own narrow way, (2)
paranoid, (3) a widget salesman.

To what extent does SHRINK use an ordered production system? Give
an example of a user input that would generate different responses from
SHRINK if the order of the production rules was changed.

To what extent does LEIBNIZ use an ordered producticn system? Reverse
the order of the differentiation rules (leaving the other rules in the same
order) and run LEIBNIZ on the same formula for which a run is described
in the text. What differences do you find?

Run LEIBNIZ on the formula (D (PLUS (TIMES X 7} (TIMES 8 X)) X).
What is the sequence in which the production rules fire?

Add new differentiation rules to LEIBNIZ so that it can handle mathe-
matical expressions involving the function sin. An example of something
that LEIBNIZ should be able to differentiate is

(PLUS X (SIN (TIMES 2 X))).

The chain rule for differentiating a composition of functions should be
brought into play here.

As mentioned on page 73, LEIBNIZ allows only two operands with PLUS
and TIMES in the formulas it manipulates. Develop the modifications
that will permit LEIBNIZ to accept PLUS and TIMES with any number
of arguments, as LISP does.

Develop a discrimination net that uses the same differentiation and sim-
plification techniques that LEIBNIZ uses. Compare the running times for
LEIBNIZ and your program on the example illustrated in the text.

One of LEIBNIZ’s rules, DIFF_PLUS_RULE, uses a helping function,
PLUSFORM, in the representation of the pattern part of the rule. On the
other hand, DIFF_X_RULE uses local functions {(with LAMBDA forms),
avoiding the need for defining a named function. Rewrite the represen-
tation for DIFF_PLUS_RULE using local function definitions instead of
PLUSFORM.

CHAPTER 3. PRODUCTIONS AND MATCHING l
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Devise a new control scheme which avoids testing the same productions
on the same subexpressions over and over again. One way to do this is to
keep track of subexpressions that have changed since each production rule
was tried, and if the rule failed, only try the rule again if the subexpression
has changed.

Some of the production rules for LEIBNIZ involve pattern matching at
the top two levels of the current formula. Make up a pattern that actually
performs matching at the top three levels of a formula.

. A rational number may be represented by a dotted pair (n . d) of integers

(FIXNUMs) where n is the numerator and d is the denominator. Develop
the following functions:

(a) (REDUCE xz) which simplifies the fraction, if possible,
(b} (ADD z y) which computes the sum of rationals x and y, and
{¢) (MULTIPLY z ) which computes the product of rationals x and .

Write down a set of rules that could be used to design a production system
for symbolic integration of simple formulas.

. Design and demonstrate a production system that uses rules of the previ-

ous problem to solve some freshman-calculus integration problems.






'Chapter 4

Knowledge Representation

-:'-_4.1 Characteristics of Knowledge

, One usually makes a distinction between “data” and “information.” Data con-
ksists of raw figures, measurements, and files that do not necessarily answer the
f.qu&stions that its users may bave. Information, on the other hand, is some-
f what more refined. It is often the result of processing crude data, giving useful
Estatistics for the data, or answering specific questions posed by users. In Al we
t usually distinguish a third kind of order in memory: “knowledge.” We think
f of knowledge as a refined kind of information, often more general than that
§ found in conventional databases. But it may be incomplete or fuzzy as well. We
may think of knowledge as a collection of related facts, procedures, models and
“heuristics that can be used in problem solving or inference systems. Knowledge
. may be regarded as information in context, as information organized so that it
¢an be readily applied to solving problems, perception and learning.

¢ Knowledge varies widely in both its content and appearance. It may be spe-
cific, general, exact, fuzzy, procedural, declarative, etc. There are several com-
only used methods to organize and represent knowledge. These are described

the following section.

4.2 Overview of Knowledge Representation
Methods

i'Before describing a few methods in some detail, it is useful to consider briefly a
" number of the general approaches that have been used for representing knowl-
“edge. These include: production rules, inclusion hierarchies, mathematical log-



90 CHAPTER 4. KNOWLEDGE REPRESENTATION

ics, frames, scripts, semantic networks, constraints, and relational databases
Production rules, illustrated in Chapter 3, are a general method that is partic.
ularly appropriate when knowledge is action-oriented.

Inclusion hierarchies, described later in this chapter in some detail, handle
a particular kind of knowledge very well: knowledge about objects that can
be grouped into classifications, such that some categories are subcategories of
others. Inclusion hierarchies may be used as an organizing scheme in connection
with other methods, such as the predicate calculus.

Mathematical logics such as the predicate calculus provide a general and
fundamental capability which supports general logical inference. However, these
logics seldom provide organizational support for grouping facts so that the facts
can be efficiently used. In this sense, mathematical logics are “low-level” repre-
sentation schemes that do well with details but require additional support to be
useful in building nontrivial systems.

Frames provide an organizational scheme for knowledge bases, but not much
more than this; the detailed representations require other methods. Scripts have
been used in some experimental systems for natural language understanding for
representing scenarios with standard chronology such as what a person does
when he/she goes to a restaurant: gets a table, waits for the menu, orders, eats,
pays the bill, and leaves; scripts are like frames with additional support for de-
scribing chronology. Semantic networks, like frames, are a general organizational
framework, but there is not necessarily any particular kind of low-level support
in a semantic net system; any system in which the modules of knowledge may be
described as nodes in a labelled graph may be called a semantic net, although it
tends to be systems that attempt to mimic the neuronal interconnection struc-
ture of the biological brain that are most often labelled by their creators as
“sernantic networks.”

A kind of knowledge that is often described as a representation method is
“constraints.” A constraint is a relationship among one, two or more objects
that may be viewed as a predicate; the constraint is to be satisfied by the system
in finding a solution to a problem. By emphasizing the use of constraints in
representing a set of objects and their interrelations, a constraint-based approach
to knowledge representation may be used.

Finally, relational databases can sometimes serve as a method for knowledge
representation; as they are usually implemented, they are good at manipulating
large quantities of regularly-structured information in certain, largely precon-
ceived, ways. Relational databases have not been ideal for Al applications in
the past because of their inefficiency in making large numbers of small inferences
involving either very small relations or small parts of larger relations; there is
currently research going on to make relational databases more suitable for Al
applications.

This chapter presents the most important methods for knowledge represen-
tation. Inclusion hierarchies, the predicate calculus and frames are the methods
treated here. After a brief discussion of production rules as a means of repre-
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! senting knowledge we focus on the problem of representing a single concrete,
| but very powerful, relation: the inclusion relation between classes of objects.
| Next, the use of propositional and predicate logics for representing knowledge
 is taken up. After examining semantic networks, we look at frames, schemata,
 and scripts. Then relational databases are considered. Finally, several issues
 related to knowledge representation are discussed and a comparative summary
} of the methods is given. Some of the other methods and several specialized
techniques for such problem domains as computer vision and natural language
understanding are presented in later chapters.

4.3 Knowledge in Production Rules

| If we examine the SHRINK program to find the basis for its response-making
| ability, we would be hard-pressed to find anything but its production rules em-
L bedded into the big COND form. The knowledge of what to say when is almost
tall in these rules. Some of the SHRINK’s knowledge, however, lies outside of
the rules, although it is brought into play by the production rules. For example,
¥the definition of the function VERBP is knowledge (albeit at a primitive level)
labout the English language and is represented separately from the production
frules, but several rules contain patterns which use VERBP.

. Similarly, the knowledge about differentiating formulas in LEIBNIZ lies al-
Bmost entirely in its production rules. Some of LEIBNIZ’s ability comes from the
feontrol scheme’s method of trying to apply productions at many levels of the
rurrent formula, but if we wanted to increase the set of problems that LEIBNIZ
¥could solve, we could simply add new rules.

i In many of the expert systems described in the literature, such as MYCIN,
PAM and PROSPECTOR, much of the knowledge is represented within produc-
jtion rules. The left hand side of a production rule (the condition part) expresses
Bhe characteristics of a situation in which it is appropriate to petform the action
f{the right hand side) of the production rule. The testing of the condition as
bwell as the execution of the action may involve the manipulation of other data
tructures (knowledge bases). Thus the production rules might not embody all
0f the knowledge in a system. Even when one plans to embed most of a system’s
knowledge in production rules, one should understand the use of other means of
nowledge representation.

4.4 Concept Hierarchies

B Much of man’s knowledge about the world is organized hierarchically. All the

 “things” we know of we group into classes or sets. These classes are grouped
finto superclasses and the superclasses into even bigger ones. We associate with
Kaost of these classes names which we use to identify the classes. There is a
tlass we call “dogs” and another we call “cats.” These are grouped, with some
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other classes, into a superclass called “mammals.” Plants, minerals, machineg,
emotions, information and ideas are treated similarly. Much of our knowledge
consists of an understanding of the inclusion relationship on all these classes ang
cognizance of various properties shared by all members of particular classes. “A])
horses have four legs” states that the property “has four legs” is shared by each
member of the class of horses.

4.4.1 Inclusion, Membership and “ISA”

The inclusion relation on a set of classes is very important in Al, and there are
some interesting questions that arise when incorporating it into an Al system.
Our first issue is deciding what statements of English express inclusion relation-
ships. The sentence “A bear is a mammal” expresses that the class of bears is
a subclass of the class of mammals. For this reason, the data structures used to
represent inclusion relations are often called “ISA” hierarchies. The list (BEAR
ISA MAMMAL) is one way of representing this inclusion relationship. One must
beware of certain relationships which are similar in appearance to inclusion but
are really quite different. “Teddy is a bear” does not really say that the class of
Teddies is a subclass of the class of bears. Rather, it states that the particular
object, Teddy, is a member of the class of bears. Using set notation we would
write

BEARS C MAMMALS

TEDDY € BEARS

The key clue that the first sentence gives us for distinguishing that case from
the second is that “bear,” preceded by the article “A,” is indefinite and refers to
any and presumably all elements of the class. The “A” before “bear” in the first
sentence signals an inclusion relationship, whereas its absence before “Teddy” in
the second sentence indicates that Teddy is a particular object rather than one
representative of a class, and that “is a” means “is an element of the class” in
this case. A list representing the membership relationship in this case could be
(TEDDY ISIN BEAR).

The verb to be is used in various senses, also. “Happiness is a sunny day”
illustrates the use of to be in expressing a metaphor. This expression would
probably not be meant (by whoever uses it) to indicate that the set of happinesses
is a subset of the set of sunny days. More probably, someone saying such a thing
would intend that the listener understand him to mean that sunny days lead to
happiness. “A hot fudge sundae is vanilla ice cream with chocolate sauce” uses is
to mean consists of, making a kind of definition. These uses of is do not express
inclusion, and so one must be careful when attempting to describe the meanings
of English sentences that use to be (in its various forms) in terms of inclusion.
This illustrates one of the many difficulties of dealing with natural language in
a mechanized way.

Let us restrict ourselves to the inclusion relation for the time being. It has a
very important property: transitivity. This indicates, for example, that if (BEAR

N
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" ISA MAMMAL) and (MAMMAL ISA ANIMAL) then (BEAR ISA ANIMAL).

1 The fact that such a deduction can be made raises an important question: which

" assertions should be represented explicitly in a knowledge base and which should

. pe deduced when needed; i.e., left implicit most of the time? The best answer is

| not always apparent. In order to illustrate the advantages and disadvantages of

L various alternatives we develop enough mathematical tools so that the properties
and problems of various representations can be understood.

l 4.4.2 Partial Orders and Their Representation

'-, Let S be a set. A set of ordered pairs of elements of S is a binary relation on S.
_ A binary relation, <, on § is a partial order if and only if

1. for each z,z < z (reflexive property),
2. for each z, for each y, if < y and y < x then z = y (antisymmetry), and

3. for each z, for each y, for each z, if £ < y and y < 2 then z < z (transi-
tivity).
For example take S = {a,b,¢,d} and let < be the relation
{(a,d), (c,d), (b,d)},(a,d),(a,a},{b,b),{c,c),{d.d)}.

i The graph! of this relation is shown in Fig. 4.1.

a C

b d
Figure 4.1: The ordinary graph of a relation.

It is customary to say that a precedes b and that ¢ precedes d, etc. Since every
F node must have a self loop, these convey no information on the diagram and can
i be deleted. Next, if one positions the nodes of this graph so that whenever
[ = precedes y, z is higher on the page than y, then one can dispense with the
¥ arrowheads and leave just the line segments, as shown in Fig. 4.2.

. Noting that e < d is implied by 4 < b and b < d, the graph becomes less
E cluttered if the “redundant” segment is erased. The resulting picture is called

4 1The graph of a relation is a diagram in which each element of the set is shown by a node,
; and every pair of elements that is part of the relation is shown by an arc connecting the
g Ccorresponding nodes. An arc connecting a node to itself is called a “self loop.”
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a
c
b
d
Figure 4.2: The graph with self loops and arc directions implicit.
a
]
b
d

Figure 4.3: A Hasse diagram for a transitive relation.

a Hasse diagrem for the partial order, and it is shown in Fig. 4.3. The ordered
pairs of elements for which lines actually appear in a Hasse diagram constitute
the covering relation < for the original relation <. The covering relation is also
called the transitive reduction. The original relation < may be derived from its
covering relation < by taking the “transitive closure” of 4. The transitive closure
of any relation is defined to be the smallest reflexive and transitive relation which
includes the relation.

As an example of a partial order, let us consider the inclusion relation on
some set. Let {I be a universe of objects (i.e., some large set}, and let S be the
set of all subsets of 2. If we consider any two elements z and y of §, then we
have either r Cyor y Cz,0or x € y and y € z. It is obvious that C is a partial
order. And thus when we have in LISP the expression (BEAR ISA ANIMAL),
we have an explicit representation of one of the pairs in a partial order on some
set of animal categories.

Suppose that a set of “facts” has been given, each of which is of the form
“an X is a Y,” and that inclusion is the relation expressed in each case. Two
different approaches to the presentation of the set of facts are to store (1) the
transitive reduction (covering relation} and (2) the transitive closure (all original
and implied facts). The advantage of 1 is that less space is generally required
in memory, since fewer graph arcs may be necessary. The advantage of 2 is that
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F oach fact is explicit and ready, so that less time may be required to respond
E to a question regarding the relationship of two entities. Presumably, the time
= pecessary to deduce that z < y (assuming that z < y is true) depends largely
f. upon the length of the path from z to y in the Hasse diagram. However, if the
¥ transitive closure is stored, one must consider that the additional arcs of the
3 graph may necessitate additional time in verifying < y even though the path
L Jength from z to z is only one arc. That is to say, in a graph that is closed with
. respect to transitivity, each node is likely to have many neighbors (i.e., a high
i valence), and this high valence may cause some accesses to run more slowly.
For cases in which the transitive reduction and transitive closure are almost
b the same, it makes little difference which of the two representations is used;
E- however, in practical situations the two graphs are almost always quite different.
Depending upon how the search process is implemented, it may be possible
E to achieve a good compromise between the two approaches while holding both
[ memory space and search time down. For example, by adding a few “short cut”
[ arcs to the transitive reduction, expected path length can sometimes be reduced
E considerably without any considerable increase in the degree of the graph for the
. covering relation, and this can shorten the lengths of some searches; however, it
. may lengthen others. Optimal representation of ISA hierarchies under various
8 assumptions is a subject for research.

£ 4.5 An ISA Hierarchy in LISP
4.5.1 Preliminary Remarks

Knowledge of the inclusion relation among a set of categories is a very useful
kind of information. Inclusion knowledge is instrumental in defining many nouns,
and it can serve as the backbone of a representation system that incorporates
qt_her kinds of knowledge. Even without additional kinds of knowledge, however,
inclusion knowledge can support a variety of types of queries. To illustrate some
of the possibilities, a LISP program is presented that demonstrates first how the
relation of inclusion can be conveniently represented, then how the information
may be accessed and used for making limited inferences, and finally how these
Wechanisms may be integrated into a simple conversational program. Since the
knowledge manipulated by the program is all related to categories of things, we
refer to the program as “LINNEUS.” This LISP program consists of the various

functions that are explained subsequently.
The LINNEUS program is presented by first describing its method for rep-

resenting the ISA hierarchy within the LISP environment. Next, the functions
arc given which build these representations. Then we examine the definition
_of function ISATEST, which is used for answering queries of the forin “{IS A
. DUCK A BIRD)". The top-level function, LINNEUS, is the conversational front
end, and it.contains production rules to interpret user inputs and search the ISA
hierarchy.
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4.5.2 The Use of Property Lists to Store Relations

The property lists of atoms offer a convenient facility for representing relations

such as inclusion. To represent the set of elements yi,y,..., %%, which are
related to x by relation R, (that is, # R v;,4 = 1,..., k), we use an S-expression
of the form

(PUTPROP x (LIST yy v2 - yx) R).
For eﬁcample, we might have,
(PUTPROP *ANIMAL °'(DOG CAT BEAR) ’INCLUDES).
The list of classes that ANIMAL includes may then be retrieved by
(GET ’ANIMAL ’INCLUDES).

The information, z R y, is accessible here by using r and R to formulate a GET
expression, and then examining the list of atoms returned, which should contain
y if x R y is true. To make this information accessible more generally, it should
be represented also in two other forms: on the property list of ¥ and on that of
R. This could be accomplished by the following:

(PUTPROP ’DOG ’(ANIMAL) *ISA)
which makes ANIMAL accessible from DOG via the ISA link, and

(PUTPROP ’INCLUDES
*((ANIMAL CAT) (ANIMAL DOG) (ANIMAL BEAR))
*PAIRS)

which makes all the pairs of the INCLUDES relation accessible from the atom
INCLUDES.

In the demonstration program, we use the first two forms: the INCLUDES
property and the ISA property, but not the PAIRS property. Another difference
there is that we wish to add the knowledge gradually as it becomes available from
the user. Thus we use special functions ADDSUBSET and ADDSUPERSET to
put things on the property lists, since we do not want to clobber old information
each time we add new information. These functions are defined in terms of a
helping function ADDTOSET which is like CONS but avoids repeated elements
in a list. The definitions of these functions follow:

(DEFUN ADDTOSET (ELT LST)
(COND ({MEMBER ELT LST) LST)} (T (CONS ELT LST)) ))

(DEFUN ADDSUPERSET (ANAME X)
(PUTPROP ANAME (ADDTOSET X (GET ANAME 'ISA)) ’ISA))

(DEFUN ADDSUBSET (ANAME X)
(PUTPROP ANAME (ADDTOSET X (GET ANAME ’INCLUDES)) ’INCLUDES) )
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4.5.3 Searching a Base of Facts

E Given a base of facts, “A turbot is a fish,” “A fish is an animal,” etc., repre-
- gented in LISP as explained above, how can questions of the form “Is a turbot
 an animal?” be answered? Assuming that what is explicitly represented is a
E subrelation of the implied (transitive) one, and that this subrelation is not nec-
L essarily transitive, the program should begin a search (for example) for ANIMAL
E. from TURBOT. It should look first on the list of things that a TURBOT is (as
E represented on its property list) and if ANIMAL is not found there, on the lists
E for each entry on TURBOT’s list, recursively searching until either ANIMAL is
t found or all possibilities have been exhausted without finding it, or all alterna-
¥ tives to a given depth limit have been exhausted.

" Guch a search is performed by the function ISATEST described below:

¥ (DEFUN ISATEST (X Y N)
E (COND ((EQ X ) T)
((ZEROP N) NIL)
((MEMBER Y (GET X °ISa)} T)
(T (ANY (MAPCAR
(FUNCTION
(LAMBDA (XX) (ISATEST XX Y (SUB1 N))) )
(GET X "ISA) X)) ) )

k  The function ISATEST takes three arguments, X, Y, and N where X and Y
k. are atoms like CAT and ANIMAL, and N is a non-negative integer giving the
B maximum number of levels for the recursive search. The first clause, {{(EQ X Y)
| T) tests to see if X is identical to Y and returns T if so. This corresponds to a
E search of depth 0. The next clause tests N for 0 and cuts off the search along
E the current branch if so. The third clause, ((MEMBER Y (GET X 'ISA)} T)
performs a search of depth 1 from X looking for Y. If this fails, the last clause
! is tried. In the last clause, searches with maximum depth N—1 are initiated
¢ from each of the atoms appearing on X’s “ISA” list. If any of these succeeds,
g ISATEST returns T.

. For the ISA hierarchy shown in Fig. 4.4, the test (ISATEST 'LOBSTER
| *ANIMAL 20) succeeds because there is a path from LOBSTER to ANIMAL
I going only upwards, and the length of the path is less than 20.

5 The supporting function ANY has the effect of applying the function OR to
" its argument list. It may be defined:

. (DEFUN ANY (LST)
(COND ((NULL LST) NIL)
((CAR LST) T)
(T (ANY (CDR LST})} )} )

Note that ISATEST could be made more efficient by aborting the remaining
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organism

plant animal

invertebrate

crawler mollusk

crustacean bivalve

lobster shrimp butterfly moth  scallop

Figure 4.4: An ISA hierarchy for which the test (ISATEST 'LOBSTER ’ANIL-
MAL 20) succeeds.

subsearches as soon as Y is found in one of the subsearches (this is left as an
exercise).

It may seem that the program might just as well have initiated a search from
Y for X, traversing the inclusion arcs in the opposite direction. The length of
the path from X to Y going forwards is the same as that from Y to X going
backwards. However, the branching of the search may be drastically different
in one case than the other. If X is a leaf node in a tree and Y is the root, it
takes less searching in general to find Y from X than to find X from Y. This is
because there are no choices when moving up a path of the tree. The strategy of
searching forward from the present state or node (e.g., LOBSTER) toward the
goal {e.g., ANIMAL) is called “forward chaining.” The complementary strategy
is to search from the goal back to the initial node or state, and this is called
“backward chaining.” Forward and backward chaining are described further in
Chapter 5.

4.6 A Conversational Front End

The ability to store, retrieve, and perform simple inferences on relational data
can support a variety of question-answering modes. LINNEUS demonstrates
this by interpreting simple statements and questions and then invoking func-
tions to search or manipulate the relational knowledge. The function INTER-
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PRET (shown below) is the main component of the conversational front end
; (human—to—knowledge—base interface). INTERPRET consists of a large COND
F form embedding a number of clauses that are essentially production rules.

I* (DEFUN LINNEUS O ; This is the top-level procedure.
{ (PROG O

(PRINT ’(I AM LINNEUS))

(PRINT ’{(PLEASE GIVE ME INFORMATION OR ASK QUESTIONS))
LooP (SETQ TEXTIN (READ)) ; Get a sentence from the user.

(INTERPRET TEXTIN) ; Try to interpret it and act on it.

(GO LOOP) ) ) ; Repeat until user aborts program.
t (DEFUN INTERPRET (TEXT) ; Here are the production rules...
¥ (COND

. rule for statements such as ‘{a bear is a mammal)’ ...
{(MATCH ’((MATCHARTICLE ARTICLE1)(? X) IS
(MATCHARTICLE ARTICLE2}(? Y))

TEXT)
(ADDSUPERSET X Y) ; Create a link from X up to Y
(ADDSUBSET Y X) ; and a link from Y down to X.

(PUTPROP X ARTICLE1 *ARTICLE) ; Save X’s article
(PUTPROP Y ARTICLE2 ’ARTICLE) ; and Y’s, too.
(PRINT °’(I UNDERSTAND)) ) ; Acknowledge user.

. ; rule for questions such as ‘(vwhat is a bear)’ ...
i ((MATCH > (WHAT IS (MATCHARTICLE ARTICLE1)(? X)) TEXT)
§.  (SETQ ISAFLAG NIL) ; Default is ‘no information
(SETQ INCLUDEFLAG NIL) ; available’.
(COND ((SETQ Y (GET X ’ISA))
(SETQ ISAFLAG T) ) ; Y is a superset of X,
((SETQ Y (GET X ’INCLUDES))
(SETQ INCLUDEFLAG T) ) ) ; ‘ subset ’.
; Print out a reply based on one of the two relations...
(PRINT (APPEND
(LIST (GET X ’ARTICLE)); ‘A’ or ‘AN’,

(LIST X) ; whatever X is,
(COND (ISAFLAG *(IS)) ; one of the two relatioms,
(INCLUDEFLAG
' (IS SOMETHING MORE GENERAL THAN)} ) )
(MAKECONJ Y) )) ) ; some things that X is or

; is more general than.

. rule for questions such as ‘(is a bear a mammal)’ ...
((MATCH ’(IS (MATCHARTICLE ARTICLE1) (? X)
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(MATCHARTICLE ARTICLE2) (? Y))

TEIT)
{(COND ((ISATEST X Y 100 ; Search for Y from X. |
(PRINT : Reply affirmatively. |

(APPEND ’ (YES INDEED)
(LIST (GET X ’ARTICLE))
(LIST X)
' (I8)
(LIST (GET Y ’ARTICLE))
(LISTY) ) )
(T (PRINT *(SORRY NOT THAT I KNOW OF))) ) ) ; Negative,

; rule for questions such as ‘(why it a bear an animal)’ ...
((MATCH ’(WHY IS (MATCHARTICLE ARTICLE1) (7 X)
(MATCHARTICLE ARTICLE2) (7 Y))

TEXT)
(COND ({ISATEST X Y 10) ; Is presupposition correct?
(PRINT ; Yes, prepare reply with explanation...

(CONS ’BECAUSE
(EXPLAIN_LINKS X Y) )) ); Create explanation.
(T (PRINT *(BUT IT ISN'T!))) ) ) ; No, give reply
; indicating that the presupposition is false.

; rule that handles all other inputs:
(T (PRINT (I DO NOT UNDERSTAND))) ))

If the user types “(A BEAR IS AN ANIMAL)”, the first production rule will
fire. That is, the pattern:

((MATCHARTICLE ARTICLEL) (? X) IS
(MATCHARTICLE ARTICLE2) (7 Y))

will match the value of TEXT. The subpattern (MATCHARTICLE ARTICLE1)
will match A because when the predicate MATCHARTICLE is applied to A the
result is T. The subpattern (? X) will match BEAR and {? Y) will match AN-
IMAL. The action part of this production rule consists of five parts. (ADDSU-
PERSET X Y) causes ANIMAL to be entered onto the list of classes that are
supersets of BEAR. (ADDSUBSET Y X) places the same relational information,
but from the point of view of ANIMAL, on a list for ANIMAL. The next two
subactions cause the articles (in this case A and AN) to be remembered in as-
sociation with the nouns they precede (in this case BEAR and ANIMAL). The
final subaction is to print (I UNDERSTAND), thus confirming the successful
interpretation of the user’s statement.

The second production rule handles user inputs such as (WHAT IS A BEAR).
When the pattern is successfully matched to the input, X is bound to the atom
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(here BEAR) whose property list is to be examined. The action again consists
R of several subactions. First, two flags are reset. These flags control the form of
P the answer; the answer may report classes which are supersets of the value of
} X, or may report classes which are subsets. Thus the response to the question
f. above might be (A BEAR IS AN ANIMAL). To the question (WHAT IS AN
F- ANIMAL), the response might be (AN ANIMAL IS SOMETHING MORE GEN-
E. pRAL THAN A BEAR). If any supersets of X can be found, then ISAFLAG is
E et to T, and the immediate supersets are reported in the answer. If no supersets
b are found, the program looks for subsets.
L' - The third production rule accepts queries of the form (IS A TURBOT AN
£ ANIMAL). Its action is to search for Y (in this case ANIMAL) starting from
K X (here TURBOT) by invoking the function ISATEST, explained previously. If

the search is successful, the relationship between X and Y is confirmed with the
' PRINT form. Otherwise the response is (SORRY NOT THAT I KNOW OF).
£ The fourth production rule provides explanations in response to questions
b such as “(WHY IS A TURBOT AN ANIMAL)” and makes use of the function
- EXPLAIN_LINKS. Before it does so, however, it uses ISATEST to make sure
hat a TURBOT really is an ANIMAL (or whatever the presupposition expressed
in the question happens to be).

Let us now examine the definitions of the remaining functions for the LIN-
NEUS program. The predicate MATCHARTICLE returns T if its argument
tnatches one of the articles it knows about.

. (DEFUN MATCHARTICLE (X)
(MEMBER X ’(A AN THE THAT THIS THOSE THESE)) )

In order to make a list of the form (DOG CAT AARDVARK) seem more like
English, the function MAKECONJ transforms it into a list of the form (A DOG
AND A CAT AND AN AARDVARK). The latter list is more obviously a con-
unciion than the original list.

(DEFUN MAKECONJ (LST)
(COND ((NULL LST} NiL)
((NULL (CDR LST)) (CONS (GET (CAR LST) ’ARTICLE) LST))
(T (CONS (GET (CAR LST) *ARTICLE)
(CONS (CAR LST)
(CONS *AND (MAKECONJ (CDR LST))) ) )) ) )

#%: The function EXPLAIN_LINKS works by checking for a couple of special cases

. and then, assuming neither holds, calling EXPLAIN_CHAIN. The first special
= case holds when the user has typed a question such as “(WHY IS A HORSE
#7 AHORSE)” in which case EXPLAIN_LINKS reports the reason: that they are
identical. The second case holds when there is a single ISA link from X to Y,
indicating that the fact in question was input by the user, rather than deduced
by the program. LINNEUS would report “BECAUSE YOU TOLD ME 507 in

- Buch a case.
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(DEFUN EXPLAIN_LINKS (X1 Y)

(COND ({(EQ X Y} ®(THEY ARE IDENTICAL)) ; 1st special case
((MEMBER Y (GET X *ISA)) ; 2nd special case
*(YOU TOLD ME S0) )
(T (EXPLAIN_CHAIN X (GET X *ISA) Y)) ) ); General case

For the general case, the interesting part of the job is done by the recursive
function EXPLAIN_CHAIN, with the help of TELL.

EXPLAIN_CHAIN takes three arguments: X, L, and Y. It gives a report
about the first chain from X to Y that passes through a member of L. If there
is a direct ISA link from X to Y (which is not the case in the top-level call, or
else the second special case of EXPLAIN_LINKS would have held), then EX-
PLAIN_CHAIN returns an explanation of that link, preceded by AND, thus

providing the final part of an explanation onto which other parts can be AP-
PENDed.

(DEFUN EXPLAIN_CHAIN (X L Y)
(COND ((NULL L) NIL) ; L should pnever be null.
((MEMBER Y L) ; Is this the last 1link?
(CONS ’AND (TELL X Y)) ) ; Yes, precede expl. by AND.
((ISATEST (CAR L) Y 10) ; Does chain go through CAR L?
(APPEND (TELL X (CAR L)) ; Yes, explain this link, etc.
(EXPLAIN_CHAIN (CAR L)
(GET (CAR L) *ISA)
)
(T (EXPLAIN_CHAIN X (CDR L) Y)) ) )} ; else try mext in L.

The function TELL takes care of the simple job of reporting about a single link.

For example (TELL 'TURBOT 'FISH} would evaluate to (A TURBOT IS A
FISH).

(DEFUN TELL (X Y)
(LIST (GET X ’ARTICLE} X 'IS (GET Y ’ARTICLE) Y) )

The following illustrates a session with LINNEUS. The user’s inputs are in lower
case.

(linneus)

(I AM LINNEUS)

(PLEASE GIVE ME INFORMATION OR ASK QUESTIONS)
(a turbot is a fish)

(I UNDERSTAND)

(a fish is an animal)

(I UNDERSTAND)

(a fish is a swimmer)

(I UNDERSTAND)
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} (vhat is a turbot)

f (vhat is a swimmer)

k() SWIMMER IS SOMETHING MORE GENERAL THAN A FISH)
b {is a turbot an animal)

P (YES INDEED A TURBOT IS AN ANIMAL)

L (why is a turbot a swimmer)

;. (BECAUSE A TURBOT IS A FISH AND A FISH IS A SWIMMER)
f- (vhy is a turbot a turbot)

¥ (BECAUSE THEY ARE IDENTICAL)

. (why is a turbot a fish)

¥ (BECAUSE YOU TOLD ME S0)

There are a number of interesting extensions which can be made to LINNEUS.
E. For example, “HAS" links can be incorporated; these are described in the next
k. gection. Other extensions are suggested in the exercises.

\__ 4.7 Inheritance

4.7.1 Inheritance from Supersets

ith a representation of the inclusion relation on a set of classes based on the
transitive reduction of the inclusion relation (or equally well by the “included by”
telation), we can nicely handle additional relations with relatively little effort.

Let us consider the statements

(A PHEASANT IS A BIRD} and
{A BIRD HAS FEATHERS).

From these we normally conclude that

(A PHEASANT HAS FEATHERS).

That is, because the class PHEASANT is included by the class BIRD, certain
properties of class BIRD are automatically “inherited” by class PHEASANT.

© The general rule is: whenever we have T as a member of a set X which is a
- subset of a set Y, any property true of any member of Y must also be true of z.
" The fact that such a property of z can be determined by looking at ¥ means that
the fact that x has this property need not be explicitly represented. As with the
transitive reduction of a transitive relation, where it is only necessary to store a
covering relation explicitly, we now may store some properties of classes only at
“dominant” positions in the inclusion hierarchy.
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4.7.2 HAS Links

Like the inclusion relation, the relation we call HAS is transitive. Here we use
HAS to mean “has as parts.” If a man has hands and a hand has fingers then we
can infer that a man has fingers. We might express these relationships as follows

(MAN HAS HAND)
(HAND HAS FINGER)

therefore,
(MAN HAS FINGER).

By avoiding articles and plural forms here, we also avoid some problems of lexical
analysis, which is more a subject in natural language understanding (see Chapter
9) than in the representation of knowledge.

The HAS relation is not only a transitive one by itself, and therefore capable
of being efficiently represented by its transitive reduction, but it also may be
viewed as a property that can be inherited with respect to the inclusion relation
ISA. Let us write X H Y to denote “X has Y™; i.e., members of class X have one
or more members of class ¥ as parts. For example, HAND H FINGER means
that a hand has one or more fingers. Then we note:

LifXCY and ZHX then ZHY, and
2. XCY and YHZ then XHZ.

Rule 1 may be called the rule of “generalizing HAS with respect to ISA,” and
Rule 2 may be called “inheritance of HAS with respect to ISA."

One can make inferences that involve sequences of these two rules and infer-
ences by transitivity of ISA and HAS. For example, from the list of facts,

(A TURBOT IS A FISH)
(A FISH IS AN ANIMAL)
(ANIMAL HAS HEART)
(A HEART IS AN ORGAN)
(DRGAN HAS TISSUE)
(TISSUE HAS CELL)

we can infer
(TURBOT HAS CELL).

Thus ISA and HAS are two partial orders that interact through the rules of
generalization and inheritance above.
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4.7.3 Multiple Inheritance

When the ISA hierarchy (transitive reduction of the inclusion relation) forms
a tree or a forest (collection of trees) such that each class X' has at most one
F: " immediate superclass, then the test to see whether a class X has some property
E P is easy to do. Each Y along the path from X to the root of the tree containing
X is examined to see if it has property P. If any does, then X also does, by
E  inheritance. Inheritance by TURBOT and COD of the property of having scales,
k' from FISH, is illustrated in Fig. 4.5.

FISH (HAS SCALES)

TURBOT CcoD

Figure 4.5: Inheritance of HAS relationships.

A more complicated search is required when each class may have more than
one immediate superclass. This is to say, the covering relation branches upwards
8s well as downwards in the general case. The search for a property P must
generally follow each upward branch until P is found or all possibilities are
exhausted.
~ The possibility of multiple inheritance increases the potential for conflicting
inherited values., Consider the example shown in Fig. 4.6. A decoy may be

BIRD

WOODEN OBJECT
ROBIN DUCK

DECOY

Figure 4.6: Multiple inheritance.

: considered to be a kind of duck and in turn, a hird. It is also a kind of wooden
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object. As a duck, it has a bill, a head and a body. This is quite appropriate.
As a bird, however, it ought to have a beating heart and be able to fly. But as
a wooden object, it should not have a beating heart, nor should it be able g
fly. The resolution of conflicts such as these may be difficult. In this particular
case it is not; since a decoy is not truly a duck, the link between DECOY ang
DUCK should not be an inclusion link but a link such as RESEMBLES. A link
of resemblance might only be allowed to pass inherited traits of certain types
such as traits of appearance.

Generally speaking, properties are inherited from superclasses (i.e., along ISA
arcs). However, they are not inherited along HAS arcs. Obviously the following
“inference” is invalid:

(MAN HAS HAND)
(HAND SHORTER_THAN ONE_METER)

“therefore”
(MAN SHORTER_THAN ONE_METER).

Clearly one cannot treat HAS links in exactly the same manner as ISA links.

4.7.4 Default Inheritance

There are some domains of knowledge in which exceptions to general rules exist.
For example, it is usually useful to assume that all birds can fly. Certain birds
such as the ostrich and the kiwi, however, cannot fly (even though they really
are birds, unlike wooden decoys). In such a case it is reasonable to use a rep-
resentation scheme in which properties associated with atoms in a hierarchy are
assumed to be true of all subclasses, unless specifically overridden by a denial or
modification associated with the subclass. For example, see Fig. 4.7

Under such a scheme, the fact that a woodpecker can fly is made explicit by
following the (short) path from WOODPECKER to BIRD and finding there the
property (CAN FLY). On the other hand, starting from OSTRICH, the property
{CANNOT FLY) is found immediately, overriding the default which is further
up the tree.

Although inclusion (ISA) hierarchies often provide a conceptual organization
for a knowledge base, they give immediate support to inferences of only a rather
limited sort. The inferences involve either the transitivity of the inclusion relation
or the inheritance of properties downward along chains in the hierarchy. An
inclusion hierarchy provides a good way to organize many of the objects and
concepts in a knowledge base, but it does not provide a representation scheme
for non-inclusion relationships, for logical or numerical constraints on objects or
for descriptions of the objects.

One way to build an ISA hierarchy into a more powerful structure is to
add many different kinds of links to the system. We have already seen ISA, IN-
CLUDES, and HAS links. Some more that can be added include ELEMENT _OF
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ANIMAL

MAMMAL BIRD {CAN FLY)

WOODPECKER WREN OSTRICH (CANNOT FLY)

Figure 4.7: Default properties and exceptions.

and OWNS. A data structure consisting of nodes which represent concepts or
-objects, together with labelled arcs representing relationships such as these, is
"called a “semantic network” {or “semantic net” for short). Semantic nets are
‘described later in this chapter.

In order to provide a general capability for representing many kinds of rela-
Yions (rather than just inclusion and other binary relations), we turn to mathe-
_matical logic.

4.8 Propositional and Predicate Logic

__4.8.1 Remarks

' Mathematical logics are appropriate for representing knowledge in some situa-
_tions. T'wo logics are commonly used. The propositional calculus is usually used
in teaching rather than in actual systems; since it is essentially a greatly simpli-
fied version of the predicate calculus, an understanding of propositional calculus
is a good first step toward understanding the predicate calculus.

On the other hand predicate calculus {or predicate logic) is often used as a
means of knowledge representation in Al systems. Predicate logic is the basis for
“logic programming” {as permitted by the programming language PROLOG, for
example), and many specialists regard it as the single most important knowledge
Yepresentation method. As we shall see, the predicate calculus is quite powerful
k  but still has some serious shortcomings.
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4.8.2 Propositional Calculus

Here we present a brief summary of the propositional calculus, its use in repre.
[senting statements, and some simple ways in which the representations can be
manipulated.

Let X represent the statement “it is raining today.” Let Y represent the
|statement “the picnic is cancelled.” Then the expression

XAY

[represents the statement “it is raining today and the picnic is cancelled.” The
expression

XvY

[stands for: “it is raining today or the picnic is cancelled.” The expression

X=>Y
|means “if it is raining today then the picnic is cancelled.” The negation of X is
written
-X

[and means “it is not raining today,” or equivalently, “it is not the case that it is
raining today.”

The symbols X and Y used here are called propositional symbols because
each represents some proposition. The symbols

AV, =, 6,0

fare called connectives because they generally connect pairs of propositional sym-
bols. An exception is ~ which is a unary operator; although it is associated with
only one propositional symbol, we still refer to it as a connective. The other
connectives are binary operators,

The syntax of propositional calculus expressions can be formally described

using Backus-Naur form (which may be regarded as a shorthand way of writing
erammar production rules).

{exp} = {prop symbol}
= {constant)
= {exp)
u= ({exp) (binary op) {exp})
{prop symbol} ::= P|Q|R|X|Y|Z
{constant) x=T|F
{binary op} t=AlV|=>|e
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Esarentheses may be omitted when the association of connectives with subexpres-
Faions is clear or is ambiguous but inconsequential.

F” Given an expression such as ((X AY) = Z), if we know the truth values for
Q;wh of the propositions represented by X, Y, and Z, we can mechanically deter-
! mine the truth value of the whole expression. Suppose that X and Y are each
E-true, and 7 is false. Then the overall expression's value becomes successively:

((T A'T) > F)
(T=F)
F.

The whole expression is false in this case. The rules for evaluating expressions
are easily given in truth tables:

X{Y[-X]|XAY | XVvY | X=>Y
T|Tji F T T T
T|(F}{ F F T F
F|(T| T F T T
F|F| T F F T

There are important things we can do with expressions of propositional cal-
zulus without needing to know whether the component propositions are true or
se. That is, if we assume that some expressions are true, we can derive new
ps which are guaranteed to be true if the assumptions are. To obtain new
pressions which logically follow from the starting expressions we use one or
nore rules of inference. Some important rules of inference are stated below.

1. Modus Ponens:

Assume: X =Y
and X
Then: Y

For example, suppose we know that if it snows today then school will
be cancelled, and suppose we also know that it is snowing today. Then,
by the rule of modus ponens, we can logically deduce that school will be
cancelled today.

2. Disjunctive Syllogism

Assume: X
Then: XvY

For example, suppose that you own a car. Then you can truthfully say
that you either own a car or live in a 17th century castle (regardless of
whether or not you live in any castle).
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3. Resolution

Assume: XVY
and -XvZ
Then: YvZ

For example, suppose that either John passes his final or John goes into
seclusion. Suppose further that either John flunks his final or he misses
Paula’s pre-finals party. We can conclude that either John goes into secly.
sion or he misses Paula’s pre-finals party.

Resolution is very important in automatic theorem proving and logical rea-
soning. In Chapter 6 we will see a more flexible kind of resolution in the predicate
calculus.

Certain kinds of propositional caleulus expressions deserve special names.
An expression which is always true, no matter what assumptions one may make
about the propositions represented, is a tautology. The expression X v =X is
a tautology. An expression which is always false (i.e., can never be true) is a
contradiction. For example X A -X is a contradiction. An expression which is
not a contradiction is said to be satisfiable.

The propositional caleulus is very limited as a method of knowledge repre-
sentation. Perhaps its primary use is in studying some aspects of the predicate
calculus, which is much more powerful.

4.8.3 Predicate Calculus

One generally needs more expressive power in a knowledge representation lan-
guage than is offered by the propositional calculus. There, one must build upon
propositions, and one cannot “get inside” a proposition and describe the ob jects
which make up the proposition. The predicate calculus, on the other hand, does
allow one to work with objects as well as with propositions.

Because of its generality and the direct way in which it can support automatic
inference, predicate calculus is probably the single most important method for
knowledge representation.

Here we present the basics of the predicate calculus. This form of knowledge
representation will be used in Chapter 6 in the discussions there of theorem
proving and logic programming,

An expression in the predicate calculus is much like one of propositional
calculus to which more detailed descriptions have been added. Where one might
use the symbol P in the propositional calculus to represent the statement “the
apple is red,” in the predicate calculus, one separates the predicate {(quality of
being red) from the objects (or subjects, here the apple), and writes:

R(a)



k8. PROPOSITIONAL AND PREDICATE LOGIC 111

- more explicitly,
Red(Apple).

, the symbol “Red” is a predicate and “Apple” is a constant that represents
Ea part.lcular object in a domain or universe of objects.

k. As another example, the propositional calculus doesn’t pro\rlde a way to refer
1o specific objects within statements such as “the golden egg” in “The golden egg
is heavy.” On the other hand, the predicate calculus does provide for symbols to
‘represent objects and then allows these to be used as components of statements.

'Fbr example, the constant symbol ¢ may refer to a particular golden egg and a
B nredicate symbol P may assert that something is heavy. The statement P(a)
ithen could state that the golden egg is heavy. The constant symbols a, b, ¢, ...
Lare used in the predicate calculus to denote particular objects in some domain.
e predicate symbols P,Q, R, ... are used to denote qualities or attributes of
ects or relationships among objects that are either true or false. For example
2,y) might assert that « is less than y in some domain of numbers such as the
s. Function symbols f, g, h,. .. denote mappings from elements of the domain
tuples of elements from the domain) to elements of the domain. For example,
a, f(b}) asserts that predicate P is true on the argument pair “o” followed by
value of the function f applied to b. Logical connectives are the same as in the
positional calculus, Variable symbols x,y, 2, 21, T2, etc. represent potentially
element of the domain and allow the formulation of general statements about
elements of the domain at a time, Two guantifiers, ¥ and 3, may be used
jo build new formulas from old. For example 3xP(x) expresses that there exists
it least one element of the domain that makes P(x) true.

The rules for building up syntactically correct formulas are as follows:

1. Any constant or variable taken by itself is a term.

2. Any n-place function applied to n terms is a term.

3. Any n-place predicate applied to n terms is a well-formed formula.
4

. Any logical combination of well-formed formulas is also a well-formed for-
mula. (All the logical connectives of the propositional calculus may be
used.)

5. Any well-formed formula F may be made into another well-formed for-
mula by prefixing it with a quantifier and an individual variable; e.g.,
Yz(F). Parentheses should be used when necessary to make the scope of
the quantifier clear.

¢ The predicate calculus can be a convenient representation for facts and rules
. of inference, provided that a suitable set of functions and predicates is available
i with which to build formulas.

F . Predicates readily represent relations such as inclusion. For example,
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Isa(Bear, Mammal).

The predicate calculus is an attractive representation mechanism for knowledge
in Al systems because well-known techniques of logical inference can easily be
applied to such a representation. One thing the predicate calculus does not
provide is any particular set of given predicates with meanings, or functions
or domain. These must be provided by the knowledge engineer in developing
predicate calculus representations for knowledge.

The predicate calculus can be used to formalize the rules for inheritance that
were discussed earlier in the chapter. Let us reconsider the specific syllogism: “A
pheasant is a bird, and a bird has feathers implies that a pheasant has feathers.”
In general, when we have X C Y and ¥y € ¥, P(y), then we can infer ¥r € X,
P(z). Since Vx € X, P(z) is derivable from X C Y and Yy € Y, P(y), it
need not be explicitly represented. (Logical inference techniques are discussed
in Chapter 6.)

4.9 Frames of Context

Another problem with predicate calculus as a representation scheme is that it
does not provide a means to group facts and rules together that are relevant
in similar contexts. Such groupings may not be necessary in small knowledge
bases. However, a lack of overall organization in large bases can have costly
consequences. In order to provide organizational structure, various methods
have been proposed including “partitioned semantic networks” (described later)
and “frames.”

By providing the knowledge in modules called “frames,” the designer makes
life easier for the algorithms that will access the knowledge. A frame is a collec-
tion of knowledge relevant to a particular object, situation, or concept. Generally
there are many pieces of information in each frame, and there are many frames in
a knowledge base. Some frames may be permanent in the system; others may be
created and destroyed during the course of problem solving. The term “frame”
appears to be borrowed from physics, where it usually refers to a coordinate
frame or frame of reference in three-dimensional space. It suggests a concern
with a subset of the universe, from a particular point of view.

A frame provides a representation for an object, situation, or class in terms
of a set of attribute names and values for the attributes. A frame is analogous
to a LISP atom with its property list, or to a “record” data type in PASCAL.

4.9.1 A “Kitchen” Frame

Let us suppose that we are designing a household robot. This robot should do
useful things such as vacuum the living room, prepare meals, and offer drinks to
the guests. If we ignore the mechanical aspects and consider only the problem of
designing the knowledge hase for this robot, we must find an overall organization
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fgor it. The robot should know about the living room and the things which
 are likely to be found there, such as the living room furniture. It should also
¥ know about the kitchen and all the key appliances there: stove, fridge, garbage
E disposal, dishwasher, and possibly fire alarm. Since our robot is to be designed
E ot for one particular house but many, its knowledge base should not presuppose
E exact locations for these things. The exact coordinates for each item could be
- established at the time the robot is installed or delivered. A reasonable way of
- organizing such a knowledge base is according to the rooms of the house. We

get up one module (frame) for each room. There can be a frame for the living
£ room, a frame for the bathroom, a frame for the kitchen, etc. Qur next step is
E: to design each frame.

f 402 Slots and Fillers

E' A frame commonly consists of two parts: a name and a list of attribute-value
irs. The attributes are sometimes called “slot names” and the values called
“fillers.” Therefore a frame is a named collection of slots and the fillers associated
with the slots. A frame can easily be represented in LISP using an atom for the
‘frame name and part or all of its property list to hold the attribute-value pairs.
For a kitchen we might have a frame as shown in Fig. 4.8.

slot name fitler
frame name: KITCHEN-FRAME
FRIDGE_LOC (3 5)
DISHWASH_LOC | (4 5)
STOVE_LOC (5 4}
PANTRY_LOC NIL

Figure 4.8: A frame representing a kitchen and its attributes.

It may be that a slot is to be filled with the name of another frame, or a
list of other frames. If we add a slot named “ADJACENT_ROOMS” to the
- KITCHEN frame, it might get as value (DINING_ROOM BACK_HALL CEL-
LAR_STAIRS). The interlinking of frames to one another creates a network that
can be viewed as a semantic network. (However, the term “semantic network”
is applied to a large variety of relational knowledge bases.)

4.9.3 Schemata

Often a frame is associated with a class of objects or a category of situations.
For example, a frame for “vacations” may provide slots for all the usual impor-
tant features of a vacation: where, when, principal activities, and cost. Frames
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Schoma vame

standard slots:

e E——
O E——
T w—

cost] |

|

instance name: My vacation 87

instance of

instance name: John's vacation

Instance of:

standard skots:

when: {"Jan. -7, 1987 |

gl iy

slandard slots:

where: | Snowblrd
when:
pincipal sy

cost:| $850 | cosi:| $575

Figure 4.9: A schema and two instances of it.

for particular vacations are created by instantiating this general frame. Such
a general frame is sometimes called a schema, and the frames produced by in-
stantiating the schema are called instances. The process of instantiating the
schema involves creating a new frame by allocating memory for it, linking it to
the schema, such as by filling in a special “instance-of” slot, and filling in the
remaining slots with particular information for the vacation in question. It is
not necessary that all the slots be filled. The relationship between a schema and
two instances of it is shown in Fig. 4.9.

Each schema in a collection of schemata gives the general characteristics
which pertain to a concept, class of objects or class of situations. Therefore, a

schema acts as a template or plan for the construction of frames for particular
objects or situations.

4.9.4 Attachments to Slots

A slot may be provided with a default value and/or information related to the
slot. Since such information is neither the value of the slot {which is “filled
in") nor the name of the slot, the associated information is said to be attached.
Attached information may be of kinds such as the following:
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1. a constraint that must be satisfied by the filled-in value for the slot.

9. a procedure that may be used to determine the value for the slot if the
value is needed (this is called an if-needed procedural attachment).

3. a procedure that is to be executed after a value is filled in for the slot (this
is called an if-added procedural attachment}.

3 By attaching procedures or constraints to slots, frames can be made to represent
k. many more of the details of knowledge relevant to a problem, without losing
heir organizational effectiveness.

4.10 Semantic Networks

4.10.1 Motivation

Earlier in this chapter it was suggested that ISA hierarchies could be extended
into more general “semantic networks” by adding additional kinds of links and
nodes. In fact, such linked data structures have been used often to represent cer-
tain kinds of knowledge in Al systems. In this section, we present the rationale,
methods, and an evaluation of semantic networks as an approach to knowledge
representation.
" Semantic networks were first developed in order to represent the meanings
of English sentences in terms of objects and relationships among them. The
neural interconnections of the brain are clearly arranged in some type of net-
work (apparently one with a highly complex structure), and the rough similarity
between the artificial semantic nets and the natural brain helped to encourage
the development of semantic nets. The notion of accessing semantic informa-
tion through a kind of “spreading activation” of the network, analogous to brain
activity spreading via neurons, is still an appealing notion.
There are some more practical aspects to semantic nets, also. There is an
_ efficiency to be gained by representing each object or concept once and using
Ppointers for cross references, rather than naming an object explicitly every time
it is involved in a relation (as must be done with the predicate calculus, for
example). Thus it is possible to have very little redundancy in a semantic net.
Not only can we get an efficiency in space, but search time may be faster as well;
ause the associations between nodes are represented as arcs in a graph, it is
possible to use efficient graph-search methods to locate desired information. If
the network structure is implemented with an adjacency list scheme, a search
i8 likely to be much faster than if a long list of relationships has to be scanned
every time an association is followed.
Semantic networks can provide a very general capability for knowledge repre-
sentation. As we shall see, they can handle not only binary relations, but unary
and higher-order relations as well, making them, in theory, as powerful as the
predicates of the predicate calculus.
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Unlike the predicate calculus, however, there is no standard semantic net.
work, reasoning methods are not provided by the techniques themselves, and
semantic net support for universally or existentially quantified statements is ej.
ther not provided, nonstandard or messy. On the positive side, the semantic net
approach is clearly valuable for providing a graphical way for the Al researcher
or system designer to view knowledge, and it often suggests a practical way of |
implementing knowledge representations. |

4.10.2 Representing Sentence Semantics

ordinary sentences, it is appropriate to consider an example in that vein.

Perhaps the simplest way to design semantic networks to represent sentences
is first to restrict the allowable sentences to certain kinds that use only nouns,
verbs and articles. Then one can set up a network node for each noun (including
its article, if any) and a link for the verb. Such a net for the sentence “Bill killed
the company” is shown in Fig. 4.10,

Since semantic nets were originally developed for representing the meanings of ‘
]
|
|
|

killed the

Bill company

Figure 4.10: Simple semantic net for “Bil! killed the company.”

It is true that much can be done with such representations, as the LINNEUS
program illustrates. Unfortunately, however, relatively few of the sentences we
use are simple enough to be represented this way. Many verbs, for example, take
both a direct object and an indirect object. Consider the sentence “Helen offered
Bill a solution.” Here the direct object is “a solution” and the indirect object
is “Bill.” In order to associate all three nouns and the verb, it is appropriate to
create a node in a semantic net for the verb as well as each noun, and then to
link the verb to each noun with an arc labelled with the relationship of the noun
to the verb. In this case, the indirect object, Bill, plays the role of recipient of
the offer (see Fig. 4.11).

If this fragment of a semantic net is to be a part of a large one representing
the many aspects of a complicated story or situation, the nodes of the fragment
are likely to duplicate existing nodes. If the repeated nodes are simply merged,
there may be problems. For example, if the larger net also contains a similar
representation of the sentence “David offered Bob a ride home,” then merging
the “offered” nodes would confuse the two offering events, possibly allowing the
erroneous inference of “Helen offered Bob a ride home.”
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recipient

Figure 4.11: A semantic net for “Helen offered Bill a solution.”

The situation is much improved if the specific offering events are represented
as separate nodes, each of which is an instance of a general node representing the
class of all offering events. Similarly, if there is another “solution” node in the
petwork, it probably represents a different solution from the one Helen offered.
Thus the noun phrase “a solution” should also be represented as an instance
node linked to a node representing some class. It would be desirable for the sake
of consistency for each particular nominal in the sentence to be represented as
an instance. This leads to the net in Fig. 4.12.

Representing adjectives and prepositional phrases can be handled with ad-
"ditional nodes and links. For the example with an adjective: “The armagnac
is excellent” a node for the attribute “excellent” is set up and a link labelled
“quality” may be used (as in Fig. 4.13).

A prepositional phrase modifying a noun may be represented by a node for
_the nominal object of the preposition, pointed to by an arc from the noun that is
modified, the arc being labelled with the relationship specified by the preposition.
Thus for “the motor in the robot’s wrist is dead” we have the net of Fig. 4.14.

It is not necessarily easy to build a useful semantic net representation for
a sentence. Even when one is provided with a good set of class nodes and arc
labels, it can be unclear which nodes and arc types to use, and how much of
a sentence's meaning should be represented explicitly. Let us now consider a
slightly more complicated sentence: “Laura traded her car for Paul’s graphics
" board.” A net for this is shown in Fig. 4.15.

The sentence suggests that Laura took the initiative in the trade. However,
it is usual for a trade to be a cooperative activity, so that it would make sense to
have an additional link from “Event#793" to “Paul” with the label “co-agent.”
But, since the sentence does not begin with “Laura traded with Paul,” it appears
to be safer not to infer that Paul was an active participant in the event.

This example contains another case that is difficult to decide. The sentence
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instance of instance of

solution
#317

instance of

person

Figure 4.12: A net with class and instance nodes for “Helen offered Bill a
folution.”

recipient

instance
of

akes clear that Laura was the owner of a car. Should an “owned”" link be
tablished from “Laura” to “car”? One problem with putting in such a link
the time-dependent nature of the truth of the fact it represents. After the
ade was completed, Laura no longer owned the car. Anyway, the ownership
formation is implicit in the net because the node for the particular event is
nked both to “Laura” and to “car” with appropriate labels on the ares.

One thing that should be clear from this example is that there is a problem
oncerning time. In the representation of an event, one generally cannot repre-
nt the state of things before the event and the state of things after the event
onsistently without some kind of separation of representations. One way of
aintaining consistency without physically separating the representations is to
d temporal information to some or all of the links in a net. Then one could put
link between “Laura” and “car” with the label “owned before event#793” and
link between “Laura” and “graphics board” labelled “owned after event#793."
his certainly complicates the representation of the links and is likely to slow
own some inferences.

Should a semantic net represent the current states of the relevant objects
r their histories or both? This depends on the kinds of inferences a system is
upposed to make. If a system is to be able to answer questions such as, “What
as the relationship between the defendant and the victim at the time of the
rime?” then clearly temporal information must be incorporated. On the other
and, if a robot is expected only to be able to navigate through a room, and
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instance of

excellent
Armagnac excellent

Figure 4.13: A net with an attributive node.

can see where all the obstacles are, it probably doesn’t have to keep track of the
history of its environment; it only needs to represent the current state of the
vironment it finds itself in.

.10.3 Representing Non-Binary Relations

t first glance, semantic networks appear to be more effective in representing
‘named binary relations (i.e., two-place predicates) than other kinds of relations.
or example, Isa(dog, mammal) is represented as in Fig. 4.16. It should be made
ear, however, that semantic networks are not limited in this respect; they can

resent an n-ary relation with no loss of information. For example, consider
the quaternary relationship expressed by the four-place predicate gives(John,
Mary, book, today). A net representing this can be constructed with a node for
the predicate symbol, a node for each argument, and an arc from the predicate
node to each argument node labelled with the place number of the argument (as
in Fig. 4.17). Of course, there may be more appropriate names for the arc labels
than “place 1,” etc. In this case, a better set of labels would be agent, recipient,
object, when. The one disadvantage of using semantic nets to represent n-ary
relations is that there is some overhead that results from the need to create these
new arc labels.

4.10.4 Semantic Primitives and Combining Forms

- The basic concepts necessary to represent everyday experiences are called “se-
mantic primitives.” Semantic primitives must be adequate for representing such
. things as events, stories and situations. Systems of such primitives have been
proposed by Schank and by Wilks. Typically, each primitive is either an entity
such as a man, a thing, or a part of another entity, an action such as to fly, to be,
- Or to want, a case such as “on behalf of” “surrounding” or “toward,” a qualifier
such as “good,” “much,” or “unfortunate,” or a type indicator such as “how,”
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instance of

liveness
instance of
robot wrist
#2
instance of

robot wrist

Figure 4.14: A net with a representation of a prepositional phrase.

which indicates that a related phrase modifies an action, or “kind” which indi-
cates that a related phrase modifies an entity. A deeper treatment of semantic
primitives is given in Chapter 9 as a basis for natural language understanding.

4.11 Constraints

A method for representing knowledge that is based on the predicates of predicate
calculus, but that is augmented with procedural information, is “constraints.”
A constraint is a relationship between two or more items, which the system, in
the course of solving a problem, must attempt to satisfy or keep satisfied.

4.11.1 Constraint Schemata

A constraint may be represented simply as a predicate of predicate calculus.
However, it has proved useful to represent constraints as instances of “generalized
constraints” or constraint schemata. A constraint schema may be represented
by giving it a name, listing the formal parameters that represent the parts of
each constraint modelled by the schema, and listing rules that allow any one of
the parameters to be computed when the others are known.

An example of a constraint schema is the following one which could be used
to represent Ohm's law in an electronics problem-solving system.
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trading
event
instance of
instance of instance of
agen
gent event owner 2

#793 Pal."
owner T~
object 1 object 2

graphics

bd. #7112

instance of

graphics bd.

Figure 4.15: A net for “Laura traded her car for Paul’s graphics board.”

(CONSTRAINTS OHMS_LAV
. (PARTS (VOLTAGE CURRENT RESISTANCE))

(RULES
(TAKE VOLTAGE (TIMES CURRENT RESISTANCE))

(TAKE CURRENT (QUOTIENT VOLTAGE RESISTANCE))
(TAKE RESISTANCE (QUOTIENT VOLTAGE CURRENT))

})

This constraint would make it easy for the current to be computed in a circuit
if the voltage and resistance were known. Note that the constraint provides the
knowledge in a form that can be used not just in updating a predetermined vari-
able when the others change, but for whichever variable may have an unknown
- value at some time when the other variables have known values.

It is possible to make a constraint representing Ohm's law that is yet more
useful by adding rules that allow updating with knowledge of only one variable,
. when that variable has the value zero and the variable is either CURRENT or

- RESISTANCE.
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MAMMAL

ISA

DOG

| Figure 4.16: Semantic net for a named binary relationship.

gives
place 1 place 2  place 3 place 4
John Mary book today

Figure 4.17: Semantic net for a four-place relationship.

(CONSTRAINTS OHMS_LAW
(PARTS (VOLTAGE CURRENT RESISTANCE))

(RULES
(IF (EQUAL CURRENT ¢) (TAKE VOLTAGE 0))
(IF (EQUAL RESISTANCE 0) (TAKE VOLTAGE 0)
(TAKE VOLTAGE (TIMES CURRENT RESISTANCE))
(TAKE CURRENT (QUOTIENT VOLTAGE RESISTANCE))
(TAKE RESISTANCE (QUOTIENT VOLTAGE CURRENT))
)

Both representations suffer from the problem that division by zero is not
prevented. This could be fixed by modifying the last two rules, and is left as an
exercise for the reader.

4.11.2 Using Constraints

In order to use a constraint schema such as this one in representing a complex
situation, one or more instances of it may be used in conjunction with instances
of other such schemata, and the instances may form a “constraint network.”
An example is shown in Fig. 4.18. This diagram represents an electronic-circuit
problem in which one voltage and two resistance values are given, and the object
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R, =400 ?A
2

Figure 4.18: Constraint network for an electronic circuit.

] is to determine the voltages and currents Vy, V2,1, and I;. The constraints for
F-this problem, expressed as ordinary equations, are as follows:

Vo = 12 Ry = 80
Ry = 40 Vo = IRy
Vi = LR V, = LR,
Ig = Il Il = Ig
Ry = Ry + R,

f' As instances of constraint schemata, the constraints are the following:

(INITIAL VO 12)

(INITIAL R1 80)

. (INITIAL R2 40)

' (OHMS_LAW VO IO RO)
{DHAMS_LAW V1 I1 R1)
(DHMS_LAW V2 I2 R2)
{SERIES_CURRENT I0 Ii)
(SERIES_CURRENT I1 I2)

- {SERIES_RESISTANCE RO R1 R2)

The designing of suitable representations for the schemata INITIAL, SE-
. RIES_CURRENT, and SERIES_RESISTANCE is left as a series of exercises
i for the reader.
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4.11.3 Satisfying Constraints

Constraints are most frequently used as part of the representation of a problem
In the example of Fig. 4.18, the problem of finding the current through R1 may
be solved by an iterative constraint-satisfaction procedure. Such a procedure
repeatedly finds a variable for which the variables on which it depends have
defined or updated values, and it computes a new value. If all constraints are
satisfied, the procedure halts, and if the procedure ever detects that it is making
no progress, it also stops. Sets of constraints may be inconsistent and thus have
no solution. In some cases, a set of constraints may have a solution, but existing
methods of constraint satisfaction are inadequate for finding it. Constraint-
satisfaction procedures can be quite involved, and they continue to be a subject
of active research.

Constraints have been most successful in representing numerical relation-
ships. However, they have also been used successfully in combinatorial relation-
ships involving finite sets of objects or labels. In such a situation, they may be
used to filter out particular combinations of labels or partial states to arrive at
a solution. Visual scene analysis and natural language understanding are two
areas where combinatorial constraints have been useful.

4.12 Relational Databases

4.12.1 Remarks

It would do justice neither to AI nor to the field of database systems to omit
relational databases from a serious survey of knowledge representation methods.
Database techniques, while they have not been widely used in Al experiments,
are fairly mature, well understood and are now being brought into Al systems.
The relational database approach is particularly good at handling large, regularly
structured collections of information. As with other representation methods, re-
lational databases are set up to store some relationships explicitly and to permit
implicit relationships to be recovered through computation. Capability for cer-
tain useful transformations is generally provided by relational database systems;
selection, projection, and joining, for example, are common. These can be used
both for access to and, to a limited degree, for inference on the database. How-
ever, these operations may be used in connection with more powerful inference
methods (such as resolution in the predicate calculus) to attain a combination
of intelligence and efficiency in a knowledge-based system.

4.12.2 n-ary Relations

Database management systems frequently are based on the “relational ap-
proach.” A relation in the database sense is more general than the binary rela-
tions that we discussed in Section 4.4 on concept hierarchies. Rather than a set
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iof ordered pairs, when talking about relational databases, the term “relation”
;efets to a set of ordered n-tuples, where n may vary from one relation to the
b pext. For example, a 3-ary relation is the following;

{{a,a,}),(a,c,d),(d,c,d),(d,c, e}}.

1t is customary to display such relations in tabular form:

(=P eV 0 B
alelole
[ Ry eR =Ry

B In an n-ary relation there are n “fields.” FEach field has a name and a “domain.”

® The domain is the set of values from which elements in the field may be drawn.
g The first field is sometimes called the primary key of the relation. Not only
F: do the fields have names, but the entire relation usually has a name also. For

f example, consider the relation “Angiosperms” shown in Fig. 4.19.

ANGIOSPERMS
Plant name | General Form | Seed body | Products
Wheat Grass (rain Bread
Corn Grass Kernel Meal
Potato Tuber Eye Fries
Oak Tree Acorn Floors
Oak Tree Acorn Desks

Figure 4.19: A relation in a relational database.

The relational method is convenient insofar as certain standard operations

on relations tend to be supported by database management systems. The oper-

ations are useful not only for querying and updating the database, but also for

- extracting subrelations, and merging relations to form composites.

L. It is interesting to note that binary and ternary relations can be easily repre-
sented in LISP using the property lists of atoms. Relations of higher order can

: 8lso be represented in LISP as lists of tuples which are themselves lists.

4.12.3 Selection

" With the relation in Fig. 4.19 we ought to be able to find the answer to a question
© such as: “What is the name of each angiosperm which is a grass?” The procedure
© i8 simply to scan top-to-bottom looking at the “general form” attribute of each
. tuple, and whenever the value “grass” is found, output the value of the “Plant
. name” field in the same row. A somewhat more general formulation of this kind
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of process is the following: the selection from an n-ary relation R according tq
a predicate P(z1,...,2,), is a new relation R’ which is a subset of R, each of
whose tuples satisfies P. The effect of a selection, therefore, is to extract $0me
(and possibly none or possibly all) of the rows of R. Of course, the predicate P
can be designed to ignore most of its arguments, and if it is understood which
argument a unary predicate is to be applied to, it is not necessary to specify ap
7-ary one.

4.12.4 Praojection

In a relation having n fields, it may be the case that only k of them are relevant to
a particular application. A new relation, generally smaller than the original, can
be obtained by making of copy of the original, but deleting the fields that are not
wanted. At the same time, any duplications in the set of k-tuples thus formed
are removed. For example, projecting the relation ANGIOSPERMS above, with
respect to the first two fields, yields the new relation R2 shown in Fig. 4.20.

R2
Plant name | General Form
Wheat Grass
Corn Grass
Potato Tuber
Oak Tree

Figure 4.20: The projection of “Angiosperms” onto “Plant name” and “General
form.”

The effect of projection is to extract one or more columns of the table rep-
resenting the relation, and then to remove any redundant rows. Projection is
analogous to selection, except in this possibility of having to remove redundant
TOWS.

4.12.5 Joins

Two relations can be combined by the join operation if they share one or more
common domains—that is, one can find a column in one relation whose elements
are drawn from the same set as those in some column of the other relation. In
such a case, the join is obtained by finding all “compatible pairs” of tuples and
merging such pairs into longer tuples. A tuple from one relation is compatible
with a tuple of the other relation if for each shared domain the first tuple’s value
matches the second tuple’s value. In the tuples of the join, each shared field is
represented once, so that length of a tuple of the join is strictly less than the
sum of the lengths of the tuples used to produce it. Note that any tuple in one
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f. of the two initial relations does not participate in the join if its values in the
E' common fields do not match those of some tuple in the other relation. Consider

R3
General Form | Size
Grass Small
Tree Large
Bush Medium

Figure 4.21: A two place relation containing a field “size.”

'  the relation R3 shown in Fig. 4.21. The join of R2 with R3 is the relation R4,
¥ chown in Fig. 4.22. If one starts only with R2 and R3, then the join of R2 and

R4
Plant Name | General Form | Size
Wheat Grass Small
Corn Grass Small
QOak Tree Large

Figure 4.22: The join of R2 and R3.

R3 is required before selection can be applied for answering the query: “What
are the names of the small plants.” This is because selection must be applied
to a relation that contains both the “plant name” field and the “size” field, in
order to obtain the answer to the question.

The relational approach to knowledge representation does not seem as ap-
propriate for complicated semantic knowledge of the sort that could support
i dialogs in natural language, as other schemes such as those organized by frames
.~ or by class hierarchies. Although the relational approach is general enough to
represent anything, the operations typically available (projection, join and some
others for updating relations), are not very helpful for solving problems and
making inferences.

On the other hand, relational databases do well at handling bulky bodies
of information that have regular, homogeneous structure, and they can well be
useful as components of intelligent information systems.

4,13 Problems of Knowledge Representation

Some of the problems for knowledge representation have already been mentioned:
handling defaults and exceptions, explicit vs. implicit representations (e.g., tran-
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pitive closures vs. transitive reductions). Here, some additional problems are dis-
russed. These problems are related to the quality, completeness, and acquisition
bf knowledge.

#.13.1 The Closed-World Assumption

[t is difficult to believe that a doctor knows everything there is to know about
reating a common cold. There are lots of aspects of viruses that scientists,
et alone doctors, do not understand that might be relevant to treating colds.
Bimilarly, in playing a game of chess, a player may see very well where all the
pieces are and be able to foresee various possible unfoldings of the game, but
he/she probably does not know his/her opponent well enough to predict the
eply to each move. The opponent may be thinking about his/her love life and
tuddenly make some unexpected move.
Except in very artificial situations, a person or machine doesn’t have all the
knowledge it needs to guarantee a perfect performance. As a result, the system or
he designer of the system needs to recognize the limits of the system’s knowledge
and avoid costly errors that might result from assuming it knew all there was to
know,

The LINNEUS program stays within its limits when it responds negatively
0 a question such as, “Is a house an animal?” Its reply is, “SORRY NOT
FHAT 1 KNOW OF.” This points up a limitation of LINNEUS in not providing
b way to represent negative information; e.g., “a house is not an animal." The
program does, however, avoid concluding falsely that, for example, “a house is
pot a building” only because it hadn’t been told that a house is a building.
There are times, however, when it is reasonable to assume that the system
knows everything there is to know about a problem. For example, if the classical
problem of missionaries and cannibals? crossing a river is posed, it would be
‘cheating” to propose a solution using a bridge, since no bridge is specifically
mentioned in the problem. Thus, it can be appropriate to make use of the closed-
world assumption that anything which cannot be derived from the given facts is
bither irrelevant or false.

When the closed-world assumption can be made, that is very nice, because
It implicitly represents a whole lot of things that might otherwise have to be
txplicitly stated (e.g., “You may not use a bridge,” “You may not drug the
gannibals,” etc.).
There is another way, though, that the closed-world assumption can lead to
{rouble. Its use could imply that, “if you can’t find a solution to a problem then

2The missionaries and cannibals problem is stated as follows: There are three missionaries
Ind three cannibals on one bank of a river that they must cross. There is a rowboat there

at can carry up to two people, including the one who rows. If there ever are more cannibals

an missionaries on one side of the river, then the missionaries on that side (if any) will be

ten. Otherwise, all will cooperate in peaceful transport. What is the plan by which the
ntire party of six can cross the river uneaten?
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:thel‘e is no solution.” This may often be true, but might be false even more
_ For example, if a system is inefficient at finding solutions and doesn’t try
long enough to find one, it could mistakenly infer that no solution exists. Even
if the system is a good one, it might not be able to verify a true statement, as
Godel showed in his famous work on the incompleteness of arithmetic.
| In designing a system for representing knowledge, one should decide whether
3 a closed-world assumption can be used. If not, then it may be necessary to
k| srovide ways to represent negative information (e.g., “A house is not an ani-
' mal”). Alternatively, compromises are possible where the absence of an explicit
or derivable fact suggests that the negation may be true but does not assure it.
F.: Information obtained from suggestions would always be qualified when reported
k. to the user, but could be used freely by the system for the purpose of directing
£ | gearch where it would be helpful if true but have little effect if false.

4.13.2 Knowledge Acquisition

The question of how knowledge should be represented is related to the questions
of where the knowledge comes from and how it is acquired. Here are three
reasons why these questions are related:

1. because the representation chosen may affect the acquisition process {this
is discussed further in Chapter 8},

9. because the acquisition process can suggest useful representations (tools
exist that build up knowledge structures from dialogs with human ex-

perts), and

3. because it is possible that some of the knowledge that a system s to use
should stay in the form in which it is available (e.g., text files representing
books and reports).

Methods for building knowledge structures automatically or interactively are
discussed in Chapter 8.

4.14 Summary of Knowledge Representation
Schemes

Eight of the methods discussed in this chapter are compared in Fig. 4.23.

A serious system for knowledge-based reasoning must combine two or more of
the basic approaches. For example, a frame system may be organized as an ISA
hierarchy whose nodes are schemata with instance frames linked to them. The
slots of the frames may be considered to represent predicates, and the filled-in
values and frame names may be viewed as arguments (terms) to the predicates,
50 that logical inference may use the knowledge in the frames. At the same time,
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Method Relations | Inference Strong Ovr- Principal Shortcomings
Handled Mechanisms ganization?
Proposition- | Boolean Modus ponens, | No Models only boolean
al logic truth ete. truth relationships
functions but not the statementy
themselves
Concept “ISA” Graph search Yes Limited to one relation
hierarchy and transitive
closure
Predicate Any Resolution & No Lacks facilities for orga-
logic predicate | othets nizing knowledge; awk-
ward for control infor-
mation
Frames Binary or | Not provided Yes Only a methodology;
ternary not an actual rep. sys-
tem
Semantic binary or | Not provided No (except No standard
nets ternary with parti-
tioning)
Constraints | Any Propagation; No No standard
predi- satisfaction
cates
Production | If-then Rule activation | No Awkward for non-proc-
rules edural knowledge
Relational | n-ary Selection, Somewhat Awkward for control
database projection, join information

Figure 4.23: A summary and rough evaluation of eight methods for representing

knowledge.

a base of production rules may encode the procedural knowledge and heuristics
that use the knowledge base to manipulate the state information to solve particu-
lar problems. Thus, in this example, four of the basic knowledge representations
are used: frames, ISA hierarchies, predicate logic, and production rules.

4.15 Bibliographical Information

A very readable introductory article on knowledge representation is [McCalla
and Cercone 1983]). That article is also an introduction to a special issue of
IEEE Computer devoted to knowledge representation. The issue contains fif-
teen additional articles that collectively present a good survey of knowledge

representation.
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E  Elementary properties of binary relations (reflexiveness, symmetry, antisym-
E netry, and transitivity, for example) are treated by many texts on discrete math-
ematics, such as [Tremblay and Manohar 1975). An algorithm for computing the
transitive closure of a relation was developed by Warshall and is given in [Aho,
opcroft and Ullman 1974]. For an intriguing treatment of the semantics of
«JSA” see [Brachman 1983).
£ A collection of research papers that address the issue of representation of
8 knowledge is [Bobrow and Collins 1975]. One of those papers is particularly
as an introduction to the problems of representing the kinds of knowledge
- that can support dialogs in natural language [Woods 1975].
k. The use of the predicate calculus as a knowledge representation method is
escribed in [Nilsson 1981]. The frames approach to knowledge organization was
presented in [Minsky 1975]. A formalism called KRL, which stands for “knowl-
edge representation language” was developed [Bobrow and Winograd 1977] for
k. expressing knowledge in a frame-like way.
: Constraints were used extensively as a means of knowledge representation in
[Borning 1979]. A good overview of the use of constraints is [Deutsch 1981].
Relational databases, developed in large part by [Codd 1970], are introduced
¥ in [Date 1976} and [Ullman 1982]. A thorough theoretical treatment is provided
P by [Maier 1983]. Many of the issues common to database systems and knowl-
edge representation are treated in papers that were presented at a Workshop
gponsored by three ACM special interest groups [Brodie and Zilles 1981).
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Exercises

1.

Imagine a computer network of the future in a large hospital, that in-
cludes patient-monitoring devices, medical records databanks, and physi-
cians’ workstations. Explain some possible uses of data, information and
knowledge in this environment.

. Describe how knowledge may be represented in each of the three parts of

a production system.
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_ For each of the following, determine which of the two relations “subset-
of" or “element-of” is being represented, and reformulate the statement
to make this clearer. The first one is done for you. If you find genuine
ambiguity in a statement, justify each of the possible interpretations.

(a) Fido is a dog. Fido € dogs

(b) A parrot is a bird.

{c) Polly is a parrot.

(d) David Jones is a Jones.

(e) “George Washington” is a great name.

(£} Artificial intelligence is a state of mind.
. For each of the following relations, state whether or not it is reflexive,
whether or not it is symmetric, whether or not it is transitive, whether
or not it is antisymmetric, and whether or not it is a partial order. For

each example, let the set S on which the relation is defined be the set of
elements mentioned in that example.

(a) {(a, a)}

(b) {{a, b}, (a, <), (b, c}}

(¢} {(a, a), (a, b), (b, b), (b, c}, (a, ¢, (¢, c}}
(d) {(a, b}, (b, o)}

(e) {}

. Let R be the relation {(a, b}, (a, c), (b, ¢)}. Draw the graph of this
relation. Draw the Hasse diagram for this relation.

. Give an example of a transitive relation on a set of people. Is the “ancestor-
of” relation transitive? How about “parent-of,” “cousin-of,” “sister-of,”
and “sibling-of?” Assume that these are “blood-relative” relations rather
than the more general ones that include adoptions, etc.

. Write a LISP program that takes a binary relation, and computes its
transitive reduction.

. Write a LISP function which determines whether the input relation is
reflexive or not.

. Tmprove the efficiency of the ISATEST function in the LINNEUS program
by having it terminate the search as soon as the goal is reached.

. Let us assume that “HOUSE HAS ROOF” means that a house has a roof
as a part. Suppose we want to extend LINNEUS to know about and
reason with HAS links as well as ISA links.
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(a) Let Isa(z,y) mean “an r is a y,” and let Has(z, y) mean “an ¢ has a
y as a part.” New HAS links may be inferred from combinations of
existing ISA and HAS links. For example,

Has(x, y)A Isa(y, z) = Has(z, 2).

Complete the predicate calculus formulation of the rules for inferring
HAS relationships described on page 104.

(b) Just as (ISATEST X Y N) succeeds if there is a path from X to Y of
length N or less, following only ISA links, one can imagine a function
(HASTEST X Y N) that tests for an implied HAS relationship be-
tween X and Y. Exactly what kind of path between X and Y implies
that the test should succeed?

{¢) Extend the LINNEUS program to properly handle HAS links. Al-
lowable inputs should include expressions such as:

{DOG HAS SNOUT)
which expresses the fact that a dog has a snout, and
(DOG HAS LEG)
which says a dog has a (at least one) leg, and
(HAS DOG PAW)

which asks “Does a dog have a paw?” or equivalently, “Do dogs have
paws?”

11. Extend the LINNEUS program to automatically maintain its inclusion
hierarchy in transitive reduction (Hasse diagram) form. In connection
with this, the conversational front end should handle the following new
kinds of responses:

(I ALREADY KNOW THAT BY INFERENCE)

(I HAVE BEEN TOLD THAT BEFORE)

(YOUR EARLIER STATEMENT THAT A MOUSE IS AN ANIMAL IS NOW
REDUNDANT)

You may name your new program whatever you like. Suppose it is called
“SMARTY." If you tell SMARTY that “(A DOG IS A MAMMAL)” and
then later tell it exactly the same thing, it should respond “(I HAVE
BEEN TOLD THAT BEFORE)". If you tell it something that it can
already deduce, it should respond “(I1 ALREADY KNOW THAT BY IN-
FERENCE)” and if you tell it something new (not already implied) that
makes a previously input fact redundant, SMARTY should reply with a
statement such as (YOUR EARLIER STATEMENT THAT A MOUSE
IS AN ANIMAL IS NOW REDUNDANT). Furthermore, the redundant
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Jink should then be removed, so that the internal data structure is kept
non-redundant. Test your program on the following sequence of facts plus
another sequence of your own creation.

(A LION IS A CARNIVORE)

(A LION IS A CARNIVORE)

(A CARNIVORE IS AN ANIMAL)
(A LION IS AN ANIMAL)

(A LION IS A THING)

(A DOG IS A THING)

(A MAMMAL IS A THING)

(A DOG IS AN ANIMAL)

(AN ANIMAL IS A THING)

(A DOG IS A MAMMAL)

By including more kinds of links in an ISA hierarchy, we can obtain a
more general kind of semantic network.

(a) Extend the program LINNEUS to properly handle the ELE-
MENT_OF relation expressed by user inputs such as “(JANET IS A
WOMAN)” and “(LARRY IS A LOBSTER)”. Your program should
correctly handle questions such as:

i. (WHO IS JANET),
ii. (WHAT IS LARRY),
jii. (I3 LARRY AN ANIMAL), and especially
iv. (IS A LARRY AN ANIMAL), and
v. (WHAT IS A JANET)

These last two types should be answered with a message that indi-
cates that they contain a false presupposition.

(b} Further extend the program to handle the ownership relation as in
(LARRY OWNS A CLAM) or (JANET OWNS A PORSCHE). Al-
low the user to type appropriate statements and questions and get
answers that are reasonable. Note that if Janet owns a Porsche and
a Porsche is a car, then Janet owns a car.

Draw a semantic network representing the sentence, “Artificial Thought,
Inc. bought a controlling interest in Natural Ideas, Inc. for the sum of §23
million.” Include nodes for each object or event and the class to which it
belongs.

Suppose that we wish to represent some notion of the ISA hierarchy of
Fig. 4.4 using propositional calculus. It is very difficult to represent the
hierarchy in a way that would let us do reasoning based on inheritance of
properties, for example. However, consider the following statements:
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P1: “Larry is a lobster.” (i.e., Larry is a member of the class lobster)
P2: “Larry is a crustacean.”

P3: “Larry is an arthropod.”

etc,

Class inclusion may be represented (in this very specific case of Larry) by
the expressions:

Pl = P2
P2=P3
etc.

This knowledge can be used to infer “Larry is an arthropod” from the
statement that “Larry is a lobster.”

(a) If we add the statement, P4: “Louise is a lobster,” what can be
inferred about Louise?

(b} Give additional propositions to support inferences about Louise.

(c) Give a set of predicate calculus expressions for the knowledge that
allows some inferences about both Larry and Louise.

The predicate calculus supports certain kinds of quantification quite nicely,
but not all kinds.

(a)} For each of the statements below, give a predicate calculus formula
that represents its meaning.

i. There exists a white elephant.
ii. There uniquely exists a white elephant.
iii. There are at least two white elephants.
iv. There exist exactly two white elephants.
(b) Describe a scheme that, for any given n, can be used to create a

formula to represent the statement, “There exist exactly n white
elephants.”

(c) What does your answer to part (b) suggest about the predicate cal-
culus in representing numerically quantified statements?

By using the symbol P to represent the statement “It is raining today,”
so much of the detail of the sentence has been lost in abstraction that
nothing is left that represents the objects or actions that make up the
statement. In the predicate calculus, on the other hand, we might repre-
sent the statement with “Weather(Today, Raining)” which provides rep-
resentational components for important parts of the statement. However,




(ERCISES 137

if the symbol P were replaced by the identifier “Raining” and the pred-
icate “Weather(Today, Raining)” were redescribed as P{a,b), then the
predicate calculus representation would seem less informative than the
propositional one. Explain the cause of this apparent paradox and which
representational scheme provides a more informative representation.

-17. Describe how the knowledge necessary to drive a car might be organized
in a collection of frames.

'18. Write representations for the following constraint schemata mentioned on
page 123:

(a) INITIAL
(b) SERIES_CURRENT
(c) SERIES_RESISTANCE

*19. Design, implement, and test a LISP program that accepts a list of con-
straint schemata and a list of constraints and then determines the values
of uninitialized variables by applying the constraints in a systematic fash-
jon. Demonstrate your procedure on the circuit problem described in Fig.
4.18.

20. Consider the following problem. Let {(x1, %), (z2,%2), (23, y3}} be the set
of vertices of a triangle whose perimeter is P and whose area is A. Suppose
21=0,1n =0,22 = 6,52 =0, and A = 30.

(a) Develop constraint schemata and instances to represent the problem.

(b) Which variables are forced to particular values? Which are not
forced? What, if anything, can be said about the ranges of possi-
ble values for the variables which are not forced?

21. Relational databases are frequently incorporated into intelligent systems.

(a) Project the relation ANGIOSPERMS (on page 125) to obtain a new
relation employing only the attributes “General Form” and “Seed
Body.”

(b} Compute the join of the relation you just found in part (a) with the
relation R3 on page 127.

(c) What is the sequence of selections, projections, joins and counting
operations necessary to process the query: “How many products are
made from small plants?” using the relations ANGIOSPERMS and
R3? :

22. Relational database operations can be coded in LISP to demonstrate
question-answering capabilities.
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(a) Design a LISP scheme for representing n-ary relations.

{b) Write one or a collection of LISP functions to compute the projection
of a relation (onto any given list of attributes).

{c) Write a LISP function to compute the join of two relations,

(d) Add whatever functions and other representations may be necessary

to automatically handle queries such as that of the previous problem,

~ part (c). Assume these queries are presented in the form (A1 A2 V2)

which means “How many different values of A1 can be found in tuples
whose A2 value is V27"

23. Suppose a system uses a small knowledge base consisting of the following

statements in the predicate calculus, and suppose it is capable of making
logical deductions, but does not know anything special about any of the
predicates such as “Color” or “Equal” that might appear in its knowledge
base.

e Color(Applel, Red)

¢ Color{(Apple2, Green)

¢ Fruit(Applel)

o Fruit(Apple2)

e Va{[Fruit{x)AColor{x,Red)] = Ripe(z)}
Assume the system makes the closed-world assumption. For each of the

predicate calculus statements (&) through (h) tell whether the system
would assign to it a value of true, false, or unknown:

(a) Color(Apple3, Red) () —Color(Applel, Red)
(b} Fruit(Apple2) (f) Color(Applel, Blue)
(¢) Ripe(Applel) {s) NotEqual(Red, Blue)
{d) Ripe(Apple2) (h}) Equal(Red, Blue)

(i) To what extent does the system make a consistent interpretation of
the statements (a) through (h)?

(j) Is there any inconsistency?



Chapter 5
t Search

5.1 The Notion of Searching in a Space of
States

E: Methods for searching are to be found at the core of many Al systems. Before
E" knowledge representation became the key issue of Al in the 1970’s, search tech-
B piques were at the center of attention in research and in courses on AL They are
¥ atill of central importance in Al not only because most systems are built around
them, but because it is largely through an understanding of search algorithms
that we are able to predict what kinds of AT problems are solvable in practice.

The idea of searching for something implies moving around examining things
and making decisions about whether the sought object has yet been found. A
cave explorer searching for treasure moves around from one underground place
1o another, looking to see where he is going and to see if there are any valuables
around him. He is constrained by the geometry {or topology) of the cave; he must
follow passageways provided by nature. A chess player searching for the best
move in the middle of a game mentally makes moves and countermoves, finding
the merits of resulting board positions and, in the process, finding the degree
to which he can control the game to reach some of these positions. An engineer
‘who designs integrated-circuit layouts considers sequences of design choices that
lead to acceptable arrangements of components and electrical connections; he
searches through spaces of possible designs to find those that have the required
Properties.

Many computer programs must also search along constrained paths through
intricate networks of knowledge, states or conditions to find important informa-
tion or to reach a goal position. In general such a network can be described as a
graph: a set of nodes together with a set of arcs that connect pairs of nodes. The

% nodes represent “states” of a space of possible configurations. The transitions or
R oves that go from one state to another are represented by ares of the graph.
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The choice of a search method is often a critical choice in the design of an
Al program. A poor choice can ensure that the program will always flounder
in the “combinatorial quagmire” before it can find a solution to any nontrivial
problem. Exhaustive techniques can be appropriate for small problems, but the
human user will become exhausted waiting for a machine that uses a “British
Museum” search method on only a moderately-complicated problem. A good
search method typically uses some particular information about the problem or
some general knowledge to focus the search for a solution on areas of the state
space that have a reasonable chance of containing the solution.

In Al systems, the networks to be searched may be represented either explic-
itly or implicitly. For example, the inclusion hierarchy used by the LINNEUS
program in Chapter 4 is an explicit network, where each arc is stored using
relational information on the property list of an atom. However, many Al pro-
grams must search networks whose arcs are not explicitly stored and which must
be generated from rules, one at a time. A computer program that plays chess
explores a game tree in which each node corresponds to a board position and
each arc corresponds to a legal move. The complete tree of all possible games
is so huge that it cannot be explicitly represented. Rather, parts of it must be
generated when needed according to the rules for moving pieces. The goal. of
course, is to choose best moves by evaluating the consequences of each possible
move from the current position. This search is for more than just a good node
in the tree; it is, in a sense, for the best “subtree” from the current position. In
this chapter we work with examples of both implicitly and explicitly represented
|search spaces.

There are several key notions connected with search. The most important of
them, just mentioned above, is the concept of a state space: the set of all the
possible states for a problem together with the relations involving states implied
by the moves or operators. The graph, whose nodes represent states and whose
arcs represent the relations, provides a good abstract representation for a state
space. Another key notion is that of a move generator: a way to obtain the
successors of a given state or node. The third key notion is the search method,
or kind of algorithm that is used to control the exploration of the state space.
A fourth idea is that of search heuristics; these are guiding principles, often of
a pragmatic nature, that tend to make the search easier. A common way of
controlling a search is to employ an “evaluation function” which computes an
estimate of the merits of a particular successor to the current state or node.
Puzzles are easy to understand and describe, and they provide a good starting
point for studying search methods. We shall begin our discussion of search with
an analysis of a simple class of puzzles called “painted square” puzzles. Although
this class of puzzles is elementary, it is a good vehicle for examining some subtle
fissues in the description of operators. The class is general, in that particular
versions of the puzzle may have zero, one, or many solutions. This feature
makes the puzzles somewhat more realistic as problems than the “15” puzzle
or “Towers of Hanoi” puzzle that are sometimes used for teaching elementary
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] search techniques.
j We will describe a procedure for solving painted square puzzles which works
 py searching a space of configurations {(which may be regarded as potential so-

Tutions).

‘ 5.2 The Painted Squares Puzzles
5.2.1 A Kind of Geometrical Puzzle

' (liven a set of N square blocks with painted sides, it is desired to place the squares
b adjacent to one another to form one large rectangle {of given dimensions), such

BB that adjacent sides of the squares always match. A sample game for N = 4 and
&% dimensions 2 by 2 is shown in Fig. 5.1.

Figure 5.2: A solution to the sample puzzle.

_ We should note that such puzzles may or may not have solutions, depending
upon how the squares have been painted. For example, if all four sides of piece 1



14p : CHAPTER 5. SEARCH

wdre striped, .all Eowr sides of 2 boxed, all four of 3 gray and all four of 4 hashed,
ng two squares could be placed together, let alone all four of them.

512.2 Solution Procedure

solution, whem one exists, can be found by the following procedure: enu-

vacancy with the 7% square in the k** orientation, attempt to fill the ¢ + 1%t
ancy with thwe lowest numbered unused square in the first orientation. If this
placement does not match sides with previously placed squares, the follow-

flicient. In thve case of the painted squares puzzles it is generally much more
efficient than an obvious alternative, which is to generate all possible arrange-
ments of the squares in the rectangular space, testing each one to see whether it
is b solution to the puzzle!

52.3 States and Operators

Wt may think of each partial {or complete} arrangement of squares in vacancies
asla “state.” A state is one of the possible configurations of the puzzle. It is a
snppshot of one situation. A state is a configuration that could be reached using
uence of }egal moves or decisions, starting from an initial configuration. The

state) form one element in the move relation. For the painted squares puzzle
ig. 5.1, a portion of the state space is shown in Fig. 5.3.
The representation of a state is an embodiment of the essential information

represented by the pair (P1 2), and the state consisting of this one piece being
plgced in the first enumerated vacancy of the rectangle, in this orientation is
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........

Figure 5.3: A portion of the state space for the sample puzzle.
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indicated by ((P1 2)). The list (} represents the starting state for the puzzle (no
pieces placed). The solution shown above is represented by

((P2 1} (P4 3){(P1 4)(P3 2)).

The reason we list the pairs in reverse order will be apparent later, when we code
our algorithm.

A state can be changed by placing a new square into the next vacancy, or by
removing the most recently placed square. More generally, we say that states
are changed by applying operators. Operators are transformations that map one
state to another.

An example operator is “place piece 3 in the second place with the third
orientation.” This operator is a rather specific one, and is only applicable if
the current state satisfies some stringent conditions: the first place must be full:
the second place must be empty; piece 3 must not have been used already to
fill place 1 and when rotated to the third orientation, the side of piece 3 that
would touch the piece in place 1 must match there.

A more general operator is “place the first unused piece in the next vacant
position in the first orientation that makes all the adjacent pieces match.” There
are still conditions for the applicability of this operator, but they are not so
restricting. There must be an unused piece (if not, the puzzle has heen solved!);
there must be at least one orientation of the piece such that its placement in the
next vacant position does make all adjacent sides match.

‘There is obviously quite a variety of operators one could imagine that could be
used to describe moves in our puzzle. To put some order on them, we will consider
general schemes for making state changes that may “generate” operators when
called upon. The backtracking procedure sketched out earlier does essentially
that. It produces new operators in an orderly sequence in order to search for a
goal state.

3.2.4 Representation of the Puzzle and Its States in LISP

Let us work out a LISP program to implement the backtracking search procedure
for the painted squares puzzles. We need a representation for the pieces, and a
procedure to generate operators (these operators may only produce legal states—
those in which adjacent sides of placed squares match).

Each piece can be represented as an atom with a property PATTERN which
describes how its sides are painted. Let ST, BX, GR, and HA indicate striped,
boxed, gray and hashed, respectively. Then we establish our piece representa-
tions (for the example shown) by the following LISP expressions:

(PUTPROP *P1 ’(ST Hi GR ST) 'PATTERN)
(PUTPROP ’P2 ’(BX ST HA BX) ’PATTERN)
(PUTPROP ’P3 ’(ST HA BX GR) ’PATTERN)
(PUTPROP ‘P4 ’{GR GR HA BX) ’PATTERN)

Y
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L Our convention is that the sides are ordered starting from the south, moving
 then east, north, and finally west. The list of pieces available starts out with all

E of them:
i (SETQ PIECES_AVAIL ’(P1 P2 P3 P4))

The dimensions of the rectangle to be filled are 2 and 2:

b (SETQ BOX_WIDTH 2)
b (SETQ BOX_LENGTH 2)

: To orient a piece we rotate its pattern by one rotation less than the orientation
| number:

[ (DEFU¥ ORIENT (PIECE ORTENTATION)
(ROTATE_LIST (GET PIECE ’PATTERN) (SUB1 ORIENTATION)) )

i The helping function ROTATE_LIST moves elements from the end to the
 beginning with the help of functions LAST and ALL_BUT_LAST.

b (DEFUN ROTATE_LIST (L M)
¥ (COND ((ZEROP N) L}
(T (ROTATE_LIST
(CONS (LAST L)
(ALL_BUT_LAST L) )
(SUBL N} }) ) )

¥ (DEFUN LAST (L)
{COND ((NULL (CDR L))(CAR L})
(T (LAST (CDR L})) } )

E (DEFUN ALL_BUT_LAST (L)
* (COND ((NULL (CDR L)) NIL)
(T (CONS (CAR L)(ALL_BUT_LAST (CDR L))})) } )

f To find out whether a new piece will match adjacent sides in the current
. configuration we use a function SIDESOK. If the current state is null, no pieces
p have been placed, and the new piece is OK. Otherwise, there are three cases that
B must be contended with. If the new piece is in the leftmost column, it only has
b:a neighbor to the north that it must match. If the new piece is in the first row
b it only has a neighbor to the west that it must match. In any other case it must
E. match both a neighbor to the north and a neighbor to the west.

-j (DEFUN SIDESOK (NEW_PIECE ORIENTATION CUR_STATE)
% (COND ((NULL CUR_STATE) T) ;no pieces previously placed
(T (PROG (TRIAL LEN) ;some " " "
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(SETQ TRIAL (ORIENT NEW_PIECE ORIENTATION))
(SETQ LEN (LENGTH CUR_STATE))
(COND
;case of leftmost column:
((ZERDP (REMAINDER LEN ROX_WIDTH))
(RETURN (MATCHNORTH TRIAL CUR_STATE)) )
;case of top row
((LESSP LEN BOX_WIDTH)
(RETURN (MATCHWEST TRIAL CUR_STATE)) )
igeneral case:
(T (RETURN
(AND (MATCHNORTH TRIAL CUR_STATE)
(MATCHWEST TRIAL CUR_STATE) ) ))
Y )

This uses the helping functions MATCHNORTH and MATCHWEST. The
job of MATCHNORTH is to find the square which is just to the north of the
trial square and to see if its south side matches the north side of the rotated new
piece. In the example, BOX_WIDTH is 2 and the neighbor to the north is in
the second element of the current-state list.

(DEFUN MATCHNORTH (TRIAL STATE)
(EQ (CADDR TRIAL) ;north side of rotated new piece
(CAR (APPLY ’ORIENT
(GETNTH BOX_WIDTH STATE) ))
;south side of square to the north.

} )

Similarly we define MATCHWEST so it returns T when the trial placement
agrees with the neighboring piece to the west.

(DEFUN MATCHWEST (TRIAL STATE)
(EQ (CADDDR TRIAL) jwest side of rotated new piece
(CADR (APPLY ’ORIENT
(CAR STATE) }))
jeast side of square to the west

1)

‘The reason for representing states in backwards order is now apparent. With
the most recent placement first, the act of checking to see whether a trial will
match requires accessing recent additions to the state list. In LISP it is easier
to get them near the front of a list than near the end of a list.

5.2.5 A Backtracking Search Procedure in LISP

So far we have defined a representation for states of our problem, and we have
described functions that test trial placements for consistency in matching of sides
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pieces. We now need a procedure to drive the overall search, generating the
. ssible placements and backtracking when impasses are reached. Let us call

A general searching procedure SOLVE_SQUARES. At the top level it would
R invoked with
SOLVE_SQUARES NIL PIECES_AVAIL)

bwsie assume this invocation is done from a function TEST which also initializes
¥y golution counter. It calls a helping function TRYPIECE which implicitly gen-
tes classes of operators to try placing pieces in the next vacant position. The
ping function SHOW numbers and prints out solutions.

(DEFUN SOLVE_SQUARES (CUR_STATE UNUSED_PIECES)
(COND ({NULL UNUSED_PIECES) (SHOW CUR_STATE)) ;sol’nm found
(T (MAPCAR ’TRYPIECE UNUSED_PIECES)

NIL) ) )

 SHOW (SOLN)

PROG () (SETQ COUNT (ADD1 COUNT))
(PRIN1 ’SOLUTION)

(TYO 32)

(PRIN1 COUNT)

(TYO 58)

(PRINT SOLN) ) )

(SETQ COUNT 0)
(SOLVE_SQUARES NIL PIECES_AVAIL) ) )

¢

_' The function TRYPIECE fans out the search for a solution using a given piece
i the next vacant place, in four directions, one for each possible orientation of
t piece.

DEFUN TRYPIECE (PIECE)
{MAPCAR ’TRYORIENTATION °{1 2 3 4)) )

Control is then passed to TRYORIENTATION. Here a call is made to
f.SIDESOK to check a specific trial placement for side-matching consistency. If
I consistent, the search is made to continue with a new current state that includes
the new piece placed in the given orientation.

" (DEFUN TRYORIENTATION (DRIENTATION)
(COND ((SIDESOK PIECE ORIENTATION CUR_STATE)
{SOLVE_SQUARES
(CONS (LIST PIECE ORIENTATION) CUR_STATE)
(DELETE PIECE UNUSED_PIECES) } )
(T NIL) ) )



148 ' : CHAPTER 5. SEARCH

If the trial placement is inconsistent with the currently-placed squares, the secongd
clause of the COND returns NIL, effectively pruning the search along the Current
branch (by not pursuing it any further) and backtracking up the search tree (by
returning from the call to TRYORIENTATION).

The helping function CADDDR may have to be defined for some LISP Sys-
tems:

(DEFUN CADDDR (X} (CADDR (CDR X)))
The search is started by the user’s typing:
(TEST)

5.2.6 Remarks on Efficiency

Evidently, SOLVE_SQUARES keeps searching for more solutions even after it
finds one. The number of solutions is always even, since a rectangle can he
rotated 180 degrees and still fit on itself; in the case of a square rectangle (as in
our 2 by 2 example) the number of solutions is a multiple of 4. In fact, there are
24 different solutions to our example.

It is interesting to note that the number of calls made to TRYORIENTATION
before the first solution is found generally depends not only upon the data {the
pieces and the manner in which they are painted) but also on the order in which
they are listed.

A note about the efficiency of our program is in order. The functions
MATCHNORTH and MATCHWEST have a disadvantage: they apply ORI-
ENT to pieces already placed, needlessly repeating work that was already per-
formed. This redundant work can be avoided by making the state representation
a little more ugly but explicit. Rather than describe each oriented piece as an
atom-integer pair, one may describe it as an atom-list pair, where the list is
the result of applying ORIENT to the atom-integer pair. Then minor changes
must be made to MATCHNORTH, MATCHWEST, TRYORIENTATION, and
SIDESOK. This optimization is left as an exercise for the reader.

5.3 Elementary Search Techniques
5.3.1 A Search Problem

In order to illustrate several different search techniques, we shall use a map
of cities of France, transformed into a graph. This graph serves as an erplicit
representation of a state space. The search techniques we describe will be general.
and can also work in a state space that is implicit. In that case, the states would
be generated gradually by applying operators rather than pre-existing. {When
search techniques are used for theorem proving, in Chapter 6, the search space
is implicitly represented.)
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Strasborg

Toulouse Nice
Marseille

Figure 5.4: The state space for comparing algorithms.

i Here, the use of an explicit state space helps us to understand the behavior of
J the search algorithms by making it obvions (to us humans) what kinds of paths
f to a solution exist. This is particularly helpful when alternative algorithms
| are compared, as is the case in this chapter. In our space, the roles of states
 are played by cities (the nodes of the graph, and the nodes, in turn, are later

represented as LISP literal atoms), and the moves are transitions along arcs of the
graph. Although we put an explicit representation of the graph into the machine,
f our search procedures only have access to a portion of the representation at
b any particular time. The algorithms search from a starting point in the graph
- outward to find a goal node. The algorithms may or may not actually explore
F the entire graph; for example, if the goal is found after only a few transitions,
L the majority of the nodes may remain unexplored.

Figure 5.4 illustrates the search space.



150 ' CHAPTER 5. SEARCH

We may represent the adjacency data in the map by listing for each city the
other cities directly connected to it, and putting this on the property list:

(PUTPROP °BREST *(RENNES) ’ADJCNT)

(PUTPROP ’RENNES ’{CAEN PARIS BREST NANTES) ’ADJCNT)

(PUTPROP °CAEN ’(CALAIS PARIS RENNES) *ADJCNT)

(PUTPROP ’CALAIS *(NANCY PARIS CAEN) ’ADJCNT)

(PUTPROP *NANCY ’(STRASBOURG DIJON PARIS CALAIS) ’ADJCNT)
(PUTPROP °STRASBOURG ’ (DIJON NANCY) *ADJCNT)

(PUTPROP ’DIJON ’{STRASBOURG LYON PARIS NANCY) ’ADJCNT)

(PUTPROP *LYON ’ (GRENUBLE AVIGNON LIMOGES DIJON) *ADJCNT)
(PUTPROP ’GRENOBLE '’ (AVIGNON LYON) *ADJCNT)

(PUTPROP ’AVIGNON ’(GRENOBLE MARSEILLE MONTPELLIER LYON) ’ADJCNT)
(PUTPROP *MARSEILLE ’(NICE AVIGNON) *ADJCNT)

(PUTPROP °‘NICE ’'(MARSEILLE) 'ADJCNT)

(PUTPROP *MONTPELLIER ’(AVIGNON TOULOUSE) *ADJCNT)

(PUTPROP ’TOULQUSE ° (MONTPELLIER BORDEAUX LIMOGES) ’ADJCNT)
(PUTPROP 'BORDEAUX ’(LIMOGES TOULOUSE NANTES) ’ADJCNT)

(PUTPROP ’LIMOGES ’(LYON TOULQUSE BORDEAUX NANTES PARIS) ’ADJCNT)
(PUTPROP ’NANTES ’{(LIMOGES BORDEAUX RENNES) ’ADJCNT)

(PUTPROP ’PARIS ’(CALAIS NANCY DIJON LIMOGES RENNES CAEN) ’ADJCNT)

Let us suppose that we wish to find, with the help of a program, a route from
Rennes to Avignon. There are several approaches we might take.

5.3.2 Hypothesize and Test

If one has very little knowledge about the space one must search, one may be
inclined to explore it at random. Beginning from Rennes one could roll dice
to choose which road to begin with. It is possible that a random decision se-
quence might lead one to the goal state (Avignon). Without an informed way
of generating hypotheses (trial routes), however, one can expect to waste a lot
of time with this approach. The first obvious improvement we can make is to
systematize the search so that the various possible alternatives are tried in an
orderly fashion.

5.3.3 Depth-First Search

We can proceed by listing the cities directly accessible from Rennes and then
going to the first of these (taking us to Caen}, and then adding to the list the
new places one could go to directly from there, and moving to the first of those,
etc., until we have either found Avignon or reached a dead end. If a dead end is
reached, we can back up to the last city visited from which we had a choice of new
cities and try the next alternative. Such a search technique is analogous to the
backtracking search used in our solver for the painted squares puzzles. There
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are some subtle differences, however; for example, the new procedure avoids
& repeatedly examining nodes via an explicit test, whereas SOLVE_SQUARES
i avoided repetitions implicitly (if the pieces were all different). We can describe
P 'this depth-first search algorithm as follows:

1. Put the start node on a list OPEN and associate a null pointer with the
node.

9. If OPEN is empty, output “FAILURE” and stop.

3. Select the first node on OPEN and call it N. Delete it from OPEN and
put it on a list CLOSED. If N is a goal node, output the list obtained by
following the chain of pointers beginning with the pointer associated with
N.

4. Generate the list L of successors of N and delete from L those nodes already
appearing on list CLOSED.

5. Delete any members of OPEN which occur on L. Concatenate L onto the
front of OPEN and to each node in L associate a pointer to N.

6. Go to step 2.
This may be described in LISP as follows:

k. (DEFUN DEPTH_FIRST_SEARCH (START_NODE GOAL_NODE)

£ (PROG (DPEN CLOSED N L)

= (SETQ OPEN (LIST START_NODE)) sstepl
(PUTPROP START_NODE NIL ’'POINTER)

LOOP (COND ((NULL OPEN)(RETURN ’'FAILURE))) ;step2
(SETQ N (CAR OPEN)) ;step3
(SETQ OPEN (CDR OPEN))
(SETQ CLOSED (CONS N CLOSED))
(COND ((EQ N GOAL_NODE) (RETURN (EXTRACT_PATH N))))
(SETQ L (SUCCESSORS N)) ;stepd
(SETQ L (SET_DIFF L CLOSED))
(SETG OPEN (APPEND L (SET_DIFF OPEN L)));stepb
(MAPCAR ’(LAMBDA (X) (PUTPROP X N ’POINTER)) L)
(GO LOOP) ; stepb
) )

The helping function EXTRACT_PATH follows the pointers to produce a
. list of nodes on the path found:

(DEFUN EXTRACT_PATH (N)
(COND ((NULL N) NIL)
(T (APPEND (EXTRACT_PATH (GET N ’POINTER))
(LIST W) ) ) )
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The function SUCCESSORS gets the cities adjacent to N:
(DEFUN SUCCESSORS (N) (GET N ’ADJCNT))

The other nonstandard function used is SET_DIFF, which returns the first
list, but omits members which are also members of the second list.

(DEFUN SET_DIFF (L1 L2)
(COND ({NULL L1) NIL)
((MEMBER (CAR Li) L2) (SET_DIFF (CDR L1) L2) )
(T (CONS (CAR L1) (SET_DIFF (CDR Li) L2))) ) )

One problem with this method of finding a path is that it doesn’t necessarily
find the shortest one. Let us make the simple assumption (for the moment) that
the length of a route is equal to the number of arcs in the graph along the route.
‘The depth-first search method may just as well find a longest path between two
points as find a shortest path. In fact, evaluating

(DEPTH_FIRST_SEARCH ’RENNES °’AVIGNON)
gives us the rather roundabout route

(RENNES CAEN CALAIS NANCY STRASBOURG DIJON LYON
GRENOBLE AVIGNON)

which is five arcs longer than necessary.
We can alter our searching procedure to find shortest paths; we shall turn
the function into a “breadth-first” search procedure.

5.3.4 Breadth-First Search

A more conservative style of searching a graph is to search along all paths of
length 1 from the start node, then along all paths of length 2, length 3, etc., until
either the goal is found or the longest possible acyclic paths have been tried. In
actuality, when we search along paths of length &, we need not re-examine the
first k£ — 1 nodes of each such path; we need only take one step further in each
possible direction, from the nodes newly reached in iteration number k — 1. This
method is called breadth-first search.

A minor modification in our function DEPTH_FIRST_SEARCH makes it
become BREADTH_FIRST _SEARCH. In steps 4 and 5, we change the way the
list L is merged with the list OPEN. Rather than concatenate I, at the front, we
put it at the back. That is, we replace

(SETQ L (SET_DIFF L CLOSED))
(SETQ OPEN (APPEND L (SET_DIFF OPEN L))) ;steph

with
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5(551u L (SET_DIFF (SET_DIFF L OPEN) CLOSED))
(SETQ OPEN (APPEND OPEN L)) ;step5

thus putting the newly reached nodes on the end of OPEN, for processing after
- 4) the nodes at the current depth are finished.

f Now, the possible routes from the start node are explored in order of in-
creasing length, so that as soon as the goal node is found, we know we have
£ constructed a minimum-length path to it. The result of evaluating

b (BREADTH_FIRST_SEARCH ’RENNES * AVIGNON)
the much more reasonable route,
RENNES PARIS DIJON LYON AVIGNON).

: Of course it is possible that DEPTH_FIRST _SEARCH might stumble upon
E the shortest path by some coincidence, and it might do so in many fewer iter-
ations than BREADTH_FIRST_SEARCH requires. On the other hand, if the
path is short, DEPTH_FIRST_SEARCH might not find the goal right away,
whereas BREADTH_FIRST _SEARCH would find it very quickly.

5.4 Heuristic Search Methods

65.4.1 Evaluation Functions

Both the depth-first and breadth-first methods are “blind” in the sense that they
use exhaustive approaches that can’t “see” where they are going until they get
here. That is, they don’t have any sense of where the goal node lies until they
find it. Consequently, they often spend a lot of time searching in totally fruitless
directions. If some general guiding information is available, the searching can
be biased to move in the general direction of the goal from the very beginning.
For example, when a friend hides a present for you in the house and then gives
E: you clues of “warmer” and “colder” as you move closer or farther away from the
& cache, you will have a much easier time locating the present than without such
j. feedback.
A function f that maps each node to a real number, and which serves to
. estimate either the relative benefit or the relative cost of continuing the search
from that node, is an evaluation function. In the remainder of this section,
g we consider only evaluation functions which are cost functions. Typically f(N)
£ is designed to estimate the distance remaining between N and the goal node.
Alternatively f(N) might estimate the length of a path from the start node to
f  the goal node which passes through N. The evaluation function is used to decide
E- the order in which nodes are to be considered during the search. A search method
t which tends to first expand nodes estimated to be closer to the goal is likely to
f reach the goal with fewer steps.
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For the problem of finding a route from Rennes to Avignon, we now introduce
an evaluation function to provide some rough guidance to the search. Suppose
that the longitude of each city is available. We make f(N) = LongitudeDiff(N,
Avignon) which we define to be the absolute value of the difference between the
longitude of N and the longitude of Avignon. We can now arrange to have the
nodes on OPEN kept ordered by increasing f value, so that the most promising
node to process next always appears at the front. The procedure for exploiting
the new information, called “best-first” or “ordered” search, is described in the
next section. Before proceeding there, we give the additional LISP representa-
tions that will be required.

First we store the longitude data required in computing f:

; Store the longitude (in tenths of a degree) of each city:
(MAPCAR ’(LAMBDA (X) (PUTPROP (CAR X)(CADR X) ’LG))
* ((AVIGNON 48) (BORDEAUX -6) (BREST -45) (CAEN -4)
(CALAIS 18) (DIJON 51)(GRENOBLE 57) (LIMOGES 12)
(LYON 48) (MARSEILLE 53) (MONTPELLIER 36)
(NANTES -16) (NANCY 62) (NICE 73) (PARIS 23)
(RENNES -17) (STRASBOURG 77) (TOULOUSE 14) ) )

Now we define three functions used in computing f:

(DEFUN LONGITUDE_DIFF (N1 N2)
(ABS (DIFFERENCE (GET N1 'LG) (GET N2 °LG))) )

(DEFUN ABS (X)
(COND ((GREATERP X 0) X)(T (DIFFERENCE 0 X))})

(DEFUN F (N) (LONGITUDE_DIFF N GDAL_NODE))

We know that GOAL_NODE will be bound to AVIGNON when the search
for AVIGNON from RENNES is begun.

5.4.2 Best-First (Ordered) Search

Let us first describe the general procedure for best-first search, and then we shall
discuss its application to increasing the efficiency of finding a route from Rennes
to Avignon.

With the aid of an evaluation function f on the nodes of a graph it is desired
to find a goal node starting from a start node S.

We begin by placing node $ on a list called OPEN. Then we successively pro-
cess the node(s) on OPEN by examining them to see if they are goal nodes, and
if not, transfering them to another list CLOSED while placing their successors
on OPEN, all the while avoiding redundant processing, updating f{N) for each
node N processed, and treating nodes on OPEN in an order that gives priority
to the node having lowest f(N). More precisely:
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1. Place the starting node S on OPEN, compute f(S) and associate this value
with S. Associate a null pointer with S.

2. If OPEN is empty, return “FAILED” and stop or exit.

3. Choose a node N from OPEN such that f(N) < f(M) for each M on
OPEN, and such that N is a goal node if any goal node achieves that
minimum f value.

4. Put N on CLOSED and remove N from OPEN.

. If N is a goal node, return the path from S to N obtained by tracing
backwards the pointers from N to S. Then stop or exit.

6. For each successor J of N that is not already on OPEN or on CLOSED:

(a) compute f(J) and associate it with J.
(b} put J on OPEN,
(¢} associate a pointer with J pointing back to N.

7. For each successor J that is already on OPEN, recompute f(J) and com-
pare it to its previous f value. If the new value is smaller, associate this
new value with J and reposition J on OPEN.

8. Go to Step 2.

This general procedure may be used to search arbitrary graphs or trees such
- as those that describe the possible sequences of moves in puzzles. The search is
said to be ordered (or “best-first”) because at each iteration of Step 3, it chooses
~ the best or one of the best alternative directions for searching, according to the
_ evaluation function f. The efficiency of the search depends upon the quality of
; this function. This function should yield relatively low values along the shortest
path to a goal node, if it is to make the search efficient.

Let us now apply the best-first searching method to finding AVIGNON
~ from RENNES, using LONGITUDE_DIFF as the basis for evaluating nodes
on OPEN. Here is the main procedure:

(DEFUN BEST_FIRST_SEARCH (START_NODE GOAL_NODE)

(PROG (OPEN CLOSED N L)
(SETQ OPEN (LIST START_NODE)) ;stepl
(PUTPROP START_NODE (F START_NODE) ’FVALUE)
(PUTPROP START_NODE NIL ’PQINTER)

LOOP (COND ((NULL OPEN)(RETURN ’FAILURE)));step2

(SETQ N (SELECT_BEST OPEN)) ;step3
(SETQ OPEN (DELETE N DPEN)) ;stepd
(SETQ CLOSED (CONS N CLOSED))
(COND ((EQ N GDAL_NODE) ;steph
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(RETURN (EXTRACT_PATH N))))
(SETQ L (SUCCESSORS N)) ;8tepé
{MAPCAR ’OPEN_NODE

(SET_DIFF (SET_DIFF L OPEN) CLOSED))
(GO LOOP) ;step?
) )

The main procedure employs two special functions. These functions are SE.
LECT_BEST and OPEN_NODE which in turn use helping functions BETTER
and INSERT:

; Function to choose node in step 3...
(DEFUN SELECT_BEST (LST)
(COND ((EQ (CAR LST) GOAL_NODE) (CAR LST))
(T (BETTER (CAR LST)(CDR LST}))} ) )

; Helping function for SELECT_BEST checks to see if there is a
; goal node on LST with FVALUE as low as that of ELT.
(DEFUN BETTER (ELT LST)
(COND ((NULL LST} ELT)
((LESSP (GET ELT ’FVALUE) (GET (CAR LST) ’FVALUE)) ELT)
((EQ (CAR LST) GOAL_NODE) (CAR LST))
(T (BETTER ELT (CDR LST))) ) )

; For use in step 6:
(DEFUN OPEN_NODE (M)
(PROG (VAL)
(SETQ DPEN_COUNT (ADD1 OPEN_COUNT))
(PUTPROP M (SETQ VAL (F M)} ’FVALUE)
(SETQ OPEN (INSERT M OPEN))
(PUTPROP M N °*POINTER) ) )

; Put NODE onto LST, which is ordered by ’'FVALUE property.
H This value is precomputed for NODE in VAL.
(DEFUN INSERT (NODE LST)
{COND ((NULL LST){LIST NODE))
((LESSP VAL (GET (CAR LST) ’FVALUE))
(CONS NODE LST))
(T (CONS (CAR LST)(INSERT NODE (CDR LST)))) )} )

In order to test BEST_FIRST_SEARCH we define a function TEST:

(DEFUN TEST ()
(PROG (OPEN_COUNT)
(SETQ OPEN_COUNT 1)
(TRACE OPEN_NODE)
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(PRINT (BEST_FIRST_SEARCH ’RENNES ' AVIGNON))
(PRINT (LIST OPEN_COUNT ’NODES3 'OPENED)) ) )

ki The number of nodes opened during this test is 13. Thus, the incorporation
E of the evaluation function led to an improvement over the number, 16, of nodes
[ opened by BREADTH_FIRST_SEARCH (a blind method).

§.4.3 Searching Graphs with Real Distances

' In the previous section, we made the assumption that the length of a route from
E one city to another is equal to the number of arcs in the path. The actual road
. distances were not considered. These distances would, of course, provide a much
.better basis for the problem of finding a shortest driving route, than can the
“pumber of graph arcs on the path. Assuming that we have a measure of the
' kilometers along each arc of the graph, the total distance for a route is the sum
of the distances of the arcs that constitute it.

Adding distance information to our graph of French cities, we have the la-
E belled graph of Fig. 5.5.

We may represent this labelled graph by the following:

(PUTPROP ’BREST ’((RENNES . 244)) ’ADIDST)

P (PUTPROP ’RENNES *((CAEN . 176) (PARIS . 348)

_ (BREST . 244) (NANTES . 107)) '4DJDST)

(PUTPROP ’CAEN ’ ((CALAIS . 120) (PARIS . 241)

(RENNES . 176)) ’ADJDST)

(PUTPROP ’CALAIS ’((NANCY . 534) (PARIS . 297)
(CAEN . 120)) ’ADJDST)

(PUTPROP ’NANCY ’((STRASBOURG . 145)(DIJON . 201) (PARIS . 372)
(CALAIS . 534)) ’ADIDST)

(PUTPROP ’STRASBOURG ’ ((DIJON . 335) (NANCY . 145)) ’ADJDST)

(PUTPROP ’DIJON ’((STRASBOURG . 335) (LYON . 192)(PARIS . 313)
(NANCY . 201)) *ADJDST)

(PUTPROP ’LYON *((GRENOBLE . 104) (AVIGNON . 216) (LIMOGES . 389)
(DIJON . 192)) *ADJDST)

S (PUTPROP ’GRENOBLE ’((AVIGNON . 227)(LYON . 104)) ’ADJDST)

& (PUTPROP ’AVIGNON ’((GRENOBLE . 227)(MARSEILLE . 99)
(MONTPELLIER . 91){(LYON . 216)) ’ADJDST)

(PUTPROP ’MARSEILLE '((NICE . 188)(AVIGNON . 99)) ’ADJDST)

(PUTPROP ’*NICE ’ ((MARSEILLE . 188)) 'ADJDST)

(PUTPROP ’MONTPELLIER ’((AVIGNON . 91)(TOULOUSE . 240)) ’ADJDST)

'(PUTPROP ’TOULOQUSE ’ ( (MONTPELLIER . 240) (BORDEAUX . 253)
(LINOGES . 313)) 'ADJDST)

(PUTPROP ’BORDEAUX ’{((LIMOGES . 220)(TOULOUSE . 253)

- (NANTES . 329)) ’ADJDST)

|- (PUTPROP ’LIMOGES * ((LYON . 389) (TOULQUSE . 313) (BORDEAUX . 220)
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Figure 5.5: State space graph with distance (“cost™) information.

(NANTES . 329) (PARIS . 396)) ’ADJDST)

(PUTPROP ’NANTES ’((LIMOGES . 329)(BORDEAUX . 329)
(RENNES . 107)) ’ADJDST)

(PUTPROP ’PARIS '((CALAIS . 297)(NANCY . 372)(DIJOK . 313)
(LIMOGES . 396) (RENNES . 348) (CAEN . 241)) ’ADJDST)

In order to apply the breadth-first search method here, it should be modified
so that it opens new nodes in order of their minimum distance from the start
node. Thus, each time a successor node M of a node N is generated, we should
(a) see whether M is on CLOSED and if so, not consider it further, and if not,
{b) compute its distance from the start node along the path just followed as
Temp = NodeDistance(N) + ArcDistance(M, N), and (¢) examine QPEN for
an occurrence of M and if present, compare the value of NodeDistance(M) with
Temp, and if Temp is smaller, delete the old occurrence of M on OPEN, and
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| finally (d) set NodeDistance(M) = Temp, and insert M into its position in OPEN
according to increasing values of NodeDistance.

E Note that although this method, which we shall call UNIFORM_COST is
L actually blind (there is no evaluation function biasing it to move more quickly
 yoward the goal), it does bear some similarity with BEST_FIRST_SEARCH. In
 fact, the only substantial difference is in the meaning and computation of the
- pode-distance function. In the best-first method, it gave an estimate of a node's
b proximity to the goal; here it refiects a node’s distance from the start node.
' Besides the difference in where the distance is to or from, there is also a distinct
| difference, in that best-first search uses estimated distances or heuristic ordering
. values, whereas uniform-cost search uses (in theory) exact distances.

Let us now illustrate the effect on the solution to the French route prob-
[ lem brought about by the use of actual road distances and the uniform-cost

 algorithm.
, The main searching procedure:

E (DEFUN UNIFORM_COST (START_NODE GOAL_NODE)
| (PROG (DPEN CLOSED N L)
3 (SETQ OPEN (LIST START_NODE})  ;stepl
(PUTPROP START_NODE O ’FVALUE)
3 (PUTPROP START_NODE NIL ’POINTER)
. LOOP (COND ((NULL OPEN)(RETURN °FAILURE))}  ;step2

(SETG N {SELECT_BEST OPEN)) ;step3

(SETQ OPEN (DELETE N OPEN)) ;Stepd

(SETQ CLOSED (CONS N CLOSED))

(COND ((EQ N GOAL_NODE) :stepb
(RETURN (EXTRACT_PATH N))))

(SETQ L (SUCCESSORS N)) ;stepb

(MAPCAR ’OPEN_NODE
(SET_DIFF (SET_DIFF L OPEN) CLOSED))

(GO LOOP) ;StepT
) )

j The supporting functions which are new or have definitions that supersede
3 those used previously are the following:

£ (DEFUN SUCCESSORS (N) (MAPCAR *CAR (GET N *ADIDST)))
¥ (DEFUN ARC_DIST (N1 N2) (CDR_SELECT N2 (GET N1 ’ADJDST)))

| (DEFUN CDR_SELECT (KEY LST)

(COND ((NULL LST) : if KEY not found
9999) . return a very large value
((EQ KEY (CAAR LST)) (CDAR LST))
(T (CDR_SELECT KEY (CDR LST))) ) )
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(DEFUN F (NODE) (PLUS (GET N 'FVALUE) (ARC_DIST N NODE)))

(DEFUN TEST ()
(PROG  (OPEN_COUNT)
(SETQ OPEN_COUNT 1)
(TRACE OPEN_NODE)
(PRINT ’UNIFORM_COST_SEARCH:)
(PRINT (UNIFORM_COST_SEARCH ’RENNES ’AVIGNON))
(PRINT (LIST DPEN_COUNT 'NODES *QPENED)) ) )

The result of applying the uniform-cost method here is the path
(RENNES NANTES LIMOGES LYON AVIGNCN)

with 16 nodes being opened. As one might expect, the optimal route is different
when real distances are used (as just done here) rather than the number of arcs
along a path in our particular graph.

5.4.4 The A* Algorithm

If the exact distances from the start node can be determined when nodes are
reached, then the uniform-cost procedure can be applied, as we have just seen.
When additionally, some heuristic information is available relating the nodes
visited to the goal node, a procedure known as the A* (pronounced “Eh star™)
algorithm is usually better.

The A* algorithm opens nodes in an order that gives highest priority to nodes
likely to be on the shortest path from the start node to the goal. To do this it
adds g, the cost of the best path found so far between the start node and the
current node, to the estimated distance h from the current node to some goal
node. Provided that the estimate A never exceeds the true distance between the
current node and the goal node, the A* algorithm will always find a shortest path
between the start node and the goal node (this is known as the admissibility of
the A* algorithm).

In a sense, the A* technique is really a family of algorithms all having a com-
mon structure. A specific instance of an A* algorithm is obtained by specifying
a particular estimation function h.

If the estimate & is always zero, A* is certainly admissible. In fact, A* then
is no different from the uniform-cost method. In this case the search algorithm
is called uninformed. The most informed algorithm possible would have A being
the exact distance from the current node to the goal. An algorithm A, is said
to be more informed than an algorithm A, if the heuristic information of A4,
permits it to compute an estimate hy that is everywhere larger than hs, that
computed by As.

The assumption that k& never exceeds the true distance between the current
node and the goal allows admissibility to be assured. An additional constraint
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FALGORITHM A*
) p 111
iput the start node S and the set GOALS of goal nodes;
}' OPEN « {S}; CLOSED «— ¢
k. G[S) — O PRED(S] — NULL; found < false;
. while OPEN is not empty and found is false do
begin
[ — the set of nodes on OPEN for which F is the least;
if L is a singleton then let X be its sole element
else if there are any goal nodes in L
then let X be one of them
else let X be any element of 1;
remove X from OPEN and put X into CLOSED;
if X is a goal node then found — true
else begin
generate the set SUCCESSORS of successors of X;
for each Y in SUCCESSORS do
if Y is not already on OPEN or on CLOSED then
begin
G[Y] — G[X] + distance(X,Y);
F[Y] — G[Y)+ h(Y); PRED[Y| « X;
insert Y on OPEN;
end
else /* Y is on OPEN or on CLOSED */
begin
Z « PRED[Y];
temp — F[Y]— G{Z] - distence(Z,Y )+
+ G[X] + distance(X,Y);
if temp < F[Y] then
begin
GlY] « G[Y]- F{Y]+temp;
F[Y] —temp; PRED[Y] — X;
if Y is on CLOSED then
insert Y on OPEN and remove Y from CLOSED;
end;
end;

end;
end;
if found is false then output “Failure”
else trace the pointers in the PRED fields from X back to S, “CONSing”

each node onto the growing list of nodes to get the path from S to X;
. end.

L Figure 5.6: The A* algorithm. It uses real distances and an estimation function
E h to efficiently search a state space.
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callecd the consistency assumption will allow us to assert a kind of optimality
for A*. The consistency assumption is satisfied provided that for any two nodes
ria amd 7o, the difference in values of h for those nodes never exceeds the trye
distance between n; and ny. The A¥ method is optimal in the sense that if A4,
is mmore informed than Az, and the consistency assumption is satisfied, then A
never opens any node not opened by As.

The general form of the A* algorithm is given in Fig. 5.6. Here uppercase
nom-italic identifiers represent either fields of nodes or variables whose values are
sets of nodes (e.g., OPEN, L); italic uppercase letters represent variables whose
values are nodes (e.g., X); and italic lowercase identifiers represent real-valued
or boolean-valued variables (e.g., temp, found) or functions of nodes or pairs
of nodes (e.g., h, distance). In this formulation, each node X has three data
fields associated with it: G[X], the distance from the start node to X along the
shortest path found so far; F[X], the sum of G[X] and A(X); and PRED(X],
the predecessor of X along the shortest known path to X. It is assumed that
distance(X,Y) gives the length {or cost) of the arc from X to Y.

‘We now provide a LISP implementation of the A* algorithm.

; ASTAR.LSP -- The A* Search Algorithm in LISP.
; Finds a minimum-cost path using an evaluation function
; To make the search efficient.

The road distances between cities in kilometers are as for uniform-cost search.
The longitudes {(in tenths of a degree) of each city are as for best-first search.

; Let G represent the actual distance from the start node.

» Let H represent the estimated remaining distance to the goal.
; We make F(N) = G(N) + H(N), and usze it as an eval. function.
; H is defined to be LongitudeDiff * 10.

; The main searching procedure:

(DEFUN A_STAR_SEARCH (START_NODE GOAL_NODE)
{PROG (OPEN CLDSED ¥ L)
(SETQ OPEN (LIST START_NODE)) ;istepl
(PUTPROP START_NODE O ’GVALUE)
(PUTPROP START_NODE (F START_NODE) ’FVALUE)
(PUTPROP START_NODE NIL ’POINTER)
LOOP (COND ({NULL OPEN) (RETURN ’'FAILURE))) ;step2

(SETQ N (SELECT_BEST OPEN)) ;step3
(SETQ OPEN (DELETE N OPEN)) ;stepd
{SETQ CLOSED (CONS N CLOSED))

(COND ((EQ N GOAL_NODE) ;stepb

(RETURN (EXTRACT_PATH N))))
(SETQ L (SUCCESSORS N)) ;stepb
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(MAPCAR ’0QPEN_NODE
(SET_DIFF (SET_DIFF L CLOSED) OPEN) )

(MAPCAR ’UPDATE_OPEN
(INTERSECT L OPEN} ) ;step?

(MAPCAR ’UPDATE_CLOSED ;This can sometimes be eliminated.
(INTERSECT L CLOSED) )

(GO LOOP) ;step8

) )

The supporting functions are largely those used previously, with a few mod-
ifications:

; For use in step 6:

(DEFUK OPEN_NODE (X)

(PROG  (VAL)
(SETQ OPEN_COUNT (ADD1 OPEN_COUNT})
(PUTPROP X (G X) ’GVALUE)
(PUTPROP X (SETQ VAL {(F X))} ’FVALUE)
(SETQ OPEN (INSERT X OPEN))
(PUTPROP X N ’POINTER) ) )

; For use in step 7. Node X, presumably already on OPEN, gets
; its GVALUE recomputed and if the new value is less than
; than the old, the new value is stored and the node is
; repositioned on OPEN.
(DEFUN UPDATE_DPEN (X)
(PROG (VAL)
(SETQ VAL (G X))
(COND ((LESSP VAL (GET X ’GVALUE))
(PUTPROP X VAL °GVALUE)
(PUTPROP X (F X) ’FVALUE)
(PUTPROP X N ’POINTER)
(SETQ OPEN (INSERT X (DELETE X OPEN}))
N )

The following function is only necessary if the consistency assumption is not
satisfied.

(DEFUN UPDATE_CLOSED (X)
(PROG (VAL)
(SETQ VAL (G X))
(COND ((LESSP VAL (GET X ’GVALUE))
(PUTPROP X VAL ’GVALUE)
(PUTPROP X (F X) 'FVALUE)
(PUTPROP X N ’POINTER)
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(SETQ OPEN (INSERT X QOPEN))
(SETQ CLOSED (DELETE X CLOSED))
)BIDID]

Here are the functions F, G. and H, and a function TEST which uses
A_STAR_SEARCH to find a path from Rennes to Avignon:

(DEFUN F (N) (PLUS (GET N *GVALUE) (H N)))
(DEFUN G (M) (PLUS (GET N *GVALUE) (ARC_DIST N M)
(DEFUN H (N) (TIMES 10 (LONGITUDE_DIFF N GOAL_NODE) ))

(DEFUN TEST )
(PROG (OPEN_COUNT)
(SETQ OPEN_COUNT 1)
(TRACE DPEN_NODE)
(PRINT (A_STAR_SEARCH ’RENNES ’AVIGNON))
(PRINT (LIST (GET ’AVIGNON ’GVALUE) 'KILOMETERS))
(PRINT (LIST OPEN_COUNT ’NODES ’OPENED)) ) )

(TEST)

By using ten times the absolute value of the longitude difference to estimate
the distance from the current node to the goal, we obtain a more informed
algorithm than the uniform-cost method. For the test above, we achieve the
same (shortest) route, but we only open 15 nodes, instead of 16. In a more
complicated graph or state space, the savings could well be more dramatic.

5.5 Planning
5.5.1 Problem Solving Before Action

The term planning is used for problem-solving activity whose purpose is to pro-
duce a tentative procedure or guide for accomplishing some task. The tentative
procedure is called a plan. The activity of planning usually involves searching a
space of configurations to find a path that corresponds to the desired sequence
of operations.

We note that ordinary people usually make a clear distinction between
“planning” an action and “performing” an action; planning is regarded as an
information-processing activity whereas performing is considered something me-
chanical. In a computer, the distinction is often unclear, since computers perform
only information-processing actions (unless they are controlling peripheral de-
vices such as robot arms). Consequently, when we describe some problem-solving
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b activity as “planning” we imply that there is some separate activity {which may
E well be information processing, or even problem solving) which is to be guided
[ by the results of the planning.

Planning is sometimes carried out with detailed representations of the prob-
. Jemn domain. In other instances, planning may work only with approximations
¥ or even grossly simplified models of the problem domain.

‘ 5.5.2 A Robotics Example

"_ Some problems in robotics may be solved by finding a sequence of operations
f that leads from an initial state to a goal state. An example of such a problem is
illustrated in Fig. 5.7. In this situation, there are three blocks, A, B, and C, on

Figure 5.7: Robot hand and blocks on a table,

. a table top with A stacked on top of B, and there is a robot capable of grasping
E one block (from the block’s top only) and moving right or left and up or down
& and ungrasping. The problem is to find a way for the robot to stack block C on
¥ top of block B. A solution to this problem may be regarded as a plan since it
k. could be used to guide the robot through the mechanical actions to achieve the
k physical goal of having C stacked on B. The process of finding such a plan is an
f example of planning.

Although there are many methods that could be used to solve this problem,
E the most straightforward one is to search in the space of configurations of blocks
-and the gripper for a path that leads from the initial configuration to a goal
F configuration. The arcs in the state-space graph correspond to operations that
'~ the robot can perform.

' Let us consider a set of such operations:

G (Grasp) Close the gripper fingers.
O (Open)  Open the gripper fingers.
(Up) Move up cne vertical unit (= height of a block}.
(Down) Move down one vertical unit.
{Right) Move right one horizontal step (= width of a block plus €).
(Left) Move left one horizontal step.
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If we choose a random sequence of operations and apply them, there is a high
likelihood that there will be a collision of the robot with the table, with a block,
or a block with the table or another block. For purposes of this example, we
assume that any collision will cause damage and therefore any plan to stack ¢
on B must avoid collisions.

A breadth-first search method could be used to find the plan

ULLDGURDDOURDGUULLDO.

However, since this plan is one of 620 sequences of iength 20, the computational
cost of such a search is high.

This planning problem could be made more tractable by making the operators
conditional. This provides a way to restrict the state space to configurations that
do not involve collisions. Then the operator Down would have a precondition
that defines the configurations at which it can be applied:

Precondition for Down:

If the gripper is open then
a. the space directly beneath the gripper is open, and
b. the space directly beneath that one is either open or con-
tains a block (so that the fingers do not collide with the
table);
Else if the gripper is carrying a block then
the space directly beneath the block being carried is open;
else  the space directly below the space which is directly under

the gripper is open (i.e., the fingers will collide neither with
the table nor with a block).

A

5] [

TSSO SIS 777777 777

Figure 5.8: A configuration of the blocks and gripper that violates the precon-
dition for Down.

Notice that the precondition for Down is not satisfied in the configuration of
I'ig. 5.8. Here the fingers, since closed, would collide with €.
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F 5.5.3 Hierarchical Planning

E As we have seen earlier in the chapter, blind search can be improved upon
1 by incorporating heuristic evaluation functions. Another method to reduce the
I computational demands of search is to use a hierarchical approach. In order to
I develop a plan for a task such as a robot’s establishing block C on top of block B,
E 5t is often possible to identify subtasks for which plans can be developed more
B .asily, or for which plans or plan generators have been developed in advance.
& The plans for the subtasks are then combined, with any adjustments necessary
f to make them mutually compatible, to obtain a plan for the full task. Possible
i subtasks for the robotics problem are these:

o Clear the top of block B (or more generally, clear the top of any specified
block]}.

o Move C onto B (or more generally, move any specified block onto any
other specified block).

E These two subtasks can themselves be divided into tasks of the following types:
¢ Move empty gripper to block .

o Grasp the object under the gripper (making sure the gripper is open prior
to attempting to grasp).

o Put down the block currently being held, without dropping, in order to
free the gripper to grasp something else.

. A procedure which generates a plan for a subtask is sometimes called a “macro-
- operator.” For example, one macro-operator is a routine CLEARTOP(zx}, which
creates a plan to remove any blocks that happen to be on top of block x; this
" macro-operator handles the first subtask listed above.

Although in our example so far we have considered a plan to be a sequence
 of elementary operations (arcs in the original state space), we may also consider
- a sequence of macro-operators to be a plan. Thus, another plan for putting C
- on B is the following:

~ CLEARTOP (B)
PUTON(C, B)

- As with elementary operators, a macro-operator generally has one or more pre-
conditions which must be ttue of a state in order to make the macro-operator
applicable. Because a macro-operator can be complicated, it is also useful to as-
sociate “postconditions” with it. A pestcondition is a property of the state that
results from the operator or macro-operator which is guaranteed to hold. In
addition, it is sometimes useful to associate “invariants” with macro-operators;
an invariant is a feature of a state which is not affected by the macro-operator.
Since, in practice, most state variables are unchanged by any one operator, only
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the possible exceptions to the invari ances normally need be listed. For the IWACT.
operator PUTON({(z, y) we can easily imagine two preconditions: that r be clear
(no blecks on top of it) and that 14 be clear. It would be reasonable to ASSNTe
that all aspects of the state other than those involving ». y and the gripper
remain unchanged by an applicatiom of PUTON{z. ).

In the two-step plan above for putting ¢ on B, a posteondition of
CLEARTOP(B) could assure us that B is clear after CLEARTOP has been
applied. However, there is no corresponding postcondition assuring that ¢ iy
clear, as required for PUTON{C, ). This indicates that the plan may fail whey,
invoked in some situations. The plan may be regarded as correct if we decide
that it will never be used in situatioms where € is not clear. However. if thege
situations are not ruled out, then the plan contains a bug. In this case, the bug
can easily be fixed by adding the ma.c ro-operator CLEARTOP(C} before the call
to PUTON(C, B). To a certain extent, bugs can be prevented by guaranteeing
that as many as possible of the preconditions of operators in a plan are satisfied
in advance. It is also possible to detect many bugs through testing, and then
corrective changes to the plan can e administered.

If the designer of a problem-sol wing systemn can include a good set of macro-
operators and a mechanism to apply them, this is a good way to fight the com-
binatorial explosion. Better yet is a system which combines macro-operators
with good heuristics that suggest the situations and orders in which the macro-
operators should be applied.

Planning is not fundamentally dlifferent from other kinds of problem solving:
the techniques useful in planning are the same techniques useful in most other
kinds of problem solving, e.g., heuristic search.

5.6 Two-Person, Zero-Sum Games

In games like checkers, chess, Go, and Tic-Tac-Toe, two players are involved at
a time. If player A wins, then B loses, etc. Such a game is called a two-person.
zero-sum game. The fact that a gain by one player is equivalent to a loss by the
other leads to a sum of zero overall aclvantage.

The state-space graphs for two- person, zero-sum games are generally regarded
differently from other state-space graphs. From any particular position in the
game (that is, a state), at issue are the possible moves one or one's opponent
can make, and what the consequences of each move may be.

In Tic-Tac-Toe, one must try to get three X's in a line, or three O's in a line.
while preventing one’s opponent from attaining such a line. One may settle for
a draw, alternatively. The states from which no further move can be made may
be called final states. The final states fall into three categorics: win for X, win
for O, or draw. When a win is impossible or unlikely, the objective may be to
attain a draw. By assigning values to the possible states, the problem of playving
the game becomes one of trying to maximize or minimize the value of the final
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state. Let ux now examine a procedure for this,

5.6.1 Minimaxing

If a player has found a path from the current state to a goal state (or a state with
high value). that is not an adequate basis on which to choose a move. Generally
speaking. the opponent does not cooperate;, it is necessary to take the opponent’s
probable reactions into account in choosing a move,

The set of states reachable from a given state (using ounly legal moves of
a game) may be arranged into a game tree. If a particular state is reachable
along two or more alternative paths. we may replicate the state enough times
to allow a tree rather than a general graph to represent the current set of game
potentialities (“If he goes there, then I could go here.” etc.}. Let ns call the
two players “Max” and “Min." We can gencrally assign a value to each possible
state of a game in such a way that Max desires to maximize that value and
Min wants to minimize it. Such an assignment of values is a kind of evaluation
function. In games whose states are defined by the placements of pieces on
boards (like checkers and chess), such an assignment is often called a “board
evaliation function.”

For the game of Tic-Tac-Toe, a board evaluation function is the following:
1004 + 10B + ¢ — (100D + 10E + F) where A is the number of lines of three
X’s, B is the number of unblocked lines with a pair of X's and € is the number
of unblocked lines with a single X. Similarly £, F. and G give numbers of lines
of O's in various configurations.

A game tree for Tic-Tac-Toe is shown in Fig. 5.9. Each level of nodes in the
treeis called a ply. Ply 0 contains only a single node, corresponding to the current
hoard position. Ply 1 cantains the children of the root of the tree. Typically, a
game-playing program will generate all the board positions for nodes down to a
particular ply such as 4. It will then evaluate the leaves (tip nodes) of that 4-level
tree with the board evaluation function, obtaining what are called siatic values.
Then a process of backing values up the tree is begun. If the root corresponds
te a position where it is Max's move, then all even-numbered ply contain “Max
nodes” and all odd-numbered ply contain *Min nodes.” To back up the value to
a Max node. the maximum child value is written into the node. For a Min node.
the minimum child valne is taken. Backing-up proceeds from the leaf nodes up,
until the root gets a value. Max's best move {given, say. a 4-ply analysis) is the
move which leads to the Jargest value at a leaf node. given that Max always will
maximize over hacked-up values and that Min will always minimize. The value
thus associated with each non-leaf node of the tree is the node’s “backed-up
value.” While the backed-up value for a node is being computed, and after the
hacked-up value for the node’s first descendant has been computed. the node has
a “provisional backed-up value.” which is the current mininum (or maximum,
depending on whose move it is at the node). The positions shown in Fig. 5.9
are numbered according to the order in which they would be generated. The six
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Figure 5.9: Game tree for Tic-Tac-Toe.

leaf nodes are labelled with their static values. Nodes 2 and 6 are labelled with
their backed-up values. Since the root corresponds to a position where O, the
minimizing player, is to move, choosing between positions 2 and 6, it is clear
that O prefers 2 with value 1 over position 6 with a value of 91.

5.6.2 AND/OR Graphs

Game trees with Min and Max nodes have a counterpart in problem-solving; they
are called AND/OR trees, and more generally, AND/OR graphs. An AND/OR
tree expresses the decomposition of a problem into subproblems, and it allows
alternative solutions to problems and subproblems. The original problem corre-
sponds to the root of the AND/OR tree. At an AND node, all the child nodes
must be solved in order to have a solution for the AND node. At an OR node, at
least one of the children must be solved, but not necessarily any more than one.
An AND/OR tree is illustrated in Fig. 5.10. The overall goal for this example is
to prepare a main course for a dinner. Disjunctive subgoals of the main goal are

.
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; umake hamburgers” and “make roast turkey.” Conjunctive subgoals of “make
B hamburgers” are “prepare patties” and “toast buns.” In an AND JOR tree (or

@ PREPARE MAIN COURSE

""f“mféum %mw
OO OO0

PREPARE ~ TOAST  PREPARE MAKE  MAKE
IPATTIES ~ BUNS TURKEY DRESSING GRAWY
| ITSELF

Figure 5.10: An AND/OR. tree.

k for that matter, an AND/OR graph), a node is solved if
I o it is an OR node and at least one of its children is solved, or
e it is an AND node, and all of its children are solved, or

o it is a leaf node, and problem-dependent criteria associated with the node
are satisfied.

f In the above example, the problem-dependent criteria are “patties prepared,”
“buns toasted,” etc.
L A solution graph for an AND/OR graph (or tree} is a subgraph of the original
' consisting of a set of solved nodes and the arcs connecting them that make the
root node solved. The root of the original graph is a necessary part of a solu-
| tion graph. For the example of Fig. 5.10, there are two solution graphs; one of
| these consists of the nodes, PREPARE MAIN COURSE, MAKE HAMBURG-
| ERS, PREPARE PATTIES, and TOAST BUNS, together with the arcs that
l connect these nodes. The solution to the problem (or to any subproblem) may
be defined recursively: if the (sub)problem corresponds to a leaf node N, then



172 : CHAPTER 5. SEARCH

its solution is given by the satisfaction of the appropriate problem-dependert
criteria; otherwise, the (sub)problem corresponds to an interior node N, and jtg
solution consists of the subproblems which correspond to the children of N cor.
tained in the solution graph, together with their solutions. In this example, the
solution may be considered to be a set of plans one of which is simply MAKE
HAMBURGERS, and another of which is PREPARE PATTIES and TOAST
BUNS.

An AND/OR graph may sometimes be used to represent the state space for
a game. For example, in a game of Tic-Tac-Toe, we may consider the objective
to be solving a problem; that problem is to win the game. For the “X” player,
the problem is clearly solved if the current position contains three X’s in a row
and does not contain three O’s in a row. Any position is solved if X has a win at
it or can force a win from it, and otherwise, it is not solved. If it is X's move, X
can force a win if eny of the successor positions to the current one is solved. If
it is O’s move, then X can force a win only if all of the successors of the current
position are solved. In order to use an AND/OR graph as a basis for playing
the game, it must be computationally feasible to generate the entire graph for
the current position. Consequently, AND/OR graphs are usually of use only for
relatively simple games, for which the number of moves in a game can never get
larger than, say, 15 or 20. On the other hand, the minimaxing approach can
handle more complex games, because it allows the use of heuristic evaluation
functions that avoid the necessity of constructing the entire game tree.

5.6.3 Alpha-Beta Search

In order to play well, a program should examine alternative lines of play to ply as
deep as possible. Unfortunately, the number of possible board positions in a game
tree tends to grow exponentially with the number of ply. It is usually possible
to prune off subtrees as irrelevant by looking at their roots in comparison with
alternative moves at that level. For example, in chess, one may be examining a
line of play in which it suddenly is discovered that the opponent could capture the
queen, while nothing would be gained, and actually a better move is available.
Then there is no point to examining alternatives in which the opponent kindly
does not take the queen. By assumption, each player is trying to win: one by
maximizing and one by minimizing the evaluation function value. When such an
irrelevant subtree is discovered, it is generally called a “cutoff.” A well-known
method for detecting cutoffs automatically is the “alpha-beta” method.

Let us consider an example in a game of checkers. We assume that the game
has progressed to the position shown in Fig, 5.11, with black to move. The three-
ply game tree for this position is shown in Fig. 5.12. The moves are examined in
an order that considers pieces at lower-numbered squares first, and for alternative
moves with the same pieces, considers moves to lowest-numbered squares first.
Black has four possible moves from the position shown, and so there are four
branches out from the root of the tree. The first move to be considered is to
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Figure 5.11: Checkers position with Black to Move.
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Figure 5.12: A three-ply game tree for the checkers position.
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' move the man at square 20 to square 16. To this, Red has six possible replies,
 the first of which is 22 — 17. In this case, Black must then jump with 21 — 14.
E This position is in ply 3 and should be evaluated statically. We use the following
| evaluation function:

br, + x2

' Here x; represents Black’s king advantage {the number of black kings minus the
¥ number of red kings), while x; represents Black’s single-man advantage.

The static value of the first ply-3 position is therefore 6. This value is backed
i up to the previous node, and it also becomes the provisional backed-up value
E for the predecessor of that node (the first descendant of the root). The second
£ Red reply to Black’s 20 — 16 is now considered; 22 — 18 leads to five alterna-
. tives for Black, each of which results in some position with static value 1. The
b maximum of these is, of course, also 1, and this value is the backed-up value of
I the position resulting from Red’s second alternative. This value, 1, is less than
E the provisional backed-up value (6} of the predecessor node, and since Red is
i minimizing, replaces 1 as the provisional value. Red's four other alternatives
 jead to backed-up values of 1, 6, 1, and 2, and since none of these is less than
 the current provisional backed-up value of 1, the final backed-up value for the
b first descendant of the root is 1.

Black’s second alternative (21 — 17) leads to a position with backed-up value
£ (. Since Black is maximizing, this move is clearly inferior to the first.

_ Black’s third alternative, 31 — 26, brings out an interesting phenomenon.
f Red’s first alternative for a reply gives Black two choices, each leading to a static
f value of —4. Thus Red can force Black into a situation much less favorable than
I if Black were to choose the first or second move in the first place. In other words,
E after computing the backed-up value of the position after Red’s first {(and in this
 case, only) alternative (22 — 31), this value becomes the provisional value of
L the preceding position; but here a comparison is made: if this provisional value
k is less than any of the backed-up values already determined for this ply, the
k' move is certainly inferior, and further evaluation of positions in this subtree can
| be bypassed. We say here that an alpha cutoff occurs at this node. Were the
i other positions of this subtree to be evaluated, the result would be that the
. backed-up value of the position after 31 — 26 is —8, which is even worse than
. the provisional value of —4. But, even if the other positions had high values,
F the effort to evaluate these positions would be wasted, since Red would always
L choose the alternative least favorable to Black.

' Black’s fourth alternative (the last) is 31 — 27. This leads to ply-3 positions
- of value —8, making this move inferior. Black’s best move is clearly the first,
" according to the 3-ply analysis we have performed.

We saw how an alpha cutoff was used in analyzing Black’s third alternative,
| to avoid evaluating some of the positions in the full 3-ply tree. Such cutoffs
- can be systematically determined with the alpha-beta pruning procedure. Alpha
cutoffs are used at minimizing levels, while beta cutoffs are used at maximizing
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levels. Let A be a maximizing-level node for which & alternatives have been tried,
the maximum backed-up value of these being alpha. Let B be the minimizing.
level node which is the result of the next alternative from 4. As soon as any
immediate descendant of B receives a backed-up value that is less than alpha,
further consideration of the subtree at B is unnecessary (an alpha cutoff occurs),

Similarly, let C be a minimizing-level node for which k alternatives have
been tried, the minimum backed-up value of these being beta. Let D be the
maximizing-level node which is the result of the next alternative from €. Ag
soon as any immediate descendant of I receives a backed-up value which is
more than beta, the remaining positions in the subtree at D can be ignored (g
beta cutoff occurs).

If the search tree is explored in an order that improves the likelihood of cug-
offs, the alpha-beta pruning procedure can typically eliminate more than half
of the nodes that would have to be evaluated in checkers and chess situations.
One way to increase the chances of getting useful cutoffs is to apply the evalua-
tion function to each of the ply-1 positions and to order the exploration of the
corresponding subtrees in a best-first fashion.

5.7 Bibliographical Information

Depth-first, backtracking search was used extensively in early problem-solving
systems such as GPS (“General Problem Solver”) [Newell et al. 1959]. Heuristic
search techniques were studied by Pohl [Pohl 1969] and Sandewall [Sandewall
1969]. AND/OR trees and graphs were studied by Slagle and Dixon [Slagle 1963],
[Slagle and Dixon 1969]. A thorough presentation of problem representation and
state-space search, including proofs for the admissibility and the optimality of
the A* algorithm, may be found in [Nilsson 1971]. Section 5.4.3 on pruned,
best-first search is based upon material from [Nilsson 1971] and from [Barr and
Feigenbaum 1981]. A good source of heuristics for mathematical problem solving
is [Polya 1957].

Research in automatic planning for robots has derived benefit from, and had
a positive impact upon general problem-solving technology [Newell and Simon
1963], [Fikes and Nilsson 1971]. Hierarchical planning was explored with the AB-
STRIPS system [Sacerdoti 1974] and in NOAH [Sacerdoti 1977). Together with
hierarchical planning, the use of constraints in developing plans for genetic en-
gineering experiments was demonstrated in the MOLGEN system [Stefik 1981a.
b].

A successful checkers-playing program was developed in the late 1950
[Samuel 1959], and chess has received substantial attention since then [New-
born 1975], [Berliner 1978]. Efforts have also been made to computerize the
playing of backgammon [Berliner 1980] and Go [Reitman and Wileox 1979]. Go
is considerably ditferent from chess and checkers in that the game trees for it
are 50 wide (there are typically hundreds of alternatives from each position)

N
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I that normal minimax search is impractical for it. It has been suggested that
¢ orinciples of perceptual organization be incorporated into Go-playing programs
| [Zobrist 1970). The use of plans in playing chess is described in [Wilkins 1980].
5 The efficiency of alpha-beta search is examined in [Knuth and Moore 1975].
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Exercises
1. Define the following terms:

(a) “state space”

(b} “goal state”

{c) “move generator”
(d) “heuristic”

{e) “backtrack search”

2. Brute-force approaches to searching can even get swamped by “toy” prob-
lems.

{(a) How many distinct states are there in the state space for the version
of the painted squares puzzle shown in Fig. 5.17

(b) What are the maximum and minimum numbers of states that there
might be in a 4-square case of the puzzie?

A
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(c) Suppose that each square in Fig. 5.1 can be flipped over, and that
each side is painted with the same pattern on both faces of the square.
What is the number of distinct arrangements of the four pieces in the
2 x 2 space?

(d} Let us define a “quadramino” as any arrangement of four of the
squares of a square tiling of the plane, such that the four form a single
connected group. Two such arrangements that are alike except for
a translational displacement will be considered as equivalent. If the
four pieces of Fig. 5.1 may be placed in any quadramino arrangement
and the pieces may be fiipped, what is the total number of distinct
arrangements of the four squares?

_ What is the maximum distance {where distance is measured as the num-
ber of arcs in the shortest path between two nodes) between the initial
state and a goal state, in a 4-square version of the painted squares puzzle
(assuming that there is a goal state for the version!).

. The way in which the squares are painted in a version of the painted
squares puzzle apparently affects not only the number of solutions that
exist, but the efficiency with which the backtracking algorithm finds a so-
jution. Give an example of a version of the puzzle in which many solutions
exist, but for which a lot of backtracking is required.

_ The solution to the painted squares puzzle in the text suffers from an in-
efficiency: pieces already placed are repeatedly rotated by the ORIENT
function. Implement a version of the solution which avoids this redun-
dancy. Determine experimentally how many calls to ROTATE_LIST are
used by the old and new versions.

. Suppose that the rules for the painted squares puzzles are changed, so
that (a) a starting configuration consists of all the squares placed to fill
the rectangular space, but not necessarily having their sides matching, and
(b) two kinds of moves are allowed: (i) the rotation of a piece clockwise
90 degrees and (ii) interchanging a piece with an adjacent piece. What is
the maximum number of states that there could be in the state space for
an instance of this puzzle having a 4 by 4 rectangle (16 squares)? What
is the minimum number of states that there might be?

. Tn Chapter 4, it was shown how knowledge about objects could be orga-
nized in an inclusion hierarchy. Suppose that it is desired to build a more
knowledge-based solver for the painted squares puzzles. The (hypothet-
ical) approach is to first classify the squares according to types, where
the types are based on the ways the squares are painted. Then, when a
vacancy is to be filled that requires a particular kind of piece, the program
examines various kinds of pieces that it has examples of, testing to see if
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the kind of piece found “ISA™ piece of the type required. Describe how
types of painted squares could be defined so that an interesting inclusion
hierarchy could be set up (without doing any programming).

. A “straight-line dominoes” puzzle consists of a set of dominoes, and the

abject of the puzzle is to lay all the dominoes in a straight line so that the
adjacent ends match. Discuss the difficulty of this kind of puzzle. How
would a program to solve such puzzles be constructed?

. The Four-peg version of the Towers of Hanoi puzzle is stated as follows:

Four pegs, called A, B, C, and D, can each hold n rings at a time. There are
n rings, Ry, Rs, ..., Ry, such that R; is smaller than R; whenever ¢ < j.
A legal placement of the rings on the pegs requires that (1) whenever any
two rings appear on the same peg, the smaller one is above the larger one,
and (2) all » rings must be on pegs. The starting placement consists of all
rings placed on peg A. The goal placement consists of all rings placed on
peg D. Describe a representation for the states of the space to be searched.
Describe a procedure that generates the successors of a state.

Using the data and function definitions in the text, compare the solu-
tions found by the method DEPTH_FIRST_SEARCH with those found
by BREADTH_FIRST_SEARCH for the problems of finding paths from
PARIS to STRASBOURG, STRASBOURG to PARIS, BORDEAUX to
LYON, and LYON to BORDEAUX.

(a) What are the paths found?

{b) What conclusions can you make?

(¢) Which procedure is more sensitive to the order in which the cities
neighboring each city appear on the property list?

(d) Describe alternative data for which the two procedures would perform
equally efficiently.

Modify the function DEPTH_FIRST _SEARCH, and thus create a new
function QUASI_DEPTH_FIRST_SEARCH, by having the list L con-
catenated onto the beginning of OPEN after culling members which are
also present on either OPEN or CLOSED. The result of evaluating
(QUASI_DEPTH_FIRST_SEARCH 'RENNES ’AVIGNON)
should be
(RENNES CAEN CALAIS NANCY DIJON LYON AVIGNON).

Find the result of evaluating:

1
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(QUASI_DEPTH_FIRST_SEARCH 'AVIGNON ’RENNES) .

If the adjacency information were reordered, would it be possible for
QUASI_DEPTH_FIRST_SEARCH to ever find the longest path from
Rennes to Avignon? (Such a longest path has 13 arcs.) Describe the
kinds of paths that can be found with this variation.

Figure 5.13 shows the board and initial configuration for the puzzle “Cycle-
Flip.” The object is to transform the initial configuration into the goal
configuration through a sequence of legal moves. The lettered nodes are
called islands and the lines connecting them are called gaps. An oval on a
gap indicates a bridge. For example, in the initial configuration there is a
gap A-B, but A-C is not a gap. The gap B-C is bridged, but A-B is not. A

B

Figure 5.13: Initial configuration for “Cycle-Flip.”

cycle is a sequence of gaps that are alternately bridged and unbridged that
progress from island to island, forming a circuit of even length with no
subcircuits. For example, (A-E, E-I, I-F, F-A) is a cycle, but (A-B, B-C,
C-F, F-A) is not. Note that the former can be expressed more concisely
as AEIF. We consider AEIF to be equivalent to EIFA, etc. A flip along
a cycle is the act of making all the bridged gaps on the cycle unbridged
and vice-versa. A legal move in Cycle-Flip is a flip along a cycle of length
4 or 6. The goal configuration is illustrated in Fig. 5.14.

{a) Describe a state-space representation for the game.

(b) Draw a piece of the state-space graph for the game which contains a
solution path.

(¢} Explain how this solution could be found automatically.
(d) Decide whether the solution is unique and explain why or why not.
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Figure 5.14: Goal configuration for “Cycle-Flip.”

13. The plan for placing block € atop B on page 165 requires that 20 opera-
tions be performed by the robot. Suppose that the robot need not lift a
block off a surface to move it left or right, but may slide it along. Give
a shorter sequence of operations that accomplishes the task, Finally, sup-
pose that no damage is done either by sliding or dropping blocks. What
is the shortest plan that can be used now?

14. Develop a LISP program that uses breadth-first search to solve the robot
planning problem in the text, employing preconditions on the operators.
Explain and demonstrate how the choice of preconditions affects the time
required to find a plan.

(a) Use only preconditions that prevent collisions and prevent attempts
to close the gripper when it is already closed or to open it when
already open.

{b) Add preconditions that allow the robot only three legal horizontal
positions.

(¢) Add a precondition that allows the robot only three legal vertical
positions.

(d) Add preconditions that prevent opening or closing the gripper if there
is no block between the fingers.

15. The (n,k} version of “Last One Loses” starts with a stack of pennies,
n high. Two players, “Plus” and “Minus,” alternate moves with Minus
making the first move. In each move, a player may remove up to k pennies
from the stack, but he must remove at least 1. The player stuck with
the last move is the loser. Let the game configuration be represented
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16.

as W(N)o, where N denotes the current number of pennies left, and o
is either “+” or “—” and indicates whose move it is. Note that W(0)+
and W (0)— can never be reached, since W{1}+ and W(1)— are terminal
configurations.

(a) Draw the AND/OR graph for the case (n, k) =(9,3).

(b) Superimpose the solution graph for the same case {by hatching se-
lected arcs of the AND/OR graph) that proves Plus can always force
a win.

{c) For which (n,k) pairs is Last One Loses a determined game? Who
wins in each case? By what strategy?

The game tree in Fig. 5.15 illustrates the possible moves, to a depth of 4,
that can be made from the current position (at the root) in a hypothetical
game between a computer and a human. The evaluation function is such
that the computer seeks to maximize the score while the human seeks
to minimize it. The computer has 5 seconds to make its move and 4 of
these have been allocated to evaluating board positions. The order in
which board positions are evaluated is determined as follows: The root is
“searched.” A node which is at ply 0, 1, 2, or 3 is searched by

e generating its children,
o statically evaluating the children,

o ordering its children by static value, in either ascending or descending
order, so as to maximize the probability of alpha or beta cutoffs
during the searches of successive children,

e searching the children if they are not in ply four, and

e backing up the minimum or maximum value from the children, where
the value from each child is the backed-up value (if the child is not
in ply four) or the static value (if the child is in ply four).

The computer requires 1/7 seconds to statically evaluate a node. Other
times are negligible (move generation, backing up values, etc.). The com-
puter chooses the move {out of those whose backed-up values are complete)
having the highest backed-up value.

(a) Give the order in which nodes will be statically evaluated (indicate
the i** node by putting the integer ¢ in the circle for that node).
Hint: the first 8 nodes have been done for you. Be sure to skip
the nodes that alpha-beta pruning would determine as irrelevant.
Indicate where cutoffs occur. :

(b} Determine the backed-up values for the relevant nodes. {Fill in the
squares.) Node Q has been done for you.
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{c) Keeping in mind that it takes 1/7 seconds per static evaluation, what
will be the computer’s move?

(d) Now assume that it takes 1/8 seconds per static evaluation. What
will be the computer’s move?

17. Write a LISP program that plays “Tic-Tac-Toe" according to the scheme
described on page 169 in the notes.

# You should be able to easily set the maximum depth of the program’s
search to any given ply.

# Include a function PRINTBOARD which shows a given board posi-
tion in a neat format.

o Illustrate your program’s behavior for 8 games as follows: 2 games
at each of the four following maximum search depths: 1, 2, 4, and
6. In each pair, the human should play differently. In each game,
show the board position after each of the actual moves chosen by
your program. You may have the program play either O’s or X's,
but indicate which side the program is playing.

¢ After each board position printed, print out the number of times the
evaluation function was computed to determine the move just made.

o At the end of each game, print out the number of times the evaluation
function was applied to board positions during that game.

¢ Describe the tradeoff you cbserve between computation time (as mea-
sured by the number of computations of the evaluation function} and
the skill of the program.

18. (term project) Write a program to play “Baroque Chess.” This game is
played with conventional chess pieces and set up as usual, except that
the King’s side rook for each player is turned upside-down. However, the
names of pieces are changed, as are the rules of the game. The Baroque
Chess names of the pieces are given below following their common names.

Pawn = “Bqueezer”
Knight = “Leaper”
Bishop = “Imitator”
(right-side-up) Rook = “Freezer”
(upside-down) Rook = “Coordinator”
Queen = “Step-back”
King = “King"

Most of the pieces may move like the Queens of ordinary chess. Excep-
tions are the Squeezers, Leapers (when capturing) and the Kings. How-
ever, many pieces have special requirements for making captures. The
particular characteristics of each kind of piece are now given.




RCISES 185

current position (computer 1o move)
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Qrder in which node hacked-up value
is statically evaluated for node

Static values for nodes: A4, B15,C13,D10,E20,F9,G 8,H 10,110,
JB,KS,L20.MS,N7.06,PO.QQ,R12,S10,T15,U 10,V W7,
X22,Y2, 27 AA5,BB8,CC15 DD 12, EE 13, FF 13, GG 20, HH 22, 1 18.

Figure 5.15: A hypothetical game tree.
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® Squeezer—moves like a rook of ordinary chess, vertically or hori.
zontally any number of squares. In order to capture an opponent's
piece, the Squeezer must be moved so as to “sandwich” the piece be-
tween the Squeezer and another Squeezer. Two Squeezers sandwich
an opposing piece by being on either side of it, either horizontally or
vertically.

¢ Freezer—moves like a Queen. It does not capture other pieces. How.-
* ever, when it is adjacent (in any of the 8 neighboring squares) to an
opponent’s piece, the opponent may not move that piece.

¢ Coordinator—moves like a Queen. The Coordinator’s row and the
same player’s King's column determine the location of a square on
the board. If the coordinator is moved so as to make this square one
where an opponent’s piece stands, the piece is captured.

¢ Leaper—moves like a Queen, except that when capturing, it must
complete its move by jumping over the piece it captures to the next
square in the same line; that square must be vacant to permit the
capture.

» Step-back—moves (and looks) like a Queen. However, in order to
capture a piece, it must begin its move in a position adjacent to the
piece (i.e., in any of the 8 neighboring squares), and then it must
move exactly one square in the direction away from the piece.

¢ King—moves (and looks) like a normal chess King, and it captures
like a normal chess King; ( however, there is no “castling” move in
Baroque Chess). The game is finished when a King is captured {there
is no checkmating or need to say “check” in Baroque Chess).

¢ Imitator-—normally moves like a Queen. However, in order to cap-
ture a piece, an Imitator must do as the captured piece would do
to capture. In addition, if an Imitator is adjacent to the opponent’s
Freezer, the Imitator freezes the Freezer, and then neither piece may
be moved until one of the two is captured.

Making the game even more interesting is a rule which makes all the cap-
tures implied by a move effective. For example, a Squeezer may move to
simultaneously sandwich two opposing pieces and capture both of them.
Another example would be a situation where an Imitator, in one move,
steps back from a Step-back (capturing it) and in its new position sand-
wiches a Squeezer and captures it.



| Chapter 6
i Logical Reasoning

6.1 Motivation

b {n Chapter 4 we saw how deductions of the following form could be made by a
._computer program: Given that a dog is a mammal and a mammal is an animal,
it may be concluded that a dog is an animal. This deduction was performed
by simply applying the transitivity rule known to hold for the ISA relation.
¢ While useful, this kind of deduction is relatively restricted, and a more general
capability is nsually needed. By using mathematical logic, we will gain a good
- measure of generality.

: There are several pioneers of artificial intelligence who believe that mathe-
matical logic provides the best knowledge representation language. Some groups,
such as the lcaders of Japan's “Fifth Generation Project” are betting that pro-
gramming in langnages that resemble or are based on the predicate calculus will
be the way of the future. Whether or not they are right, logic and algorithms
for working with logic are important. There can be no doubt, however, that the
methods of logic are powerful and that they are worth careful study by anyone
interested in automatic problem solving.

We begin our exploration of the use of mathematical logic in computer dednc-
tion by illustrating several simple approaches that use the propositional calculus.
Then we turn to the more powerful predicate calculus and examine some heuris-
tics and strategies for trying to prove proposed conclusions.

6.2 Proofs in the Propositional Calculus

. 6.2.1 Perfect Induction

~ The propositional calculus provides a relatively simple framework within which
basic concepts of automatic theorem proving can be illustrated. Below is an
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example of some statements that express information from which we wish to
answer a question.

If thunk is an English verb, then thunk is an English word. If
thunk is an English word, then thunk is in Noah's Lezicon. Thunk
is not in Noah’s Lezicon.

Is thunk an English verb?

In order to express these statements (and a statement derived from the question)
in the propositional calculus, we must agree on a set of atomic propositions. One
suitable set of atomic propositions is the following:

o P: Thunk is an English verb.
e @: Thunk is an English word.
o R: Thunk is in Noah’s Lezicon.

The original statements we call premises. The premises expressed in proposi-
tional calculus are now as follows:

P-QQ—-R-R

The question would be answered if we could prove the proposition P from the
premises, or alternatively if we could prove =P. Since this is a small problem,
we can easily employ an exhaustive examination of all possible assignments of
truth values to the propositions P, @ and R to check for the validity of either
possible conclusion. All the possible combinations are listed in the truth table
shown in Fig. 6.1,

Trial
Variables Premises Conclusions

PIQ| R|P-Q|Q-R[-R| P -~P
TI{T|T T T F T F
T{T|F T F T T F
T|IFI|T F T F T F
T|F | F F T T T F
FITIT T T F F T
F|IT|F T F T F T
F{FI}T T T F F T
FIF|F T T T F T

Figure 6.1: Truth table used in answering the question of whether or not thunk
is an English verb.
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We first check the validity of P as a conclusion by examining every row in
which all three premises are true. The conclusions must alse be truc in these
rows. In this example there is only one row where all premises are true {the
bottom row). We see here that the potential conclusion P is false here {and
therefore not the correct answer) whereas —P is true and corresponds to the
correct answer: Thunk is not an English verb.

The truth-table method just illustrated is called perfect induction. Construct-
ing truth tables can easily be a big job even for a compnter if there are more
than just a few propositional symbols. With n symbols, a truth table requires
9 rows. Consequently, other methods have been developed for proving conclu-
sions from premises. One of these is Wang's algorithm. While in the worst case,
Wang’s algorithm may still require O(2") time to prove a theorem, it usually is
much faster.

6.2.2 Wang’s Algorithm

To begin proving a theorem with Wang’s algorithm, all premises are written on
" the left-hand side of an arrow that we may call the “sequent arrow” (=, ). The
desired conclusion is written to the right of the sequent arrow. Thus we have:

P—-Q.Q—R-R=,-P

This string of syinbols is called a “sequent.” This particular sequent contains
four “top-level” formulas; there are three on the left and one on the right. (It
contains more than four formulas if we count embedded ones such as the formula
T PinP-Q)

Successively. we apply transformations to the sequent that break it down into
simpler ones. The general form of a sequent is:

F] ‘‘‘‘‘ Fm =3 En+1:---aFm+n»

where each F, is a formula. Intuitively, this sequent may be thought of as
representing the larger formula,

EynAFy = Faaa VeV g,
Here are the transformation (R1 through R5) and termination (R6 and R7) rules:

¢ R1: If one of the top-level formulas of a sequent has the form -X, we may
drop the negation and move X to the other side of the sequent arrow.
Here X is any formula. e.g.. (PV —=Q). If the negation is to the left of the
sequent arrow, we call the transformation “NOT on the left;” otherwise it
is *“NOT on the right.”

o R2: If a top-level formula on the left of the arrow has the form X AY,
or on the right of the arrow has the form X V'Y, the connective may be
replaced by a comma. The two forms of this rule are called “AND on the
left”™ and “OR on the right,” respectively.
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® R3: If a top-level formula on the left has the form X vY, we may replace
the sequent with two new sequents, one having X substituted for the
occurrence of X VY, and the other having Y substituted. This is called
“splitting on the left" or “OR on the left.”

e R4: If the form X AY occurs on the right, we may also split the sequent
as in Rule R3. This is “splitting on the right” or “AND on the right.”

. RS: A formula (at any level) of the form {X — Y) may be replaced by
(=X vY), thus eliminating the implication connective,

¢ R6: A sequent is considered proved if some top-level formula X occurs
on both the left and right sides of the sequent arrow. Such a sequent is
called an aziom. No further transformations are needed on this sequent,
although there may remain other sequents to be proved. (The original
sequent is not proved until all the sequents obtained from it have been
proved.}

¢ RT7: A sequent is proved invalid if all formulas in it are individual proposi-
tion symbols (i.e., no connectives), and no symbol occurs on both sides of
the sequent arrow. If such a sequent is found. the algorithm terminates:
the original “conclusion™ does not follow logically from the premises.

We may now proceed with the proof for our example about whether thunk is
an English verb. We label the sequents generated starting with §, for the initial
one. The proof is shown in Fig. 6.2.

Wang's algorithm always converges on a solution to the given problem. Every
application of a transformation makes some progress either by eliminating a
connective and thus shortening a sequent (even though this mav create a new
sequent as in the case of R3), or by eliminating the connective “—”. The order in
which rules are applied has some bearing on the length of a proof or refutation.
hut not on the outcome itself.

6.2.3 Wang’s Algorithm in LISP: “PROVER”

The program PROVER, which is listed helow, provides an implementation of
Wang's algorithm. Like the programs SHRINK and LEIBNIZ of Chapter 3. it
uses the function MATCH extensively.

The first function, “PROVER,” has the same name as the program as a whole.
and it is the top-level function. To run the program the user types (PROVER)
and responds to the prompts it gives. PROVER consists of a PROG form that
implements an indefinite loop. In each cycle, a logical expression is accepted from
the user; then it is checked for being well-formed, and it is converted so that the
logical connective IMPLIES is eliminated, and then it is passed to VALIDI as
the right-hand side of a sequent whose left-hand size is NIL. If the result is that
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Label  Sequent Comments

S1: P> Q.0 — R, ~R=, P Initial sequent.

52 -PvQ,~QVR-R=,-P Two applications of R5.

§3: -PvQ@,-QvR=;-PR RL

S4: -P,-QvR=,-PR 84 and S5 are obtained from 53
with R3. Note that 54 is an ax-
jom since P appears on both sides
of the sequent arrow at the top

level.

S5: Q.-QvR=,-PR The other sequent generated by
the application of R3.

S6: QR.-Q=,-PR $6 and S7 are obtained from S5
using R3.

ST: R =, PR This is an axiom.

S8: Q@ =,-PRQ Obtained from $6 using R1. S8 is

an axiom. The original sequent is
now proved, since it has success-
fully been transformed into a set
of three axioms with no unproved
sequents left over.

Figure 6.2: A proof using Wang’s algorithm,

the expression is a tautology, then the PROVER prints “YALID" and otherwise
it prints “(NOT VALID)".

; PROVER.LSP -- Verifies propositions using Wang’s algorithm
(DEFUN PROVER ()

(PROG (S)
LODOP (PRINT ®{(PLEASE ENTER PROPOSITION OR H OR R))
(TERPRI)
(SETQ S (READ))
(COND ({EQ S 'H) ; H is the HELP command...

(PRINT ' (HERES AN EXAMPLE))
(PRINT ’({(A AND (NOT B)) IMPLIES A)) )
((EQ S ’R) (RETURN NIL)) ; R is the RETURN command.
(T (COND ((VALID1 NIL (LIST (FORMAT S)))
(PRINT ’'VALID)
(TERPRI))
(T (PRINT ’(NOT VALID))) )} )
(GO LOOP) ) )
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Although the function PROVER is the top-level function, the recursive function
VALID1 does most of the work. It is implemented in a production-rule style
where each production rule is one of Wang's rewriting rules, except the first
production rule, which tests to see if a sequent is an axiom (i.e.. that there iy 3
nontrivial intersection of the left-hand and right-hand sides of the sequent).

(DEFUN VALID1 (L R) ;check validity with Wang’s rules.
. ; L is the left side of the sequent.
; R is the right side of the sequent.
(PRDG (X Y 2Z)
(RETURN
(COND
(CINTERSECT L R) T) ;test for axiom
;NGT on the left...
((MATCH *((+ X) (NWFF Y) (* Z)) L)
(VALID1 (APPEND X 2)
(APPEND R (CDR Y)) ) )
;NOT on the right...
((MATCH > ((* X) (NWFF Y) (* 2)) R)
(VALID1 (APPEND L (CDR Y))
(APPEND X 2) )} )
;0R on the right...
((MATCH *{{* X) (ORWFF Y) (% Z)) R}
{VALID1 L
(APPEND X (LIST {CAR Y)) (CDDR Y) Z) ) )
+AND on the left...
((MATCH *{{« X) (ANDWFF Y) (x 2)} L)
(VALID1 (APPEND X (LIST (CAR Y)) (CDDR Y) Z)
R) )
;0R on the left...
((MATCH *((* X) (ORWFF Y) (* Z)) L}
(AND (VALID1 (APPEND X (LIST (CAR Y))} Z) R)
(VALID1 (APPEND X (CDDR Y) Z) R) ) )
;AND on the right...
((MATCH *((* X) (ANDWFF Y) (x Z)) R)
(AND (VALID1 L (APPEND X (LIST (CAR Y)) 2))
(VALID1 L (APPEND X (CDDR Y) Z)) ) ) ) ) ) )

(DEFUN INTERSECT (A B) ;return T if lists A and B have at
;least one top-level element in common.
(COND ((NULL A) NIL)
({NULL B) NIL)
((MEMBER, (CAR A} B} T)
(T (INTERSECT (CDR &) B)) ) )
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E The following functions manipulate a formula or part of a formula. WFF checks
b that it is syntactically correct, i.e., a well-formed formula. FORMAT calls WFF
. to verify the syntax and then transforms the formula into one that does not use
£ the implication operator IMPLIES. ORWFF, ANDWFF, and NWFF determine

¥ whether or not a formula s a disjunction. conjunction or negation, respectively.

L OP returns T if its argument is a valid binary operator.

WFF is a predicate that is true if its argument is a well-formed formula of the
§ propositional caleulus. That is, the argument is either a variable (the first clause
E tests this, although it doesn’t make sure that the atom is not numeric or NIL). or
it is a compound well-formed formula that involves the unary operator NOT, or
E it is compound with a binary operator, with a form ( WFF! OP1 WFF2) where
WFF1 and WFF?2 are well-formed formulas and OP! is one of the allowed binary
operators AND, OR, or IMPLIES.

(DEFUN WFF (X} ;return T 1f X is a well-formed formula
(COND ((ATOM LSRN Y
((MATCH °> (NOT (WFF puMm) X T
((MATCH *((WFF DUM) (0P DUM) (WFF DUM)) VT
(T NIL) } )

(DEFUN DRWFF (X) (COND ((ATOM X) NIL) (T (EQ (CADR X} >OR))))
(DEFUN ANDWFF (X) (COND ((ATOM X} NIL) (T (EQ (CADR X) ’AND)}))
(DEFUN NWFF (X) (COND ((ATOM X) NIL) (T (EQ (CAR X) ’NOT)}))

(DEFUN 0P (X) . test if X is a binary operation.
(MEMBER X ’(AND OR IMPLIES)) )

(DEFUN FORMAT (X)  ;check syntax and eliminate IMPLIES.
(COND ((ATOM X) XD
((NULL (WFF X})
(PRINT *{(SYNTAX ERROR))
(RETURN NIL))
((NWFF X) (LIST ’NOT (FORMAT (CADR X))))
((EQUAL (CADR X) * TMPLIES)
(LIST (LIST ’NOT (FORMAT (CAR 0»
*OR
(FORMAT (CADDR X)) ) )
(T (LIST (FORMAT (CAR X))
(CADR X)
(FORMAT (CADDR X)) }) ) )

Here is another example problem. This example is used to illustrate the
PROVER. Let us assume the following: Either Jan buys a loaf of bread to-
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day or she eats yogurt for breakfast. Jan doesn't eat yogurt and eggs at the
same meal. We wish to prove that if Jan eats eggs for breakfast today. then she
buys a loaf of bread. Our first task is to re-express our assumptions and de.
sired conclusion in the form of primitive statements and logical relations among
them. In order to keep our descriptions reasonably short, we use capital letterg
to abbreviate the primitive statements. Here are the primitive statements.

A. Jan buys a loaf of bread today.
B. Jan eats yogurt for breakfast today.
C. Jan eats eggs for breakfast today.

Here are the premises:

(A OR B)
(NOT (B AND ©))

and the desired conclusion is
{C IMPLIES &)

The problem of showing that Jan buys bread today can be given to the prover
in the following form:

(C(A DR B) AND (NOT (B AND ¢))) IMPLIES (C IMPLIES A4)).

When the program is invoked by typing (PROVER), the input S-expression
is read and assigned as the value of the atom S. In the PROVER function. the
input expression is compared with the atoms H and R to check for a help request
or a command to return to top-level LISP. In the case of our example, VALIDI
is called with two arguments: NIL and the result of applying FORMAT to S.
FORMAT eliminates occurrences of the IMPLIES connective. The result of this
is

((NOT ((A OR B) AND (NOT (B AND €)))) OR ((NOT C) OR A&))

VALID1 is called with L equal to NIL and R equal to the above expression.
The production which matches is the rule for OR on the right. This results in
a call at level 2 to VALID1 with R as before but the OR dropped (and a sct
of parentheses dropped also}. The next production which is applied is that for
NOT on the right, leading to a level-3 call with

no

L = ({({(A OR B} AND (NOT (B AND C)))
R = (({NOT C) OR A))

“OR on the right” is applied again, making (NOT C) and A separate formulas
in the list R. Then “NOT on the right” is again applied, resulting in a level-6
call to VALID1 with
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L = ((A OR B) (NOT (B AND O)) ©
R - )

b Next, “NOT on the left” is applied. making R = (A (B AND C}). A level-7 call
" withL=((AORB)C)andR = (A (B AND C)) brings about an application
L of “OR on the left” which yields two recursive calls at level 8 to VALID1. The
" first of these occurs with L = (A C) and R = {A (B AND C)). The sequent
represented by this pair of L and R is an axiom, since A occurs as a top-level
element of each, and this is noticed by the first production, and it therefore

i causes a return with T. The second recursive call at level 8 proceeds with L =

. (BC)and R = (A (B AND C)). The rule for “AND on the right” fires, and
¥ ihere are then two recursive calls at level 9. The first of these, with L = (B C)

i and R = (A B) returns T, since the intersection of L and R is (B) and therefore

t  ponempty. The second of these finds that lists (B C) and {A C) share an element
. in common, and also returns T. From here on, the recursion unwinds, and the
i value T works its way up to the top-level call of VALID1. Then, the expression
(PRINT 'VALID), in the function PROVER, is activated, and the atom VALID
b is printed, followed by a blank line. PROVER then loops back and prompts for

E  another formula from the user.

1 While somewhat more efficient than the method of perfect induction, Wang'’s
f- algorithm does not employ the kind of problem-solving strategy that humans
f seem to use. A system based upon a more strategic approach is described next.

6.2.4 The “Logic Theory Machine”

I One of the earliest investigations in artificial intelligence was a study of auto-
¥ matic deduction using problem-solving heuristics [Newell et al 1957). The objec-
£ tive of this study was to develop a program that could prove simple theorems
2 from Principia Mathematica by Russell and Whitehead, using a human-like ap-
b proach. The program achieved the objective and illustrates a different approach

€ to theorem proving. The program was an improvement over the “British Mu-

senum algorithin.” That brute-force algorithm attempted to prove a theorem by
- the following procedure:

o Start with the axioms and consider these to be one-step proofs of them-
selves.

o At the n'" step. generate all theorems derivable in n steps by applying
the “methods” to the theorems at the n — 1" step, exhaustively.

o At each step, eliminate duplicates and check to see whether or not the
desired formula has been proved.

The methods consist of substitution, replacement, or detachment and are de-
scribed below.
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Needless to say, the British Museum algorithm leads to a combinatorial ox-
plosion: although there are only 5 one-step proofs (which correspond to the five
axioms listed below), there are 42 four-step proofs, 115 six-step proofs, and 244
eight-step proofs, etc.

The Logic Theory Machine (as the program by Newell ¢f al was called), useq
a more sensible approach. It attempted to do such things as to break the problem
to be solved into subproblems and solve each one in turn. It used the following
methods:

Substitution: From any known theorem one can get a new one by replacing
all occurrences of a particular variable by some arbitrary formula.

Detachment: If B is to be proved and A — B is a theorem or axiom, then it
suffices to prove A.

Chaining: If A — C is to be proved and A — B is a theorem or axiom, then
it suffices to prove B — C. This is called forward chaining, Alternatively,
if A— C is to be proved and B — C is a theorem or axiom, then proving
A — B is enough. Naturally, this is called backward chaining.

The axioms from Principia Mathematica used hy the Logic Theory Machine
are the following (for the propositional calculus):

Aziom Name
PvP-P “Taut”
Q-PvQ “Add"
PVQ-QvP “Perm”
Pv(QVR)—-QV(PVR) “Assoc”
(@—=R) —~(PVQ) > (PVR)) “Sum’

The following example illustrates how a proof is done with the system of
Principia Mathematica.

To Prove: (P — -P) — -P

formula how dertved
~PV-P— P  Subst. (-P/P)in Taut.
(P — —-P)— =P Def of “=" Q.E.D.

As an exercise, the reader is encouraged to try to prove the following theorem.
P — ~(=P)

The Logic Theory Machine began by putting the formula to be proved on
a list called the subproblem list. It went into its general loop, where it would
examine a problem on the subpreblem list, and try to work with it using substi-
tution, detachment and chaining. The length of the subproblem list would grow
and occasionally shrink {when subproblems were actually solved), and a list of

A
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3 theorems would grow. The program was successful in proving a large number of
k' the theorems listed in Principia Mathematica in a reasonable amount of time.
& This study was important in demonstrating that strategy could be effectively
E. employed in proof finding.

3 Before we examine logical reasoning methods for the predicate calculus, it is
' helpful to sce the “resolution™ method in the propasitional caleulus, where its
mechanics are relatively simple.

6.2.5 The Resolution Principle in the Propositional
] Calculus

| Another method for proving theorems of the propositional calculus makes use of
K the “resolution principle.” This method, unlike Wang's algorithm, extends nicely
* to hbandle problems in the predicate caleculus as well as the propositional calculus.
It is very important for that reason. A very simple form of the resolution principle
K15
3 Pv@,-PvR—->QVR.

k- More generally, resolution allows us to take two “parent clauses” that share a
k. complementary pair of “literals” and obtain a new “resolvent clause.” In the
i propositional calculus. a literal is a proposition symbol (a variable such as P)
with or without a negation sign in front of it (e.g.. P, -Q, and —R are literals}. A
¥ clause is a formula which is a sum of literals, e.g., Pv-QV-HR. A complementary
. pair of literals is a pair such that one literal is the negation of the other, e.g., P
L and -P. A general expression of the resolution principle for propositional logic
 is

LlVLgV...VLk,ﬂh\/ﬂf‘z\/‘..\/ﬂ'fm—-*L;;V‘.‘\/Lk\/ﬂfg\f..‘\fﬂ’fm

¥ where A, = —L, (i.e., the first literal of one clause complements the first of the

¥ other clause).

| If ¥ = 1 or m = 1, this rule still makes sense. If hoth k =1 and m = 1,

B the resolvent is called the null clause and denotes a contradiction. {If this seems
f mysterious, it may help to note that F is the identity element for disjunction;

E LyvI,vIy=L,vILyvL;VvF, and that if we remove all the L; we are left

¥ with F.) The mull clause is denoted by the box symbol. “0O".

We now illustrate theorem proving by resolution with the example previously

¥ introduced.

_Z:j Premises: P — Q.Q — R,-R
~ Clause form: -Pv Q.-Qv R, -R
Desired Conclusion: —P

Traditionally, proof by resolution nses the reductio ad absurdum method,
wherchy the conclusion is negated and added to the list of premises with the
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aim of deriving a contradiction. Therefore we have an additiona) clanse (in $0Mme
cases several additional clauses) P for this example. We number our clauses Q)
through C4.

Label Clause  Where From
Cl: ~Pv{ premise
C2: -V R premise

C3: -R premise

Ca: P negation of conclusion
cs Q resolve C1 with C4
Cé: R resolve C2 with C5
CT: O resolve C3 with C6

Since C7 is the null clause, we have derived a contradiction from the clauses
Cl1 through C4 and proved that the desired conclusion —P follows from the
original premises.

6.3 Predicate Calculus Resolution

6.3.1 Preliminary Remarks

As discussed in Chapter 4, one cannot describe the inner structure of propositions
using the propositional calculus. One can only manipulate whole statements and
not the objects and predicates which constitute them. On the other hand. the
predicate calculus does allow explicit expression of objects and predicates. It
also provides for manipulations of objects using functions, and for making general
statements using the universal quantifier, and also for existence statements using
the existential quantifier.

6.3.2 An Example

Now we consider an example problem to illustrate how the resolution principle
is applied In a predicate-calculus setting. This example deals with properties of
numbers, including primality and oddness.

Let us suppose that the following premises are given: Any prime other than
2 is odd. The square of an odd number is odd. The number 7 is a prime. The
number 7 is different from 2.

From these premises it is to be proved that the square of 7 is odd.

We can represent the premises and the conclusion in the predicate caleulus:
we begin by choosing predicates and functions with which to build up formulas.
A reasonable set is the following group of three predicates and one function:

¢ P{z): 1 is prime.

s O{x): ris odd.
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e E(xy) x=y
o s(z)=2°

Now we may express the premises in the predicate calculus as follows:

o Vz({P(x)} A —E(z.2)) — O(z))

o Yx(O(z) — O(s(2)))

e P(7)

* F(7.2)

The negation of the conclusion is represented by the formula: —O(s(7)).

Before we can apply the resohition principle, the premises and the negation
of the conclusion must be in clause form (the process of obtaining clause form
in the predicate calculus is explained in the next section}. The clauses that we
get are these:

¢ Cl: —P(z)V E(2,2) VO{z)

o C2: =0(x) v O(s{z))

o C3: P(7)

s C4: =E(7.2)

e C5: —0(s(T))

We may now attempt to derive new clauses using the resolution principle. In
order to obtain matching literals, it is usually necessary to make substitutions
of terms for some of the variables in each clause. This substitution process is

explained in detail in Subsection 6.3.4. The proof that the square of 7 is odd is
shown here:

new clause how derived
C6: E(7,.2)vO(7) CL,C3(x=T7)
CT: O(7) C6, C4

C8: O(s(7)) C7,C2(x=17)
C9: O C8, Ch

Now let us consider the steps required for predicate-calculus resolution in
more detail, beginning with the job of obtaining clause form.
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6.3.3 Putting a Formula into Clause Form

There are a number of details that mmst be attended to in order to put ap
arbitrary formula of the predicate calculus into clause form. We shall explaiy
the sequence of steps required, considering them one at a time, on an examyple
expression,

As in the propositional calculus, a clause consists of zero or more literals,
connected by “v”. Transforming a formula into clause form requires elimination
of quantifiers (according to strict rules) as well as getting it into conjunctive
normal form. The elimination of quantifiers must usually be performed first,
since so doing often introduces negation signs that apply to the entire scopes of
eliminated quantifiers.

Let us consider the formula

(v2){P(z) — (FyHQ(z, Y }} A (Ye{-P(z} - ~(By){Q(=.9)}}.

One interpretation of the predicates in this formula is: P{x} iff i is composite
(ie., x is divisible by some number other than 1 or itself}; Q{x,y) iff x is not
equal to y, and y divides  with no remainder.

Our first order of business in converting this to clause form is to eliminate
the implication connectives (“—”), using the rule (P — Q) iff {(~P v Q). Thix
gives us

(Va){=P(z} v F{Qlx, y)}} A (Ya){==P(a} v ~(By){Q(x,y)}}.

Next we reduce the scope of each negation sign. T'wo rules that help herc are
DeMorgan’s laws:

-(P AQHE-P Vv ~Q
(P v Qft-P A -Q

However, these are not applicable in the example here. Two rules regarding
negations that precede quantifiers are the following:

(V) P{x i (3x) -~ P(x)
=(Jz) P{x)iff(Vx)-P(x)

Of course we reduce -—P to P whenever we get the chance. Now we transform
the negated existential quantification to get the new formula:

(va){-P(z) v By){Qla.y)}} A (Yz){P(2) v (¥9){-Q(z, ¥)}}

Next we standardize the variables of the formula, giving each quantifier a
variable with a different name. This renaming cannot change the meaning of the
formula since each variable acts as a “dummy” for its corresponding quantifier
anyway. Our formula is now:

(vz){-P(z) v Gy Qz,y)}} A (V) {P(2) v (V) {-Q(z, w0} }
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k- Next we eliminate the existential quantifiers using a technique known as
§  gkolemization!. This works as follows. Suppose we have (vo) (3 { Pz, 1)}
. This states that for each value of z we can find a y such that P of r and y.
& That is to say that one can imagine a function f(x) which returns a value y that
. makes P(z,y) true. If we allow ourselves the liberty of writing (v2){P(z, f(=})},
then we obtain an expression logically equivalent to the former; however, the
Ft jew formula uses a function symbol rather than a quantifier. Of course, if the
B .istential quantifier had not been in the scope of the universal quantifier, there
would be no functional dependency, and a constant symbol such as o eould
be used to replace the existentially quantified variable. That is. (3z){P(x)} is
Skolemized to P{a). Applying Skolemization, our example formula becomes:

(va){~P(x) v Qz. f(z)} A (V2){P(2) V (vw){~Q(z, w)}}

The functions introduced by Skolemization are called Skolem functions, and
5. the constants are called Skolem constants. If several functions or several con-
[ stants are introduced into a formula by Skolemization, they must each be given
E . distinct symbols (e.g., fi, fo, ete., and a,b, ¢, etc.).

: We now adopt the convention that all variables in the formula are universally
Z quantified, so that the universal quantifiers themselves can be removed. The
: result for our example is:

{~P(z) v Qlx. flz))} A{P(2) vV -Q(z,w)}.

Normally, at this stage, we would have to put the formula into conjunc-
tive normal form. Coincidentally, our example is already in this form. In gen-
eral, however, some changes to the formula are necessary. The distributive laws
are generally helpful at this stage, and can be expressed in their propositional-
- calculus form as follows:

Pv(iQAR) = (PV@QYA(PVRER)
PAQVR) = (PAQYV(PAR)

The final step is breaking up the formula into separate clauses. To do this
¢ we simply remove the conjunctions and list each conjunct as a separate clause.
For our example, this results in the two clauses:

—~Pr) v Qx. f{x))
P(z) v -Q(z.w)

Lnamed after the mathematician Thoralf A. Skolem.
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6.3.4 Unification

In applying the resolution principle to clauses of the predicate calculus. detection
of complementary pairs of literals is more complicated than in the propositiong]
calculus, because the predicates take arguments, and the arguments in one lit-
eral are required to be compatible (“unifiable”) with those in the corresponding
literal. For example, the pair of clauses

P(f{a).x) v Qx)
~Plgla),7) v R(z)

cannot be resolved because the first argument of P in the first clause is incon-
patible with that of P in the second clause; f(a) and g(a) don’t match and can’t
be made to match using any substitution of terms for variables. On the other
hand, the pair of clauses

P(f(a),2) v Q{z)
~P(y, g(b)) v R(g(b))

can be resolved. First, an operation called “unification” is performed: a new
version of the first clause is obtained by substituting g(b} for 2; also, a new
version of the second is obtained by substituting f(a) for y. The two resulting
clauses, now unified, have a complementary pair of literals and resolve to yield

Q{g(b)) v R{g(b}).

| 6.3.5 A Unification Algorithm

In order to test a pair of clauses for resolvability, we apply the operation known as
unification, described in the preceding paragraphs. This testing process works
by matching one literal to another and performing substitutions of terms for
variables along the way. If at any point the process fails, the pair of literals
is not unifiable. On the other hand, it is often the case that there exists a
multitude of different substitutions that can unify a pair of literals. Some of these
substitutions can have further substitutions performed on them to yield some of
the others, and some substitutions are more useful than others for purposes of
deriving the null clause in a proof by resolution.

Let us assume that we have a whole set of literals to be unified (not just two):
{L;} where i = 1,... k. We seek a substitution

= {[tl,i’l), (tg,Ug], teey (tn»?-'ﬂ)}

such that L, ® = Ly$ = ... = L, ®. In this notation L;® is used to indicate
the result of making all the replacements of terms ¢; for variables v ; specified
in ® in all the variables’ occurrences in L,. As an example, we may take L =
P(z,y, f(y),b) and @ = {(a,2),(f(2),)}. Then L& = P(a, f(2), f(f(2)).b). In
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F addition, if S is a set, then S denotes the set of literals formed by applying &
E 1o each member of 5.

Let ® be a substitution. Then ® is a most general unifier of § =
' (L1, L2, - -, L} provided that for any other unifier &' of S, there is some $”
§ such that S& = S®®”. That is, the effect of any unifier &' can be achieved by
k applying the most general unifier, @, followed by some additional substitution. A
b most general unifier leaves as many variables in the resulting literals as possible,
k. ut without introducing any unnecessary function symbols.

} fn order to find a most genéral unifier we proceed as follows. Let & — {}.
¢ We regard each L; as a string of symbols and move left-to-right examining the
e corresponding symbols until a “disagreement” is found. The terms in this po-
f sition form a disagreement set. If none of the terms in the disagreement set
. consists of a variable by itself, we give up because the set of literals cannot be
F unified by any substitution. Otherwise, we “convert the variables into terms”
-Zf:_ by adding pairs to the substitution of the form (t,,v,) where v, is one of the
i variables and ¢, is one of the terms. In order to add a pair (£,, v;)} to a substitu-
tion ® = {{(ty,v1). (t2,22),..., (x,vx)} it must be the case that v, is not equal
B to any of v.i = 1,...,k: we first apply the substitution {(t;,v,)} to each of
E the t;,i = 1,...,k, and then we insert it into the resulting set. We continue to
k- add such substitutions and simultaneously perform them on the literals until ei-
k. ther the disagreement set is no longer a disagreement set, or no variables remain
b (in this case, we also give up). Once the disagreement has heen taken care of,
- symbol examination is resumed (including the examination of symbols recently
. inserted by substitution). When and if the matching reaches the right end of all
‘the literals, a unifier has been found (®). This unifier also happens to be a most
general unifier. It can readily be seen that & actually is a unifier for the set of
B literals. In addition, we note that the algorithm for finding the unifier can be
E: made to require time only proportional to the combined lengths of the literals
. in the input set.

3 Here is an example in which a unifier is found for a pair of literals. The two

literals are:
.

L= A(:L‘, f(y))
Ly = Aa, f(g(2)))

As the scan proceeds from left to right, the set $ of substitutions gets larger
¢ each time a disagrecment set is found and put into agreement.

¢ {}
¢ — {(a,7)}
® — {(a,x},(9(z), 1)}

This last substitution is a most general unifier for {L,, L2}. Another unifier

¥ for this set is

?' = {(a,},(g(b), v), (b 2)}.
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However, this is not a most general unifier. It is possible to get & from & by
making the additional replacement of b for z, but one cannot get ® from ¢
because variables may not be substituted for terms (the constant b is a term).

As previously mentioned, any given pair of clauses may yield zero, one, twg
or many more resolvents. These can be found by finding complementary pairg
of literals and determining any existing most genera} unifiers for them and then
applying resolution.

6.3.6 A Unifier in LISP

Let us now examine a LISP program that implements one variation of the algo-
rithm given above. The variation works with only a pair of literals rather thay
an arbitrarily large set,

The program we give is reasonably efficient, although it could be made more
50 {at a cost of reduced readability). It may attempt to perform substitutions
that have already been made: the removal of this redundancy is left as an exercise
for the reader.

The top-level function, UNIFY, initializes (to the empty list) a variable U
which is used to store the unifier (if any) as it is constructed. This function also
tests the predicate symbols for equality, and if successful, calls UNIFY1 to unify
the lists of arguments. Note that UNIFY and UNIFY1 may return either a list
of substitutions, which is possibly null, or the atom NOT_UNIFIABLE. If NIL
is returned, it means that the (sub)expressions are unified with no substitutions,

The program uses a straightforward representation for literals. The followinug

two statements set up test data corresponding to the literals P(z, f(a)) and
P(b,y):

(SETQ L1 (P X (F A)))
(SETQ L2 (P B Y))

The program assumes that any negation signs have already been stripped off the
literals, and it therefore does not check for complementarity,
Further description of the functions is given in the comments.

; UNIFY.LSP
; A program that demonstrates unification of
; literals in the predicate calculus,

; The top-level procedure is UNIFY.
; It finds a most general unifier for 2 literals.
(DEFUN UNIFY (L1 L2)
(PROG ()
(SETQ U NIL} ; unifier is initially null.
(RETURN
(COND ; make sure predicate symbols match:
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((NULL (EQ (CAR L1) (CAR L2))) ’NOT_UNIFIABLE)
; if all arguments can be unified,
: return the list of substitutions:
((NULL (EQG (UNIFY1 (CDR L1) (CDR L2))
’NOT_UNIFIABLE))
m
(T *NOT_UNIFIABLE) ) ) } )

[ ; Recursive function UNIFY1 unifies lists of terms.

f- (DEFUN UNIFY1 (EXP1 EXP2)

k  (COND ; if atomic and equal, no substitution necessary:
((EQ EXP1 EXP2) NIL)
; check for list length mismatch (a syntax error}:
((OR (NULL EXP1) (NULL EXP2)) ’NOT_UNIFIABLE)
; if EXP1 is a variable, try to add a substitution:
((VARIABLEP EXP1) (ADD_PAIR EXP2 EXP1))
; handle the case when EXP2 is a variable similarly:
({VARIABLEP EXP2) (ADD_PAIR EXP1 EXP2))
; now, if either expression is atomic, it is a
; constant and there’s no match since they’re not Ef:
((OR (ATOM EXP1) (ATOM EXP2)) ’NOT_UNIFIABLE)
; the expressions must be non-atomic; do recursively.
; apply current substitutions before unifying the CARs.
((NULL (EQ (UNIFY1 (DO_SUBST (CAR EXP1) U)

(DO_SUBST (CAR EXP2) U} )
"HOT_UNIFIABLE)})

(UNIFYt1 (CDR EXP1) (CDR EXP2)) )
; if the CARs are not unifiable, return NOT_UNIFIABLE:
(T *NOT_UNIFIABLE) } )

ﬁ ; The function ADD_PAIR attempts to add a (term-variable)
E  pair to the the substitution list. If the variable occurs
f ; in the term, then it returns NOT_UNIFIABLE. Otherwise it
f ; substitutes the term for amy occurrences of the variable
. ; in terms already in U, and puts the new pair on the front
. ; of the list.
F (DEFUN ADD_PAIR (TERM VAR)
:  (COND ((OCCURS_IN VAR TERM) ’NOT_UNIFIABLE)

(T (SETQ U (CONS (LIST TERM VAR)

(SUBST U TERM VAR) ))) ) )

; Do all substitutions in L on EXP in reverse order:
(DEFUN DO_SUBST (EXP L)
(COND ({NULL L) EXIP)
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(T (SUBST (DO_SUBST EXP (CDR L))
(CAAR L)
(CADAR L) )) )} )

; Substitute X for each occurrence of Y in L:
{(DEFUN SUBST (L X YO
(COND ({(EQ L ¥) XD
((ATOM L) L)
(T (CONS (SUBST (CAR L) XY
(SUBST (CDR L)Y X Y) )) > )

; Test EXP to see if it is a variable:
(DEFUN VARIABLEP (EXP)
(MEMBER EXP (X Y Z W}) )

; Test to see if ELT occurs in EXP at any level.
; ELT is assumed to be atomic:
(DEFUN QCCURS_IN (ELT EXP)
(COND ((EQ ELT EXP) T)
((ATOM EXP) NIL)
(T (OR (OCCURS_IN ELT (CAR EXP))
(OCCURS_IN ELT (CDR EXP)) )) ) )

The following statements provide some tests for the program:

(TRACE UNIFY UNIFY1 DO_SUBST)
(UNIFY L1 L2)

(SETQ L3 (P (F X) (G &4 X))
(SETQ L4 *(P (F (HB)) (G XYV}
(UNIFY L3 L4)

(SETQ L5 *{(P X))
(SETQ L8 *(P (F X))
(UNIFY L5 L6)

(SETQ L7 *(P X (F Y) X))
(SETQ L8 *(P Z (F 2) 4))
(SETQ U (UNIFY L7 L8))
(DO_SUBST L7 W)
(DO_SUBST L8 U)

The example with L5 and L6, above, demonstrates that the program correctly
performs the “occurs check” and reports that L5 and L6 are not unifiable. The
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’lﬂ-St' example demonstrates that substitutions are performed correctly. If the
;substitution list were reversed, the results of making the substitutions in U on
1,7 and L8 would no longer match.

-"5,3.7 Factors and Resolvents

It sometimes happens that two or more literals within the same clause may
be unified. For example, the clause C = P{z) v @(z) v Q{f(a)) contains two
: literals which can be unified with the substitution ® = {(f{e).xz)}. The result of
_applying this unifying substitution to the clause and removing the redundancy
L in the literals is called a factor of the original clanse. In this example, the factor
b is C® or P(f(e)) Vv Q(f(a)).

:  Suppose that we have two parent clauses Cy and Cp, with no variables in
: common, such that L is a literal of € and L, is a literal of %, and such that
1 and ~Lg have a most general unifier . Then the following clause is a binary
" resolvent of C'y and Cs:

(O ~ Ly @)V (Co® — Lo®)

here C' — L denctes the clanse obtained from ' by removing literal L.

We define a resolvent of parent clauses C; and s to be a binary resolvent
ither of C; and (73, of € and a factor of Cs, of O and a factor of €4, or of a
factor of Cy and a factor of Cy. For example, if C; = P(z, f(a)) vQ(2)VQ{f(y))
d C: = -Q(f(b)) v R(z), then C3 = P(f(y). f(a)) vV Q(f(y)) is a factor of C;
d Cy = P(f(b), f(a)) v R(z) is a binary resolvent of C3 and C%. Thus Cy is a
resolvent of ') and (.

The definition of resolvent just given is known as the “reselution principle,”
r simply “resolution.” It is an inference rule that can yield new clauses from
F-an initial set of clauses. Resolution is sufficiently powerful that no other rule is
:needed in order to assure that all logically itnplied clauses can be obtained. This
ymay be stated another way: the resolution principle is logically complete; if a set
| of clauses is inconsistent (logically implies a contradiction) then the resolution
i brinciple is suflicient to demonstrate the inconsistency. As we shall see later, a

¥ restricted forin of resolution is the basis of the PROLOG language.

We may now define the term “deduction.” Let § be a set of clauses. A
- deduction of a clause C from § is a finite sequence Cy, (s, ..., Cy, where each C;
i is either a member of S or a resolvent of two clauses preceding it in the sequence,
; and Ck =

In the next section we prove that the resolution principle is logically complete.
b In order to do so, we first prove a result known as Herbrand’s theorem.

£ 6.4 The Logical Completeness of Resolution.

E In this section, we justify the claim behind the power of the resolution principle:
b that the resolution principle is logically complete. The fact that resolution is
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complete, in turn, makes it possible to build automated reasoning systems that
require only one inference rule (resolution), yet provide as much power as ayy,
other predicate-calculus inference system.

6.4.1 Semantic Trees

In order to provide something of a foundation on which to base our discussiop
of the resolution method, we will begin with the notion of a “semantic tree *
Then we will introduce some tools for establishing logical validity of a formula,
and finally show how resolution provides a reliable method for finding logical
inconsistency when such inconsistency is present.

Before we discuss semantic trees for predicate-calculus formulas, we present
the propositional-calculus version. Consider the propositional calculus expres-
sion PV Q. A semantic tree for this consists of a balanced binary tree, each level
of which is associated with some variable, here either P or Q. This is illustrated
in Fig. 6.3. Each path from the root to the bottom of the tree corresponds to an
assignment of truth values to proposition symbols (such an assignment is called
an “interpretation” for the symbols). At the leaves of the tree, the truth values
for the given expression appear.

T T T F

Figure 6.3: A semantic tree for P v .

There is a similarity between semantic trees and truth tables. They generally
carry the same information. However, as we shall sce, there is an advantage in
using the idea of semantic trees when we explain how resolution works.

6.4.2 The Herbrand Universe and Herbrand Base

Let us now turn to the predicate calculus. In order to construct semantic trees
for expressions of the predicate calculus, we must be able to assign truth values
to the component parts. When variables are involved, one cannot casily do this.
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¥ 45 the truth of a predicate usually depends upon the particular values of its
E arguments, and variables are simply not particular enough.

. Suppose our predicate calculus expression is P(z) v Q(y). If it is understood
. that x and y refer to positive integers, a semantic tree for this expression would
§ require two levels for every positive integer {an infinite tree). The beginning of
¥ this tree might look like Fig. 6.4.

Figure 6.4: Top of semantic tree for P(x) v Q{y).

. In this example, the positive integers are playing the role of the universe of
objects. If the universe were something finite, the job of constructing a complete
) semantic tree might be possible. On the other hand, it still might be made
- difficult by the fact that one must consider the results of applying functions to
¢ objects as though they were new objects.

r Logical consistency of a set of formulas should not depend in any way upon
E the particular universe of objects one may wish to consider. As a result of this
* observation, we are free to choose a universe to suit our purpose. Such a universe
: should be as simple as possible, except that it should contain enough objects in
E it to ensure that we can establish logical inconsistency by looking at a semantic
j: tree based on that universe.

We say that a formula is a sentence iff all its variables are quantified. Then,
the “Herbrand universe” for a particular sentence ¥ is precisely the suitable
universe we need. It is defined as follows: Let G be the set of constants appearing
in ¥. If G is empty, then let G be {a}. Here “a” is an arbitrary symbol. Let
F be the set of unary functions appearing in ¥, and in general let F; be the set
of i-ary functions in ¥. The Herbrand universe is defined to be the closure of G
with respect to all the functions in ali the Fi's. '

If there is at least one function of arity 1 or more (that is, taking k argurnents
for some & > 1), then the Herbrand universe is necessarily infinite. For example,
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the Herbrand universe for the sentence (¥Ya)(Yy)P(f(x),y) is
{a. fle). f(fla))... .},

If there are no functions, although there may be constants, then the Herbrang
universe is finite,

The Herbrand base for a sentence ¥ is the set of all variable-free atomic for-
mulas that one can construct by substituting elements of the Herbrand univerge
for variables in the propositions of ¥. For the sentence {Vz}(Wy) P(fi(x).y) we
have the following Herbrand base:

{P(f(a).a), P(f(f(a)),0), P(f(a}. fla)), P(f(f(a)), f(a)),...}.

As a second example, consider the formula, (3y){(vz){P(z) = Q{x,y)) The Her-
brand universe now is finite: {a}, and the Herbrand base is also finite:

{P{a), Q(e,a}}.
6.4.3 Herbrand’s Theorem

An interpretation is defined to be a mapping which assigns either the valye
T or the value F to each element of the Herbrand base. If n is the number
of elements in the Herbrand base, then there are 2 possible interpretations.
When the Herbrand base is infinite, the number of possible interpretations is
vastly more infinite (uncountably infinite). In this case, there is no possibility
of enumerating each interpretation and attempting to verify the validity of a
sentence by perfect induction.

A model for a sentence or set of sentences is an interpretation which makes
the sentence (or all the sentences in the set) true. For a sentence to be logically
valid, every interpretation for the sentence must be a model. If no models exist
for a sentence, then it is a contradiction, and it is unsatisfiable.

Resolution makes use of an essential result known as Herbrand's theorem.
This theorem is stated as follows:

Herbrand’s Theorem: Let ¥ be a formula in conjunctive normal form. Then
¥ is a unsatisfiable if and only if there exists an inconsistent finite set of variable-
free instances of clauses of ¥.

Proof: We first prove the forward implication. Suppose that ¥ is unsatisfiable.
Let T be a semantic tree for ¥ hased upon the Herbrand universe for ¥. Then
each path from the root in T must eventually reach a node at which one of the
members of ¥ is falsified; otherwise, there would exist an interpretation of ¥ and
¥ would be satisfiable. Let W' be the set of variable-free instances of members
of ¥ that are falsified at these nodes. The number of these instances is finite.
since none of them is infinitely far down the tree. The members of ¥ form ap
inconsistent set since each interpretation of ¥’ falsifies at least one of them.

To prove the reverse implication, let us suppose that ' is a finite, inconsistent
set of variable-free instances of members of ¥. Then every interpretation of ¥’
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falsifies a member of ¥'. Any interpretation that falsifies a member C of ¥ also
falsifies the member of ¥ of which C is an instance. But every interpretation of
L @ is an interpretation of ¥’, and hence every interpretation of ¥ fails to satisfy
g’ and also fails to satisfy ¥. Thus ¥ is unsatisfiable. Q. E. D.
] In order to illustrate the meaning of Herbrand's theorem, we present an
b oxample of a formula, its expression in conjunctive normal form, and a finite
b collection of variable-free instances of its clanses that are mutually inconsistent.
b The formula is: (o) [(P(z)vQUf ()} A(~P(z)A-Q(x))]. In conjunctive normal
- form, its clauses are the members of the set S:

S = {P(z} v Q(f(2)), ~P(x), ~Q{z)}.

ki The following set of variable-free instances of these clauses is inconsistent:

{P(a) v Q(f(a)), ~P(a), ~Q(f(a))}.

~ Notice that the substitutions made to produce such an inconsistent set do
F' not necessarily have to be the same. In the first two clauses, * was replaced by
£ @, whereas in the third, f(a) was used.

8.4.4 The Completeness of Resolution

f- Before we state and prove the completeness theorem for resolution, it is helpful
E to consider an example that shows the relationship between the resolution prin-
- ciple and Herbrand’s theorem. In the example, the progress of the deduction
b procedure may be observed by visualizing particular subtrees of semantic trees
. called “failure trees.”

f  Let us continue with the preceding set of clauses to build a semantic tree.
P This particular semantic tree is infinite since the Herbrand base is infinite (there
. is a function symbol f present in the original sentence).

f  To show that the original formula is unsatisfiable we must show that no
P interpretation of the Herbrand base is a model for §. This is equivalent to

B showing that each path from the root in the semantic tree runs into a node

b where some ground instance of some member of S is falsified by the partial
b interpretation defined by the path to that node. If S is unsatisfiable then each
£ path from the root must eventually reach such a node; otherwise, an infinite path
f could be found that would correspond to an interpretation that satisfied §, and
f thus S would be satisfiable. The first node found along each path causing at least
f one clause of S to be false is called a failure node. Failure nodes are illustrated
f with circles around them in Fig. 6.5. The subtree {of the semantic tree) whose
j leaves are all failure nodes is called a failure tree for S. Assuming that S is
k. unsatisfiable, there is a failure tree for each semantic tree for §; however, we
need only find one failure tree to establish that § is unsatisfiable.

At least one of the interior nodes of a failure tree has leaves for its two
children; that is. it is a parent of two failure nodes. Such a node is called
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Pla)
Qfa)

P(i(a)

Figure 6.5: Top of a semantic tree for {P(z)v Q(f(x)), ~P(z), ~Q(z)}, showing
failure nodes and inference nodes.

an inference node. The preceding diagram shows inference nodes with squares
around them. The children n; and n2 of an inference node represent points at
which two partial interpretations, each consistent with S up to the inference
node, both suddenly make ground instances of one or more members of § false.
Let C) be the clause (or one of them, if several exist) made false at n;, and
let Cz be the (or a) clause made false at ny. For example, the inference node
in the figure has two children, the left of which falsifies =@ f(a)), which is a
ground instance of ~Q}(x}), and the right of which falsifies P{a) v Q(f(a)), which
is a ground instance of P(z) v Q(f(x)). Clauses C| and C must always contain
literals that can be unified to form a complementary pair. That is, there must
be a literal in Cy that can be unified with a literal in Cs, such that one literal is
a negated proposition while the other is unnegated. Note that before attempting
unification we should rename the variables in one of the clauses, if NECESSATY. 50
that all the variables in that clause are distinct from those in the other clause:
this process is called standardizing the variables apart. (Here -Q(x) becomes
complementary to Q(f(x)) after the x's have been standardized apart and the
literals are unified.)

If resolution were performed on €y and Cs to eliminate the complementary
literals, a new clause C' would be obtained. Note that the partial interpretation
defined by the path from the root to the inference node fails to satisfy €. In
our example C' = P(f(z)). The failure to satisfy ¢ occurs because at failure
node ny, all the literals of C; are falsified, and at ny all the literals of 'y are
falsified. At the inference node, all the literals except the complementary pait
(and possibly some other literals that can be unified with the complementary



ks.5. RESOLUTION STRATEGIES 213

F ones) have been falsified, but €’ is nothing but a disjunction of substitution
B instances of these falsified literals!

The inference node in the failure tree for S is therefore a failure node in a
k' failure tree for 51U {C'}. This new failure tree is slightly smaller than the one for
A §; it has one less failure node and one less interior node. Since there must be at
B Jeast one inference node in the new tree {unless the tree is a trivial one—having
L only a single failure node-- the root), we can repeat the process. Eventually we
B nust end with a set of clauses that includes the null clause; the failure tree for
E: such a set is the trivial tree, whose root is a failure node and which contains no
E: other nodes. At that point it becomes obvious that we do indeed have a failure
E tree.

Resolution works by building up the set of clauses until the set has a trivial
f failure tree. Of course, if the original set of clauses is satisfiable, no failure tree
i can ever be found for it; successive resolution steps will lead nowhere.

4 Let us now state and prove the completeness theorem for the resolution prin-
E ciple.

t- Resolution Completeness Theorem: A set § of clauses is unsatisfiable if
B and only if there exists a deduction of the null clause from S.

& Proof: Let us prove the reverse implication first. Suppose that there exists a
¢ deduction C1,Cy,...,Ck of the null clause from 5. ¥ § were satisfiable then
E there would exist some interpretation that not only satisfies S but all resolvents
¥ derived from clauses in 5. Since the null clause is one of these resolvents, and
¥ no interpretation can satisfy the null clause, there can be no interpretation that
. satisfies 5.

2 To show that unsatisfiability implies the existence of a deduction of the null
clause, lot us assume that S is unsatisfiable. From the proof of Herbrand's
theorem, there must be a failure tree T for S. If T has only one node, then §
contains the null clause, since it is the only clanse that can be falsified without
¢ assigning truth values to any atomic formulas. For the case when T has more
than one node, there must be at least one inference node. As discussed above,
. there is a resolvent C” of the two clauses falsified at the two failure nodes below
g this inference node, such that C' is falsified at the inference node. The tree T’
| obtained by deleting these two failure nodes from 7' is a failure tree for SU{C'},
' and has two fewer nodes than T does. By induction on the size of the failure tree,
it can be seen that any failure tree can be reduced to the one-node failure tree
by a sequence of such resolution steps. The sequence consisting of the members
of § followed by the sequence of resolvents produced by this process constitutes
a deduction of the null clause. Q. E. D.

6.5 Resolution Strategies

In any realistic theorem-proving situation, we find that a large number of pos-
sible resolvents can be obtained even from a relatively small nunber of original
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¢lauses. However, the vast majority of such resolvents are useless in deriving 5
Fontradiction. Some of the clauses may be tautologies. For example, the twg
tlauses P(r) v Q(z) and -P(z) v ~Q(x) yield the two resolvents Plxyv -P(r)
and Qz) Vv -Q{zx); these are generally worthless in a deduction using resolution,
gnd they should be eliminated.

Many of the clauses may be redundant; there may be exact duplicates of
lauses, duplicates under reordering of literals, and there may be redundancy in
{he form of clauses being “subsumed” by other clanses. A clause Cy is subsumed
v a clause C, if there is a substitution ® such that the literals of Co® are 5
ubset of those in C;. For example, P{a) v Q(y) is subsumed by P{x) since
he substitution of @ for 2 makes the latter one of the literals of the former, It

akes sense to delete any clause that is subsumed by another, since it cannot
Yay any useful role in deducing the null clause that cannot be plaved by the
horter clause more efficiently.

Even if all tautologies and redundant clauses are removed, including those
there are still combinatorially imposing choices to be made
N the selection of resolvents. The problem is in determining which ones to use.
L mumber of strategies have been devised to guide the search for the null clause
1 an ocean of possible resolvents. Three of these are known as “set of support.”
linear format,” and “unit preference.”

:
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.3.1  Set of Support

o

L is usually fair to assume that the negation of the original conctusion will play
al key role in making a contradiction, if one exists. Therefore it seems reasonable
D give priority to examining resolvents derived from the clauses that express the
negation of the conclusion. The set of support consists of all those clauses which
ejther are part of the negation of the conclusion, or are resolvents with a parent
im the set of support (a recursive definition).

—+

€g.5.2 Linear Format

In order to avoid the aimless behavior that seems to result without some imposed
djrection, one can insist that each resolution step build on the results of the last.
rgther than do something completely unrelated to the last. A simple way to
fdrce this is to only consider, at any given moment. making resolvents that
uge the most recent resolvent as one of their parents. It has been proved (see¢
[4nderson and Bledsoe 1970]) that there always exists a proof of this form for any
pfovable theorem in the predicate calculus. Of course, this does not guarantee
that following any particular chain of resolvents generated in this way will lead
i the right direction! It is still very difficult to know how to build the chain ta
fipd a proof.
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6.5.3 Unit Preference

E' The goal in resolution theorem proving is to derive O, the null clause. This clause
is one containing zero literals. It seems natural, therefore, that one should strive
B .o derive new clauses containing fewer and fewer literals. until one with zero

k jiterals suddenly pops out. If we take two random clauses (random except for
E: the assumption that they can be resolved), one might contain 4 literals and the
b other, 7. How many literals will be in one of their resolvents? Usually there
will be 9 in such a case. That is, out of n literals of one parent and m of the
~ other, n + m — 2 literals will make up the resolvent in the majority of cases.
Clearly, for most values of n and m, this new resolvent will be longer than either
. of its parents. A case in which the number of literals in a resolvent can actually
be lower than the number in one of its parents is when one parent consists of
a single literal®. A clause consisting of just one literal is a unif clause. The
 unit preference strategy consists of always preferring to resolve with unit clauses
~ when doing so will lead to something new.

6.6 Solving Problems With Resolution

' We have seen how resolution in the predicate calculus is used to prove that
: a given conclusion follows logically from a set of premises. The same kind of
deductive procedure can also be used to find solutions to many problems that
& can be expressed in logic. Here is an example of such a problem.

Sally is studying with Morton. Morton is in the student union
information office. If any person is studying with another person
who is at a particular place, the first person is also at that place. If
someone is at a particular place, then he or she can be reached on
the telephone at the number for that place.

What is the number where Sally can be reached?

'~ Let us express the information about the situation in the predicate calculus. We
-~ use the following three predicates and one function:

o SW(x.y): z is stndying with y.

e Alz,y): xis at place y.

214 is sometimes possible to reduce the number of literals by more than one in a single
- tesolution step. For example, the first two literals of Cy below are complementary to Cy
under the substitution {({a,y), (b.2)}. and both are absent in the resolvent:

¢ = Pla,z)v Ply.b)yv Q(2)
Cy; = -Pla,b)
¢ = QW

However, this situation is relatively uncommon.
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e R(z,y): x can be reached (by telephone) at number .
-+ ph{zx): the telephone number for place .

[The logic formulations are as follows:

« SW(Sally, Morton)

e A(Morton, UnionBldg)

® Vavy(SWiz, y)AA(y, 2) —A(z, 2))

® Vavy(A(z,y) —R(z.ph(y)))

(0 order to determine the sequence of substitutions that will provide an answer
to the problem, we represent the question as a statement that the solution exists,
[Chen we negate it and use resolution to derive the null clause. The negation of
Lhe existence statement is:

o ~3zR(Sally, x)

n clause form, we have:

;. SW(Sally, Morton)

F»: A(Morton. UnionBldg)

Pa: - 8W(z,y) v -Aly, 2)VA(z, 2)
£y -A{u, v)VR{u,ph{v))

Frg: -R{Sally,w)

"he resolution steps that produce the null clause are as follows:

Label Clause Where From

'y —A(Sally, v) Py, Py {(Sally. u), {ph{v), w)}

Cs: ~SW(Sally. y) v -A(y,v)  Pi. € {(Sally. ), (v. )}

Ca: ~SW(Sally, Merton) P2, (' {{Morton. y). (UnionBldg. v)}
C4: ] P]. Cg

(ow that the null clause has been derived. we know a sequence of resolution
Leps that can be reapplied to a slightly different set of clauses to give us a
Olution. The sole modification we make to the original set of clauses s fo
hange the negation of the existence statement into a tautology by OR'ing it
rith the unnegated statement. Thus Premise 5 is now:

Lol HRY I I e )

=R{Sally,}vR(Sally, w)
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E' Now we apply the same sequence of resolution steps as before. Each resolvent
i derived from Premise 5 (all of themn, in our case} will contain one more literal than
F pefore. All of the extra literals are substitution instances of R(Sally, w). The
resolvent, instead of being the null clause, will contain a single resolvent,
g R(Sally, ph{UnionBldg)). This literal says that “Sally can be reached by phone
E- 5t the phone number for the student union building information center,” and
8 thus represents the solution to the problem.

6.7 Logic Programming and PROLOG

8.7.1 Introduction

B A theorem-proving program takes as input a set of axioms and some formula to
4. be proved. The output generally consists of information about whether a proof
K. was found, and if so, what unifications were used to derive it. If we consider
f. the input axioms to be a kind of program, and the theorem prover a kind of
. interpreter, then we can “program in logic.” By suitably adding some extra
k- language features to help the interpreter prove the theorem and to print out
8 various things along the way, we may attain a programming language that is
b theoretically as general as any other. Such a language is PROLOG.

6.7.2 Horn Clauses

£ Logic programming is commonly done using predicate calculus expressions called
¥ “Horn clauses” {(named after Alfred Horn, who first studied them). Horn clauses
. are clanses that satisfy a particular restriction: at most one of the literals in
 the clanse is unnegated. Thus, the following are Horn clauses (assuming that
. P,Q, P, P», ..., P, represent propositions each consisting of a predicate and the
 required number of terms):

-PVQ
-PivaPyv. . VvaB V@
SPivaPyv.. v b

P

These can be rewritten:

P—-4qQ
PEABA.. AP @
PoraPorh. . AP F
P

i The third of these expressions employs F to indicate falseness or the null clause.
b These are often written in a “goal-oriented” format in which the implied literal
" (the goal) is on the left:
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Q-—P
Q'_PlsPQa---st
— P, Py, Py
P

The third and fourth examples above show cases in which the goal arrow hag
nothing to its left (in the former case) and nothing to its right {in the latter
case). The null clause is a Horn clause, and can be written:

fra—

Horn clauses in the goal-oriented format are used to program in PROLOG,

6.7.3 A Simple Logic Program

An example of problem solving using resolution on Horn clauses is offered below.
The premises, stated in English, are: (1) X is a grandson of Y if for some 2,
X is ason of Z and Y is a parent of Z; (2) Walter is a son of Martha; and
(3) Jonathan is a parent of Martha. The question we wish to answer is: who is
the grandson of Jonathan? We will now use the symbol “:-" of the PROLOGC
language (Edinburgh dialect) instead of the left arrow, “—".

grandson{X,Y) :- son{X,Z), parent(Y,Z).
son{walter, martha).
parent (jonathan, martha).

7- grandson(W, jonathan).

The system attempts to satisfy the goal(s) preceded by “?-", The way it proceeds
is similar to a sequence of resolution steps. In the course, it eventually performs
a unification that substitutes walter for W, thus solving the problem.

Starting with the question ?- grandson(W, jonathan), the system attempts to
justify each right-hand-side literal (and there is only one in this question). It does
this by finding a matching left-hand-side literal in another clause. In this exam-
ple, it finds the first clause, performing the unification of {W/X, jonathan/Y)}.
Now the system must justify the literals: son(W,Z), parent(jonathan, Z).
The first of these is attempted using the second clause and the substitution
{walter/W, martha/Z}. The second literal of the first clause, to which the same
substitution must be applied, is now: parent{jonathan, martha). Fortunately.
this literal matches the third clause exactly, and the justification of Clause 1 and
in turn, the goal, is complete.

A program in PROLOG consists of a list of clauses. The program is exe-
cuted as the PROLOG intepreter applies a form of resolution known as Lush
resolution®, using a depth-first search strategy implemented with backtracking.

3 Lush is an acronym for “Linear resolution with wurestricted selection function for Horn
clauses.”
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;T]lis is only one of many possible algorithms to search for proofs. Although
y finear-format resolution (discussed on page 214) is complete, Lush resolution
i ot complete. The built-in logical reasoning engine in PROLOG is weak in
B! nis sense. However, the PROLOG language provides a good base on which to
i implement more powerful reasoning systems.

: In order to be practically useful, PROLOG contains some theoretically im-
pure language constructs. Special directives to the interpreter may occur within
g clauses or on separate lines. One of these features is the “cut,” described later.
& Others directives handle input and output.

Typically, PROLOG is implemented so that upper and lower-case ASCII
b characters are used, with the convention that words starting with capital letters
" denote variables, and words starting with lower-case letters denote constants
¥ and “functors.” Functor is the PROLOG name for a predicate symbol. (This
B usage is consistent with the Edinburgh PROLOG dialect [Pereira et al 1978].)
¥ In general, each clanse has a head and a body. The head is the part to the left of
E the “-” and the body is the right-hand part. The head or the body may be null.
f' The programmer has reasonable leeway in formatting the clauses; the head and
- subgoals of a clanse may be on the same or on separate lines, and several short
£ clauses can be placed together on one line.

[ 6.7.4 Another PROLOG Example

A more interesting example program is the one below, which combines facts,
rules, and information about a current situation to choose an appropriate wine
t0 go with a meal. The first eight statements of the program declare facts, e.g.,
Beaujolais is a red wine.,” The next two statements give general rules which
: encode the “knowledge” that a red wine goes well with a main course of meat,
.whereas a white wine goes well with a main course of fish. The symbols Wine
" and Ertree are variables. The declaration “maincourse(salmon)” provides the
information particular to the one situation for which the advice is sought. The
B last line of the program is the query. A value of Wine is sought that will satisfy
& the conditions for being a good wine for the meal.

redwine (beaujolais).
i redwine (burgundy).

E redvine(merlot).

i vhitewine{chardonnay) .
i vhitewine(riesling).

.- meat (steak) .
f meat{lamb).

tish(salmon).
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goodwine(Wine) :- maincourse(Entree),meat (Entree) yredwine (Wine) .
goodwine(Wine) :- maincourse(Entree),fish{Entree),whitewine (Wina)
maincourse(salmon) .

7-goodwine(X).

6.7.5 A Mock PROLOG Interpreter in LISP

In order to elucidate the process of answering a query using goal-driven resolu-
tion with Horn clauses, we present a LISP program which carries out the main
function of a PROLOG interpreter. This program shows that the heart of g
PROLOG interpreter is relatively simple; vet it indicates that there are some
technical challenges in making such an interpreter efficient.

This interpreter is capable of executing the two example logic programs {after
some syntactic changes} given above. The intepreter works by attempting to
satisfy the literals on the list of current subgoals, in left-to-right order. If it
succeeds in unifying the head of a rule with the first subgoal on its list, the
literals in the tail of the rule are put on the front of the list of subgoals and
the interpreter attempts to satisfy the new list recursively. Whenever the list is
reduced to NIL, the current bindings of variables are printed out as a solution,
since all the original subgoals have been satisfied.

This program makes use of the following functions defined in UNIFY.LSP
and whose definitions are not repeated here: UNIFY1, DO_SUBST, SUBST and
OCCURS_IN. The function UNIFY?2 used here is a modification of the function
UNIFY in UNIFY.LSP, and the version of ADD_PAIR given here omits the “oc-
curs check” of the version in UNIFY.LSP. Although this version of ADD_PAIR
does not use OCCURS_IN, the function PRINT _PAIR does use it.

; PROLOG.LSP - a mock PROLOG interpreter.
; This program demonstrates goal-driven logical inference
; using Horn clauses.

The top-level function is QUERY. When this function is called, the input goal
clause is bound to the atom GOAL, and QUERY invokes SOLVE with initial
binding list NIL and recursion level 0:

(DEFUN QUERY (GDAL)
(SOLVE GOAL NIL 0) )

SOLVE uses all the rules in the database to attempt to solve the current subgoals.
L is hist of current subgoals. B is a list of all the current bindings. LEVEL is an
integer indicating recursion depth.
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f (DEFUN SOLVE (L B LEVEL)
i (PROG (NEWB)
(COND ((NULL L)(PRINT_B B))
(T (SOLVE1 DB)) } ) )

Solve simply calls SOLVEL with the entire database (DB) as the list of rules
o be tried. R is a list of remaining clauses from the database to be tried in
K order to satisfy the current subgoals. SOLVEIL first checks to see if there are any
k rules left to be tried. If not, it returns NIL. Otherwise it attempts to apply the
E pext rule (the first element of R). If the head of this rule can be unified with
¥ the current subgoal (after all the current bindings have been applied), then a
s recursive call to SOLVE is made with a new list of subgoals in which the one
ust matched has been replaced by all those in the tail of the rule. (If there is no
ail, then the new list of subgoals is shorter than before.) This call to SOLVE
& includes the new bindings (NEWB), and the recursion level is one more than
f before. Whether or not the unification in SOLVE] is successful, a recursive call
g is made to SOLVE1 with (CDR R) so that all the rules (or facts) get tried, and
E all solutions are found.

1.
§ (DEFUN SOLVE1 (R)
e {COND
((NULL R) NIL) ; no rules left, return.
; else try next rule:
{T (COND ((NEQ (SETQ NEWB
(UNIFY2 (CAAR R) ; trial head
(CAR L) ; current subgoal
BY ) ; current bindings
'NOT_UNIFIABLE)
(S0LVE (APPEND {(COPY (CDAR R} (ADDL LEVEL))
(CDR. L) )
NEWEB
(ADD1 LEVEL) ) )})
(SOLVE1 (CDR R}) ) ) )

The functions PRINT_B and PRINT_PAIR are used to report solutions:

;'.; Print out the bindings in B:
 (DEFUN PRINT_B (B)
F (PROG WIL (MAPCAR (FUNCTIDN PRINT_PAIR) B) (TERPRI)) )

E Helping function for PRINT_B prints out a term-variable pair
. in the form "X=MARY; ", provided the variable occurs in the
t 5 original query GOAL.
. (DEFUN PRINT_PAIR (P)
(COND ((OCCURS_IN (CADR P) GOAL)

(PROG NIL (PRIN1 (CADR P)) (TYD 61)
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(PRIN1 (CAR P)) (TYO 59) (TYD 32) ) )
(T NIL) ) )

The function NEQ gives a convenient way to say (NULL (EQ X Y}). It returng
TifXisnot EQtoY.

(DEFUN NEQ (X Y> (NULL (EQ X Y)))

UNIFY2 is a version of UNIFY that postpones the substitutions required by
SOLVEIL (done by COPY and DO_SUBST) until after the the test for match.
ing predicate symbols, often avoiding some time-consuming, vet fruitless work.
When UNIFY2 returns a unifier, it is appended with the previous bindings,
UNIFY?2 calls UNIFY1, defined in the program UNIFY.LSP.

(DEFUN UNIFY2 (L1 L2 B)
(COND ; make sure predicate symbols match:
((NULL (EQ (CAR L1) (CAR L2))) ’NOT_UNIFIABLE)
(T (PROG (U}
(SETQ U NIL) ; unifier is initially null.
(RETURN
(COND
((NEQ (UNIFY! (COPY (CDR L1) (ADDi LEVEL))
(DO_SUBST (CDR L2} B) )
*NOT_UNIFIABLE)
(COMPOSE U B))
(T *NOT_UNIFIABLE) ) ) )) } )

During unification, a new (term. variable) pair must frequently be “added” to
the existing substitution. The test to see whether the variable occurs in the
term is time-coensuming and seldom of use in correct programs. The version of
ADD_PAIR here differs from the one in UNIFY.LSP by omitting this test.

(DEFUN ADD_PAIR (TERM VAR)
(S8ETQ U (CONS (LIST TERM VAR)
(SUBST U TERM VAR) )) )

The function COMPOSE combines two substitutions S1 and $2, adding pairs
from S1 to 52 in a manner similar to that of ADD_PAIR.

(DEFUN COMPOSE (S1 S2)
(COND ((NULL S1) S2)
(T (CONS (CAR S1)
(SUBST (COMPOSE (CDR S1) 82)
(CAAR 81)
(CADAR S1) ) )) ) )
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| The function COPY replaces all the variables in its argument L (which is nor-
[ mally bound to part of a rule) by new variables for the current level, thus assuring
¥ (hat the same rule may be used in different ways at different levels of recursion.
b COPY is supported by COPY1, GETVAR, GETNTH. and the PUTPROP state-
b ments that set up the lisis of variables.

i (DEFUN COPY (L LEVEL) (COPY1 L))

£ (DEFUN COPY1 (L)
(COND ({(NULL L) NIL)
((ATOM L)
(COND ((VARIABLEP L){GETVAR L LEVEL))
(TL)))
(T (CONS (COPY1 (CAR L)) (COPYL (CDR L)))) ) )

¥ ; Get the version of variable V for the given LEVEL of recursion:
¥ (DEFUN GETVAR (V LEVEL)
(GETNTH LEVEL (GET V ’NEWVARS)) )

£ ; Return the Nth element of list L:

§ (DEFUN GETNTH (N L)

L (COND ((NULL L) (PRINT ’>(N TOO LARGE FOR LIST)))
((EQUAL N 1)(CAR L))
(T (GETNTH (SUB1 N) (CDR L))}) ) )

£, In this implementation, the extra variables that may be needed are provided in
. advance. There is one group for each “original” variable {e.g., “X” has the group
¥ X1, X2...., X5). Each group is stored on the property List for its correspond-
} ing original variable. The variables given here support the two examples given
& further below.

(PUTPROP ’X ’(X1 X2 X3 X4 X5) ’KEWVARS)

(PUTPROP 'Y '(Y1 Y2 Y3 Y4 Y5) ’NEWVARS)

(PUTPROP ’Z *(21 Z2 23 Z4 Z5) ’'NEWVARS)

(PUTPROP 'W (W1 W2 W3 W4 W5) >NEWVARS)

(PUTPROP *WINE ’ (WINE1 WINE2 WINE3 WINE4) ’NEWVARS)

(PUTPROP ’ENTREE ’(ENTREE1 ENTREE2 ENTREE3 ENTREE4) ’NEWVARS)

Function VARIABLEP supports both UNIFY1 and COPY1. This version (un-
like that given in UNIFY.LSP) supports the two examples given below.

(DEFUN VARIABLEP (X)
(MEMBER X ’(
X X1 X2 %3 X4 X5
Y Y1 Y2 Y3 Y4 Y5
Z 212223 24 Z5
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W W1l W2 W3 W4 WS

WINE WINEf WINE2 WINE3 WINE4

ENTREE ENTREE1 ENTREE2 ENTREE3 ENTREE4
) ))

Let us now give two examples. The database of clauses for Example 1 is set up

by:

(SETQ DB1 ’(
((GRANDSON X Y) (SON X Z) (PARENT Y 2Z))
((SON WALTER MARTHA))
((PARENT JONATHAN MARTHA))

))

Here is the database of clauses for Example 2:

(SETQ DB2 *(

((REDWINE BEAUJDLAIS))
((REDWINE BURGUNDY))
((REDWINE MERLOT))

((WHITEWINE CHARDONNAY))
((WHITEWINE RIESLING))

((MEAT STEAK))
((MEAT LAMB))

({FISH SALMDN))

((GOODWINE WINE) (MAINCOURSE ENTREE) (MEAT ENTREE) (REDWINE WINE))
((GOODWINE WINE) (MAINCOURSE ENTREE)(FISH ENTREE) (WHITEWINE WINE))

((MAINCOURSE SALMON))
»

When the following LISP expressions are evaluated, we get a demonstration of
sample inferences, and the sequences in which subgoals are attempted become
apparent.

(TRACE SOLVE UNIFY2)

(SETQ DB DB1) ; use the database for Example 1.
; Who is the grandson of Jonathan?

(QUERY * ((GRANDSON W JONATHAN)))

(SETQ DB DB2) ; now use the database for Example 2.
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. What is a good wine for dinner tonight?
k (QUERY ’ ((GODODWINE WINE)))

The answer to the first example is printed as:
{ W=WALTER;

Although there are other bindings in the environment at the time when the
E olution is found (ZE=MARTHA: Y1=JONATHAN}), only the variable W occurs
£ in the query, and thus only its binding is printed.

The two answers to the second example are printed as:

B NE-CHARDONNAY;
B YINE-RIESLING;

. Note that a query may involve several literals. For example, the question
k' “what are the combinations of red wine and meat?" is handled by the query:

. (QUERY * ((REDWINE WINE) (MEAT ENTREE)))
- and results in the six solutions:

. ENTREE=STEAK; WINE=BEAUJOLAIS;
. ENTREE=LAMB; WINE=BEAUJOLAIS;
. ENTREE=STEAK; WINE=BURGUNDY;

. ENTREE=LAMB; WINE=BURGUNDY;

. ENTREE=STEAK; WINE=MERLOT;

.. ENTREE=LAMB; WINE=MERLOT;

' 6.7.6  PROLOG’s List-Handling Facilities

- Like LISP, PROLOG has essentially a single data type to represent both data and
' programs, and this data type is much like the S-expression of LISP. (The syntax
of PROLOG programs hides this structure, however.) Although the Marseille
. dialect of PROLOG represents what in LISP would be (X.Y') as cons(X,Y), the
- Edinburgh dialect {which is more common} uses [X]Y). The null list is denoted
[]. The list containing A, B, and C is written {4, B, C]. Variables appearing in
list expressions can be unified just as they can outside of lists. For example, the
predicate member(X, L) which is true if X is an element of L can be defined as

member (X, [XIY]).
member (X, [YI1Z]) :- member(X, Z).

Here, the query

T-member(b, [a, b, cl).
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fails to unify with the single literal of the first clause of the definition. sinee
and a are different constants. However, the head of the second rule unifies witp,
the query with {b/X,a/Y,[b.c|/Z}. The subgoal, member(h, [b.e]). is solved
recursively; this one does unify with the first rule and is satisfied. The query ig
found to be true.

A more interesting example is the definition of append(L1. L2, L3) which ig
true if the bindings of L1 and L2, appended together, match the binding of L3,

append([], L, L).
append([XiL1], L2, [XIL3]) :- append(Li, L2, L3).

The first rule says that append is true if the first list is empty and the other two
are the same. The second rule says that append is true if the heads of the first
and third lists are the same and append happens to be true on the tail of the
first list, the same second list, and the tail of the third list. The query,

7-append([a, b], [c], L).

results in L = [a,b,c].
Unlike other programming languages, PROLOG makes it easy to compute

functions “backwards.” For example the query

7-append(L, [¢], [a, b, c]).

results in L = e, b], and we can get all four pairs of lists that can be appended
to give [a,b, ¢] with the query

?-append(L1, L2, [a, b, <]).
The results are the following:

L1=[]1; L2=[a, b, c];
Li=[al; L2=[b, c]:
Li=[a, b]; L2=[c];
Li=[a, b, ¢]; L2=[1;

6.7.7 Cut and Other PROLOG Features
When PROLOG attempts to satisfy a goal P in a statement of form

P:- {1, Q2, ..., Qn.

1t attempts to satisfy subgoals Q1 through Qn with a common substitution.
proceeding from left-to-right and backtracking (right-to-left) if necessary. If the
special subgoal “I” occurs in the body of the clause. however, backtracking is
restricted. For example, with the statement form

P:.-01, ', Q2.
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b ofter Q1 is satisfied, the interpreter encounters the cut symbol, and, since this
t is the first time the cut is encountered for the interpretation of this clause, the
b cut subgoal is immediately satisfed with the current substitution, and then the
E interpreter attempts to satisfy Q2. 1f Q2 fails, the interpretation backs up. As
L it backs up past the cut, the attempt to satisfy the current goal is interrupted
b and treated as a failure.

' Another special predicate is fail, which takes no arguments. Any attempt to
I satisfy fail fails and the interpreter tries to backtrack. A simple way to implement
E fail is to forbid its use on the left-hand side of any rule, so that a fail subgoal
£ can never be satisfied.

' Although it is easy with Horn clauses to state a positive fact (i.e., that some
| predicate is true on some arguments), one has a problem in stating a negative fact
E (i.e., that a predicate is false on some arguments). One way to obtain negation
' is to define it in terms of cut and fadl:

R not(X) :- X, !, fail.
E not(X).

L If X is true, then not( X) fails because the subgoals X and cut are both satisfied,
E but fail causes backtracking into the cut, which causes the goal to fail. On the
E other hand, if X fails, then the second rule is tried and found to succeed, since
| it is a unit clause. Note that here, X plays the role of subgoal and argument to
¢ predicate not at the same time. By using this definition of not, one is making a
" kind of closed-world assumption called negation as failure.

; PROLOG provides special predicates assert and retract that are used to add
L clauses to or delete them from the database. {Backiracking does not undo their
. effects. however )

In order to do arithmetic, PROLOG provides an assignment operator is that
takes two operands: a variable on the left and an arithmetic expression on the
F right (and thus it is an infix functor). The following definition of factorial uses
it:

factorial(0, 1).
factorial(N, F) :- M is N-1, factorial(¥, G), F is N * G.

Here factorial(h.X) would be satisfied by binding N to 5, M to 4, G to 4
factorial (computed recursively), and F to the result of multiplying N by G,
which is 120. Note that s fails if there is an unbound variable in its right-hand
argument. Another limitation of is is that arithmetic with is does not permit
backtracking. and the query

?7-factorial (X, 120).

will fail to preduce a solution.
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6.7.8 LISP versus PROLOG

Both LISP and PROLOG are popular languages for artificial mtelligence syy.
tems implementation. The unification and backtracking mechanisms huilt inte
PROLOG make development of problem-solving systems that use them easy,
However, not all Al systems are based upon problem solving through predicate
logic. For many systems, PROLOG does not seem as appropriate as LISP. Many
consider LISP to be a more flexible language, albeit a somewhat lower-level ane
than PROLOG. In the late 1970°s and early 1980's. LISP was more prevalent
in the United States while Europe and Japan were more oriented towards PRO-
LOG. However, the user communities have become more evenly distributed iy
recent vears.

6.8 Non-Monotonic Reasoning

6.8.1 Motivation

The predicate calculus is an example of a “monotonic™ logic. Suppose that § is
the (possibly infinite) set of formulas provable from some set A of axioms. If A’ s
a larger set of axioms that includes A4, then §’, the set of formulas provable from
A’, is either a superset of § or is equivalent to S. That is, the set of theorems
is monotonically nondecreasing as one adds to the set of axioms. None of the
formulas in S have to be retracted as A4 is enlarged.

In everyday life, people seem to reason in ways that do not adhere to a
monotonic structure. For example, consider the following;:

Helen was attending a party at her friend Jack's apartment. Jack
ran out of wine and asked Helen to drive his car to the bottle shop
to buy some Cabernet. He handed Helen the kevs. She accepted
the job and concluded that she would buy the wine. After she tried
to start the car, however, it became apparent that the battery was
dead. She revised her previous conclusion that she would buy the
wine.

Here Helen has performed non-monotonic reasoning. As new information came in
(that the car wouldn’t start) she withdrew a previous conclusion (that she would
buy the wine). Adding an “axiom™ required the revocation of a *theorem.”
There is good reason for people to employ such non-monotonic reasoning
processes. We often need to jump to conclusions in order to make plans, to
survive; and yet we canmot anticipate all of the possible things that could go
wrong with our plans or predictions. We must make assumptions about things
we don't specifically know.
Default attributes are a powerful kind of knowledge, since they permit nseful
conclusions to be made. even if those conclusions must sometimes be revoked.
Here we examine means for Al systems to make defaults of a particular kiud.
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6.8.2 Circumscription

A formal method for non-monotonic reasoning using the predicate calculus has
| peen proposed [McCarthy 1980] which has some elegant features. The method,
b called circumscription, is a mechanism for adding to a set of predicate-calculus
f formulas one or more new formulas which express a kind of default or closed-
f world assumption.

: Let A be a formula containing an n-ary predicate symbol P. If ¥ represents
} a formula with n designated free variables, then we use A[Z/P] to denote the
I result of substituting ¥ for each occurrence of P in A, such that the kth free
': variable in ¥ is replaced by the kth argument of P in the occurrence. If the
¥ occurrence of P has the form P{xy,....x,), which can be abbreviated to P(Z),
¥ then the occurrence of ¥ that replaces it can be denoted ¥().

{ Then the cirenmscription of P in A is the following “schema” for generating
E formulas:

{A[¥/P] AVE[E(F) — P(3)]} — ¥E[P(F) — ¥(@)].

; This schema represents the assertion that the only objects # that satisfy P
b are those which must satisfy P, to avoid inconsistency, assuming A is true.

¥ . Let us illustrate how circumscription can be used to represent Helen's as-
L sumptions before she got into Jack's car. In order to drive a car there are a
number of requirements, two of which are the following:

K: having the keys to the car, and
C: having physical access to the car.

That these conditions are prerequisites for driving a car is expressed by the
b formula

A: prerequisite{ K'} A prerequisite{().

B Helen assumed that if all the prerequisites were satisfied (that is, there were “no
! problems™ with them), she could and would drive the car and buy the wine. This
belief is expressed by the following:

o: Vrx[prerequisite(i) — noproblem(x}] — buy(Helen, wine}.
Wheu Helen arrived at the car, she had these prerequisites; thus we have:
noproblem{ k') A noproblem{C).
The circumseription of prerequisite in A is the schema:
{[¥(K) A V()] A Yr[¥(x) — prerequisite{r)]} — Vr|prerequisite(zx) — T(x)].

From this circumseription, it is a straightforward matter to “jump” to Helen's
first conclusion. We begin by taking for ¥ the expression (x = K} v {z = C).
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The antecedent of the circumscription is clearly true, so we may conclude the
right-hand side:

Vz([prerequisite(z} — ({z = K) v (x = ()]

which asserts that the keys and access to the car are the only prerequisites. Thig
formula may he added to the set of theorems, and it can be used to deduce new
theorems.

Now since K and C are the only prerequisites, and Helen has both of them,
the antecedent of () is true, and the consequent, buy(Helen, wine), follows,
Without the circumseription, there would be no basis for proving the antecedent
of (a).

The non-monotonic retraction of Helen’s initial conclusion was necessary after
two additional facts became apparent:

prerequisite(B):  the battery must be functional, and
—~noproblem{B}: the battery is not functional.

A natural way to handle the retraction is to remove from the set of theorems the
right-hand side of the circumscription of prerequisite in A as soon as the new
fact involving prereguisite is encountered, also removing all formulas derived from
the circumseription. Then the new fact may be conjoined with A to produce a
formula

A’ noproblem({K') A noproblem({C) A noproblem{B),

A new circumscription of prerequisite in A’ may be constructed in the hope
of deriving new useful conclusions, but it is no longer possible to prove the
formula, buy{Helen, wine), since —noproblem({B) prevents the antecedent of {a)
from being true.

A possible advantage of circumscription over some other methods for non-
monotonic reasoning is that it is an augmentation of the frst-order predicate
calculus, which allows all the reasoning, except circumscription itself and the
instantiation of the resulting schemata, to be handled by the methods already
available (e.g., resolution). However, the practical application of circumscription
appears awkward in comparison to the adoption of explicit defaults or the use
of the negation-as-failure assumption in logic programming.

6.9 Bibliographical Information

A clear introduction to the propositional calculus with proofs of its consistency
and completeness may be found in Part 2 of [Hunter 1971]. Wang’s algorithm
for proving theorems in the propositional calculus first appeared in [Wang 1960)|.
A thorough introduction to mathematical logic may be obtained using the text
[Mendelson 1964]. An excellent text covering the basics of automatic theorem
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proving is [Chang and Lee 1973]. A newer text with an emphasis on applying
theorem proving to mathematical problems is [Bundy 1983]. An introduction to
Jogical reasoning by computer that is easy to read is [Wos et al 1984].

The mathematics underlying most modern approaches to automatic theo-
rem proving in the predicate calculus was done in the early part of this century
[Herbrand 1930). The first program to prove theorems of the predicate calculus
by applying Herbrand's theorem was that of [Gilmore 1960] which exhaustively
generated sets of variable-free instances of a set of clauses, looking for an incon-
sistency. The more efficient resolution approach was first described by [Robinson
1965). The “Logic Theory Machine” program [Newell et al 1957} used a subgoal
approach to proving theorems in the propaositional calenlus taken from [White-
head and Russell 1935). The use of a “diagram™ to control the search for a proof
in geometry is illustrated in [Gelernter 1963]. A detailed account of a theorem-
proving program widely considered to be successful is given in [Boyer and Moore
1979].

The notion of using a theorem prover as a program interpreter was incor-
porated in the PLANNER programming language [Hewitt 1971} embedded in
LISP. Incorporating a predicate logic style into a programming language was
first achieved in an accepted way in PROLOG [Warren et al 1977]. For a text on
PROLOG, see [Clocksin and Mellish 1981], and for logic programming in general
see [Kowalski 1977]. A concise introduction to PROLOG is the pair of articles
[Colmerauer 1985] and [Cohen 1985], the latter also containing a bibliography
of some 47 items related to the language. A collection of articles about logic
programming and its nses is contained in [van Caneghem and Warren 1986).

Non-monotonic reasoning was the subject of a special issue of Artificial Intel-
ligence, which contained the original article on circumseription [McCarthy 1980],
as well as several other important papers, including [McDermott and Doyle 1980],
[Reiter 1980] and [Winograd 1980]. A pragmatic approach to non-monotonic rea-
soning was developed by Doyle and called “truth maintenance systems” [Doyle
1979].
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Exercises

Classify each of the following as either a contradiction, a tautology, or a
satishable non-tautology. Justify each answer.

{a) P — =P

(b) (Pv @} A(-PV-Q)

(c) (P—-@Q)A(Q—~P)

Yy P-(-P—-P)
Use Wang's tules to prove ({P - Q) A (@ — R)}— (P — R).

Find a proof for the following logical expression using Wang's rules. Com-
pare your proof with the display you get when you set {TRACE VALID1)
and then give the expression to PROVER to validate.
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10.

11.

12.

13.
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(((A IMPLIES B) AND (B IMPLIES C)) IMPLIES (4 IMPLIES C)).

Explain why the PROG is used in the definition of the function VALID].

Devise a valid logical expression of three variables A, B and C. which
has only four occurrences of logical operators, which causes the maximum
number of calls to VALIDI under these restrictions.

Enhance the FORMAT function so that it also can accept well-formed
formulas of the form {A XOR B}, meaning the exclusive-or of A and B,
and translate them into equivalent formulas using only AND. OR. and
NOT.

- Is the implementation of the proposition verifier really a production BVs-

tem? Explain.

. Using only the axioms of Principia Mathematica, prove that P — =(~P),

. Prove the resolution principle of the propositional caleulus {for three

propositional symbols P, §, and R) by perfect induction.
Consider the following statements:

 “If the maid stole the jewelry, then the butler wasn't guilty.”
¢ “Either the maid stole the jewelry or she milked the cows.”
 “If the maid milked the cows, then the butler got his cream.”
¢ “Therefore, if the butler was guilty, then he got his cream.”

{a) Express these statements in the propositional calculus.
(b} Express the negation of the conclusion in clause form.

(c) Demonstrate that the conclusion is valid, using resolution in the
propositional calculus.

Write a LISP program that takes a list of clauses of the propositional
calculus and attempts to derive the null clause, using resolution.

Put the following predicate-calculus formulas into clause form:
(a) (Va)(Vu){[P(z) A Q(y)] — 3zR{x.y,2)}
(b) (Fx}vy)(3z){P(z) — [Q(y) — R(z)]}

For each of the following sets of literals. find a most general unifier or
determine that the set is not unifiable.

} {P(z,a), P(b,y)}
} {Qfa), QUf(2))}

A
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(e) {P(z}), P(f(y)), P(flg(z))}
(d) {Plz).Q()}
(e} {P(;t:,f(a:),a)._P[b,y,m)}

14. Prove the conclusion (Vz)L{z) from the premises (ve)(S(z) — L(z}) and
-(3z){(~8(z)), using predicate calculus resolution.

15. Consider propositions P1 through P4 below. Encode each proposition as
a logica) formula in the predicate caleulus, choosing appropriate predi-
cates. Then show that P4 is logically implied by P1, P2 and P3 using the
resolution method.

o P1: If something has hair and gives milk, then it is a mammal.
e P2: Any coconut has hair.
e P3: Any coconut gives milk.

e P4: All coconuts are mammals.

16. (a) Determine the number of times UNIFY1 is called in the evaluation
of the form:

(UNIFY "(P X Z 2 &)
'PYYWW )

(b) Determine the number of times UNIFY]1 is called in the evaluation
of the form:

(UNIFY *P X YZ (F (F (F (GXY 2NN
(P (FA) (FAR (FA W)

(c} Determine the computational complexity of the variation of the uni-
fication algorithm that is implemented in UNIFY and its supporting
functions.

17. Write a function (FACTORS C) that uses UNIFY to find factors of a
dause C, where C is given as a list of literals. FACTORS attempts to unify
pairs of literals from C, and whenever successful, prints the corresponding

factor; any factors of the factor are then computed recursively. Show your
results for the clause P(x) vV P(Ff{¥)) v P(fla)) Vv Q(x) v ~P(y).

18. Modify the UNIFY program to accept a list of two or more literals rather
than only two literals.

19, Make the UNIFY program more efficient by avoiding the redundant at-
tempts to perform substitutions that can take place before the recursive
calls to UNIFY1. No term-variable substitution should be applied more
than once to the same subexpression.
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20. (a) Using the UNIFY program, write additional functions to produce g
resolvent given two parent clauses. Test your program with the form

(RESDLVE *((P A X) (NOT (Q X Y)))
((Q(FZ)B) (PZB)))

{b) Improve your RESOLVE program to find a resolvent for each eligible
complementary pair of literals from the parent clauses.

21. Explain the necessity of renaming variables with the COPY function in
the program PROLOG.LSP. What would be the result for the following
logic program if COPY were only an identity function?

; Database:

((GRANDPARENT X Y) (PARENT X Z) (PARENT Z Y))
((PARENT X Y) (FATHER X Y))

((FATHER SAM JOE))

({FATHER JOE DAVID))

; Query:

(QUERY ’® ((GRANDPARENT SAM Y)))

22. Using each of the example logic programs presented for PROLOG.LSP,

determine the number of successful unifications (performed by UNIFY2).
Next, with tracing disabled, measure the time required by your computer
to execute each of these two examples. For each, divide the time by the
number of unifications to get a measure of the LIPS (Logical Inferences
Per Second). Describe your results and discuss the factors that may or

may not make this a fair measure of a system's execution speed,

23. The function UNIFY1 used in both UNIFY.LSP and PROLOG.LSP can
run faster or slower depending upon whether the “oceurs check” is made
by the function ADD_PAIR.

(a) Measure the speed difference this makes in the execution of the good-
wine example for PROLOG.LSP on page 224. Give vour answer in
LIPS {Logical Inferences Per Second).

(b} What is the danger in removing the occurrence check?
24. Add the following features to PROLOG.LSP:

(a) handling the special cut subgoal.
{b) handling of subgoals of the form (NOT X). where X is a subgoal.

{c) handling of arithmetic assignments of the form (IS X (PLUS Y 5)) as
done by the PROLOG is operator. Demonstrate this featuro using
the factorial function on page 227 to compute 5!
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95. Using the function PROLOG.LSP, implement the Horn-clause definitions
of:

(a) member given on page 225, and demonstrate it with the query

(QUERY °’ ({MEMBER JOHN
(CONS MARY (CONS X (CONS BOB NIL))) )))

which shonld result in *X=JOHN;".

(L) append given on page 226. By tracing the SOLVE function, deter-
mine the sequence of suhgoals attempted for the query,

(QUERY *'({APPEND (CONS 4 (CONS B NIL))
(CONS C NIL)
0N

where A, B, C and NIL are constants and X is a variable.
26. {a) Develop a list of ten to fifteen Horn clanses that represents a set of

constraints or preferences for restaurants or entertainment during a
night on the town with a friend.

(b} Demonstrate the solution to a problem nsing your rules {(with PRO-
LOG.LSP or a PROLOG interpreter).

27. (a) What is the circumscription of P in the formula below?
Pla.b) A Pla,c)

(b) Demonstrate the steps required to use the circumscription to con-
chude that (a,b) and (a.c) are the only argument pairs that satisfy
P.

28. Determine the circumscription of buy in (a) on page 229.






Chapter 7

Probabilistic Reasoning

7.1 Introduction

7.1.1 The Need to Represent Uncertain Information

K In many practical problem-solving situations, the available knowledge is incom-
¥ plete or inexact. Weather prediction and medical diagnosis are two kinds of
¥ guch situations. In cases like these, the knowledge is inadequate to support
- the desired sorts of logical inferences. However, humans have ways of draw-
: ing inferences from incomplete, inexact or uncertain knowledge and information.
B Although our knowledge is not complete, we can and do make and use general-
¥ izations and approximations that help us summarize our experience and predict
E aspects of things we don’t yet know. Generalizations are often subject to error,
" and yet we use them anyway.

The knowledge in a machine is always limited, too. Because intelligent ma-
- chines should do the best they can when their knowledge is not complete and
exact, we want them to use generalizations and approximations, too.
Probabilistic reasoning methods allow Al systems to use uncertain or prob-
-~ abilistic knowledge in ways that take the uncertainty into account. In addition,
¥ probabilistic methods can help us accumulate evidence for hypotheses in a fair
§E way; they are appropriate tools in making “just” decisions. Decision theory,
& related to theory of probability, provides additional techniques that help to min-
f imize risk in making decisions.

| 7.1.2 The Nature of Probabilistic Information

B We often must deal with statements whose actual truth we don’t know and
B don’t have the resources to learn in a short period of time. Let us consider the

E statement “it will rain tomorrow in Walla Walla.” Suppose that a resident of
b Walla Walla is planning a picnic and would indeed like to know whether or not it
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will rain. Suppose further that he has a feeling that it will rain, but is not sure,
How might this feeling be related to the truth of the statement? How should (or
does} this feeling affect his decision to have the picnic? What are the canscions
or unconscious factors in his mind that give rise to his intuition? How can a
computer program take such factors into account?

Asking such questions may seem to be stretching the importance of predict.
ing the weather or of common intuition. However, we can ask the same questiong
about a doctor’s intuition in diagnosing a patient, or a financial analyst’s feel.
ings about the stock market. In domains such as these, there may well exist
formal criteria that complement intuition or which actually underlie the inty-
ition. Furthermore, we may be able to design computational mechanisms which
are consistent with both the formal criteria and the intuition.

The phenomenon of uncertainty can be studied mathematically drawing on
the theory of probability and on theories of evidence.

7.2 Probability
7.2.1 The Notion of Certainty

To an arbitrary statement, anyone who knows what he believes can lend a Jjudg-
ment: “Sure,” “Impossible,” “Maybe,” “I'll give you ten to one it’s true,” “Un-
likely but possible,” and perhaps even “I don't know and I don't care.” If we
require that the person choose a number in some range, say, 0 to 10, to indicate
his degree of belief in the truth of the statement, we could interpret 0 as his
certainty that the statement is false, 5 his belief that it may just as well be true
as false, and 10 his certainty in its truth. The value he chooses represents his
{subjective) belief in the statement. Since such a value is a belief rather than an
actual representation of the truth of a statement, it is possible and permissible
that someone assign a value of 10 to the statement “27 is a prime number.”

On the other hand, regardless of what particular individuals may believe,
certain statements are true, certain others are false, and others have basis for
neither truth nor falseness to be ascribed to them. Regardless of one person’s
opinion, 27 is not a prime number. The statement, “The next time you flip a
fair coin, it will come up tails,” has no basis for being true or for being false.
Consequently, to give a certainty value of 0 or 10 to this statement is to do an
injustice to it. In cases such as this, truth or falseness seeming equally likely, 5
would be a fair certainty value!. There is thus a kind of ideal, “just™ certainty
value that some statements deserve.

Probabilities are numerical values between 0 and 1 {inclusive) that repre-
sent ideal certainties of statements, given various assumptions about the cir-

!There are other systems for assigning values to degrees of belief that are arguably more
appropriate than probability or systems equivalent to probability. One of these, commonly
known as “Dempster-Shafer theory,” has received much attention recently, and it is described
at the end of this chapter.



72, PROBABILITY 241

: cumstances in which the statements are relevant. The concept of probability
| has been studied through the controlled circumstances of mathematically simple
b situations.

] The mathematical theory of probability has evolved through the last three
f centuries. Notable landmarks are Pascal’s study of binomial coefficients, which
b he did around the year 1650, and Laplace’s formulation of probability as a ratio.
¥ Using numbers from Pascal’s triangle, or by computing the binomial coefficient
L O directly with the formula CF = Wikﬂ one could easily determine that
j the number of ways to choose three books from a set of five is (5 x 4)/2 = 10.
! Laplace’s formula gives a way to compute a probability:

Probability = (number of desired outcomes) / (total number of outcomes)

E For example, to determine the probability of drawing a card belonging to the
k- diamonds suit out of a normal deck of playing cards, one divides the number
e of diamond cards (13) by the total number of cards (52}, getting the value 1/4.
Laplace’s formula works under the assumption that each outcome is equally
- likely.
] What is the probability of drawing, out of a hat containing a shuffled deck of
E playing cards, the ace of spades? In the absence of particular information about
[ where in the hat the ace of spades lies (e.g., on top of all the other cards), it
¥ makes sense to treat each of the possible outcomes of the draw equally. That
§ is, it is only fair that we ascribe to each of the 52 cards a probability of being
f drawn equal to 1/52. To do otherwise would be to act as if we had additional
b information when, in fact, we do not.

§ 7.2.2 Axioms of Probability

;' In many situations the possible outcomes can be classified into categories called
t “events.” Tor example, in drawing a card from a shuffled deck, there are 52
b possible outcomes. Drawing a diamond is an event containing 13 outcomes.
j Drawing the ace of spades is an event containing one outcome.,

¢ It is possible to dispense with the notion of outcome entirely and deal only
} with events and their probabilities. For example, if John Doe has an upset
¥ stomach, some possible events are that John has a virus, John has food poisoning,
i John is seasick, etc. The probabilities for each event could be very unequal in a
b given context. In particular, if the context is a Caribbean cruise during hurricane
k. weather, it is quite likely that John is seasick. Furthermore, these events are not
E mutually exclusive; John might suffer from several of the diseases simultaneously.

. Probability values obey two laws: the additive law and the multiplicative
¥ law. Let A and B be events having probabilities P{A) and P(B), respectively.

1. Additive Law: P(AUB) = P(A)+ P(B) — P(ANB). If A and B do not
have any outcomes in common, then P(A U B) = P(A) + P(B).
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2. Multiplicative Law: P{A N B} = P(A) x P{B|A) = P(B) x P(A|B),
Here P(B|A) is P(B given A), which refers to the probability of event
B under circumstances where event A is known to occur or be true. In
the case where A and B are known to be statistically independent, the
multiplicative law can be expressed more simply: P(ANB) = P(4) x
P(B).

When we can describe a set of events for a situation, it is important that we
see to it that probabilities are assigned to the events in such a way that these
laws are satisfied. This helps to assure that any conclusions drawn from the
probabilities are reasonable.

7.2.3 DBayes’ Rule

It is very common to compute conclusions from premises. With mathematical
logic, the rule of modus ponens allows us to take general knowledge of the form
P — @ and a specific fact P and deduce Q. Often either the general rule or the
specific information is uncertain, but we would still like to determine something
about the consequence: the degree to which it can be believed. In this section,
we treat degrees of belief as if they are probabilities values. Depending on the
phenomena being described, the probability of a conclusion @ could be computed
by any of an infinite number of different functions of the probability of P. A
method that provides a sensible approach in many situations was developed by
the British cleric and mathematician, Thomas Bayes.

Bayes’ rule is well presented using a fictional medical-diagnosis problem. We
wish to know the probability that John has malaria, given that he has a slightly
unusual symptom: a high fever.

We assume that two kinds of information are available from which to compute
this probability. First there is general knowledge: (a) the probability that a
person (in this case John) has malaria, regardless of any symptoms, (b) the
probability that a person has the symptom of fever, given that he has malaria,
and (c) the probability that a person has the symptom of fever, given that he
does not have malaria. Second, there is the information particular to John: that
he has this symptom. Let us assign the symbol H to the hypothesis and the
symbol E to the evidence:

¢ H = “John has malaria,” and
¢ E = “John has a high fever.”
Thus we begin with:
¢ general knowledge or “model” consisting of

1. P(H): probability that a person has malaria,
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2. P(E|H): probability that a person has a high fever, given that he
has malaria, and

3. P(E|-H): probability that a person has a high fever, given that he
does not have malaria; and

o particular: the fact that John has the symptom of high fever.

 We desire the value of P(H|E) which represents the probability that John has
- malasia, given that he has a high fever.
£ This is obtained using Bayes’ rule:

P(E\H)P(H)

PHIE) = ==

- where
P(E) = P(E|H)P(H) + P(E|-H)P(-H).

i This is interpreted as saying: the probability that John has malaria given that he
k has a high fever is equal to the ratio of the probability that he has both the fever
and malaria, to the probability that someone has a fever regardless of whether
o not he has malaria. The probability of having a high fever is computed as the
E sum of the conditional probabilities of having the fever given malaria or given not
b malaria, weighted by the probability of malaria and not malaria, respectively.

f  To continue the example, let us suppose that the general knowledge is as
- follows:

P(H) = 0.0001 P(E|H) = 0.75 P(E|-H) =0.14

.:Then we have
4 P(E) = (0.75)(0.0001) + {0.14)(0.9999)

hich is approximately 0.14006 and
P(H|E) = (0.75)(0.0001)/0.14006 == 0.0005354.

Thus John’s probability of malaria, given his fever, is about 0.0005. On the
 other hand, if he did not have the fever, his probability of having malaria would

f be P(-E\H)P(H) _ (1 - 0.75)(0.0001)
P(-E) ~ (1 - 0.14006)

£ or about 0.00003. We can say that knowledge of John's having a high fever
b increases his probability for malaria by a factor of 5 while knowledge of John’s
E not having a high fever reduces the probability by a factor of 3.

" We can generalize the example we have just presented by showing how evi-
' dence, prior and conditional probabilities, and Bayes’ rule fit together as the first
b stage of a decision-making system. Figure 7.1 shows a diagram for a decision-
i making system. This system could be adapted (in theory) to any application

P(H|-E) = 2 0.000029
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Figure 7.1: General form of an idea! decision-making system.

by changing only two boxes: the prior and conditional probabilities box and the
risk-assignment-scheme box.

In Fig. 7.1 the components in rectangular or rounded-rectangular boxes are
fixed parts of the system. In the ovals are the evidence, probabilities conditioned
on the evidence, and decision based on the evidence.

If we always had accurate general knowledge for such inference problems,
we could make simple and clean machines to compute probabilities for various
things considering all the evidence. Unfortunately, we usually do not have accu-
rate knowledge of the conditional probabilities of sets of symptoms (or evidence)
given the state of health (the hidden truth), so that the ideal, all-Bayesian system
of Fig. 7.1 cannot be successfully built. However, heuristic modeling tools can
be used to represent known relationships between evidence and conclusion. The
complex relationship between evidence and final conclusions can be expressed
as a network of simpler relationships involving not only the evidence and fi-
nal conclusions, but also intermediate assertions: partial conclusions and close
consequences of the evidence. Such networks are called “probabilistic inference
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[ petworks.” Their design and construction are discussed in the following three
f sections of this chapter.

.} 7.3 Probabilistic Inference Networks

'! 7.3.1 Appropriate Domains

_ Making a decision means choosing among alternative courses of action with or
L without all the relevant information and often with uncertain information as well.

E' The need for intelligent decision-making is omnipresent in intelligent beings.

B In people, the need arises at the simple level of choosing whether or not to
E step around a puddle on a rainy day, or at the complicated level of choosing a
b treatment plan for a medical patient. Animals need such abilities in order to
t find food and evade predators. A mathematician may need to choose among a
E set of possible directions in which to search for a proof.

3 We seek to model general decision-making in a computationally practical, yet
I mathematically meaningful way. Here “probabilistic inference network” struc-
E: tures are presented as formal structures for representing decision-making sys-
i tems. They are good at handling information processing tasks with the following
E characterisitics:

1. pieces of information are available at various levels of certainty and com-
pleteness;

9. there is a need for optimal or nearly optimal decisions;

3. there may be a need to justify the arguments in favor of the leading alter-
native choices; and

4. general rules of inference (either based on scientific theory, or simply
heuristic) are known or can be found for the problem.

£ Usually there must also be an economic need for the application of these tech-
¥ niques to a problem domain. Accurate models for complex phenomena take a
i significant effort to develop, even with the help of experts.

I Some examples of actual or potential areas of practical application of infer-
|- ence networks are:

» medical diagnosis;

o fault diagnosis in machines and computer software (including automobiles,
airplanes, computers, spacecraft, etc.)

+ minerals prospecting;

¢ criminal investigations;
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« military strategy formulation (including war-time decision-making);
¢ marketing strategy and investment; and

e decision-making in design processes (e.g., software design, suspension
bridge design, VLSI circuit design).

7.3.2  Heuristical Components of Inference Networks

Because of the lack of knowledge of the exact conditional probability distribution
for the various possible states of evidence {symptoms) given the various possi-
ble states of nature (e.g., having or not having malaria), successful inference
networks cannot usually be developed directly from Bayes’ rule. A reasonable
alternative is to develop a hierarchy of “fuzzy” assertions or hypotheses and use
substantiated hypotheses at level k to substantiate hypotheses at level k+1 {see
Fig. 7.2). Bayes' rule can be used directly to substantiate (establish probability
values for) level-1 hypotheses from the evidence if the evidence may be regarded
as certain. Then “fuzzy inference rules” are used to obtain probabilities for
other hypotheses, given the evidence. If there is uncertainty agsociated with the
evidence, then fuzzy inference may be used at the first level as well.

7.3.3 Fuzzy Inference Rules

Fuzzy inference rules are functions for propagating probability values. The gen-
eral form of such a function is:

f:10,1)" - [0,1].

Thus a fuzzy inference rule takes some number n of probabilities as arguments
and returns a single probability. The choice of f for a particular situation is a
modelling decision that requires some understanding of the relationship among
the phenomena described by the hypotheses.

Two sets of fuzzy inference rules analogous to operations in the propositional
calculus have been found useful for building inference networks because they
have behavior that follows intuition and they are easy to work with. These are
shown in the bottom two rows of Fig. 7.3.

The system employing min and max is sometimes called a “possibilistic logic.”
Note that the value for AA B in the possibilistic system is not smaller than both
the values for 4 and B. If min(a, b) is regarded as the probability of AA B, then
the propositions A and B should be regarded as dependent.

On the other hand, the second system, which assigns the value ab to the
conjunction A A B, gives a lower value to the conjunction than the values of
either of the components. That is, ab < a except when a = 0 or b = 1, and
ab < b except when & = 0 or @ = 1. If ab is considered to be the probability of
A A B, then we must regard A and B as (statistically) independent.

A
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Figure 7.2: Pure Bayesian (a) and heuristic (b) inference systems.
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Al B| -A ANB AV EB A—-B A® B
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Figure 7.3: Inference rules for propositional calculus and two fuzzy logics., The
possibilistic logic rule for A & B is xor{(a. b} =max(min{a,1 - bY.min(1 - a. b)),
The probabilistic logic rule for A% B is Xor(a,b) = a+b—3ab+a2h+ ab? - o22,

In the examples involving fuzzy logic which follow, the possibilistic logic rules
are employed.

Let us turn to the application domain of automobile repair for an example of
an inference network with intermediate assertions. Let the possible symptoms
be those described by the following four statements:

¢ 5y: There is a clanking sound in the engine.

o 53: The car is low on pickup.

¢ 53: The engine has trouble starting.

¢ Sy Parts are difficult to obtain for this make of car.

The final state of nature whose probability we wish to infer is the truth of the
statement

o C}: The repair estimate is over $250.

Because of the complexity in inferring C, directly from $), 2, and S, five
intermediate assertions are included which we believe relevant to the problem,
The first three of these, which depend directly upon the evidence, are “first-level”
hypotheses:

e Hy: A connecting rod is thrown in the engine.
¢ H,: A wrist pin is loosge.
¢ Hj3: The car is out of tune.

The other two are a level removed from the first three, and they are thus at the
second level:

¢ Hy: The engine needs replacement or rebuilding.
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o Hg: The engine needs a tune-up.

| Each first-level hypothesis is related to one or more of the symptoms. We may
' choose to express such a relationship so that Bayes’ rule may be used to estab-
| lish probabilities for the hypotheses that reflect a particular set of symptoms.
i In order to concisely express the prior and “class-conditional” probabilities for
b {hese relationships we may use a table such as that shown in Fig. 7.4. The right-
}  most column, labelled P(S), gives values of the prior probability for each of the
i combinations of Sy, S» and S3. We are using the symbol 5 as a variable that
f represents some combination of 81,52, and Ss.

symptoms P(S|Hy) P{S|H3) P(S|H3) P(S)
S1 Sz S3 P(Hl) =0.0001 P(Hg) = 00002 P(Hg) =01
F||F|F 0.001 0.2 0.2 0.4405
F|IFI|T 0.003 0.1 0.2 0.25
F|T ' F 0.006 0.1 0.2 .109
F|T|T 0.15 0.1 0.396 0.20
T|F|F 0.04 0.125 0.001 0.0001
T|IF!T 0.06 0.125 0.001 0.0001
T|T!|F 0.11 0.125 0.001 0.0001
T|T|T 0.63 0.125 0.001 0.0002

Figure 7.4: Table of probabilities for the auto repair problem.

: Using fuzzy logic rules we may model the dependence of Hy and Hs on H;,
Hj, and H; as follows:

Hy=H; Vv Hy
and
Hs = -~(H1V Hy) A Hs.
which, with the scheme of Fig. 7.3 (second-to-last row), means that
P(H,\S) =max|P(H,|S), P(H,|5)]

and

P(H5|S) =min{1-max(P(H1|S), P(H2|S)], P(H3]S)}.
Finally, C; depends upon Hy, Hs, and S,:

C1 = Hy v (Hs A Sy)

so that
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P(C1|8) =max|{P(H4|$),min(P(H5|S), v)]

where:
_ | 1 if54is true;
Y=1 0 otherwise.

We may diagram our inference network as in Fig. 7.5. As an example for
this inference network, let us consider the case when all of Sy, 52. 53 and §,
are true. Then P(S|H)) is 0.63 and P(S) is 0.0002. By Bayes' rule. P{H\|S) =
0.315. Similarly. P(H|S) = 0.125, and P{H3|S) = 0.5. Combining these using
the fuzzy logic rules above leads to P{H,|$) = 0.315. P{H,|S) = 05. and
P{C|S) = 0.5.

Ct

Figure 7.5: A probabilistic inference net for an automobile problem.

7.3.4 Steps in the Design of Inference Networks

The difficult problem of building an inference network appropriate to a given
problem domain can be broken down into simpler steps. The basic steps are the
following:

1. determination of the relevant inputs (i.e., set of possible evidence or symp-
toms},

2. determination of states of nature or decision alternatives,

3. determination of intermediate assertions that may be useful in the infer-
ence network,

4. formulation of inference links, and
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5. tuning the probabilities and/or the fuzzy inference functions.

Let us address each of these steps in turn. The relevant inputs are usually
E Jroperties of the object under study or of its environment. For automobile di-
B sgnosis, these are likely to be various aspects of the car itself: the condition
E of its various components, sounds, emissions, consumptions, and attributes of
'. the make or type of car—availability of its parts, the propensity of parts from
1 icular brands or year models to fail. In medical diagnosis, symptoms range
: from obvious fatigue, incapacity or infection to results of lab tests or descriptions
E of pain or medical history from the patient. One approach to the formation of
[ the set of relevant inputs divides the process into two parts. First, a large set
B of possible inputs is determined by listing all known attributes of the object or
E. gituation under study. Second, this set is filtered to keep only those for which
E there is a hope of relevance to the problem. Relevance is established when a
¥ particular attribute’s value has been correlated with the state of nature with a
k- correlation coefficient beyond a threshold. Relevance may also be established
, through association with something else already known to be relevant. For ex-
B ample, if engine state is known to be relevant to the estimated cost of auto repair,
2 then the sound of the engine may be declared relevant through correlation with
I the engine state. Relevance determination is nontrivial and would be an impor-
E tant part of any general system for inferring inference networks automatically or
f through interaction with an expert.

i The states of nature, like the set of relevant inputs, are learned from experi-
f. ence or through training. For example, some of the conditions of an automobile
 engine may be found by taking some apart. Finding broken parts, one immedi-
i ately is acquainted with one subset of states of nature for car engines: the set
g of states for which the engine contains broken parts. Additional experience with
[ engines leads to further subdivisions of these sets of states. Eventually one has
& a snitably fine partition of the set of states of engines to support the reasoning

S in one's head or in an inference network.

E The intermediate assertions may be established in a fashion like the establish-
¥ ment of the states of nature or the relevant inputs. Attributes (of the object or
b situation under investigation) which are not directly observable (but probabilis-
P tically related to the inputs and states of nature in some reasonably understood
I way) form the basis of intermediate assertions. Partial characterizations of the
t state of nature may be useful as intermediate assertions; for example, “the prob-
f lem is in the engine.”

Formation of inference links may be done on the basis of correlations among
L attributes. First a search is made for the simplest logical relationships, and then
k. more and more complicated ones are sought. In order of increasing complexity
E  we have

1. logical concurrence—e.g., an input highly correlated with a partial state
of nature;

2. negative concurrence—strong negative correlation;
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3. logical implication—whenever A occurs, B does too—this may be worth
noting even when B is an input;

4. conjunction—C' occurs whenever both A and B occur;
5. disjunction—C occurs whenever either 4 or B occur; and
6. exclusive disjunction—either A or B occurs but not both.

Whenever a sought logical relationship is found among a group of nodes (inputs,
agsertions or states), a link (possibly 3-way to involve A, B and C as above)
can be added to the network with labels as to its type and/or appropriateness
of fit. When the node(s) for the state of nature has been connected (possibly
via intermediate nodes) to the inputs, the topological portion of an inference
network has been constructed. Updating functions still need to be chosen to
propagate the effects of inputs.

If Bayes’ rule is to be used to make the first-level connections in the network,
then there is no need for fuzzy inference rules at that level. But fuzzy logic
and/or “subjective-Bayesian” updating functions (which are defined later} may
be used at subsequent levels to represent the ways information is to propagate
through those levels. Probability values associated with various parts of the
network need to be tuned to give reasonable performance. Prior probabilities
for states of nature and intermediate assertions must be specified if Bayesian
or subjective-Bayesian updating is to be used. Class-conditional probabilities
are also essential for Bayesian updating, and they must be well-chosen to give
reasonable results. Statistical learning methods might be employed to obtain
and to improve probability estimates. However, in most applications, there will
not be enough trials (test cases) in which to get good values automatically, and
this knowledge must be obtained from an expert or from compiled materials and
directly incorporated to achieve a useful level of performance. For example, a
new auto mechanic learning about Brand @ automobiles may learn from his own
experience that 1971 was a bad year for transmissions; or he may learn this by
word of mouth from a senior mechanic, and gain this bit of expertise in much
less time. A computer system to diagnose car problems could be given a priori
probability of 0.5 that any power train problem in '71 Brand @ cars is in the
transmission, rather than have to process 20 power-train cases to find out.

We will assume that relationships and probabilities needed to construct an
inference network are provided by an expert, either in collaboration with an Al
programmer or with an interactive tool for building expert systerms.

7.4 Updating in Inference Networks

In an inference network the general format of an inference rule is the following:
“if E, then H,” where E is the evidence and H is the hypothesis. In some cases,
the evidence may be compound and instead of E we have E\ E,, ..., E,. There
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E £, is the i*® piece of evidence bearing on the hypothesis. Each inference rule
 pas a certain strength associated with it, which is the power of the evidence
in that rule to confirm the hypothesis in that rule. Here we discuss means for
E ypdating probabilities associated with hypotheses on the basis of the certainty
f with which we know the evidence to be present. A family of such means often
b called “subjective-Bayesian” updating rules has proved to be useful in expert
¢ gystems such as PROSPECTOR. We begin by formulating the “odds likelihood”
E version of Bayes’ rule.

f 7.4.1 Odds and Bayes’ Rule
As explained in Subsection 7.2.3, Bayes' rule is usually formulated as follows:

P(E\H)P(H)

P(HIE) = ==

E This expresses the probability of the hypothesis, given the evidence, as the prod-

i uct of the conditional probability for the evidence given the hypothesis, times

[ the prior probability of the hypothesis all divided by the prior probability of the

[ evidence. We may also express the probability for the negation of the hypothesis

k. using Bayes’ rule.

P(E|-H)P(-H)
P(E)

i Now we obtain the odds likelihood formulation for Bayes’ rule by dividing these
g two equations. Shortly, we will rewrite this odds-likelihood formulation by using
L the definition for the odds of an event. An event X having probability P(X) has
| odds as follows:

P(-H|E) =

__P(X)
; OX) = =5
This relationship can be inverted, allowing the probability to be computed from
the odds: 0(X)
PX) =130

t Thus “50/50" odds (i.e., odds = 50/50 = 1) corresponds to a probability of
| one-half.

. We may now express the odds-likelihood formulation for Bayes’ rule very
¥ simply:
| O(H|E) = AO(H).

E Here O(H) is the prior odds on H and X is defined to be the likelihood ratio
. P(E|H)/P(E|-~H). Thus, we update the odds on H in the light of evidence E
. by multiplying the prior odds on H by the likelihood ratio A.

: Presumably, in the construction of an inference network, an expert provides a
E value of A for each rule. If ) is much greater than 1, the rule has a high strength
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indicating that the presence of the evidence E makes it much more probable
that H is true. In such a case, we may speak of E as being “sufficient™ for 4
Thus, we may refer to A as a sufficiency coefficient for the rule. Also, if ) is close
to zero (significantly less than 1), then the presence of the evidence reduces the
likelihood of H, and it would be reasonable to say that E is sufficient for —J
Now, suppose F is false or known to be not present (rather than not known),
Then we may write
: O(H|-F) = NO(H)
where A is defined as
P(-E|H} 1-P(E|H)
P(-E\-H) 1~ P(E|-H)

This provides a way to update the odds on H when the information about E is
in the negative. Note that A’ cannot be derived from A, and so it must also be
provided by an expert. If 0 < X « 1, (that is, X’ is between 0 and 1 but much
closer to 0 than to 1), then we may say that F is “necessary” for H since the
absence of the E (i.e., or the truth of =E) makes H very unlikely. We sometimes
speak of A’ as the necessity coefficient for the rule.

Let us return to the example on page 242, where we computed the probability
that John has malaria, given that he has a high fever. Since P(H), the prior
probability that John has malaria, is 0.0001, the odds, O(H), is 0.0001,/0.9999 ~
0.0001. We compute A as P(E|H)/P(E|-H) = 0.75/0.14 ~ 5.3571 and X’ as
(1~ P(E|H))/(1 — P(E|~H)) = 0.25/0.86 ~= 0.2907. If we know that John has
a high fever, then we compute O(H|E) = AQ(H) » 5.3571 - 0.0001 ~ 0.000536.
If we know, to the contrary, that John does not have a high fever, we compute
O(H|-E) = NO(H) ~ 0.2907 - 0.00001 ~ 0.000029.

In a probabilistic inference network, an arc may be labelled with a pair of
values for A and X to indicate how the presence or absence of the evidence is to
influence the odds on the hypothesis (see Fig. 7.6).

@ (=18, A =0.6) .®

Figure 7.6: Arc in an inference network, labelled with the sufficiency and ne-
cessity coefficients,

Although A and X’ are not functionally dependent on one another, they are
not completely independent either. The following equation expresses A’ in terms
of A and the conditional probabhility of E given not H.

V- 1 — AP(E|-H)
1 - P(E|-H)
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b Now assuming that P(E|-H) is neither 1 or 0, we find if A is greater than 1, then
L)' is less than 1 and vice versa. Note that it would not be entirely consistent
k(o have A greater than 1 and )’ equal to 1 or vice versa. Thus, if a rule states
I that the presence of some evidence enhances the odds for the hypothesis, then
f- it should be the case that the absence of the evidence hurts the hypothesis at
b least to some extent. However, some systems such as MYCIN allow relationships

_: in which positive evidence strengthens a hypothesis while negative knowledge of
b the same evidence has no effect on the hypothesis—in effect, allowing A > 1 with

1 X=1
3 The pair A and X carries the same information as the pair P(E|H) and
j P(E|-H). To get the latter from the former we may use the two formulas:

1-X
P(E|H) = \y—;
11— X
PEH) = 3—%

The formulas O(H|E)} = AO(H) and O(H|-E) = ¥O(H) give us a means
" to update the odds on hypothesis H given either knowledge that the evidence is
present or knowledge that it is absent; if the evidence is present, we multiply the
prior odds by X, and if it is absent, we multiply it by ). However, most of the
inference rules in an inference network must work with uncertain or incomplete
evidence so that the rule must be capable of propagating probabilities in a more
versatile fashion than we have just discussed.

7.4.2 Handling Uncertain Evidence

We may extend the foregoing discussion to handle the case of uncertain evidence
by assuming that E above is in fact based on some observations E’. For example,
if we say that we have 80 percent confidence in E, then we can re-express this as
a statement that the probability of E given E’ is 0.8. In order to develop some
useful techniques for propagating probabilities, it helps to make the following
simplifying assumption: Knowledge of E with certainty would allow us to forget
about the observations E’ for purposes of inferring the hypothesis [f. Thus we
are assuming that the only influence of E' on H comes through E. This allows us
to have a fairly simple expression for the probability of H, given the observations
E'.

It now appears reasonable to compute P{H|E’} as a linear convex combina-
tion of the two extreme values P(H|E) and P(H|-E). That is, for some value
of ¢ in the range [0, 1], we have:

P(H\E') = tP(H|E) + (1 - t)P(H|-E)

Taking P(E|E’) as the value of ¢, we find that as P(E|E’) increases from 0 to
1, P(H|E") goes from P(H|-E) to P(H|E). The two extreme values can, of
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Figure: 7.7: Inference with uncertain evidence.

course, be computed with Bayes’ rule in a straightforward fashion. In order to
determine the probability of H given the observations E' we interpolate the two
extreme values using the conditional probability for E given E'. A diagram that
illustrates this linear interpolation scheme is shown in Fig. 7.8.

'y

L RS

P(H|E) '
P(HIE):
updated ,
probability of H '
P(H|—E)

0 ' —>
0 1

P(EIE"): current probability of E

Figure 7.8: A linear interpolation function for computing P{H|E') from
P(E|E").

Considering our example once again, let us assume that John’s temperature
is known to have been taken by an unreliable nurse, who, it is also known, takes
correct readings 80 percent of the time. Here we have P(E|E"), the probability
that John has a fever given that the nurse reports a fever, equal to 0.8. With the
linear interpolation above, we compute P(H|E’}, the probability that John has
malaria given that the nurse reports a fever, as P(H|E") = 0.8-0.0005354 + 0.2 -
0.000029 =~ 0.0004341. This prohability happens to be about 20 percent lower
than that for the case in which the nurse is known to be reliable.

The choice of a linear function, rather than some curve, is an arbitrary one.
It makes the updating computation simple. As we shall see, there is commonly
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4
P(HIE) ;
P(HIE): P(H)
updated

probability of H

P({H|—E}

0

—_

0 P(E) P, (E)
P(E|E": current probability of E

Figure 7.9: Inconsistency in prior probabilities for E and H.

a problem with this function, and some others may be better. In any case, it
seems clear that such a function should be either monotonically nondecreasing or
nonincreasing, depending upon whether £ is supportive or detracting evidence
for H, respectively.

An interesting dilemma arises from the fact that this equation places a con-
straint on the prior probabilities associated with H and E, and this dilemma is
described in the next subsection.

7.4.3 The Bayesian Dilemma for Inference Networks

In order to apply Bayes' rule in a meaningful way in an inference network, it is
necessary for the various prior probabilities in the network to be consistent with
one another. In the absence of any observations E’, if we use the prior probability
for E to compute an updated probability for H, the “updating” should not give
anything other than the prior probability for H. It would be easy indeed for an
expert, subjectively assigning probabilities to various propositions in an inference
network, to provide prior probabilities that do not meet this constraint. In such
a case, the set of prior probabilities is called inconsistent.

For example, suppose that a physician assigns a prior probability of 0.3 to
E. claiming that three out of ten of the patients he sees have fevers. If we
use this value to obtain P(H |E}, the probability of H given the “expected”
probability of E, then using the linear interpolation above, we obtain P(H|E) =
0.3-0.0005354 +0.7-0.000029 = 0.000181. This value shouid be equal to P(H) =
0.0001, but it is about 80 percent larger.
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Although we could design tools that could make it easy for an expert to make
up only consistent sets of prior probabilities, this may interfere with the already-
difficult job of creating a good model of the expertise. Therefore researchers have
explored the possibility of allowing the inconsistency and making the updating
algorithms compensate for it. The inconsistency which can arise is illustrated in
Fig. 7.9.

‘The prior probability for H should correspond to the prior probability for
E along the line which interpolates the two extreme valyes. However, the two
may not correspond, and P,(E), the prior probability of E which would be
consistent with the prior probability for H, is somewhere to the right (as in the
Ulustration) or left of the prior probabilty for E actually given by the expert. The
resolution of this inconsistency is an important question because various forms
of anomalous behavior need to be avoided. An example of undesirable behavior
arises when the observations lead to a probability of E slightly greater than the
prior one and yet less than the probability value that would be consistent with
the prior probability of the hypothesis, and the result is that the probability
for the hypothesis is actually lowered, even though the evidence is supposed to
be supportive. Developers of early inference network systems (PROSPECTOR,
MYCIN} have proposed some ways for getting around this inconsistency. They
involve changing the function used to update the probabilities from the strictly
linear one shown in Fig. 7.8 and Fig. 7.9 to some piecewise-linear one. Such a
piecewise-linear function is designed to pass through the point whose coordinates
are the prior on E and the prior on H as given by the expert. T'wo alternative
functions are shown in Fig. 7.10 and Fig. 7.11. The function shown in Fig. 7.11
is designed so that the output remains stable for inputs anywhere within the
“zone of inconsistency” between P(E) and P.(E).

Two other piecewise-linear functions are of particular interest. Figure 7.12
illustrates an updating function which is flat for P(E|E’) below PAE). If the
cvidence E is absent (i.e.. the current probability of E is low. compared with
the prior probability) then there is no effect on the probability of H: the prior
probability of H remains constant. In this case the evidence E is somewhat
sufficient for H but not at all necessary for H. This function is suitably called a
“sufficiency-only” updating function.

On the other hand, the function of Fig. 7.13 causes a low value for P(E|E’)
to negatively influence P(H|E"), but does not let a high value of P(E|E') bring
P(H|E'"} above P(H). Such a function is suitable when E is necessary for H but
not sufficient for K. For this reason, the function can be called a “necessity-only”
updating function.

7.4.4 Updating the Probabilities

The function in Fig. 7.10 provides a good practical method for updating the
probability for a hypothesis in most situations. The steps for computing the
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F
LT T
P(H(E) X
P(HIE'): P(H) _— E
updated P :
probability of H & '
- ;
P(H|-E) : E
0 5 . >

0 P(E) P, (E)

—

P(E|E"): current probability of E

Figure 7.10: Piecewise-linear function for updating the probability of a hypoth-
& esis.

A
1 -""---‘-“‘v‘-‘-'—:
P(HIE) o
P(H|E): P(H) ;
updated - :
probability of H P o :
PHI-E) ¥ ;
0 . —>
0 PE) P, (E) 1

P(E|E"): current probability of E

Figure 7.11: Alternative piecewise-linear function for probability updating.
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F
1 ER e R
P(HIE) /
PHIE): P(H) —e 5
~ Updated :
probability of H P ; :
.«-"‘.‘- E :
P(HI~E) !
0 : : —>
0 PE) P, (E) 1

P{E|E'): current probability of E

Figure 7.12: “Sufficiency-only” updating function.

IT-----—------------:
P(HIE) ]
P(HIEY): P(H) .
updated '
probability of H ‘
P(HI-E) / 5

0 ' >

0 P(E) Pe (E) 1
P(E|E’): current probability of £

Figure 7.13: “Necessity-only” updating function.
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terior probability on H given the evidence E’ whose influence is transmitted
through E (see Fig. 7.7) are the following:

1. Compute P{H|E). This depends only upon the prior at H and the A
values along the arc from E to H and can therefore be precomputed:

OH|E) _ _MO(H)

PUHIE) = T =6(HTE) = T+ 20(H)"

2. Compute P{(H|-~E) with the formula:

O(H|-E) _ NO(H)

PHIE) = 1 0(H-B) = T+ ¥O(H)'

3. Compute P(H|E') from P(E|E’) using the function shown in Fig. 7.10:

P(H|-E)+ P(E|E")[P(H) - P(HIﬁE)]/P(;f'*J)
if P(E|E") < P(E);
P(H)+ [P(E\E") - P(E)|[P(H|E) — P(H))/[1 - P(E)]

otherwise,

P(H|E') =

Note that most of the terms in Step 3 are independent of P(E|E') and can
1 therefore be computed in advance, saving time during the updating.

7.4.5 Combining Independent Evidence at a Node

¢ Earlier we saw one way to have several pieces of evidence influence the proba-
= bility of a single hypothesis. This was done by combining evidence using fuzzy
& logic rules. An alternative “multiple evidence” updating rule is now presented
" that is well-suited to the case when the items of evidence are to be considered
independent for the purpose of computing their effects on the probability of the
hypothesis. Such a situation is diagrammed in Fig. 7.14.

We update the odds on H by independently calculating “effective lambda
' values” along each arc: Agy, Aea, . .., Aek and then multiplying them together to
£ get an overall effective lambda:

/\E = /\elAeZ T Aez.l:

E '5; Then we can multiply O(H) by Ag to get the a posteriori odds on H.
= The effective lambda value A, along an arc can be obtained from the postenor
J§ DProbability above as follows:

O(H|E')

Ae = O(H)
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®_ (llv llI)

Figure 7.14: Combining independent evidence.

where O(H|E') = P(H|E')/[1 — P(H|E")), and P(H|E’) is the probability of #
given the evidence transmitted along the particular arc.

Even when E,, E, . . ., Ey are not all mutually independent, this method may
be useful. If E; and E; are highly correlated, then their A and ) values may

be adjusted to moderate the effect of doubly supporting or doubly detracting
influences.

7.5 An Inference Network in LISP

7.5.1 The Traveller’s Restaurant Selection Problem

In order to illustrate some of these techniques for subjective-Bayesian inference,
we consider a problem occasionally faced by travellers in unfamiliar towns.

A traveller, without benefit of any guide book or particular restau-
rant advice, walks past several restaurants and takes a cloger look
at one of them. The traveller is hungry enough to eat but would
like to think that he would get a good meal at this restaurant before
committing himself to eating there. Several aspects of the restau-
rant are visible: its clientele, general atmosphere, menu, and some of
the staff. The overall food quality is what is of most concern to the
traveller; however, it is difficult to see the food or tell how it would
taste. On the basis of what can be seen and heard, a prediction of
the food quality must be made.

This problem is a rather fuzzy one, and there must accordingly be some arbi-
trariness in any solution for it. The solution presented here is clearly just one of
many possible; it embodies one of many possible sets of heuristics for predicting
food quality on the basis of pre-meal observations.
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7.5.2 Heuristics for Restaurant Evaluation

Before actually making the committment to eat in the restaurant (i.e., asking for
a table for dinner), there are several easily perceptible features of a restaurant,
and then there are some which are perceptible with a little effort. Easily visible
are these: the decor including the tastefulness of decor, and lighting; the atmo-
sphere (smoky or not); the clientele (how many, how dressed and how behaved);
and the menu with the prices. With a little effort, one can see these: the table
settings including linen, plates, silverware, glasses, possible flowers, plants or
candles, ashtrays and condiment vessels; the general cleanliness of all surfaces;
the menu’s details including the variety of dishes offered, the neatness and the
artistry of the menu, and the existence of daily specialties; and the service: the
pumber of waiters/waitresses in preportion to the number of clients; the dress
and cleanliness of the staff, and the courtesy of the staff (as visible in gestures).
Also perceptible is the noise level and the style of music, if any.

The chief variable to be predicted is the overall food quality of the restaurant.
This comprises such features as taste, texture, appearance, portion sizes, correct-
ness (consistency with traditions), nutrition and hygiene. Since it is certainly
possible for a restaurant to have beautiful decor, cleanliness and good atmo-
sphere, and yet have food which tastes terrible and is unhealthy, the inferences
we make about the food from the cbservations can be probabilistic at best. Since
it is difficult to know the statistical relationships among these variables with any
degree of accuracy, the results cannot even represent true probabilities. All we
can guarantee is this: our system will embody the judgment of an imaginary
“oxpert.”

Since each input variable (e.g., decor) can conceivably affect our estimate of
the food quality, we shall design a network in which the various observations
are inputs and the final node corresponds to overall food quality. In order to
simplify the relationships between inputs and output to the point where we can
rationally model them, we introduce a number of intermediate variables. The
relationships between inputs and intermediates, between intermediates and other
intermediates, and between intermediates and output(s) are easier to understand
and describe than the relationship from inputs directly to output(s). In our case,
the inputs are “primary evidential variables” (e.g., decor, etc.), and we introduce
a set of four “lumped evidential variables” as intermediates: popularity, elegance,
artistry and cleanliness. These are predicted directly from the primary evidential
variables. The lumped evidential variables are then used, in our case, to predict
seven “predicted component variables” which finally are used to predict the
output, overall food quality.

Our nine primary evidential variables have the following significance:

1. DECOR is high when decor is tasteful.

2. TABLE_SETTING is highest when the tables are nicely set with
respectable-looking dishes, silverware, glasses, table cloth, and flowers or
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candles set out.

. SURFACE_CLEANLINESS is high when tables, dishes, floors, etc., seem

to be clean.
AIR is high when the air looks or smells clean and fresh.

SOUNDS is high when there is little noise, and any music playing is taste-
ful.

. CLIENTELE is high when there are a good number of reasonably re-

spectable people present in the restaurant and few or no rowdies or va.
grants.

MENU is high when there is a reasonable variety of dishes available {not,
too many, as this would suggest the use of inferior ingredients or methods)
the menu is clean, attractive, and tasteful.

]

. PRICES is high when the listed prices seem reasonable for the dishes they

represent.

SERVICE is high when the restaurant staff appears clean and attractive,
courteous, and adequate for the number of people dining.

A diagram showing all the nodes and arcs of one probabilistic inference net-
work for this problem is shown in Fig. 7.15. The prior probabilities on nodes are
not shown, but are given in the section on implementation, as are the A and X
values for each arc.

7.5.3 Implementation

We now describe the LISP functions and other structures that constitute an
implementation for the network we have just described.

; INFNET.LSP

; A LISP implementation of an INFerence NETwork that

: uses subjective-Bayesian updating of certainty values.
; Given values of particular evidential variables,

; the system determines the certainty value of several

; intermediate variables and a summary variable.

i The problem solved is the prediction of food quality

; in a restaurant:

;  The "Traveller’s Restaurant Selection Problem”

The functions ODDS and PROB are used to convert between probability
values (certainty values) and odds.
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Primary Evidential Lumped Evidential Predicted Component Predicted Summary
Variables Variables Variables Variable
DECOR G B POPULARITT TASTE
TABLE SETTING o TEXTURE
b ELEGAMNCE APFRARANCE
GLEANLINESS
AlR O GOANTITY Om“nﬂl.l.
QUALITY
SOVHLD'E o/ b ARTISTRY CORRECTNESS
CLIENTELE NUTRITION
MENU (9 o CLEANLIFESS & & HYGIENE

i Figure 7.15: Probabilistic inference network for the Traveller’s Restaurant Se-
| lection Problem.

: ; ODDS takes a probability value and returns an odds value:
(DEFUN 0ODDS (PROB)
(QUOTIENT PROB (DIFFERENCE 1.0 PROB)) )

? ; PROB is the inverse of 0DDS:
- (DEFUN PRCB (0DDS)
(QUOTIENT ODDS (ADD1 ODDS)) )

1 The following function helps create the representation of the network by
f entering values onto the property list of the atom (node) being defined. The
E form of the argument list is this: L = (atomn prior-probability current-probability
- arc-ezpression). The fourth argument to DEFINE_NODE is an “arc expression,”
i which describes the incoming arcs and how their effects are to be combined.

i ; Each node of the inference network is represented by an
¥ 5 atom with its property list. The next function helps
; ; to set up these representations.

¢ (DEFEXPR DEFINE_NODE (L)

j  (PROG (ATOM_NAME)

(SETQ ATOM_NAME (CAR L))

(PUTPROP ATOM_NAME (CADR L) °PRIOR_PROB)

(PUTPROP ATOM_NAME (ODDS (CADR L)) ’PRIOR_ODDS)
(SETQ L (CDDR L))
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(PUTPROP ATOM_NAME (CAR L) ’CURRENT_PROB)
(PUTPROP ATOM_NAME (ODDS (CAR L)) ’CURRENT_ODDS)
(PUTPROP ATOM_NAME (CADR L) ’*ARCS} ) )

The following functions allow abbreviation of the operations for accessing prop-
erty lists and accessing components of arc descriptions.

(DEFUN CURRENT_PROB (N) (GET N ’CURRENT_PROB))
(DEFUN PRIOR_PROB (N} (GET N 'PRIOR_PROB))
{DEFUN CURRENT_ODDS (N) (GET N ’CURRENT_ODDS))
(DEFUN PRIOR_ODDS (N) (GET N ’PRIDR_ODDS))
(DEFUN SUFFICIENCY (ARC) (CADR ARC))

(DEFUN NECESSITY (ARC) (CAR (CDDR ARC)))

Now the inference network is represented, beginning with the nodes for the
primary evidential variables.

; Here we set up nodes for the Primary Evidential Variables:
(DEFINE_NODE DECOR 0.5 0.9 ())

(DEFINE_NODE TABLE_SETTING 0.5 0.8 {))

(DEFINE_NODE SURFACE_CLEANLINESS 0.8 0.8 ())

(DEFINE_NODE AIR 0.6 0.6 ())

(DEFINE_NODE SOUNDS 0.5 0.5 ())

(DEFINE_NODE CLIENTELE 0.5 0.9 ())

(DEFINE_NODE MENU 0.5 0.5 ())
(DEFINE_NODE PRICES 0.5 0.9 ())
(DEFINE_NODE SERVICE 0.3 0.9 ())

The first node, DECOR is defined with a prior probability of 0.5 and a current
probability of 0.9. Since there are no incoming arcs for input nodes such as this,
DECOR’s arc expression is empty.

; Here are declarations for the Lumped Evidential Variables:
(DEFINE_NODE POPULARITY 0.5 0.6 (INDEP

(ARC: SQUNDS 1.5 1.0)

(ARC: CLIENTELE 1.0 0.24) ))
(DEFINE_NODE ELEGANCE 0.5 0.5 (INDEP

(ARC: DECOR 2.0 0.5)

(ARC: TABLE_SETTING 1.0 0.74)

(ARC: SOUNDS 1.5 0.74)

(ARC: CLIENTELE 1.¢ 0.5)

(ARC: MENU 1.24 0.74)

(ARC: PRICES 1.24 0.74)

(ARC: SERVICE 1.0 0.5) ))
(DEFINE_NODE ARTISTRY 0.5 0.9 (INDEP

(ARC: DECOR 1.0 0.5)

1
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(ARC: TABLE_SETTING 1.0 0.5)

(ARC: MENU 1.5 0.74)

i (ARC: SERVICE 1.0 0.5) ))

[ (DEFINE_NODE CLEANLINESS 0.7 0.7 (INDEP

3 (ARC: SURFACE_CLEANLINESS
1.5 0.2)

(ARC: AIR 1.5 0.5) ))

I Since the nodes corresponding to lumped evidential variables are not input nodes,
[ they have arc expressions which are non-empty. In the case of the node POPU-
. LARITY, the arc expression contains two arcs, represented by the subexpressions
E (ARC: SOUNDS 1.5 1.0) and (ARC: CLIENTELE 1.0 0.24), respectively, and
k the atom INDEP indicates that the effects of these two arcs are to be combined
| with the method for independent influences. That is, SOUNDS and CLIEN-
L TELE are to be considered as independent pieces of evidence as far as their
b influence on POPULARITY is concerned. The first of these two arcs, (ARC:
f SOUNDS 1.5 1.0), is represented as a list of four elements: the atom “ARC.”
j identifies the arc expression as a simple one (not compound), representing an
[ arc rather than a group of arcs and how they are to be combined; the atom
£ SOUNDS is the name of node from which the arc emanates; the first number
 is the sufficiency factor associated with the arc—if the current probability of
} SOUNDS were 1.0, then the odds on POPULARITY would be multiplied by
1.5; the second number is the necessity factor.

¥ ; Here are node definitions for the Predicted Component Variables:
£ (DEFINE_NODE TASTE 0.6 0.6 (INDEP
- (ARC: POPULARITY 1.5
3 (ARC: ELEGANCE 1.5 0.
t: (DEFINE_NODE TEXTURE 0.6 0.6 (INDEP
: (ARC: POPULARITY 1.5 0.7)
A (ARC: ELEGANCE 1.0 0.5) ))
[ (DEFINE_NODE APPEARANCE 0.5 0.5 (INDEP
1 (ARC: ARTISTRY 3.0 0.4}))
f (DEFINE_NODE QUANTITY 0.5 0.5 (INDEP
] (ARC: POPULARITY 1.5 0.5)))
i (DEFINE_NODE CORRECTNESS 0.5 0.5 (INDEP

(ARC: ELEGANCE 1.0 0.7)))
(DEFINE_NODE NUTRITION 0.6 0.6  (INDEP

(ARC: POPULARITY 1.1 O.T)
! (ARC: ELEGANCE 1.8 )

(DEFINE_NODE HYGIENE 0.8 0.8 (INDEP

(ARC: CLEANLIHESS 1.0 0.1)))

; Here is the Predicted Summary Variable node:
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(DEFINE_NODE OVERALL_FDOD_QUALITY 0.5 0.5
(INDEP
(AND
(ARC: TASTE 3.0 0.3)
{ARC: TEXTURE 1.0 0.5) )
(AND
(ARC: APPEARANCE 1.0 0.3)
(ARC: CORRECTNESS 1.3 0.8) )
(ARC: QUANTITY 1.2 0.8)
{ARC: NUTRITION 1.0 0.3)
(ARC: HYGIENE 1.5 0.2) ))

The function UPDATE_PROB below uses the formula on page 261 to com-
pute an appropriate current probability of H using a piecewise-linear interpola-
tion function.

; compute P(H | E’) for a single arc.
(DEFUN UPDATE_PROB (H ARC)
(COND
((GREATERP (CURRENT_PROB (CAR ARC))
(PRIOR_PROB (CAR ARC)) )
(REPORT _PROGRESS ’SUPPORTIVE)
(PLUS (PRIOR_PROB H)
(TIMES (QUOTIENT
(DIFFERENCE
(PROB (TIMES (SUFFICIENCY ARC)
(PRIOR_ODDS H) ))
(PRIOR_PROB H) )
(DIFFERENCE 1.0 (PRIOR_PROB (CAR ARC))) )
(DIFFERENCE
(CURRENT_PROB (CAR ARC))
(PRIOR_PROB (CAR ARC)) ) )} )} )
(T (REPORT_PROGRESS ?INHIBITIVE)
(PLUS (PROB (TIMES (NECESSITY ARC) (PRIOR_ODDS H)))
(TIMES (QUOTIENT
(DIFFERENCE
(PRIOR_PROB H)
(PROB (TIMES (NECESSITY ARC)
(PRIOR_ODDS H) )) )
(PRIOR_PROB (CAR ARC)) )
(CURRENT_PROB (CAR ARC)) ) )} )} ) )

The following function helps to show the progress of computation through
the inference network.

; if REPORTING is not NIL then describe progress of updating:
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3 (DEFUN REPORT_PROGRESS (SUPP_INHIB)
. (COND ((NULL REPORTING) NIL)
(T

(PRINT (CONS SUPP_INHIB
(APPEND  ’ (PROBABILITY UPDATING FOR NODE:)

(LIST D)

» (ALONG ARC:)

(LIST ARC)

» (WITH PRIOR ODDS)

(LIST (PRIOR_ODDS H)) ) ))
(PRINT (APPEND ’(PRIOR AND CURRENT PROBS OF E ARE:)

(LIST (PRIOR_PROB (CAR ARC))
(CURRENT_PROB (CAR ARC))) ))

) )

In order to combine the effects of independent evidence, it is necessary to
E lmow the effective lambda values along each incoming arc, so that these can
' be multiplied to get an overall lambda value. The next function determines an
E effective lambda value.

| ; Determine the odds updating factor alomg the ARC specified,
b . given the prior and current probabilities and odds for

N the predecessor node, the priors for the node H, and the

f ; SUFFICIENCY and NECESSITY values along the arc.

i (DEFUN EFFECTIVE_ARC_LAMBDA (ARC)

¥ (QUOTIENT (ODDS (UPDATE_PRUB H ARC))

(PRIOR_ODDS H) ) )

The next function actually multiplies the effective lambda values together in
& order to combine their effects.

¢ : Determine the updating factors for all arcs coming into H
. and multiply them to get an overall odds updating factor.
: This scheme assumes that the arcs are treated as if their
i ; influences were independent.
3 (DEFUN COMBINE_INDEP_LAMBDAS (ARC_EXP)
(APPLY (FUNCTION TIMES)

(MAPCAR (FUNCTION EVAL_ARC_EXP)

(CDR ARC_EXP) ) ) )

"j The function which follows evaluates a conjunctive arc expression, returning the
" smallest of the effective lambda values of the arc subexpressions.

(DEFUN COMBINE_CONJUNCTIVE_LAMBDAS (ARC_EXP)
(APPLY (FUNCTION MIN)
(MAPCAR (FUNCTION EVAL_ARC_EXP)
(CDR ARC_EXP) ) ) )
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In a similar fashion, the next function evaluates a disjunctive arc expression. It
returns the largest of the effective lambda values of the arc subexpressions.

(DEFUN COMBINE_DISJUNCTIVE_LAMBDAS (ARC_EXP)
(APPLY (FUNCTION MaX)
(MAPCAR (FUNCTION EVAL_ARC_EXP)
(CDR ARC_EXP) ) ) )

The function UPDATE_NODES updates the current odds and probabilities
of all nodes on the list NODES (passed as an argument). The order of nodes on
the list is important: they must be topologically sorted so that if there is an arc
from A to B in the network, then either A precedes B in the list, or A does not
appear in the list.

(DEFUN UPDATE_NODES (NODES)
(COND ((NULL NODES) NIL)
(T (UPDATE_NODE (CAR NODES))
(UPDATE_NODES (CDR NODES)) ) ) )

i The function EVAL_ARC_EXP evaluates an arc expression, finding
; an effective odds updating factor that takes effects of all
; the arcs in the expression into account.
(DEFUN EVAL_ARC_EXP (ARC_EXP)
(COND ((EQ (CAR ARC_EXP) ’ARC:)
(EFFECTIVE_ARC_LAMBDA (CDR ARC_EXP)))
((EQ (CAR ARC_EXP) ’INDEP)
(COMBINE_INDEP_LAMBDAS ARC_EXP) )
((EQ (CAR ARC_EXP) ’AND)
(COMBINE_CONJUNCTIVE_LAMBDAS ARC_EXP) )
((EQ (CAR ARC_EXP} 'OR)
(COMBINE_DISJUNCTIVE_LAMBDAS ARC_EXP) )
(T (PRINT ’(ILLEGAL ARC EXPRESSION:)) (PRINT ARC_EXP)) } )

The following function causes one node’s values to be updated.

(DEFUN UPDATE_NODE (H)
(PROG KIL
(PUTPROP H
(TIMES (PRIOR_ODDS H)
(EVAL_ARC_EXP (GET H *ARCS)) )
' CURRENT _0DDS)
(PUTPROP K (PROB (CURRENT_ODDS H)) ’CURRENT_PROB)
(PRINT (APPEND ’(UPDATED VALUE FOR NODE:)
(LIST H)
' (I8:)
(LIST (CURRENT_PROB H)) )) ) )

1

1
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1 In order to try out this inference network conveniently, the following TEST
. fanction is helpful:

. Make a pass through the non-input nodes,
; updating their probabilities:
(DEFUN TEST ()
(UPDATE_NODES ’ (POPULARITY ELEGANCE ARTISTRY CLEANLINESS
TASTE TEXTURE APPEARANCE QUANTITY
CORRECTKESS NUTRITION HYGIENE
OVERALL_FOOD_QUALITY)) )

Finally, to help experiment with the program, a function is offered which
makes it easy to interactively change the current probability (and, simultane-
ously, the current odds} of a node.

: To set the current probability and odds for a node,
. use a form such as (SP DECOR 0.9) = (SP node prob)...
| (DEFEXPR SP (L)
(PROG NIL
(PUTPROP (CAR L) (CADR L) ’CURRENT_PROB)
(PUTPROP (CAR L) (ODDS (CADR L)) ’CURRENT_ODDS) ) )

2 Jn order to start a trial run, the following can be typed:

(SETQ REPORTING T)
(TEST)

7.6 The Dempster-Shafer Calculus
7.6.1 Motivation

The use of Bayes' rule for manipulating measures of belief is often regarded as
inappropriate, because belief measures should not have to behave like probabili-
P ties. For example, suppose we let A represent the proposition “Acme computers
b are intelligent.” The axioms of probability require that P(A) + P(-A) = 1.
k. Suppose that some person, Sam, doesn't even know what a computer is. We
L can’t really say that Sam believes the proposition if he has no idea what it even
k. means. Neither is it fair to say that Sam believes that Acme computers are not
& intelligent. Denoting Sam’s degree of belief by B(A), it is reasonable to assign
& both B(A4) and B(—A) a value of 0.

1 The Dempster-Shafer calculus is a system for manipulating degrees of belief
f  which is more general than the Bayesian approach, and does not require the
assumption that B{A)+ B(~A) = 1. Because this system distinguishes the state
 of ignorance about a proposition from the relative weight afforded the proposition
versus its negation, the Dempster-Shafer calculus is somewhat more complicated
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than the Bayesian approach. However, it allows a fairer, more precise kind of
inference from uncertain evidence.

7.8.2 Definitions

As does the theory of probability, the Dempster-Shafer calculus deals with the
possible values of an unknown variable, such as the two values heads and tails
for the concealed face of a tossed coin. The set of possible values for a given
variable is called the universe or the frame of discernment, and is usually (but
not always) considered to be finite. For example, in the case of the rolling of an
ordered pair of dice, the universe contains 36 elements.

Each sybset of the universe corresponds to a proposition. Let A be a subset of
a universe U. Then the proposition corresponding to A4 is “The unknown value is
an element of A.” To illustrate, if A is the set of rolls of the dice that total 7, then
the proposition is that the roll is one of those six whose total of dots is 7. Since
the correspondence between subsets and propositions is so tight, we will treat
subsets as if they were propositions. Thus the set of all propositions is P(U/),
the power set of U/. This includes the proposition I/ which may be considered
certainly true, and the proposition #, which may be considered certainly false.

Let m: P{U} — [0,1] be a function satisfying the two conditions:

m{®) = 0,

Y m(4) =1

ACU
Here m maps each proposition to a value in the range zero to one; it maps the
empty-set proposition to zero, and the sum of all the values of m is one. We call
such a function m a basic probability assignment, and it may be considered as a
representation of some uncertain evidence regarding the value of some variable
X which takes values in U. Some evidence, represented by F C U, may be
regarded as certain if m{F) = 1 and for all 4 C I/ such that A # F, m{A) =0,
then the evidence claims that the value of X is in F with certainty. Only if F
were a singleton would we know the value of X precisely. Note that m(A) is not
the value of the proposition “the value of X is in A,” but is the probability mass
ascribed to the particular subset A4 in P(I). Each subset F such that m(F) >0
is called a focal element of P(17),
Another function, called a belief function, Belief : P(U) — [0, 1], is defined
in terms of the basic probability assignment m.

Belief(4) = 3 m(B)

BCA

and

That is, the degree of helicf associated with the subset A of I/ is the total of
all the probability mass associated with A and its subsets. It is not hard to sco
that Belief(A) must be in the range [0.1) since $° 5, m(B) = 1. by definition
of m. ”

Y
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3 Having defined the belief function, we can also define the doubt and plausi-
¥ pility functions:

Doubt{A4)
Plausibility( 4)

Belief(—-A4)
1 — Doubt{A4)

The degree of doubt in A is thus defined as the degree of belief in the com-
E plement of A. The plausibility of A is 1 minus the degree of doubt in A. The

. - plausibility function is sometimes called the upper probability function.

Belief and plausibility functions have the following relationships:

Belief ()

0 Plausibility(®) = 0
Belief (I/) -

= 1 Plausibility(U) 1
Plausibility(A) > Belief(A)
Belief(A) + Belief(-4) < 1
Plausibility(4) + Plausibility(-A4) 1

:j Also, if A C B then the following two inequalities hold:

v

Belief(A} < Belief(B)

Plausibility(4) < Plausibility(B).

£ Here we can see that the Dempster-Shafer calculus allows the representation of
[ ignorance since Belief(A4) = 0 does not imply Doubt(A4) > 9, even though
g Doubt(A) =1 does imply Belief(A4) = 0.

It is sometimes helpful to think of Belief{A4) as a measure of a mass of
g probability that is constrained to stay somewhere in A. The basic probability
E assignment m further specifies how the probability mass is distributed. If addi-
' tional evidence is obtained, a new probability assignment comes into play, and
k- a new value of Belief(A) may be obtained. Dempster’s rule of combination is
b used to obtain the new value.

' 7.6.3 Dempster’s Rule of Combination

i Suppose that we have two pieces of uncertain evidence relevant to the same
E universe U, and that they are represented hy basic probability assignments m,
E and m;, respectively. We wish to combine these pieces of evidence into a single
| new piece. The orthogonal sum, m; @ mas, is given by

Y m(X)my(Y)
Xn¥ =4

1= 3 m(X)ma(Y)
XNy =9

[ @ moj(4) =

| whenever 4 # 0. We define [m; & myl(0) to be zero so that the orthogonal
f sum remains a basic probability assignment. The orthogenal sum is well defined
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provided that the “weight of conflict” is not equal to 1; that is, provided
Y mX)my(Y) #1

XnYy=8

The denominator of the fraction above is sometimes called 1/K and is used ag
a normalization factor. If 1/K is zero, then the weight of conflict is equal to 1,
my and ms are said to be flatly contradictory, and m; & mo is undefined. The
formula for computing the orthogonal sum is also known as Dempster’s rule of
combination.

Let us consider a simple numerical example that illustrates Dempster's rule
of combination. Suppose that the weather in New York at noon tomorrow is
to be predicted on the basis of the weather there today. We assume that it
is in exactly one of the three states: snowing, raining, or dry. This frame of
discernment (universe) is represented by U = {S, R, D}. The power set of I/
therefore contains eight elements. Let us assume that two pieces of uncertain
evidence have been gathered:

1. The temperature today is below freezing.
2. The barometric pressure is falling; i.e., a storm is likely.

These pieces of evidence are represented by the two basic probability as-
Signments Mireeze aNd Mstorm in the table of Fig. 7.16. By definition, neither
Mfreeze NOT Mgrorm can place any probability mass in the proposition 0. Mireeze
distributes its mass among the remaining elements of P(U/), with extra weight
on {8}, {S,R}, and {S, R, D}. The function maem also distributes its weight
over all the non-empty subsets of U, but it gives greatest weight to {S, R} and
some emphasis to { R}.

Let myoth represent the basic probability assignment that represents the com-
bined evidence of Myreeze a0 Migtorm. Assuming that myeeee and Mstorm TEPre-
sent items of evidence which are independent of one another, myo, is given by
Dempster’s rule of combination: mueth = Mireeze D Metorm. The values obtained
by computation show that 1o, assigns more weight to each of the elements
{S}, {R}, and {D} than either of the starting basic probability assignments
does. However, each of {S} and {R} has gained substantially more weight than
{D} has. The other elements of P(U) have net losses in weight.

The degree of belief in proposition {$, R} based on the combined evidence
(0.2824 0.282+0.180 = 0.744) is substantially higher than that based on Mireeze
0.5 or based on Mgtorm, 0.6. The degree of belief in {S,R, D} is, of course,
unchanged and equal to 1.

7.6.4 Simple Evidence Functions

Because of the high computational cost of applying Dempster's rule of com-
bination to arbitrary basic probability assignments, researchers have identified
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0 [{ST_[{rY [ (D} [{S.R}[{S.D}[{R,D}[{S R D}
Tibere | 00102 (01|01 {02 |01 |01 [02
Toom | 00|01 102 |01 (03 [0 |01 |01
Mbowt, | 0.0 | 0.282 | 0.282 | 0.128 [ 0.180_| 0.051 | 0.051 | 0.026

Figure 7.16: Basic probability assignments for an example illustrating Demp-

[ ster’s rule of combination.

. restricted classes of basic probability assignments that are useful but easy to
" work with.

Let m be a basic probability assignment mapping some F C U to the value
s, mapping U to 1 — s, and mapping all other subsets to 0. Then we say that m
corresponds to a simple support function with focus F.

Suppose that m; and m; each correspond to a simple support function (over
¥ the same universe U/) with the same focus F. Then mz = m) @ my also cor-
. 1esponds to a simple support function with focus F. If sy and sz are the val-
B ues assigned to F' by m; and ma, respectively, then mj assigns F' the value
' 81 + 82 — 5152, and it assigns U the value (1 — s1)(1 ~ 52).

Y my, ma, ..., my correspond to simple support functions (not necessarily
with the same foci), then m; ©@m3 & - - - dmy. corresponds to a separable support
i function, provided m; @ mg @ - - ® ™k exists. Here, each basic probability as-
i signment must be over the same universe, even though the foci may be different.
Let us now consider the problem of accumulating some uncertain evidence
P for and against a particular member u of U. Assume that my,mq,...,my
- correspond to simple support functions with common focus {u} and that
Myy1,Mey2, ..., Mesi correspond to simple support functions with common
focus U — {u}. Thus my,ma2,...,my represent evidence in favor of u while

M1, MEt2, - - -, Miys Tepresent evidence against u. We say that m =m @---@
" M4 corresponds to a simple evidence function. There are only three elements
in P(U) to which m may assign non-zero values: {u},U —{u}, and U. The value
p = m({u}) is called the measure of support for u. The value ¢ = m{U - {u}) is
called the measure of evidence against x, and the value r = m{U) is the measure
of the residue. To compute p, ¢, and r from sy, 82, .. ., 841, we first compute f,
which is the value assigned to {u} by mger = mydme®- - -Bmy, and we compute
a, which is the value assigned to U — {u} by Magainst = M1 PMpi2D- - - BMpyr.
We compute a factor K, which takes into consideration the conflict in the evi-
dence, using the formula

_ 1
T 1—af

K

Then we can easily obtain p, ¢, and r:
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p = Kf(l-a)
¢ = Ka(l-f)
r = K(1-£f)(-a)

This value of K assures that p+c+r = 1.

Clearly, it is computationally straightforward to obtain p, ¢, and r for simple
evidence functions. The assumption we had to make for the simplification is
that each piece of evidence either bore directly upon a particular member u of
the universe or it bore against it. The computations would be more complicated
if the foci of the pieces of evidence were not so simple as a singleton set and its
complement but were a number of overlapping subsets of U.

The Dempster-Shafer calculus provides a framework in which one can under-
[stand various more restricted computational systems for combining weights of
evidence and hypotheses. It is very general, and if one does not impose some
restrictions on the probability assignments one uses, the computational cost for
combining weights of evidence by Dempster’s rule of combination is a problem.
Some restrictions have been mentioned that appear to be quite useful.

7.7 Bibliographical Information

A good reference on the theory of probability is [Feller 1968]. The material
presented in this chapter is taken primarily from the work on PROSPECTOR as
described in the papers by Duda and his coauthors. Another well-known system
that uses probabilistic reasoning is MYCIN and it is described in [Shortliffe 1976].
The Bayesian approach developed for PROSPECTOR has its roots in Thomas
[Bayes’ original work [Bayes 1763]. For an introduction to decision theory, see
[Raiffa 1968].
The rigorous non-Bayesian system for manipulating degrees of belief, known
Dempster-Shafer theory, is described in [Shafer 1976] and is summarized
n [Barnett 1981). It grew out of [Dempster 1967, 1968]. A computationally
ractable variation of Dempster’s rule of combination is deseribed in [Reynolds
t al 1986]. A variation of the Dempster-Shafer system that incorporates a hierar-
hical approach is presented and illustrated in a medical-expert-systems context
n [Gordon and Shortliffe 1985]. A brief, mathematically-unified treatment of
pproximate reasoning methods may be found in [Prade 1983]. The elements of
zzy logic may be found in [Zadeh 1965] and [Kandel 1982); the latter contains
n extensive bibliography of “key references in fuzzy pattern recognition” with
3,064 entries.
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Exercises

1. Compute the probability of drawing a card that is either an ace or a spade,
from a normal shuffled deck of 52 playing cards.

2. Describe the difference between the probability of an event and someone’s
degree of belief in a statement.

3. Assume that the probability of a farmer having an apple tree is p;, and
assume that the probability of a farmer having a cherry tree, given that
the farmer has an apple tree, is p;. What is the probability that a farmer
has both an apple tree and a cherry tree?

4. Suppose that P — Q, and that the probability of P is 1. What is the
probability of Q7 Now suppose that the probability of P is 0.5. What
might the probability of Q be? Justify your answer, but describe any
anomalous aspect of this situation.

3. Consider the fuzzy logic rules of Fig. 7.3 on page 248 and the propositional
caleulus formula,
X = (YVZ)

Taking P(X} = 0.5, P(Y) = 0.1, and P(Z) = 0.2, compute the “proba-
bility” for the formula using

(a) the rules in the second-to-last row of the chart, and
(b) the rules in the bottom row of the chart.

6. Suppose that a three-valued logic is to be used for a type of “slightly-fuzzy”
inferences. The three values that may be attributed to a statement are T
(true), M (maybe), and F {false). Design a truth table for each of —, A,
and V which gives the truth values for logical combinations of statements
in this system. Your system should be consistent with the propositional
calculus and you should be able to justify your design.

7. Describe the characteristics of a problem domain for which probabilistic
inference networks are appropriate.

8. Suppose the following;
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9.

10.

11.

12.

13.

14.

15.

(a) the prior probability that it will rain (tomorrow) in Seattle is 0.8;
(b) the probability that Canada geese are on Lake Washington given that
it will rain tomorrow is 0.02; and

{c} the probability that Canada geese are on Lake Washington given that
it will not rain tomorrow is 0.025.

Compute, using Bayes' rule, the a posteriori probability that it will rain
tomorrow, given that there are Canada geese on Lake Washington.

(a) At a simulated horse race the odds are 10 to 1 in favor of Infer-
ence Engine. What is the probability with which Inference Engine is
expected to win?

(b) At the same event, Bandwagon Joe, who always bets at double the
odds on any horse rated better than fifty-fifty, places a bet. What is
the probability corresponding to his bet on Inference Engine?

(¢} If Inference Engine runs in all races Joe bets on, and he bets $20
on each race, what is the expected number of races Joe can bet on,
assuming he starts with $200? (On each race, if Inference Engine
wins, Joe receives $1, but if Inference Engine loses, Joe loses $20.)

Referring to Fig. 7.4, we note that certain useful probability values are
not given explicitly.

(a) Give formulas that provide values of P(S|-H;), P(S|-H2) and
P(S]~H3) from values that are given in the table.

{(b) Compute P{S|-H,) for the case §; = F, S, =F, and S3=F.
Using the inference network for the automobile repair problem, determine
the values of P(H;|$),i = 1,...,5 and P{C;|5) for the cases:

(a) S, =F,i=1,..,4.

{b) Sl = F,Sz = T,S3 = T,S4 =T.

Let O(H) = 3, and let the sufficiency factor, X, for H given E be 2.
Compute O{H|E) and P(H|E).

Give a recursive definition for “arc expressions” and describe their repre-
sentational capability, as they are used in the inference network for the
Traveller’s Restaurant Selection Problem.

Examine an execution of the test procedure on page 271 for the LISP
inference network. Determine the node(s) of the net whose current value
changes the most, as a result of the updating.

Design and implement a probabilistic inference network for one of the
following kinds of problems:
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16.

17.
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(a) selecting a college elective course that is likely to be satisfying,
(b} choosing the menu for a dinner party,

(¢} planning a vacation.

Include at least 8 nodes in 3 levels in your network. You may employ
some of the functions given in the network for the traveller's restaurant
selection problem. Give a diagram of your network. Show two runs that
illustrate how changing the input values leads to a change in the output
value(s).

Using the values of Mreeze, Mstorm, and Mpegp in Fig. 7.16, compute the
following:

(a) Belief({S, D}) based upon meeeze.

{b) Belief({S, D}) based upon msiorm.

(c) Belief({S, D}) based upon myg,.
)

(d) the doubt that there will be snow tomorrow, given both that it is
freezing and that the barometric pressure is falling.

(e) the plausibility that there will be snow tomorrow, given that it is
freezing and the pressure is falling.

Suppose that you just purchased a birthday present for a business associate
whom you do not know well but wish to please. You decided to buy a
box of nice chocolates. In your mind, you set up a frame of discernment
{L, D}, where L is the outcome that the associate likes the present and
D that he/she dislikes it. Just after you arrive at the birthday party, you
learn that the guest of honor likes gourmet food. Your hopes are raised
that the birthday person will like your gift. However, you then overhear
someone saying that the birthday person is allergic to chocolate. Your
hopes fall.

(a) Make up values for two basic probability assignments, Mgourme, and
Mallergic that describe the separate effects each of these bits of evi-
dence would bear on your belief in I or I.

(b) Explain your choice of values in part a.

{¢) Apply Dempster’s rule of combination to obtain the values of a func-
tion Maltergic +gourmet that describes the combined effects of the evi-
dence.

(d) Explain your results for part c.
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18. The presidential administration of Lower Slobovia is found to have com-
mitted an illegal act. The president either knew about the act and its
illegality or he did not. Two independent witnesses have given testimony,
and a legal Al expert has converted their testimony into basic probability
assignments over the powerset of a binary frame of discernment:

@ | president knew | president didn't | either
Witness X | 0.0 0.2 0.0 0.8
Witness Y | 0.0 0.3 0.0 0.7

(a) Compute the degree of belief for witness X that the president knew,
the doubt that the president knew, and the plausibility that the pres-
ident knew.

{b) Compute the orthogonal sum of the assignments for witness X and
witness Y.







Chapter 8

Learning

8.1 Introduction

8.1.1 Overview

Machine learning is the area of Al that focusses on processes of self-improvement.
Information-processing systems that improve their performance or enlarge their
knowledge bases are said to “learn.” This ability is present in hmnans and many
other living organisms, and it would clearly have value in computer systems.
The primary objective of most research in machine learning has heen to gain a
better understanding of learning itself. Another objective of machine learning is
to automate the acquisition of knowledge. Knowledge-based systems are expen-
sive to cunstruct because the process of extracting knowledge from experts and
representing it in a form useful for inference is slow and requires the services of
both the domain expert {e.g., a physician) and the Al specialist. By getting a
machine to direct the knowledge transfer process and to construct its internal
representations itself, one hopes to reduce the cost of new expert systems and
praovide efficient means for the systems to continmally improve themselves.

Techniques for machine learning may be broadly classified as either numerical
approaches or structural approaches {or a combination of the two). The numer-
ical approaches inclnde the kind of algorithm which automatically determines a
threshold that distingunishes apples from bananas ou the basis of their lengths, or
which adjusts the coefficients of an evaluation function in a program that plays
checkers.

Structural approaches are concerned with relationships. concepts. sets, trees
and graphs. and they place relatively small importance on numerical values. One
structural approach to learning is the use of heuristic search to explore a space of
concepts in elementary number theory, Another structural approach is the use
of combinatorial optimization techniques for the discovery of classification rules
for classes of objects having various combinations of features (e.g.. for classifying

Dy is]
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different hybrids of wheat). where it ii=. the presences and absences of various
attributes that matter.

There are many different levels of learning. the lowest of which is simply the
acquisition of raw data, analogous to sormeone’s going out and buying a library
and then claiming to have a body of knwra. Ledge in his honse. At a slightly higher
level is the acquisition of information. Someone who memorizes facts mav be
said to be learning information. At yet A higher and more respectable level ig
acquisition of concepts. together with their interrelations to other concepts.

In this chapter, we begin by defining learning as an improvement in
information-processing ability that resiilts from information-processing activity,
After a discussion of inductive and dedwective transformations of information.
we describe methods of machine learnimg based upon the notion of classification.
This includes the automatic determination of classes or categories of objects, and
also the automatic discovery of rules for classifying objects into classes. Next is
a discussion of the principles of self-guided conceptualization systems. Such sys-
tems employ heuristic search to explore some of the concepts and relationships
that can be automatically created in domains such as mathematics. Finally a
LISP program, “PYTHAGORUS" is presented which explores a space of con-
cepts having to do with geometric figures. Several of the problems of creating
such a program are discussed.

8.1.2 What Learning Is

When a system learns, it improves its knowledge or its ability to perform one
or more tasks!. The improvement comes about as a result of information-
processing activity. The improvement may takc many forms: enlargement of
a knowledge base; reduction in size of a kmowledge base through a refinement of
existing knowledge; faster solution of problems through acquisition of heuristics
or through a reordering of search alternatives: reduction in the space required
to solve a problem through elimination of superfluous data; improvement of the
quality of solutions found; or an increase in the set or class of problems that the
system can solve. However, the improverment is most commonly some sort of
increase in performance.

Learning may come about in many ways. These ways span a spectrum start-
ing with those in which the system plays only a passive role and ending with
those in which the system is self-sufficient. for learning. The svstem may be op-
erated upon: if a program is heavily modlified by a programmer (possibly with
source language editing and/or recompilation). its behaviour could change rai-
cally, but this kind of modification seems analogous to brainwashing or lobotomy.
On the other hand. a system left to its own to learn by actively exploring an

YThis is a “positive” definition of learning.  According to Nilsson, “A learning machine.
broadly defined. is any device whose actions are influenced by past experiences.” Nilsson's
may be considered a neutral definition, since the influence may be good. bad. or uuimportant

(see [Nilsson 1965)).
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enviromuent or a space of concepts may be likened to achild i a Montessori
school withowt teachers, I the middle of the speetrum are svstems that can
accept gridance from teachers or that actively solicit knowledge.

Lot ws now put forth a slightly more formal definition of “learning.” Let P
be an information processing system. Let A be a function that measures the
smorit” of P's computations or state. We say that P learns with respect to Af
over a period [f1.#4). if the value of M{P) at thme 13 is greater than the value
AM(P) at tiane 4y, and the change is a result of P's processing information.

For example, let A A P) be the munber of production riles in P's knowl-
edge Dase. If the number of rules increases between noon Saturday and noon
Sunday. and this increase is a result of P's information-processing activity. then
P learns with vespeet to Al 4. over this period.

Consider the following. somewhat different. example: Let P be a bottle of
wine. and let Afi,q. be a measure of the gquality of the wine, After the wine has
heen stored in a cellar for 5 vears. the value of Af,u.{P) has increased. Has
the hottle of wine learned? This example meets most of the given criteria for
a learning situation. However. we would be stretehing our imaginations to call
the process by which the taste improved an “information processing” activity. It
is certainly possible to view the chemical process inside the hottle as a kind of
computation: however, we would soon be led to the useless conchusion that every
chemical or physical process is an information-processing activity. and further
that any physical process is a learning process if one chooses an appropriate
merit fuction. Therefore we shall reject the improvement in the taste of the
wine as an example of learning.

We often consider learuing to be a monotonic progression from one intellec-
tual or skill level 1o higher ones, However. it is common to speak of forgetting
and mnlearning. processes which appear to he the antithesis of progress. But it
should be kept in mind that several erit functions may be applicable to a single
system. and that as a systein changes. some aspects may inprove while others
degrade. A lnman adult may acquire knowledge over a twenty-vear period, and
also experience a slowing of the rate at which he can recall or use that knowledge.

8.1.3 Inductive vs. Deductive Methods

Machine learning may involve two rather different kinds of information process-
ing: “induetive” and “deductive.” Induetive information processing is concerned
with detennining general patterns. organizational schemes, rules. aud laws. from
raw data. expericnee. or examples.  Inductive computations perform abstrac-
tion. producing generalities from specitics. The creation of models and theories
involves much inductive work.

On the other hand. the determination of specific facts using general rules
is deduetive information processing.  Also. the determination of new general
mles from okl ones is usnally termed “deductive.” From the general rule that
the ciremmferonce of a circle is pi times s diameter. we deduer that a civele
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of diameter 10 has circumference approximately equal to 31.4159. The proof
of a theorem typically involves the use of rules of inference as well as previous
theorems: the theorem is also deduced.

In any given computation, there may be many kinds of information process-
ing: specific to general, general to specific, general to general, general to more
general, ete. We note that “inductive” and “deductive” are broad terms and
that it is often not possible to cleanly classify a computation as “inductive and
not deductive” or the other way around.

When learning is concerned with enlarging a knowledge base, the question
can be asked, “Is the new knowledge put in directly, is it induced from examples
or experience, or is it deduced from existing knowledge?"

8.1.4 Knowledge Acquisition

The question of where a system’s knowledge comes from is an appropriate one
to begin with before examining any processes of knowledge acquisition. One of
many possible classifications of knowledge sources is the following:

1. experts. This includes cases where the programmer is the expert.

2. books or textual files, Although books are usually written by experts, the
process of obtaining knowledge from a book is significantly different from
direct interaction with an expert.

3. direct experience. Although interacting with an expert and reading a hook
are forms of experience, by direct experience we mean interactions with
the objects in the domain of learning (e.g., performing experiments with
chemicals and test tubes), not interactions with teachers or pre-compiled
representations of knowledge.

What are the processes for acquiring knowledge? Some general comments
can be made before any detailed techniques are presented. The process depends
on the source of knowledge and it depends on the representation to be used.
For each representation scheme, we may consider the problems of forming a
knowledge base that adheres to that scheme. Let us consider three casos:

1. production systems: In order to add knowledge to a production system,
two discernible steps are:

¢ to turn new knowledge into rules, and

® to incorporate the new rules into the production system. If one is
lucky, one can just add the new rules at the end of the existing list of
rules. However, one may have to replace old rules with new, or revise
the old and/or new rules if there is any interference among old and
new rules. For example, if the system does non-monotonic reasoning.
it may be necessary to retract old rules.

'."
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2. semantic nets: Adding knowledge to a semantic net typically requires
creating new nodes and links to represent the new knowledge, and then
tying the new structure into the existing network by either adding links,
merging old and new nodes, or both.

3. frames: Expanding the knowledge of a frame-based system may be a sim-
ple matter of filling in some of the empty slots of existing frames. Alter-
natively, it may require creating new slots for existing frames or creating
new frames. The creation of a new frame may just be the creation of a
new instance of an old schema. However. it may require the creation of
one or more new schemata.

An exciting topic currently receiving attention is the development of inter-
active tools for building knowledge bases. Some of these conduct interviews
with experts while others provide visual views of the knowledge base being con-
structed.

Most knowledge acquisition systems are designed to assist in the transfer
of knowledge rather than to create it; that is, they are not designed to induce
facts and general rules from direct experience. If there are experts in the field
of interest, it is usually easier to obtain the compiled experience of the experts
than to try to duplicate the direct experience (of the experts, their teachers, or
others) that gave rise to their expertise.

However, there are cases in which it is appropriate for a computer system to
learn from direct experience. One family of techniques for learning directly from
experience is described in the next section.

8.2 Learning Classification Rules

It is often useful to be able to classify objects according to their properties or the
parts they contain. Consider the sentence, “Any animal with four legs and a tail,
and which barks, is a dog.” This can be represented in the predicate calculus as

animal(r) A quadruped{z) A tailed{z) A barks(x) — dog{z).

This formula is a classification Tule having a conjunction of properties or tests
on the left-hand side of an implication arrow and a classification on the right. A
slightly more general form is exhibited by the following rule:

[flies(x) A minsect(x) A —bat () A animal{x)] v penguin(z) V ostrich{z) — bird(z).

This says that something which flies but is not an insect or bat, but is an animal,
or something which is a penguin or an ostrich, is a bird. The left-hand side of
this rule is a disjunction; in fact, it is in disjunctive normal form (DNF).

If enough suitable examples can be presented in a snitable way, classification
rules such as those above can be determined algorithmically from the examples.
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The derivation of such a rule is an inductive process. since it creates a general-
zation from a collection of specific cases; thus this sort of learning may be called
‘inductive learning.”

B.2.1 General Rules from Fixed Examples

et us explore machine learning of DNF classification rules with a simple exam-
ble. The following describes a hypothetical situation that we will use to explore
bne variety of method for the automatic learning of classification rules.

The night operator of an old-fashioned hatch-style computer system,
one of the early transistorized mainframes of the 1960's, is working
late, as usnal. Tonight, however, the machine exhibits some strange
behavior. It prints a string of five characters, then computes for
several minutes and does it again. After a few more such strings,
a tape drive runs its tape off the end of the reel (this is an error
condition), and the machine halts. Only one customer has left a
job for that night, and five hours of CPU time were requested. The
operator remounts the tape and reruns the job, but these problemns
persist, even though the strings are different each time. The operator
thinks he sees a relationship between some of the strings and the
tape’s unwinding, and he would like to identify those strings that
seem to warn that the tape unwinding is imminent so as to be able
to stop the machine manually before the tape unwinds. After three
halts, he divides the strings revealed into two sets: those from which
the machine continued without problems (the “safe” strings) and
those which immediately preceded the bad behavior {the *warning”
strings).

Let us assume that these are the strings the operator sees:

safe strings

s1 = DECCG warning strings
s$2 = AGDEC un = CGCGF
sz = GCFDC we = DGFCD
s4 = CDFDE wy = ECGCD
85 = CEGEC

How can we mechanically find a rule that will correctly distinguish tlese
farning strings from the safe ones, and also have a hope of performing cor-
eetly on new strings? One method is to begin with a logical description of
he given examples that is so particular that it cannot possibly apply to other
eramples {whether they are positive or negative ones). To do this, let the pred-
rate M{z,n,c) be true if in string r, the n'® character matches c. A thorough
escription of the first positive example of a warning string is

M{un, 1.CY A M(w1.2,G) A M(w),3,C) A My, 4,G) A M{w,.5,F).
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This statement is first generalized by “variablizing.” The constant u represent-
ing the particular example is replaced by x, and we build the formula into a
classification rule. adding an implication connective and a right-hand side.

M{x,1.C) A M(2,2,G) A M{(2.3.C) A M{z,4.G) A M{z,5,F) — warning(z}.

In order to take all the positive examples into account. we create a disjunction
in the left-hand side of the rule, in which each disjunct is a description of one of
the examples.

(M(2.1,C) A M(x.2,G) A M{z,3.C) A M(z.4,G) A M(2.5,F)]
V[Af(z,1,D) A M (x.2.G) A M{z,3,F) A M(x,4,C) A M(x,5, D)
V(2. 1.E) A M(2.2,C) A M(2,3,G) A M{2,4,C) A M(z,5,D)]

—+ warhing(z).

Next, this expression can be gradually simplified and generalized by testing
each atomic proposition starting with M(z,1,C) and dropping it if it has no
diagnostic value. That is, we remove the atom from the left-hand side, obtaining
a new rule. provided that none of the safe strings would be classified as a warning
string by the rule that remains. Thus, our classification rule must stay consistent
with the constraint.

{¥z)|safe(x) — —warning(z}).

After as many atomic propositions have been dropped as possible, the re-
sulting formula is a classification rule that has the possibility of handling (either
correctly or incorrectly) more examples than just those used to obtain it. Like
variablization, this process of dropping conjuncts is another method of general-
ization. In this example, the resulting classification rule is

M{z,5 F)Vv M(z,5, D) — warning(z).

The order in which conjuncts are considered can affect the resulting classifi-
cation rule. For example, considering the atomic propositions from right to left
(instead of left to right) would give us the classification rule

(M(z.1.CYA M{2.2,G)| v (M (x,1,D) A M(2,2,G)] v M(z, 1 E)
— warning(z).

Here the rules obtained by left-to-right and right-to-left scanning have consider-
ably different lengths. Assuming that the most general rule is desired, there is a
tendency to prefer a rule that has the fewest atomic formulas in it. In order to
find the smallest rule, it may be necessary in some cases to try exhaustively to
eliminate conjuncts in each of the possible orders (r! where n is the number of
atomic propositions in the formula). Thus, in the area of inductive learning as
in many other arcas of Al, we find the potential for a combinatorial explosion.
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There are various ways to fight the combinatorial explosion in inductive learn-
ing. One of these is to apply domain knowledge by providing predicates whicl,
measure or test for features, in the hope that the space generated by the comhi-
nations of features will be smaller than the one generated by the combinations
of components of the objects to be classified. For example, we might have the
following contextual knowledge about the mysterious strings and the systemn
producing them:

The program running on the old-fashioned mainframe was written
by a composer of music. It generates random motifs and tries to link
them into melodies.

Some features of motifs are these:

1. tonic(x): true if all notes of z are in {C\,E, G},

2. symmetric(z): true if the motif is a palindrome, and
3. unfinal(z): true if the last note of r is in {D,F}.

If the set of features is discriminating enough, a new formulation may be
made in terms of the features. A characterization is made for each positive
example, and these are disjoined together to produce a classification rule:

[~tonic(x) A —symmetric(z) A unfinal(z)]
V[—tonic(z) A ~symmetric(x) A unfinal(z)|
V[-tonic(z) A —symmetric(z) A unfinal{z)] - warning(z).

Before simplification, this rule has only 9 atemic formulas, compared with the
15 of the formulation in terms of matching the components of the strings. In
Lhis particular case, the three disjuncts may be collapsed into a single one (since
they are identical), before the generalization by elimination of conjuncts even
pegins. The resulting classification rule (after dropping conjuncts) is simply

unfinal(z) — warning(z).

The composer apparently had a fatal error in his program at a point where one
notif is to be linked with another to produce a longer melody.) Interestingly, the
irst of the two classification rules found earlier, that is, M{2,5,F)v M (x,5.D) —
varning(z), is equivalent to the feature-based rule that we just found.
The discovery of a classification rule, such as one of the simple ones we
ave obtained, may be viewed as an optimization; it is the finding of a minimal
fescription of the given positive instances which exeludes all of the given negative
nstances. Such a minimization problem can be attacked with search techniques.
owever, hecause the search for a minimal description can become bogged down
the quagmire of numerous possibilities, heuristics may be necded to reduce
e size of the search space.
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Although we have constructed our classification rules in this example in terms
i of the “warning strings.” we could have used the same procedure on the “safe
L strings.” This would have resulted in different rules. The rules based on the
itive examples are not necessarily equivalent to those based on the negative
¥ examples (the verification of this statement is left as an exercise for the reader).

8.2.2 Incremental Learning

' 1t is interesting to consider the behavior of the conjunct-dropping algorithm
E when it is applied repeatedly while the sets of positive and/or negative examples
¥ Leep growing. Let us consider a situation in which one positive example of the
¥ concept of “arch” is given, and then negative examples are gradually introduced.

) Our positive example of an arch, represented by the constant a1, is shown in
Fig. 8.1a. It is described by the predicate-calculus formula,

On(bs(e1). by(a1)) A On(ba{ay), bs(ar)) A -Adjacent (b (a1). ba{a1)).

Here the symbols by, b2, and by are function symbols; & (a1) refers to the first
block of a4, etc.

Onr algorithm for constructing a rule replaces the constant. a; by a variable,
k say z. It is assumed that z is universally guantified. Then it forms an initial rule
by placing this formula on the left-hand side of an implication arrow and placing
the predicate “arch(x)” on the right-hand side. With no negative examples, all
‘atomic formulas on the left are eliminated, leaving the maximally general rule
Wz archir).

Now let us introduce one negative example, ¢;. Shown in Fig. 8.1b, it could
'be described by:

On(ba(cr), biler)) A =On(ba(ey), baley}) A Adjacent (b (cy), ba(er)).

Since the rule above classifies all objects as arches, it would certainly classify this
egative example as an arch, and so it must he specialized; one or more of the
conjuncts previously dropped must be put back into the rule. Alternatively, the
k algorithm may be re-run, starting again with the initial rule, With left-to-right
L consideration of the conjuncts, we get the new rule:

-Adjacent{b, (), b3{z)) — arch(x).

This rule is still quite general but does not make the mistake of classifying ¢; as
£ an arch. If the conjuncts were considered in right-to-left order instead, we would
} obtain the rule,

On({b(z}.b3(z)) — arch(z)

I which is just as effective in handling the examples presented.
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Figure 8.1: An example of an “arch” (a), and three negative examples (b—d).
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__ After revising the rule io cope properly with two more negative examples,
E those shown in Fig. 8.1c and d. we obtain a rule which happens to be independent
of the order in which the conjuncts are considered:

On(bs(x), bs(x)) A ~Adjacent(by (). ba(x)) — arch(x).

_ Looking back upon this sequence of examples, one may note that the nega-
" tive example c3 could have heen omitted without changing the final result. On
the other hand, the negative examples ¢; and ¢, played an important role in
- getting the classification rule to converge to its final form. They have a notable
-~ property: they are negative examples which are almost positive examples. Such
- counterexamples are called near misses. It should be apparent that the learn-
ing of concepts is greatly facilitated when a suitable collection of near misses is
* presented early to the system.

8.2.3 Version Spaces

We have seen how a rule can be incrementally tightened to exclude new negative
examples. Let us now consider a systematic method for keeping track of all rules
consistent with a set of positive and a set of negative examples.

Let Arch® be a set of positive examples of arches and let Arch™ be a set of
negative examples (“non-arches™). Then the rule-version space for Arch™ and
Arch™ is the set of all rules (that can be expressed in a particular system of
features and logical operators) that classify all members of Arch* and Arch™
correctly. If we assume that each rule is a predicate, then this rule-version space
g (or simply “version space”} is given by

V{Arch®, Arch™) = {R|(¥x € Arch*)R(x) A (Vo € Arch™)-R(x)}

The process of learning a classification rule for arches may be considered as
the problem of adjusting V(Arch*, Arch ™) as new positive and negative instances
are encountered. If there are enough suitable examples and if the rule-description
language is adequate, then the version space converges to a single rule. Naturally,
if the examples were inconsistent (i.e., 3r,z € Arch® Aa € Arch™), then the
version space would be empty.

The version space has a useful property that can reduce its computational
requirements. A version space can be represented by explicitly listing only its
extremal (most specific and most general) members. This is because the set of
possible rules is partially ordered by the relation “<” defined by

Ry <Ry — VI[R](:E] — Rz(.’]',‘)].

® That is. rule R, is as general as or less general than rule R, whenever a positive
classification by R, implies a positive classification of the same object by Rj.
E The set of possible rules and this ordering may be thought of as an inclusion
¢ hierarchy as discussed in Chapter 4.
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On{bg,bl) On(bz,bl) On(bg,b]) Oll(bg, b])
On(bg. b3) On(bg ' bg) On(bg, bg) —'On(bg, bg)
~Adj(b1, bs) —Adj(by, b3) Adj(by, b3) —Adj (1, by)
Hatched{bs) Dotted(bs) Dotted{b,) Hatched{h-)
a b s d

Figure 8.2: Two arches and two non-arches to illustrate version spaces.

A version space is thus a set of rules that is bounded above by the most
general tules in the set and that is bounded below by the mast specific rules in
the set. The rules between the extremal ones need not be listed. Thus, if I~
and I~ are the sets of positive and negative instances, we may represent version
space V(I*, 17} as V(R,, R,) where R, is the set of most specific rules in the
version space and R, is the set of most general rules in it.

As appropriate new positive examples are assimilated, the lower bounds gern-
erally get moved up; with negative examples, the upper bounds come down. In
order to have an effect, a new example must be salient; it should either be a
near miss or an “unexpected hit.”

Let us now consider another variation of the arch-learning problem. Suppose
that we have two positive and two negative examples, as shown in Fig. 8.2.3.
The notation is slightly simpler than that used above, since by, bo and by are
considered here as objects rather than functions; we ignore any potential prob-
lems of confusing the different occurrences of these symbols associated with the
different examples of arches and non-arches.

Let us allow each rule to be either the constant symbol T or a conjunction
of literals (i.e., excluding disjunctions), where each literal is one of those used in
the partial descriptions given in the figure. Let us now assume that the examples
are encountered in the order: a,¢,b.d. It is instructive to express the version
space before any examples and after each example is encountered.

A
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V(0.0) = all rules in the rule language.
V({a}.®) = all rules except those that assign F to example ¢.
= V({On(bs.b1) A On(bs.bs) A ~Adj(b1, b3) A Hatched(b2)},
{T}.

V({a}'! {C}] = V({On(bz, bl) A 0“(52\53) A ﬁAdj{blab:}) A HatChed(bz)}a
{~Adj(by.bs), Hatched(b>)}).

V({{a,b}. {eh)y = V{{On{bs,n) A On(by, ba) A -Adj(by, bs)},
{—Adj(by.b3)}).

E V({a,b).{c.d}) = V([On(ba,bi) AOn(b,ba) A ~Adj(1. b)),
' {On(bz, bs) A ~Adj(b1,b3)}).

; Note that all the rules in one of these version spaces can be obtained by
b dropping conjuncts from the specific rule {there can only be one with this rule
E language), such that all the conjuncts of one of the general rules remain.

; The last version space here, V({a,b}, {c,d}), contains only two rules, the
E general one being only slightly more general than the specific one. By including
an additional example in either Arch® or Arch™ it is possible to make this
b learning sequenice converge (this is suggested in the exercises at the end of this
[ chapter).

The version-space method has an advantage over the simpler incremental
method of finding rules: backtracking is unnecessary. However, the version-
. space approach has some difficulty handling rules that allow disjunction (details
. may be found in the references).

Our discussion in this section has focussed on learning a classification rule
L for distingnishing the members of a set of objects from nonmembers. This kind
£ of leatning is sometimes called “single-concept” learning. A related, but more
complex. kind of learning requires that the system take a larger role in the
k- knowledge-formation process. This requires creating concepts as well as learning
E about their properties, their relationships and rules for distinguishing them. This
b “concept-exploration” kind of learning is described in the niext section.
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8.3 Self-Directed Conceptualization Systems

8.3.1 Piaget’s Circular Reaction Paradigm

Out of the painstaking observations of children by Jean Piaget, one can discern
a pattern of learning that recurs throughout the process of intellectual develop-
ment. This pattern has heen referred to as the *circular reaction paradigm.”?
We are interested in it as a guide for writing programs to perform structural
learning.

As an example of the circular reaction paradigm., imagine a child of approxi-
mately six months lying in a crib on its back, with a bell hanging overhead and
a string hanging down from the bell ending about twenty centimeters above the
head. The child knows how to flail its arms about quite actively, and it does so
repeatedly. Suddenly, as the child accidentally grabs and pulls the string, the
bell rings distinetly. In surprise, the child freezes. Soon, however, the child is
flailing away trying to make it happen again. Eventually it does happen again
and again. Gradually the child refines the flailing to the point where ringing the
bell is a reasonably controlled action. The child may rest at this point; the st
of available mechanisms now includes the ability to ring the bell. The next time
the child plays, it begins to explore again, and bell-ringing is one of the facili-
ties for exploration. The cycle is complete, It began with available mechanisis
(e-g., flailing arms), which were exercised until something detectably unusnal
happened (the bell sounded). After a pause, an attempt was made to repeat the
event. Successive iterations converged on a refined, relatively coordinated new
ability (ringing the bell). This ability became part of the repertoire of actions
to be used in further explorations.

The phases of the learning cycle are as follows:

1. exercising of actions in repertoire;

2. evaluation of results of those actions with particular attention devoted to
detecting the unusual:

3. determination of the relationship between the actions exercised and the
unusual condition, possibly through repeated attempts to produce the
unusual; and

4. cataloging of the new ability (or concept) as a member of the repertoire,

An oversimplified model of intellectual development is a long sequence of
these cycles, one beginning exactly where the last ends. This model might be
jgood for designing science laboratory sequences for school curricula. However.
. more realistic model of the intellectual development process is a collection of
processes, often overlapping in time and thus largely happening concurrently.

2See [Ginsburg and Opper 1969]. Similar patterns accur in scientific research [eflreys
1957) {Kuhn 1963} and probably in animal learning as well.
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[ Language acquisition is a domain in which the child can only use directed action
L ., relatively limited ways. The repeated hearings of words in their varied but
[ appropriate contexts must also be regarded as containing important ingredients
E of active participation (within the mind); the actions in the learner’s repertoire
may themselves be information- processing operations. The learning of the proper
E uses of any one word may happen over a period of several meonths, at the same
| time that many other words are gradually being learned.

; In designing a computer program to carry out the steps of the circular reaction
f paradigm, one must be careful to not “get stuck in dead ends.” Some kinds of
f explorations are bound not to find anything unusual and must eventually be
¢ abandoned if progress is to be made. Thus it must be easy to vary the mix of
F actions exercised from the repertoire and to focus attention on those most likely
E {0 lead to interesting or novel events,

8.3.2 Automatic Theory Formation

Douglas Lenat developed a program in 1975 called “AM” which demonstrated
E how the exploration of a space of concepts could be accomplished using a heuristic
| search procedure. His program began with a set of initial concepts of elementary
s set theory. The concepts were represented as frames. They were organized into
E an “ISA™ hierarchy with more genera) concepts such as “object” or “conjecture”
¥ towards the top and more specific ones such as the concept of “ordered pait”
E near the bottom.

5 AM used a set of heuristic rules, organized into a production system, to ex-
b pand its database of concepts. Typically it would perform such tasks as filling
F in properties and examples of existing concepts or creating a new concept using
E composition rules. It used a scheme for keeping track of which concepts and
b activities were most interesting. Associated with each object in AM was an
f “interestingness” value. Tasks were performed by AM in order of their interest-
- ingness, to attempt to find interesting new concepts. AM was able to discover the
f concept of prime numbers and to determine that it was an interesting concept.
Eventually, after many hours of running time, AM became bogged down with
F uninteresting concepts, and nothing notable would happen. (Lenat attributed
| the stagnation to the fact that AM was not designed to invent new heuristics,
E and he later developed another system, “EURISKO,” which could create heuris-
 tics.) However, the system was successful in demonstrating the methodology of
automatic concept-space exploration in a mathematical area.
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8.4 PYTHAGORUS: A LISP Program for
Exploring Concepts in Geometry

8.4.1 General Remarks

This section presents a program which illustrates how heuristic search? may be
used as the basis for exploring a space of concepts dealing with geometric figures.
The features of this program are purposely limited, to keep it simple enough to he
presented here in its entirety. The following aspects are included in the program:
automatic concept formation using specialization; determination of examples of
the concepts; evaluation of how interesting concepts are according to the relative
numbers of examples that can be found for them; and overall direction of the
exploration by “interest” estimates for the proposed tasks.

The particular space of concepts that PYTHAGORUS explores is a finite one.
However, it would not be difficult to extend the program so that it could explore
in an infinite space. As PYTHAGORUS tries to find examples of the concepts
it has representations for, it performs “experiments” testing each member of the
set of provided objects (the “toys”) to determine whether it fits the definition of
the concept. An alternative to providing a set of objects would be to give the
program a procedure for generating new objects. Tt would be easy to write a
function which returns a polygon with a random number of randomly selected
vertices, each time it is called.

8.4.2 Task Creation

The initial agenda contains two tasks. One task requires that the system try to
find examples for the general concept OBJECT. The other requires that the svs-
tem try to create a more specialized concept from the general concept OBJECT.

If no new tasks were added to the agenda, the work of PYTHAGORUS would
be over in a hurry. In order to keep the exploration going, additional tasks are
created as new concepts are created and examples are sought for concepts. In
the beginning, the system creates new tasks for itself faster than it can perform
the tasks. Later, as more and more of the tasks performed fail to give rise to
interesting concepts, fewer tasks are created, and the system finally stops.

After some examples of a concept have been found, two new tasks may he set
up. First, a task to find more examples of the concept is set up if there are still
objects which have not been tried as examples of the concept. Second, a task is
set up to make a specialization of the concept, if no specialization already exists
and if no such task is already on the agenda.

After making a specialization of a concept, a task is set up to make an
alternative specialization, if possible. In addition, a task is set up to try to find

3The particular search method used in PYTHAGORUS is best-first search, which was
described in Chapter 5.
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4 examples of the new concept.

8.4.3 Implementation

E  pYTHAGORUS is a program that embodies some basic mechanisms for concept
¢ exploration. The structure of this program is as follows: There is an “agenda”
¥ (prioritized list of tasks) which is continually updated by the insertion of new
. tasks and the deletion of tasks that are completed. Each task is a specification
. for some activity. The function EXPLORE_CONCEPTS is a procedure which
& repeatedly takes the task of highest priority off the agenda and performs it with
B the help of other functions.

; An item on the agenda has the form:

(interest-value (task-specification))
There are two kinds of tasks, and their specifications have the following forms:
¢ (MAKE_SPECIALIZATION concept-name)
o (FIND_EXAMPLES_OF concept-name)

The concepts under investigation are classes of geometric figures that can
be derived from the most general class “OBJECT” using specialization through
restrictive predicates. Since these predicates will be applied to actual geomet-
ric figures during the course of the program’s exploration, we must define the
representation scheme for the geometric figures. For this program, they are all

polygons.
Let us now examine the details of the program.

; PYTHAGDR.LSP
; A program that explores a space of concepts

A polygon is represented as a list of points, and a point is a pair of coordinate
values. The set of polygons used in the explorations is referred to as the “universe
of objects” (these polygons are illustrated in figure 8.3} and it is defined as
foliows:

. (SETQ BOX ’((0 0) (0 5) (10 5) (10 0)) )

k- (SETQ SQUARE ’'((0 0) (0 10) (10 10) (10 O3) )

E (SETQ ISOSCELES ’ ({0 0) (5 5) {10 0}) )

(SETQ RIGHT_TRIANGLE ’((0 0} (4 3) (4 0)} )

(SETQ TRAPEZOID ’((0 0) (5 6) (20 5) (26 0)) )

(SETQ PARALLELOGRAM '((0 0) (5 5) (15 5) (10 0)) )

k- (SETQ RHOMBUS *({0 0) (4 3) (9 3) (6 0)) ) .

£ (SETQ MULTI °((0 0) (0 10) (4 15) (10 15) (15 10) (15 4) (10 0)) )
t. (SETQ LINE *{(0 0) (10 0} )

f (SETQ DOT ’((0 0)) )
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AN

BOX SQUARE ISOCELES RIGHT_TRIANGLE

/ N L S

TRAPEZOID PARALLELOGRAM

pad

RHOMBUS MULTI LINE DC-)T

Figure 8.3: The universe of objects (“toys”) manipulated by the
PYTHAGORUS program.
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i (SETQ UNIVERSE ’(BOX SQUARE ISOSCELES RIGHT_TRIANGLE TRAPEZOID
: PARALLELOGRAM RHOMBUS MULTI LINE DOT})

A collection of three predicates is provided for the purpose of forming special-
izations. The three predicates are (EQUALSIDES P), (NONZEROAREA P),
and (MANYSIDES P}. The argument P is a polygon.

{; (SETQ PREDICATES ’(EQUALSIDES NONZEROAREA MANYSIDES))

. The predicate EQUALSIDES uses four helping functions. The first of these
B is SIDE_LENGTH_SQ_LIST which makes a list of the squares of the lengths
I of the sides of the polygon. Second is SLSL, which does all the work for
E SIDE_LENGTH_SQ_LIST but refers to the value of local variable FIRST_PT
k. which is established in SIDE_LENGTH_SQ_LIST. Third is 5Q, which returns
k. the value of its argument squared. The fourth helping function is ALLEQUAL,
' which returns T if all the elements in the list (which is its argument) are equal.
The function SLSL also uses some coordinate-arithmetic functions, DX and DY
§ which are defined later.

1- (DEFUN EQUALSIDES (P) ; true if all sides have same length
 (ALLEQUAL (SIDE_LENGTH_SQ_LIST P)) )

(DEFUN SIDE_LENGTH_SQ_LIST (P) ; make list of lengths squared.
b (PROG (FIRST_PT)

(SETQ FIRST_PT (CAR P))

(RETURN (SLSL P))} )

¥ (DEFUN SLSL (P) ; helping function.
£ (COND ((NULL (CDR P)}} ; last side conmects to 1st pt.
(LIST (PLUS (SQ (DX FIRST_PT (CAR P)))
{SQ (DY FIRST_PT (CAR P))) ) )} )
(T {CONS ; other sides connect successive pts.
(PLUS (SQ (DX (CADR P) (CAR P)})
(50 (DY (CADR P) (CAR P})) )
(SLSL (CDR P)) )} ) )

(DEFUN SQ (N) (TIMES N N)}) ; return N squared.

! (DEFUN ALLEQUAL (L) ; true if all members of L are EQUAL.
| (APPLY °AND
(MAPCAR *(LAMBDA (XX) (EQUAL XX (CAR L)))
{CDR L} ) )}
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The predicate NONZEROAREA uses two helping functions, AREA and AREA1]
Using AREA] to do most of its work, AREA computes the area of the polygon
by summing the areas (some positive and some negative) directly below each
side; each of these areas is bounded by a quadrilateral consisting of the side of
the polygon, a segment of the & axis and two vertical segments. Note that the
function AREA assumes that the points of the polygon are listed in clockwise
order, in order to have a non-negative result.

(DEFUN NONZEROAREA (P} (NULL (ZEROF (4REA P))))
; true if the area of P is not zero.

(DEFUN AREA (P) ; compute the area enclosed by P
(PROG (FIRST_PT)
{SETQ FIRST_PT {(CAR P))
(RETURN (QUOTIENT (AREA1 P) 201)))

(DEFUN AREA1 (P) ; helping function
(COND ((NULL (CDR P))
(TIMES (DX FIRST_PT (CAR P))
(PY FIRST_PT (CAR P)) ) )
(T (PLUS (AREA1 (CDR P))
(TIMES (DX (CADR P) (CAR P))
(FY (CADR P) (CAR P)) ) ) ) ) )

The third predicate in the collection, MANYSIDES, is true of a polygon if the
polygon has more than six sides. It is defined very simply as follows:

(DEFUN MANYSIDES (P) (GREATERP (LENGTH P) 6))

Below are some helping functions for coordinate arithmetic. DX takes two
points {which are coordinate pairs) and returns the difference 21 — 5. Similarly.
DY returns y1 — y2. PY returns g + yo. XC and YC return the r and ]
coordinates, respectively, of a point, providing mneumonic representations for

CAR and CADR.
(DEFUN DX (PT1 PT2) (DIFFERENCE (XC PT1) (XC PT2)))

(DEFUN DY (PT1 PT2) (DIFFERENCE (YC PT1) (YC PT2)))
(DEFUN PY (PT1 PT2) (PLUS (YC PT1)} (YC PT2)))
(DEFUN XC (PT) (CAR PT)) ; get X coordinate of point.

(DEFUN YC (PT) (CADR PT)); get Y coordinate of point.

The procedure FIND_EXAMPLES_OF, in order to find examples of a partic-
ular concept, takes the list of objects not yet tried for the concept and tries three

A
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¥ of them. (The number 3 was chosen to give a task granularity that permits the
agenda mechanism to respond to subtle changes in INTEREST values of tasks,
¢ while still avoiding the heavy computational overhead that would be incurred
- if the number were 1.) FIND_EXAMPLES_OF puts any examples found onto
. the list of examples for the concept, and it updates the list of objects left to try.
" This function also updates the interest value for the concept in accordance with
' the results of the quest for examples.

FIND_EXAMPLES_OF and MAKE_SPECIALIZATION, its companion
'_ function, implement the key aspects of the program, and each of them has a
- long definition. FIND_EXAMPLES_OF takes a single argument, a concept
- (represented as a literal atom). The two PROG variables are used as follows:
OBJECTS_LEFT represents the list of objects not yet tested as examples of the
concept. X holds the object currently being tested.

{DEFUN FIND_EXAMPLES OF (C)
(PROG (OBJECTS_LEFT X)
; test 3 objects not yet tried as examples of C:
(S8ETQ OBJECTS_LEFT (GET ¢ ’OBJECTS_TO_TRY))
(DO_N_TIMES 3 ; beginning of loop
(COND ((NULL OBJECTS_LEFT) ; if out of objects,
(PUTPROP C NIL ’OBJECTS_TO_TRY) ; record it,
(GO NEXT)) ) ; and jump out of loop.
(SETQ X (CAR OBJECTS_LEFT)) ; else, try next object:
(SETQ OBJECTS_LEFT (CDR OBJECTS_LEFT))
(PUTPROP C (ADD1 (GET C ’NUMBER_TRIED)) ’NUMBER_TRIED)
; Here’s the test. Apply the concept’s defining pred.
(COND ((APPLY (GET C ’PREDICATE) (LIST (EVAL X)))
; an example has been found...
(PRINT
(APPEND (LIST X) ’(IS AN EXAMPLE OF) (LIST €)))
(PUTPROP C
(ADDTOSET X (GET C ’EXAMPLES_FOUND))
'EXAMPLES_FOUND)
(PUTPROP C
(ADD1 (GET C ’NUMBER_FOUND))
*NUMBER_FOUND) )
; but if the object is not an example...
(T (PRINT (APPEND (LIST X)
’ (IS NOT AN EXAMPLE OF)
(LIST €) 1)) )
) ; end of loop.
(PUTPROP C OBJECTS_LEFT °OBJECTS_TO_TRY)

NEXT
; update the interest value for C:
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(PUTPROP C (CONCEPT_INTEREST C) °*INTEREST)
; if there are still objects not yet tried,
; enter a new task on the agenda to try 3 more objects:
(COND (DBJECTS_LEFT
(PUT_ON_AGENDA
(CONS ; compute interest val...
(EXAMPLES_TASK_INTEREST C)
(LIST (LIST ’FIND_EXAMPLES_QF
(LIST *QUQTE C) )) ) ) )
(T (COND (REPORTING
(PRINT ’(OBJECTS EXHAUSTED)) })} )
; if in the reporting mede, display the current agenda:
(COND (REPORTING (PRINT (APPEND ’ (AGENDA IS:) AGENDA))))
; if there is at least one example of the concept and no
; specializations for this concept have yet been created,
; and no tasks for such specialization are already on the
; agenda, create a new task to make a specialization of C:
(COND ((AND (GREATERP (GET C ’NUMBER_FOUND) ©)
(NULL (GET C ’INCLUDES))
(NO_SPEC_TASK C) )
(PUT_ON_AGENDA
(CONS ; compute intersst...
(SPEC_TASK_IETEREST ¢)
(LIST (LIST 'MAKE_SPECIALIZATION
(LIST ’QUOTE C) )} ) )
1)
; print out the current description of the concept:
(DISPLAY _CONCEPT C) ) )

The following function inserts an entry of the form {interest-value (task-

spectfication)) onto the agenda, in its place, so that items are ordered, highest
interest-value first.

(DEFUN PUT_ON_AGENDA (TASK)
(SETQ AGENDA (PUT_ON_AGENDA1 TASK AGENDA)) )

; recursive slave to PUT_ON_AGENDA:
{(DEFUN PUT_ON_AGENDA1 (TASK AGENDA)
(COND ((NULL AGENDA) (LIST TASK))
((LESSP (CAR TASK) {CAAR AGENDA))
(CONS (CAR AGENDA)
(PUT_ON_AGENDA1 TASK (CDR AGENDA)) ) )
(T (CONS TASK AGENDA)) ) )

The function NO_SPEC_TASK returns T if no MAKE_SPECIALIZATION task
with concept C' is on the agenda:
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F (DEFUN NO_SPEC_TASK (C)
(NO_SPEC_TASK1 AGENDA) )

: ;recursive slave to NO_SPEC_TASK:
. (DEFUN NO_SPEC_TASK1 (L)
. (COND ((NULL L} T)
((AND (SETQ TEMP (CADAR L))
(EQ *MAKE_SPECIALIZATION (CAR TEMP))
(EQ C (CADR (CADR TEMP))) )
NIL)
(T (NO_SPEC_TASK1 (CDR L))) ) )

Next is a function which computes the current interest value for concept using
a formula that involves the “hit ratio” of number of examples found to number
of objects tried. Letting r be this ratio, our formula is

interest = 400(r — r?).

However, if no objects have yet been tried as examples for the concept, we define
the current interest to be that “inherited” from the parent concept. In the
body of CONCEPT _INTEREST, the first clause of the COND handles the case
where none have been tried. The second clause computes the value according
to a formmla which is mathematically equivalent to that above, but works only
with FIXNUM arithmetic, for efficiency.

(DEFUN CONCEPT_INTEREST (C)
(COND ((ZEROP {(GET C ’NUMBER_TRIED))
{GET (PARENT C) ’INTEREST))
(T (DIFFERENCE
100
(TIMES 4
(SG (DIFFERENCE &
(QUOTIENT
(TIMES 10 (GET C ’NUMBER_FOUND))
(GET ¢ ’NUMBER_TRIED) ) ) ) ) )) )

Another function for computing interest is the following one which computes the
B interest of a task to find examples of C. It is based on the formula

examples_task_interest(C) = 0.8 interest(parent(C)) + 0.2 interest(C’).

E This formula yiclds a value close to the interest of the parent of C, but adjusts
| this value slightly if there is experimental evidence so far that the interest of C
[ is different from that of its parent.

 (DEFUN EXAMPLES_TASK_INTEREST (C)
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(QUOTIENT (PLUS (TIMES 8 (GET (PARENT C) ’INTEREST))
(TIMES 2 (GET C 'INTEREST)) )
10} )

The function PARENT, defined below, returns the parent concept of con.
cept C. This function is used in the function EXAMPLES_TASK_INTEREST,
above.

(DEFUN PARENT {(C) (CAR (GET C ’ISA))) ; parent assumed unique

The interest value for a specialization task is computed by the next function as
approximately ten times the parent concept’s hit ratio:

spec-task_interest{C) = 10{Niound{parent(C))/Niriea (parent(C})].

(DEFUN SPEC_TASK_INTEREST (C)
(QUOTIENT (TIMES 10 (GET ¢ ’NUMBER_FOUND))
(ADD1 (GET C ’NUMBER_TRIED)) ) ) ; avoids div. by 0.

A task of type MAKE_SPECIALIZATION requires that the system attempt
to create a representation for a new concept by associating with a new atom the
following:

1. a definition of the concept in terms of the parent concept, suitable for an
explanatory printout,

2. a predicate that can he applied to any object to determine whether it is
an example of this concept,

3. an interest value for the concept computed using a rule which takes into
account the interest of the parent concept and the interest of the predicate
used to form the restriction,

4. alist of objects that have not yet been tried as possible examples, initially
the whole “UNIVERSE."

5. a list of examples found (initially null),

6. a list of the predicates NOT used in the definition of this concept- this
simplifies the procedure MAKE_SPECIALIZATION,

7. a list of the original (provided) predicates that have been used along the
path from OBJECT to this concept {used in DISPLAY_CONCEPTS).

8. a list of the predicates that have been used to create specializations of this
concept {initially null),

9. the number of examples found so far (initially 0), and
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10. the number of objects tried so far (initially 0}.

I These items are put onto the property list of the atom under the following prop-
b erty types: DEFN, PREDICATE, INTEREST, OBJECTS_TO_TRY, EXAM-
B PLES_FOUND, UNUSED_PREDICATES, PREDICATES_USED_IN_DESC,
PREDICATES_USED_IN_SPEC, NUMBER_FOUND, NUMBER_TRIED.
1 The function MAKE_SPECIALIZATION takes one argument, the atom for
b an existing concept. The two PROG variables, PRED and NEWC, are used to
k. hold the predicate used to form a restriction of the current concept, and the
[ literal atom that represents the new concept, respectively.

k. (DEFUN MAKE_SPECIALIZATION (C)
" (PROG (PRED NEWC)
; select a predicate not already involved in the parent
; and not already used for a specialization of C.
(SETQ PRED
(SELECT_PRED (GET C ’UNUSED_PREDICATES)
(GET C 'PREDICATES_USED_IN_SPEC) ) )
(COKD {{NULL PRED)
{COND (REPORTING
(PRINT
? (CANNOT FIND A WAY
TO SPECIALIZE FURTHER) ) ))
(RETURN NIL) ) )
; indicate that the selected predicate is no longer
: available for other specializations of C:
(PUTPROP €
(CONS PRED (GET C ’PREDICATES_USED_IN_SPEC))
*PREDICATES_USED_IN_SPEC)

; allocate a new atom...

(SETQ NEWC (NEW_ATOM))

; set up links in concept hierarchy...

(MAKE_ISA NEWC C)

; register the list of unused predicates for

; the new concept:

(PUTPROP NEWC
(DELETE PRED (GET C ’UNUSED_PREDICATES))
UNUSED_PREDICATES)

; possible examples might include all objects

; in the universe:

(PUTPROP NEWC UNIVERSE ’OBJECTS_TO_TRY)

; initialize the various counts for the concept:

(PUTPROP NEWC 0 ’NUMBER_FOUND)

(PUTPROP NEWC 0 ’NUMBER_TRIED)
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; create the (possibly compound) PREDICATE which
; tests an object to see if it is an example of
; the new concept:
(PUTPROFP NEWC

(LIST ’LAMBDA ’{0BJ)

(LIST ’AND
(CONS PRED ’(OBI))
(LIST ’APPLY
(LIST 'QUATE
(GET C ’PREDICATE) )
*(LIST OBJ) ) ) )

’PREDICATE)
(COND (REPORTING ; if REPORTING enabled, show predicate:
(PRINTM HERE IS THE NEW FREDICATE:)
(PRINT (GET NEWC ’PREDICATE)) ))
; store the list of predicates that should be used
; to describe this concept:
(PUTPROF NEWC

(CONS PRED {(GET C 'PREDICATES_USED_IN_DESC))

*PREDICATES_USED_IN_DESC)

; put a task on the agenda to find examples of
; the new concept:
(PUT_ON_AGENDA
(LIST ; INTEREST = interest of parent concept.
(GET C *INTEREST)
(LIST ’FIND_EXAMPLES_OF
(CONS °QUOTE (LIST NEWC)) ) ) )
; put a task on the agenda to make another
; sSpecialization of C
(PUT_ON_AGENDA
(CONS (SPEC_TASK_INTEREST C)
(LIST (LIST ’MAKE_SPECIALIZATION
(LIST "QUOTE €} ) ) ) ) )

This function definition for MAKE_SPECTALIZATION would be even longer if
it were not for the helping functions SELECT_PRED and NEW_ATOM. SE-
LECT_PRED is used to select a predicate that is on the list of predicates avail-
able but not on the list of predicates already used along the current chain in the
concept space.

(DEFUN SELECT_PRED (L1 L2) ; return a member of L1 - L2
(COND ({NULL L1) NIL)
((MEMBER (CAR L1) L2) (SELECT_PRED (CDR L1} L2)})
(T (CAR L1)} ) )
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The function NEW _ATOM returns a new atom each time it is called?:

(DEFUN NEW_ATOM O
(COND ((NULL ATOMS_AVAIL)
(PRINT ’(OUT OF ATOMS FOR REPRESENTING CONCEPTS)))
(T (SETQ TEMP (CAR ATOMS_AVAIL))
(SETQ ATOMS_AVAIL (CDR ATOMS_AVAIL))
TEMP) ) )
(SETQ ATOMS_AVAIL ’(C1 €2 C3 C4 C5 C6 C7 C8 C9 C10 Ci1
€12 C13 C14 Ci5 Ci6 C17 €18 C19 €20 €21 C22
€23 24 C25 €26 C27 €28 €29 C30 €31 €32 €33
C34 €35 C36 C37 €38 €39 €40))

The top-level control loop is implemented in the next function, EX-
E PLORE_CONCEPTS. This function executes tasks from the agenda, until no
* tasks remain.

(DEFUN EXPLORE_CONCEPTS ()
(PROG (CURKENT_TASK)
LDOP (COND ((NULL AGENDA}
(RETURN ’ (MY INSPIRATION IS GONE))))

;select task at head of agenda:
(SETQ CURRENT_TASK (CADR (CAR AGENDA)))
(SETQ AGENDA (CDR AGENDA)) ; remove it from agenda
(EVAL CURRENT_TASK) ; perform current task
(G0 LOOP) ) ) ; repeat

Four functions that help construct the inclusion hierarchy for representing the
concepts are listed below. They are similar to functions used in the LINNEUS
program of Chapter 4.

{DEFUN ADDTOSET (X SET)
(COND ({MEMBER X SET) SET)
(T (CONS X SET}) ) )

(DEFUN ADDSUBSET (X Y) ; form rep. that X is a subset of Y
(PUTPROP Y (ADDTOSET X (GET Y ’INCLUDES)) *INCLUDES) )

(DEFUN ADDSUPERSET (X Y); form rep. that X is a superset of Y
(PUTPROP Y (ADDTOSET X (GET Y 'ISA)) *I34) )

(DEFUN MAKE_ISA (X Y) ; set up bi-direct. ISA link
(AND (ADDSUPERSET Y X) (ADDSUBSET X Y)} )

1Gome LISP systems provide a funciion GENSYM that actually generates new atoms, and
it could be used here instead.
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The initial state of PYTHAGORUS is established by the function INITIALIZE:

(DEFUK INITIALIZE ()
(PROG ()
; Initialize the concept hierarchy to contain one concept,
; UOBJECT, from which specializations will be made.
(PUTPROP ’DBJECT °’(LAMBDA (X) T) *PREDICATE)
(PUTPROP ’0OBJECT UNIVERSE ’OBJECTS_TO_TRY)
(PUTPROP ’OBJECT PREDICATES ’UNUSED_PREDICATES)
(PUTPROP °’OBJECT NIL ’PREDICATES_USED_IN_SPEC)
(PUTPROP *QBJECT 0O ’NUMBER_TRIED)
(PUTPROP °*0OBJECT 0 ’NUMBER_FOUND)
(PUTPROP ’*OBJECT $0 *INTEREST)
; One of the interest-computing functions requires that
; OBJECT have a parent concept; therefore...
(MAKE_ISA °OBJECT ’DUMMY)
(PUTPROP ’DUMMY 50 °>INTEREST)
; Set up the initial agenda of tasks:
(SETQ AGENDA *(
(50 (FIND_EXAMPLES_OF *DBJECT))
(25 (MAKE_SPECIALIZATION ’QBJECT))
1))

For the purpose of monitoring the progress of the system, a function is pro-
vided which displays the important attributes of a concept:

(DEFUN DISPLAY_CONCEPT (C)
(PROG O
(TERPRI} ; start a new line
(PRINTIM CONCEPT:) (PRINT C)
(PRINTAIM OBJECTS WHICH HAVE:)
(APPLY ’PRINTM (GET C 'PREDICATES_USED_IN_DESC))
(PRINT1¥ SPECIALIZATION OF:) (PRINT (GET C ’ISA))
(PRINT1M INTEREST:) (PRINT (GET C ’'INTEREST))
(PRINT1M EXAMPLES_FOUND:)
(PRINT (GET C *EXAMPLES_FQUND))} ) )

The utility function PRINTIM, used in DISPLAY_CONCEPT. prints a list
(unevaluated) without parentheses and without a carriage return. PRINTIM is
defined:

(DEFEXPR PRINTIM (L)
(MAPCAR (FUNCTION (LAMBDA (S) (AND (PRIN1 S) (TYD 32)))}
Ly )

In order to test the program, the following function is defined:

A
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i (DEFUN TEST O

~ (PROG Q)
(INITIALIZE)
(EXPLORE_CONCEPTS) ) )

and then the function may be evaluated:

8 (TES)

And for a more-detailed account of PYTHAGORUS’s progress the following may

E be typed:

|- (SETQ REPORTING T)

E (TRACE FIND_EXAMPLES_OF MAKE_SPECIALIZATION)
E. (TRACE PUT_ON_AGENDA)

k. (TEST)

| 8.4.4 Behavior and Limitations of PYTHAGORUS

¥ PYTHAGORUS begins its exploration by generating examples of the initial con-
- cept “OBJECT” for which every polygon in the given universe turns out to he
. an example. The interest value for OBJECT is 0 hecause the criteria for a high
interest value are that a concept have some examples, but not every element of
E the universe should be an example of the concept.

& A full run of the program causes about five pages of output, without the
k REPORTING variable set to T. Two kinds of messages are displayed. One kind
E indicates the result of a test to see if a particular object is an example of a
particular concept, e.g.,

¢ (PARALLELOGRAM IS NOT AN EXAMPLE OF C3)
The other kind gives current information about a concept, e.g.,

¥ CONCEPT: Cit

f OBJECTS WHICH HAVE: NONZEROAREA EQUALSIDES
f INTEREST: 84

| EXAMPLES_FOUND: (SQUARE)

| Such a description is printed by the function DISPLAY _CONCEPT, which is
called at the end of each examples-finding task. Displays like this for concept
| C11 ocour four times. The last of them is as follows:

§ CONCEPT: Cil

| OBJECTS WHICH HAVE: NONZEROAREA EQUALSIDES
. INTEREST: 64

. EXAMPLES_FOUND: (RHOMBUS SQUARE)
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Figure 8.4: The space of concepts explored by the PYTHAGORUS program.

A

['he interest value of 64 is lower here than in the first description, reflecting the
hange in the success rate in finding examples; SQUARE was found to be an
¢xample during the first group of three tests, but in all the remaining seven tests.
nly one more example, RHOMBUS, was found.

Many of the concepts that PYTHAGORUS generates are uninteresting be-
ause no examples exist. Most of these concepts we know to be mathematically
gquivalent, since they are essentially defined by conjunctions of the same predi-
ates but in different orders. One of the exercises is concerned with the automatic
jecognition of equivalences of concepts.

The space of concepts in which PYTHAGORUS roans contains 16 clements
nodes). Only 14 of these are actually visited, hecause two of them are descen-
ants of nodes with zero INTEREST. The search tree that is “traversed” bv
YTHAGORUS is shown in Fig. 8.4 The order of creation of the nodes is not
Hentical to the order of exploration of the nodes; each concept is created at
105t once, but it may be treated a number of times by tasks that try to find
xamples of it. The concepts are created in the order C1, C2. ..., C13. The
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 order in which examples are first sought for each concept is: OBRJECT, C3, C4,
E 5, C6, C2, C8, €9, C7, C10, C1, C11, C12, C13. This order is the result of
k the INTEREST values in combination with the tie-breaking behavior {(which is
to select the most-recently created task, rather than treat them in the order in
which they were created).
One inefficiency of PYTHAGORUS is that it checks all objects when trying

to find examples of a concept, even when that concept is very specialized (e.g.,
three levels down in the concept hierarchy). It does not take advantage of the
E  fact that any object which is not an example of a concept C cannot be an example
'\- of any specialization of C. However, this inefficiency gives PYTHAGORUS the
I freedom to explore interesting specializations before their parent concepts are
F - fully explored. The ability to explore a concept before its parent is fully explored
. would be especially important if the program used a polygon generator instead of
; a set of given polygons; otherwise, with an infinite number of possible examples
b’ to be tested, the program could never get past the first concept.
3 The heuristics nsed to compute interest values can be changed. For exam-

ple, if one prefers that PYTHAGORUS explore the whole concept space before
-i=_- completing the example testing for general concepts, one can lower the interest
¥ value associated with tasks for finding examples.

8.4.5 Discussion

What are the possible benefits of developing concept-exploration systems? A
. program such as PYTHAGORUS does not possess sufficient expertise to be
of use in practical problem-solving; e.g., in suggesting a new arrangement for
¥ the living-room furniture (which may be viewed as a problem of manipulating
k' polygons). There are two standard answers to a question such as this, and there
b is another, better, answer to this particular question. The “standard” reasons for
:" studying any kind of machine learning are (1) that through this research we hope
E  to better understand human intellectual development, and {2) we seek to realize
. the potential for computer systems to build their own knowledge bases, so that
k' experts and programmers do not have to spoon-feed them all that knowledge.

' Concept-exploration techniques have a special significance. The whole ap-
L proach itself seems to offer the beginnings of a methodology for formalizing
- conceptual knowledge. Mathematicians may be able, in the future, to rework
fundamental subjects, such as abstract algebra and functionat analysis, according
to formal theory-formation guidelines, in such a way as to close gaps in current
knowledge. The existence of such theoretical knowledge in a machine may al-
low the knowledge to be applied in new ways, because it may be organized in a
scheme different from the traditional scheme.

What fields of study are amenable to antomatic concept-exploration
methods? In order to answer this, we recall the activities performed by
PYTHAGORUS: creating concepts from existing concepts, and working with
examples. The concept-formation activity may be seen as the theory-building
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part. The manipulation of examples is empirical, and the results of this activ.
ity guide the ¢ h.eory-building activity. Suppose we wanted a computer to build
a theory about physics, say Newtonian mechanics. We would have to provide
some initial comacepts, perhaps concepts of space, time and matter. Operations
would be needed that synthesize new concepts from existing ones. Perhaps more
problematical s the provision of mechanisms to carry out physical experiments.
The computer ould control robot arms that would manipulate masses, strings,
springs, etc., so that the computer could perform experiments much as one does
in a college phiysics lab. Needless to say, empirically evaluating even simple
physical concepis (the possibility of objects with negative mass, the existence
of gravity, the law that “an object at rest tends to remain at rest”) would re-
quire much more elaborate facilities than what is needed to find examples of the
concept of a regular polygon.

Clearly, maxthematics is an ideal realm for computer exploration, because
experiments can be performed without robotics equipment, and in many cases,
extremely rapidly. Also, by eliminating the need for physical experimentation, we
largely avoid the problems of equipment breaking and interference from external
factors,

However, concept-exploration methods are not limited to mathematics.
There exist doanains in which physical experiments can be done quickly and
under computer control; these include electronics, electrochemistry, and perhaps
molecular biology. Also, there are a number of subjects in which certain kinds of
experiments may be performed completely in the computer, through simulation.
Economics, evolutionary genetics, demographics, and molecular chemistry are
such fields. If speed is not a concern, and the computer could place orders for
experiments that would be performed by human scientists or technicians, then
there seems to be no reason why the concept-exploration methodology could not
be applied to any scientific domain.

Although the PYTHAGORUS program is not interactive, a concept-
exploration program might be more useful if it could be interactively guided
by a human. Besides directing the program's attention by occasionally overrid-
ing or adjusting the mechanisms that compute task and concept interest values.
the human could provide terminology and descriptive comments for concepts.
making it easier for humans to understand the computer's theory.

In order to make a program such as PYTHAGORUS interactive, one must
provide for effective man-machine communication. The human user must be able
to understand the program and give it commands or questions. Often, an inter-
active program is more understandable to a human user if it uses good graphics
to display its current state or the data structures that the user is manipulat-
ing. For user input, a natural-language understanding capability is often desired
(such techniques are described in the next chapter). A combination of graphical
and texiual cornmunication may be best for such man-machine systems.
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: 8.5 Concluding Remarks

. [n this chapter. we have examined two kinds of methods for learning about con-
- cepts. In the first group are techniques for finding a definition or classification
i rule from a set of examples and non-examples. This kind of learning may be
E  jermed “outside-in” becanse it begins with (part of) the extension of the con-
" cept and derives its intension (a logical predicate). On the other hand, the
second group of methods computes the concept definitions analytically and me-
E  chanically without induction from examples. However, each of these concepts is
k- explored by looking for examples of it. and the results of such exploration guide
F  the development of additional concepts. This kind of learning may be called
- sinside-out” learning, because the system develops a concept’s intension before
- exploring its extension. Learning from the outside in and from the inside out
¥ are complementary activities that might well be combined in future systems.
As the next section suggests, there is a large literature on machine learn-
¥ ing. This chapter has presented only a few of the many ideas that have been
E  developed. For every type of knowledge representation, there is a corresponding
E problem of devising a means to automatically create knowledge bases in it. For
| any form of mathematical model, there can be program designed to create such
. models. Machine learning has a long future.

' 8.6 Bibliographical Information

' Early work on machine learning focussed on models for self-adapting pattern-
. recognition systems, including the “perceptron” [Rosenblatt 1962]. A good in-
f  troduction to some of the numerical approaches to learning is found in [Nilsson
1965]. The application of a parametric learning method to an automatic game-
playing system (for checkers) is described in [Samuel 1963]. The discovery of
classification rules using combinatorial optimization and the “star” method is
described in [Michalski 1980]. Some models of learning systems are described in
[Buchanan et al 1977]. A cross-section of more recent work in machine learning
is presented in [Michalski et al 1983] and [Michalski et al 1986).

Methods for interactive knowledge acquisition for expert systems are de-
scribed in [Davis 1980]. [Hayes-Roth et al 1981]. and (Boose 1986).

A system for learning single concepts using induction is described in {Hunt
et al 1966). Methods for producing generalizations from sequences of structured
" ohjects are described in [Winston 1975], [Vere 1975], and [Hayes-Roth and Mc-
Dermott 1977), and a survey of such systems is [Dietterich and Michalski 1981).
A systematic approach to learning concepts in which the possible final rules are
grouped and represented by the bounds on their generality and specificity (the
version-space method) was developed by Mitchell (see [Mitchell 1977)) and used
in his “Lex” system; the Lex system learned heuristic rules applicable to solving
integration problems in calcutus [Mitchell et al 1981]. The computational com-
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plexity of inductive learning is discussed in [Valiant 1984) and [Valiant 1985],

Much of the motivation for designing systems that can theorize, creating con.
cepts, making conjectures, and validating them empirically, stems from insights
about the process of intellectnal development, scientific inquiry and mathemati-
cal discovery that are elucidated in books like [Ginsburg and Opper 1969}, (Jef-
freys 1957] and [Polya 1954]. Polya’s work provided direct support for the Ph.D.
dissertation of Lenat, which is represented in slightly reduced form in [Lenat
1980]. One of the limitations of the AM program was that it could not modify
its own heuristics. In an effort to provide a means for automatically improving
heuristics, the EURISKO system was developed [Lenat 1983].

Another form of theorizing is the formulation of quantitative relationships in
data. A description of one approach to the automatic discovery of scientific laws
(using a program called “BACON”) is in {Langley 1977].

An interesting collection of papers on machine learning is the compendium
from a NATO Advanced Study Institute held in France [Simon 1976]; most of
these papers are in English but some are in French. In addition to the papers,
there are transcripts of discussions among the participants, which included sev-
eral prominent researchers in machine learning.
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Exercises

1. Which of the following situations is a case of learning? Explain why or
why not in each case,

(a) A weight lifter who was ill is now recovering. Each day, before prac-
tise, it is becoming easier to lift 300 lbs.

(b) A pigeon walking on the ground spots a piece of bread. Knowing
where the bread is, it picks it up in its beak and eats it.

(c) A computer program, written in LISP, evaluates a function F on some
arguments over and over again. The evaluation is initially slow be-
cause memory is almost full and the garbage collector runs frequently.
Between some of these evaluations, the program frees a large area of
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memory, and then the successive evaluations of the function proceed
more quickly.

(d) A program that solves problerns is fed a lot of facts that have nothing
to do with the problems it has to solve, and as a result, the time it
takes to solve an average problem is lengthened.

9. Find ancther disjunctive-normal-form classification rule for the “warning”
strings on page 288 that is reasonably short and does not use the propo-
sition AM{z,5,D).

3. Using the two sets of strings on page 288, determine classification rules
with the following properties:

(a) classifies the safe strings; and

(b) classifies the safe strings and does not use negation in the left-hand
side.

4. Develop a LISP program which can find classification rules for sets of
strings such as those on page 288. Demonstrate its behavior, using the
data in the text and a set of strings of your own.

5. Consider the sequence of arches and non-arches shown in Fig. 8.1 and
described in the text. Suppose that a second arch, ap, is presented to the
learning system, thus extending the sequence, and that this arch {which
still has two posts, but has a two-piece lintel) has the following logical
description:

On{ba(az). b1 (a1)) A On(bs(az), balaz))
AAdjacent(bs(a2), ba(az)) A ~Adjacent(b; (a2),bsle2)).

(a) Draw a diagram illustrating a2.

(b) Determine the new classification rule that categorizes all five of the
structures a;, as,c1, ¢, and ¢s.

6. For the version-space example on page 294, V(0,8) is given simply as
sall rules in the rule language.” Suppose we were to represent V (0, 0) as
V(R;. Ry); describe R, and R,. How many elements are in R, assuming
that two rules are the same if they are conjunctions of the same set of
literals?

7. On page 294 the version space V({a,b}, {c,d}) is given. The learning
process has apparently not been completed, since this version space still
contains more than just a single rule.

(a) Describe a fifth example {a third non-arch) that would cause the
learning to converge on a single correct rule for the concept of arch.
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{b) Show the version space that would result from putting vour fifth
example (from part @ above) into Arch? instead of Arch™. Does the
learning process converge in this case?

8. The version-space approach to learning classification rules can be applied

10.

11.

12.

widely.

{a) Make up a sequence of examples of poker hands that could be used
to teach the concept of a “full house,”

{b) Provide a set of literals suitable for describing the hands (as conjunc-
tive formulas).

(¢) Determine the sequence of version spaces that corresponds to your
sequence of examples.

Develop a function “V8” in LISP which computes the version space for a
set of training instances. The function should take as arguments a list of
positive instances and a list of negative instances. Assume that each object
is described by a conjunction of literals taken from a set of permissible
literals bound to a global variable FEATURES. VS should return a pair
of lists containing the most specific rules and the most general rules in the
version space. Illustrate your program using the arches example in the
text and/or using the poker-hands example from the preceding problem.

At the end of PYTHAGORUS's run,

(a) which concept has the most examples, not including OBJECT?
{b} which concept has the highest INTEREST value?

{c}) how many times have polygons been tested as examples of concepts?

In the PYTHAGORUS program essentially two activities are pursued:
finding examples of concepts and the creation of new concepts. Clearly, a
concept must be created before examples of it can be found. However, the
relative rates of progress of these two activities can differ. The rates are
affected by the interest values. Modify the functions which compute inter-
est values so that PYTHAGORUS finds (a) as few examples as possible.
and (b) as many examples as possible, before it creates its last concept.

Extend PYTHAGORUS, so that it performs a third kind of task: conjec-
turing about a concept. After a reasonable mumber of ohjects have been
tried as examples of a concept C, a task should automatically be placed
on the agenda that requires conjecturing about C. Consider two kinds
of conjectures: 1. a conjecture that the concept C is empty, and 2. a
conjecture that concept C is equivalent to another concept €', Conjec-
tures should be stored on the property lists of the concepts they involved.
Once a conjecture has been made about a concept €', any further testing
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of examples should be accompanied by further testing of the conjecture.
If a conjecture then has to be retracted. the program should report the
retraction.

Add the following features to PYTHAGORUS, making any modifications
necessary to make the resnlting system work smoothly:

(a) an example generator that extends the universe of geometrical figures
infinitely. The original universe should be included in the new one.

(b) two new predicates that can be used to generate specializations.

(¢} a predicate generator that can generate predicates of the form
(LAMBDA (P) (EQUAL (LENGTH P N))) where N is increased
by 1 each time the generator is called. Note that this scheme al-
lows generation of concepts such as triangle, quadrilateral, pentagon,
hexagon, etc.

{d} the ability to use the negation of a predicate as the basis of a restric-
tion.

Incorporate into PYTHAGORUS a capability for using functions and ob-
jects to define new concepts. Then supply a set of functions that permits
the program to generate a rich family of concepts. For example, the func-
tion HORIZONTAL_PROJECTION can be defined as taking a polygon
as its argument and returning a pair (XMIN XMAX) indicating the hori-
zontal extent of the polygon. With a particular polygon, say MULTI (as
defined in the program), the function returns a particular value, in this
case, (0 15). The combination of the function and the particular value
may be used to create a predicate and, in turn, a restriction: “P(z) is
true if and only if the horizontal projection of x is (0 15).”






Chapter 9

. Natural-Language
| Understanding

9.1 Introduction

9.1.1 Intelligence in Understanding Language

E Natural languages such as spoken and written English, French, Chinese, etc.,
f have evolved to allow human beings to communicate with one another. As we
[ humans are lazy, we tend to try to minimize the effort needed to communicate
[ {or put another way, we have learned over the generations to economize on
words). We do this by giving just the right combination of facts and hints about
' something so that the listener or reader can infer the proper conclusion, or “get
L the right picture,” etc. We usually avoid telling a listener something we think
. he/she already believes, except to establish a point of reference.
] In order to achieve this economy, some problem-solving must take place at
both ends of the communication channel. The speaker (sender) must determine
what pieces of information must be presented explicitly to allow the listener to
understand. The listener (receiver) must combine these bits of information with
background knowledge and make the appropriate inferences. Finding an inter-
pretation which is consistent with the speaker’s sentences and the background
knowledge may require a significant amount of problem-solving effort.
The study of natural-language understanding is therefore concerned with (a)
the meanings typically conveyed through language and ways to represent those
meanings. (b) the forms of phrases and sentences {syntax) and the ways that the
constraints on form can be exploited to constrain possible meanings, and (c} the
processes that can be used to derive interpretations of natural-language inputs
by manipulating representations of the input and of the background knowledge.
Clearly. the subject matter of Chapters 4 through 7 is all of potential use in
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understanding natural language, and that is a good reason for us to have left
this subject until now.

9.1.2 Applications of Language Understanding

Perhaps the most ohvious general application for the understanding of naty.
ral language by machines is to the man/machine interface: people should he
able to speak to their computer, giving commands and asking questions. ang|
the computer should perform the commands and answer the questions. Such
a command might be, “Please recompute my taxes taking into consideration
the charitable contribution of $100 to the Artificial Intelligence Society.” Mak-
ing oral commands in English promises to be more convenient for humans tha,
typing commands. It would also be useful to allow typing to a computer in
English. The time it takes for a human to learn to use a particular computer
program could be reduced if the language of interaction could be English instead
of obscure query languages, command languages, etc.

Apart from the convenience argument, there is a need for expert systems
to obtain knowledge. Most of the accumulated knowledge of our modern civi-
lization is written in books. in natural languages such as English. We have the
technology to make machines read the physical characters printed on the pages
of these books. We are gradually getting closer to having the technology that
would permit computers to understand what they read. If computers could read
and understand what they read, we would have a big lead on a solution to the
knowledge acquisition problem.

9.1.3 Machine Translation

During the late 1950's a great hope developed that machines would be able to
translate texts from one language into another. Projects were funded to develop
systems that could translate Russian into English and vice versa. While these
systems met with some success, researchers found it very difficult to get machines
to do high-quality translation. The systems of the 1960s worked primarily by
the use of dictionaries and syntactic mechanisms. They could not use semantic
knowledge since little progress had been made towards effective representation
of knowledge.

A well-known example that pointed out the limitations of automatic trans-
lation in the 1960's is the following: “The spirit is willing but the flesh is weak.”
This sentence, after being translated into Russian and back into English, became
“The vodka is good but the meat is rotten.”

The conclusion of the initial studies in machine translation was that purely
syntactic methods can serve to produce rough translations: these translations
can be helpful to scientists who want a general idea of what a paper written
in a foreign language is about. But translations that are not knowledge-based
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are not of high enough quality or reliable enough to substitute for professional
translations intended for careful reading or re-publication.

Some translators find that machine-produced drafts save some time in the
process of produeing polished translations. Others find that it is just as fast to
perform the translation from the original foreign-language document as it is to
polish a machine-produced draft. As the quality of machine translation improves,
we may expect to see less expertise required of the human “translation polisher”
to get a product of quality comparable to what now requires a full professional.

g.1.4 A Definition of Understanding

"I order to describe or build systems that understand natural language, it is
- jmportant to be clear about what we mean by “understand.”

A When a natural-language system serves as an interface to a computer sys-
. tem that takes commands and questions, it is easy to define what we mean by
. wypderstand:” a system understands when it takes the actions that the user in-
b tended. This definition is “operational.” It is possible that a system could take
the actions the user intends solely by accident; perhaps the user speaks or types
" incorrectly. but the computer system, because of a bug of its own, does what
- the user actually wanted. By our definition, the system would be understanding.
We can strengthen the operationa! definition by insisting that the system can
only be said to understand when the correct action is part of a general pattern
of correct action in response to correct instructions from the user.

There are times, though, when this operational definition of “understand-
ing” still does not seem adequate. Sometimes, systems do not respond after
every uscr input. Even if they do, they may not respond in a manner that can
really reflect whether or not they have understood. A system that accumulates
knowledge without having a chance to apply it may or may not be understanding
{in the general non-operational sense of the word). For such situations it can
be useful to have a definition of understanding in terms of the internal behavior
- of the system, rather than the external behavior. A system understends some
input when it creates an appropriate conceptual structure, makes appropriate
f changes to a conceptual structure, or makes an appropriate modification to its
E knowledge base. This definition is vague, because it leaves undefined the notions
f of “appropriate conceptual structure,” and “appropriate changes” to conceptual
- structures or knowledge base. However, it gives an indication that understanding
i may involve the creation or modification of a representation within the system
- that is doing the understanding. According to Rich (1983), “To understand
something is to transform it from one representation into another, where this
second representation has been chosen to correspond to a set of available ac-
tions that could be performed and where the mapping has been designed so. that
for each event, an appropriate action will be performed.” Rich combines the
representation-changing aspect and the operational aspect in her definition of
. understanding.
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"Johin gives Mary a bouquet of flowers.”

Figure 9.1: Diagram for “John gives Mary a bouquet of flowers.”

Note that understanding may also be viewed as temporary learning: an as-
similation of the new input, and creation of a set of “bindings” of syntactic units
with concepts (particular definitions of words) in the knowledge base (extended
lexicon).

9.1.5 Representing Events with Case Frames

Let us now consider the way in which spoken or written language can represent
such things as events and can describe situations.

In order to transmit information in communication, a message must represent
the information. Language representations {spoken or written sentences) are se-
quences (e.g., either phonetic or lexical) and therefore linear or one-dimensional.
On the other hand, many situations or experiences we might want to express are
multi-faceted or multi-dimensional. (For example, an image of a landscape is
two-dimensional.) This discrepancy in dimensionality means that some scheme
18 necessary to map experience or concepts into language. It also means that an
mverse scheme is needed to map language representations back into representa-
tions that are closer to experience or thought forms. Let us look more closely at
how such mappings might work.

A typical example of a situation that may be described by an English sentence
is one in which there are two people (John and Mary), an inanimate object (a
houquet of flowers), and some action: “John gives Mary a bougquet of flowers.”
A diagram of the situation can help us get a perspective on this situation, and
assign roles to each participant.

This sentence describes an event-—an action, a process. This process is gimng.
The verb to give, of which “gives" is one form, specifies a particular kind of event.
action, or process, in which the participants have particular roles: (1) there is
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a giver, someone or something which performs the giving, which is the agent of
the activity: (2) there is a given (something which is given by the giver). in this
case the bougquet: a more general role for it is the (direct} object; and (3} there is
a “givee” whose role may be viewed more generally as that of recipient or even
more generally as indirect obyect.

The process of understanding this sentence consists primarily of finding the
kind of event being described, finding the participants in the event, determin-
ing the roles they play in the event, and appropriately affixing any additional
information provided about the participants or the circumstances under which
the event takes place. The most important clue in establishing the type of event
is the verb. The verb not only sets up the possible roles that can be played in
the event, but its position in the sentence helps to determine which roles are
played by the participants. The main verb of a sentence may bhe regarded as a
landmark. In this case it separates the agent (to the left of the verb) from the
recipient and the direct object (both to the right of the verb).

The positions of the nouns around the verb are not, however, a completely
reliable basis for assigning them their roles. The positions for each role may
depend on the woice of the sentence. The sentence above is in the active voice.
A passive-voice expression of the saine situation is *A bouquet of lowers is given
to Mary by John." Now the syntactic subject of the sentence is “a bouquet of
flowers™ even though “a bouquet of flowers” still plays the role of object in the
event. The agent, John, is no longer the syntactic subject, but the object of
the preposition “by.” A computer program that is to construct the relational
representation of the situation from an English sentence should construct the
same situation for ecither of these two sentences. However, it could mark the
relational representations differently to indicate the difference in “viewpoint” of
the two sentences. The passive form, generally less common in usage, suggests
that the listener or reader pay particular attention to the role of the object (in
this case the bouquet) in the event, rather than to the role of the agent, the
recipient or other participant.

The problem of constructing a semantic representation for a sentence is
treated in more detail later in this chapter. Let us now consider all the lev-
els of analysis that may be required in the process of understanding langnage.

9.1.6 Components of an Understanding System

The process of understanding natural language may be divided into a number
of levels. These levels may not all be present in every system for understanding
natural language, and it may not always be possible or appropriate to distinguish
the levels. However, they are quite useful as a way of structuring the study of
the subject. The levels are the following:

1. Signal (acoustical level}. This i1s the form of input for speech understand-
ing systems. A signficant amount of processing may be expended at this
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level because of the volume of data involved, and the intonsive nature of
filtering operations. Analysis at this level generally includes the extraction
of sound units called “phones.”

2. Phonetic level. Raw phonemic information must be aggregated into
phenological units or *“phonemes.” Phonemes can then be mapped into
components of words (syllables).

3. Lexical (word) level. At this level, words and components of words are
treated, including prefixes, suffixes, and other morphological forms and
inflections.

4. Syntactic level. Words only form meaningful sentences if they are grouped
according to grammatical rules. In order to prepare for interpretation of
the sentence, the grammatical structure of the particular sentence must
be determined by “parsing.”

5. Semantic level. Assigning meaning to each word and phrase and to the
entire sentence is usually the most difficult stage for designers of machines
or programs that understand. Except for systems with fairly limited ca-
pabilities, a system must have and utilize a large body of knowledge about
the subject (*domain”) being discussed.

6. Pragmatic level. In addition to assigning meanings to words, phrases and
sentences, there is sometimes a need for high-level control of a conversa-
tion; the system needs to determine whether or not the user understands
something; it should monitor the interest or boredom of the user, and
continually note the user’s emotions. This level is concerned with overall
planning and maintenance of the communications process.

In part because there are a large number of applications in which input is
already in textual form, a treatment of speech processing (the acoustical and
phonological levels) is not included in this text; however, several references on
speech processing are mentioned at the end of the chapter. Neither is the lexical
level, while quite interesting, discussed here. Therefore, we shall assume in the
following two sections that sentences are input to a system as ASCII text, and
that any words used are in a lexicon or word list accessible to the system.

9.2 Syntax

In order to interpret a sentence such as, “Show me the report on writing natural-
language interfaces,” it is necessary to determine the phrases that play certain
standard roles in the sentence and to forin an explicit representation of their
structure. Synfex is the grammatical structure of sentences. Recovering the
syntax of a sentence is called parsing.
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9.2.1 Formal Languages

Formal langnages are mathematical abstractions that may be used in modelling
the syntax of natural languages. By making very precise definitions, it is possible
to explore certain properties of languages {such as syntactic ambiguity) in a deep
way. The study of formal languages has also permitted a systematic development
of parsing techniques and an understanding of the computation time and space
required for parsing.

A formal language is defined in terms of an “alphabet” and a “grammar”
that determines the ways in which symbols of the alphabet may be combined
into sentences. An alphabef is a finite set of symbols. For example, the set {0,
1} is an alphabet. Another example is the set:

{a,b,c,d,e. f, g hi jk,mn o,p,qnustuv,wXy sz}

For a given alphabet ¥, a string over L is a sequence of zero or more symbols,
each of which is a member of ¥. For example, the following are strings over {0,
1}:

101
000000000
1

0101

Note that the empty string (the sequence of length zero) is a string over this and
. any alphabet. In a formal language, a sentence is just some string of symbols
. that is well-formed according to the rules for the language.

A prammar is a scheme for generating sentences from elements of the al-
phabet, and a particular grammar is specified by describing the following four
:components:

1. an alphabet of symbols that may appear in sentences of the language
{these are called the termingl symbols);

2. an alphabet of nonterminal symbols that may appear in partially-derived
sentences but may not appear in actual sentences of the language;

3. a start symbol, a specified member of the nonterminal alphabet; and

4. a finite set of productions, each of which consists of a left-hand side string
and a right-hand side string,.

It is thus customary to describe a grammar with a 4-tuple.
An example of a grammar is the following (let us call it Gy):

G = {{a,b}.{S.A. B}, 5, P)

£ where P contains the productions:
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S—A
§—B
A—aa
A—>a3a
B—tb
B — bBb

The productions operate on strings over a combined alphabet {which contains all
the symbols of both alphabets for the grammar). The productions can be used
to “re-write” a string by replacing an occurrence of the string on the left-hand
side of the production by the corresponding right-hand side.

In order to determine whether a particular sentence such as “aabbbaa™ can
be generated by this grammar, we look for a way to start with the start symbol
(in this case §), and keep applying productions to rewrite the current string so
that we produce the desired string. Each string derived by applying a sequence
of productions to the start symbol is called a sentential form. In this case, the
following derivation can be found:

sentential form how derived

S (the start symbol)

A {apply the production § — A)
aSa A—aSa

ada =4

aaSaa A—ala

aaBaa S—B

aabBbaa B — bBb

aabbbaa B—b

By placing some restrictions on the forms that productions may have, differ-
ent classes of languages can be defined. Chomsky defined four important classes:

o Type-3 languages (also called “regular languages”). Each production has
only a single nonterminal symbol on its left-hand side, and on its right-
hand side has either a single terminal symbol or it has a terminal symbol
followed by a nonterminal symbol.

¢ Type-2 languages (also called “context-free languages™). The left-hand
side of each production must always consist of exactly one nonterniinal
symbol. {The example grammar above is context-free, and it generates a
context-free language.)

¢ Type-1 languages (also called “context-sensitive langnages"). The left-
hand side of each production must not have a length greater than that of
the right-hand side.
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¢ Type-0 languages (also called “recursively enumerable languages™). Here
there are no restrictions on the productions.

The most general of these four classes is the class of type-0 languages. Context-
sensitive languages also form a very general class. However, because of the
computational problems of dealing with these two general classes of languages,
they have received relatively little study by computer scientists.

The most structured class is the type-3 or regular languages. For any regular
language, it is possible to design a finite state machine that can sequentially
process a string of symbols and determine whether it belongs to the language.
However, regular languages are seldom adequate for modelling English. {They
may be adequate for some simple natural-language front ends for things like
operating system commands.)

The language class of choice for most serious implementations of natural-
language understanding systems is the type-2 languages, or context-free lan-
guages. Although these formal languages clearly have their limits, large subsets
of English can be handled as context-free languages, and efficient parsing meth-

k. ods are known for them.

9.2.2 Context-Free Grammars and Languages

. A major advantage of context-free languages over regular languages is that they
5 can handle arbitrary levels of embedding, or, in other words, recursive structure.
i For example it is possible, in a context-free language, to define a prepositional
phrase to be a preposition followed by a noun phrase, where the noun phrase
- may include a prepositional phrase itself.
3 Context-free languages are amenable to relatively efficient syntactic analy-
- sis {or “parsing”) in comparison with general context-sensitive languages. The
theory of parsing formal languages is well-developed, and many methods for the
syntactic analysis of sentences in context-free langnages have been studied.

These methods can generally be classified as either “top-down” or “bottom-
up.” A top-down parsing method starts with the start symbol of a given context-
free grammar and successively applies productions, trying to derive the given
input string. If a sequence of productions is found that transforms the start
symbol into the target string, then that sequence, together with information
telling where each production is applied in the sentential form, constitutes a
E  parse of the sentence. A parse can be represented by a parse tree, which is a tree
:  each of whose nodes corresponds to a sentential form, whose root corresponds to
the start symbol, whose leaves all correspond to nonterminals, and such that N is
a child of A if and only if the sentential form for M can be transformed into that
for N by one application of a production. A bottom-up parsing method begins
with the input string and attempts to derive the start symbol of the grammar
by applying productions “backwards.”

If a context-free grammar permits a sentence of its language to be derived
in two or more distinct ways, the grammar is said to be ambiguous, and such a
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sentence is said to be ambiguous with respect to the grammar. Most grammars
for English are ambiguous. For example, the grammar below (although very
constrained) can generate the phrase, “the highest student’s grade” by either of
the derivations shown in Fig. 9.2.

— the 4
- BA
— grade

— B student’s
— highest

— student’s

volivoiee fin M-SRV

The tree on the left associates the adjective “highest” with the noun “studem”
whereas the tree on the right associates it with “grade.”

he/S\A the/S\A
7 \A v \A
/SN VAN,

B student’'s grade highest

highest student's grade

Figure 9.2: Two distinct parse trees for a phrase, showing grammatical ambi-
guity.

A grammatically ambiguous English sentence usually has only one (seman-
tically) appropriate interpretation. However, because a parser is not usually
concerned with meaning, it cannot choose the correct parse. Therefore. it is
typically the parser's job to supply as many parses as may be necessary for a
sentence to assure that a semantically appropriate one is found (if one exists).
Since it is possible to construct highly ambiguous grammars (that produce sen-
tences with many possible parses), a parser might stay fairly busy finding all
possible parses for a sentence.
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9.2.3 A Backtracking Parser in LISP

Gome of the problems of parsing sentences of context-free languages can be easily
seen if we consider an actual program for such parsing. The program described
here uses depth-first search, implemented using a combination of looping and
recursion. Each state of the implicit state space that is searched consists of a
sentential form, a string of symbols derived from the start symbol of the gram-
mar. The initial state is simply the start symbol. The goal state is the input
sentence to be parsed.

Each production of the grammar may be regarded as an operator that, if
applicable, may transform the current state into a new state. The program
makes a few assumptions that ought to be mentioned. It assumes that there are
no productions in the grammar that replace a nonterminal with the empty string.
This ensures that the length of the sentential form grows monotonically with the
pumber of productions applied. The program also assumes that a “leftmost”
derivation is always acceptable as a result. A leftmost derivation is a sequence of
applications of productions such that at each step, it is the leftmost nonterminal
of the sentential form that is rewritten.

As presented, the program uses a grammar whose productions are as follows:

S —-NP VP N —MAN

NP—NP PP D —THE

NP—DN V —RAN

VP—-V AV AV—FAST

VP—V PP—OVER THERE

We begin the program by providing a representation for this grammar. Using
the convention that § is always the start symbol of the grammar, and that any
symbol mentioned in any production is part of the vocabulary of the language, it
is only necessary to list the productions and to provide a way to distinguish the
nonterminal symbols from the terminals. The grammar representation is shown
helow.

; PARSE.LSP - a top-down, backtracking parser
; for a context-free grammar

; Here is the grammar:

; The production rules for each nonterminal
; are grouped together...

(PUTPROP ’S 7 ((NP VP)) 'PRODUCTIONS)
(PUTPROP ’NP ’({NP PP){(D N)) ’PRODUCTIONS)
(PUTPROP 'VP *((V AV)(V)) ’PRODUCTIONS)
(PUTPROP ’N ' ((MAN)) *PRODUCTIDNS)
(PUTPROP ’D 7 ((THE)) *PRODUCTIONS)
(PUTPROP °V > {({(RAN)) *PRODUCTIONS)
(PUTPROP AV *({FAST)) *PRODUCTIONS)
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(PUTPROP ‘PP '((DVER THERE)) ’PRODUCTIONS)

; This predicate distinguishes terminal symbols:
(DEFUN TERMINALP (W)
(MEMBER W ’(MAN THE THERE RAN FAST OVER)) )

Now the parsing functions can access the productions simply by using callg
of the form (GET » 'PRODUCTIONS). First the top-level function, PARSE. iy
defined. It calls PARSE2 with parameters that correspond to the initial state,

; The top level parser function:
(DEFUN PARSE (INPUT)
(PROG (CURRENT_PARSE MAXLEN)
(PARSE2 °S NIL 1 INPUT (LENGTH INPUT)) ) )

The parameters of the call to PARSE2 indicate that the current leftmost non-
terminal of the sentential form is S, that there is nothing to the right of thig
nonterminal, that the length of the unmatched portion of the sentential form
is 1, that the entire input has yet to be matched against this sentential form,
and that the length of the remaining input is the result of evaluating (LENGTH
INPUT).

The function PARSE2 expands the leftmost nonterminal, trying all the pro-
ductions for that nonterminal. In each case, it calls COMPARE to make surc
that the terminal suffix of the new sentential form is consistent with the input.
If it is, COMPARE makes a recursive call to PARSE2 to carry the derivation
deeper. If the new sentential form cannot possibly lead to the goal {on the ba-
sis of length comparisons or terminal-symbol mismatches} COMPARE returns
directly to PARSE2 without recursive calls. PARSE2 keeps track of the cur-
rent parse, maintaining a stack of selected productions as the value of the atom
CURRENT _PARSE,

; Function that actually applies productions
; and does backtracking:
(DEFUN PARSE2 (X RIGHT S_LENGTH UNMATCHED U_LENGTH)
; X is leftmost nonterminal of current sentential form.
; RIGHT is the portion of the sentential form to the
i right of X.
; S_LENGTH is the lemgth of current form portion.
; UNMATCHED is the unmatched portion of the input.
; U_LENGTH is the length of UNMATCHED.
(PRDG (X_PRODUCTIONS P BETA TEMP)
(SETQ X_PRODUCTIONS (GET X ’PRODUCTIONS))
LOCP (COND ({(NULL X_PRODUCTIONS) (RETURN NIL)))
(SETQ P (CAR X_PRODUCTIONS))
(SETQ X_PRODUCTIONS {(CDR X_PRODUCTIONS))
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(SETQ CURRENT_PARSE
(CONS (CONS X P) CURRENT_PARSE)) ; push onto stack

; apply selected production:
(SETQ BETA (APPEND P RIGHT))

; examine resulting sentential form:
(COMPARE BETA
(SUB1 (PLUS S_LENGTH (LENGTH P)))
UNMATCHED
U_LENGTH)

; backtrack (pop):

(SETQ CURRENT_PARSE (CDR CURRENT_PARSE))
(GO LOOP) ; go try nmext alternative
)

; The function COMPARE tries to match some terminal symbols of the current
E sentential form with corresponding symbols in the input. BETA is usually not
E. an entire sentential form. All the terminal symbols to the left of BETA have
¥ already been matched in outer contexts of the current recursive call, and so they
E need not be matched against the input again.

'-__; Function that matches terminal symbols in the sentential form
j-; with the input and continues the parsing if on the right track.
. (DEFUN COMPARE (BETA S_LENGTH UNMATCHED U_LENGTH)

£ ; BETA is the relevant suffix of the current sentential form.

; UNMATCHED is the portion of the input remaining to be matched.

(COND ((NULL BETA) ; nothing left of sent. form.
(COND ((NULL UNMATCHED) ; nothing unmatched: SUCCESS.
(PRIN1 ’*PARSE:) ; print ans. in reverse order.
(PRINT CURRENT_PARSE) )
(T NIL) ) ) ; something unmatched-no good.

((GREATERP S_LENGTH U_LENGTH) NIL) ; derivation too long
({TERMINALP (CAR BETA)) ; current symbol is a terminal
(COND ((NULL UNMATCHED} NIL) ; if no input left, no good.
((EQ (CAR BETA) (CAR UNMATCHED)) ; symbols match--
(COMPARE (CDR BETA) ; try to match more.
(SUB1 S_LENGTH)
(CDR UNMATCHED)
(SUB1 U_LENGTH)} ) )
(T NIL}) ; case where terminal doesn’t match.
})
(T : we have reached a nonterminal in BETA;
; parse recursively:
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(PARSE2 (CAR. BETA) ; new leftmost nonterminal,
(CDE. BETA) ; new right portion,
S_LENGTH
UNMATCHED ; remaining input.

U_LENGTH) ) } )

The following test function demonstrates the steps in parsing a simple sej-
ence.

[DEFUN TEST ()

(PROC ()
(SETQ SENT ’(THE MAN ODVER THERE RAN FAST))
{TRACE PARSE2)
(PARSE SENT) ) )

One of the problems in top-down parsing is in letting the parser know when
o stop a potentially-infinite sequence of expansions. The grammar provided for
his example contains a left-recwursive production, NP — NP PP. After expand-
ng NP, one gets NP PP, and after applying this again, one has NP PP PP
After k applications, one has the expression NP PP ... PP, where there are &
fopies of PP. Since this rule does not generate any terminal symbols, it does not
mmediately give rise to any mismatch, and so the process of expanding could go
bn for many cycles, without any mechanism to stop it. This program contains
brovisions to limit expansiornis using left-recursive productions. The means here
s to keep an account of the current length of BETA and the unmatched portion
bf the input. If the length of BETA ever exceeds that of the remaining input.
COMPARE fails, forcing backtracking.

Even so, left-recursive productions get expanded quite often, and they can
ead to bad performance. Executing the TEST above causes 32 expansions of
broductions. If we use the slightly shorter sentence “THE MAN RAN FAST"
hen the number of expansions drops to 17. Iuterestingly enough, by simply
bliminating the left-recursive production, this sentence causes only 9 production
B X pansions.

D.2.4 Grammar for English

[t has proved to be very difficult to write a grammar for the English language
that encompasses most of the language that a literate adult can understand.
bome general problems in constructing such a grammar are the following:

1. The variety of languages called English: Grammars for proper written
{published, scholarly) English are naturally different from grammars of
dialog. In order to understand a contemporary novel, it may be necessary
to handle sentences such as, “The, uh, man ain't got no - uh, yuh-know.
dough.” In fact, there are clearly many personal versions of English, and
it may be too much to expect one formal system to handle them all.

A



' 0.3. SEMANTICS AND REPRESENTATION 337

9. The evasiveness of words and phrases when it comes to classifving them
into syntactic categories: A simple grammar will handle 90% of sentences
in certain kinds of use but won't handle 100%, without admitting many
kinds of ill-formed sequences of words. In English, phrases of one syntactic
type can end up being used as another. For example, in “The fox jumped
out from behind the rock,” the phrase “behind the rock” is a preposi-
tional phrase that functions as a noun representing a place. There are
many adaptations of parts of speech: nouns serving as adjectives, nouns
converted to verbs, etc., and these complicate the job of desighing a good
English grammar.

3. The size of the problem: Just the lexical part alone of English grammar is
a large corpus of knowledge to represent. A significant part of a Webster’s
dictionary is taken up with spelling and part-of-speech information. In
all likelihood, the parts of speech used in standard dictionaries are not
accurate enough to permit good syntactic analysis, and a good English
grammar would contain more kinds. Research projects have addressed
the issue of providing a grammar for English, and several grammars have
been proposed. These grammars typically require a large book to describe
them.

E. As a result of these difficulties, designers of English-language interfaces to com-
£ puter systems have often contented themselves with rather limited subsets of
¥ English. As we shall see, the problem of syntax is only a small part of the whole
language-understanding problem. Semantics presents an even greater challenge.

| 9.3 Semantics and Representation

& Before we discuss computational methods for understanding English sentences,

B it is worth claborating on represemtations for meanings. Meanings can be ex-

¢ pressed in terms of objects and relationships. By specifying the forms for the
i symhols which tepresent the objects and the relationships, we clarify semantic
& representation schemes.

i Part of the problem in finding a good representation for sentence semantics is
¥ to determine the kinds of relationships that are to be communicated in a partic-
. ular natural-language subset. Relationships involving quantity, time, space and
b beliefs. for example, warrant particular attention. Some of these relationships
P are explored in this section.

] 3.3.1 Lexicons

Y An English dictionary is a list of words with their meanings. It is a partial repre-
- sentation of the semantics of English. A difficulty in using standard dictionaries
is that the definition for each word is described in words; it may be necessary
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to already understand the meanings of many words in order to understand the
definition of a single new one. While lexicographers generally attempt to define
words in terms of simpler or more familiar ones, sometimes the definition of 5
word may seem no clearer than the unfamiliar word itself. Nevertheless, many of
the important syntactic and semantic aspects of words are given in a dictionary,
and dictionaries often are effective in clarifying the meanings of words.

A lexicon is a knowledge base indexed for access by words {which are short
character strings). It is usually assumed that the words represent concepts and
that each entry in the lexicon gives a definition or description of a concept. Iy
an Al system, a knowledge base could be implemented as a set of frames, with
one frame per word, together with an index structure, possibly implemented as
a B-tree, or more simply (but less efficiently) as a list of pairs of the form {word
poinfer-to-frame), where the list is ordered lexicographically.

While a lexicon represents knowledge about the words of a language and is
therefore either a permanent or a slowly-changing structure, another structure
or family of structures is needed to represent the semantics of the particular
sentences that occur in dialog or reading. These structures are usually relations
among semantic objects (e.g., word meanings).

9.3.2 Representing Events in Frames

In the introduction to this chapter, we discussed the notion of “case frames™ that
represent events in a scheme organized around a verb. Let us now elaborate upon
this notion. It gives us a means to move above the lexical level, forming associ-
ations of word meanings—semantic structures which are essentially composites
of meanings of individual words.

Let us consider a verb whose meaning is more subtle than the meaning of
“give” (described earlier). Now we examine the verb “to buy.” We may identify
several roles that may he played by people or things in a buying event. These
include the following:

1. buyer (the “agent” for the event);

2. seller (a sort of “co-agent”);

3. merchandise (the direct object of the verb);

4. beneficiary {the indirect object); and

5. price (a role that is peculiar to buying and selling events).

Although we can refer to a buying event with the verb “buy,” which is only
three letters long, in actuality a buying event consists of a number of subevents.
and the explicit representation of them requires a significantly more elaborate
expression. We might describe this collection of subevents as follows:

.
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o Buyer makes agreement with seller about ownership of merchandise and
price.

o Ownership of merchandise is transferred from buyer to seller.

o Ownership of funds {(in amount specified by the price) is transferred from
buyer to seller. Alternatively, we can say that the seller’s funds increase
by the amount of the price, and the buyer's funds decrease in the amount
of the price.

e Purchase is for henefit of beneficiary. The default implication is that the
buyer gives the merchandise to the beneficiary soon after the purchase.

Let us now consider the example sentence: “Jill bonght Mark a box of choco-
lates for $9.95 from the Dilettante for Valentine’s Day.” We can identify the
type of event here as a buying event because “bought” is a form of the verb
“buy.” Then we may find which noun phrases play each of the roles in the event.
On the basis of their sentence positions, the subject, indirect object and object
can be labelled, and assigned to the roles “buyer,” “beneficiary,” and “merchan-
E dise.” We depend on the fact that the sentence is in the active voice; in the
' passive voice, the grammatical subject might play the role of the beneficiary or
the merchandise: “Mark was bought a box of chocolates by Jill for $9.95 from
the Dilettante for Valentine’s Day,” or “The box of chocolates was bought by
Jill for Mark for $9.95 from the Dilettante for Valentine's Day.”

1 Let, us now attempt to describe the semantics of *buy” through a more formal
f. description of the subevents that take place in a buying event. Here is one quasi-
" logical description of these subevents (for the case without a beneficiary}.

agree (buyer, seller, transaction)
is-part(transactionl, transaction)
is(transactionl,
replace( owns(seller, merchandise),
owns{buyer, merchandise} ) )}
is-part(transaction2?, transaction)
is(transaction2,
both({ increase-funds(seller, price),
decrease-funds(buyer, price) ) )

Here we ate saying that a buying event consists of an agreement of a buyer and a
seller to a transaction: that there are two parts to the transaction {transactionl
and transaction2); that the first sub-transaction is a change of ownership of the
merchandise fromn the seller to the buyer; and that the second sub-transaction is a
transfer of funds as effected by increasing the seller’s funds by the amount of the
price, while decreasing the buyer’s funds by the same amount. This description
makes the assumption that money is manipulated by accounting (increasing and
decreasing accounts) rather than being moved around or given and taken as if
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Holding a Dinner Party

roles, etc. Ffilers

hosts: Scott
guests: Diane
invitees; Diane, Erica
menu: CAJUN2

event sequence: | invite guests—inuvitefhosts, invitees)

plan menu—planfhosts, menu)

buy groceries—buy(hosts, food)
cook—cook{hosts, food)

entertain guests—entertainfhosts, guests)
eat—eat(quests, food), eat(hosts, food}
clean up—washfhosts, dishes)

Figure 9.3: A script for holding a dinner party.

it were a physical object. Another way of describing the second sub-transaction
would be as a change in ownership of an amount of money equal to the price.
In case there is a beneficiary, then the expression

owns (buyer, merchandise)

should be

owns (beneficiary, merchandise).

9.3.3 Scripts: Schemata for Chains of Events

While many verbs describe reasonably complex events, not all the events we may
need to represent or describe have a verb that refers to them. Therefore, the
case frame, while suitable for events organized around a single verb, needs to be
extended to handle more complex kinds of events.

A natural way to allow more complex events to be handled by frames is
to allow the main event to be represented as a list of subevents. The term
“script” is sometimes used for such a frame. Scripts are used as schema for
activity sequences that are usually considered as units. An example script for
the activity sequence involved in holding a dinner party is shown in Fig. 9.3.

Each of the events in the script's sequence needs further elaboration. This
could be done by linking each subevent slot to a case frame (or even another
script) that describes that event in more detail, specifying the primary action,
and the parties to that action, each in their appropriate roles. Another way to
specify the events is to express them in a logical representation, or in some other
formal language for describing events.
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Let us now consider a story fragment and its relation to the script.

“Seott decided to have company for dinner. He invited Diane and
Erica for Saturday night. Erica had a previous engagement, but
Diane was free. After settling on a Cajun menu, he went to the
market. Though out of shrimp, they had fresh catfish. When Diane
arrived Saturday evening, Scott handed her a stiff Planter’s Punch,
and though she had never had blackened catfish before, she gave it
a try and said she liked it. Scott offered her another punch.”

Using a dinner-party script such as the one above, certain inferences about this
particular story are facilitated. First, an understanding system would attempt
to Gll in as many of the slots in the script (or in schemata pointed to by the
script) as possible, using the story. It would try to establish who or what fills
- each of the roles in the script. A correspondence between verbs in the story and
[ actions in the script would be sought.

Here, after the dinner-party script has been selected as the most promising
b script for this story, the host is identified as Scott. Diane and Erica are readily
t  determined to be invitees, and Diane is found to be a guest as well. Several of the
events in the script correspond to verbs in the story. The story’s verbs “invited,”
ssettling,” and “handed” can be seen to correspond to the script’s verbs “invite,”
“plan,” and “entertain,” although handing is not entertaining in a strict sense
(but handing a drink to someone can be considered as serving them a drink, and
serving drinks may in turn be considered as entertaining). Information about
some of the other events may be inferred from the story. For example, the
phrase “he went to the market” implies that at least part of the buying event
took place, since going to a market or store is normally a step in the process
of buying groceries. Without any evidence to the contrary, it is appropriate
to conclude that the buying event took place; thus the values in a script may
generally considered to be defaults, true until shown otherwise. Although there
is no mention of cooking in the story, from the script we may infer that cooking
took place—that Scott did the cooking. With additional effort, we can conclude
that the catfish was cooked.

The subevents in a script are normally considered as chronologically ordered.
However, a more general kind of script may allow arbitrary ordering constraints
on the subevents. A means for expressing such constraints is then needed. As
an example, we might consider the first two events in the script for holding a
dinner party. “invite guests™ and “plan menu,” as chronologically independent.
This could be expressed by grouping them with special brackets, e.g., “|(invite
guests) (plan menu)).”

There is a rescmblance between scripts and plans. However, there is a fun-
damental difference between them. The existence of a plan implies that there is
a goal which corresponds to it. On the other hand, scripts do not need goals.
There may be a hierarchical structure within sequences of events in scripts, and
this may be similar to hicrarchical structure in plans. But again, the emphasis
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is different: scripts provide frameworks of understanding: plans provide the nec.
essary steps toward a goal. In principle, one can develop plan-scripts that serve
both functions.

To summarize, scripts are a variety of frame schemata that are well suited to
representing sequences of events. They have most of the same advantages and
disadvantages as a knowledge representation method that frames have: they do
a good job of helping organize knowledge at the frame level; they don't help
at the slot level; and they don't provide a means for organizing collections of
frames.

Because frames and scripts do not provide support for slot-leve! semantics,
a system based upon frames or scripts must utilize additional mechanisms for
the detailed semantics. Thus we now consider some problems of representing
semantics that frames don’t help with.

9.3.4 Semantic Primitives

In order to avoid the problem of circularity that may occur in dictionary defini-
tions, it has been proposed that a set of “semantic primitives” or atotnic meanings
be specified and used in combinations to represent more complex meanings. A
particular meaning of any word then would either correspond to one of the given
primitives or to a combination of them.

Two systems that have received considerable attention in the literature are
one by Y. Wilks and one by R. Schank. The latter is now briefly described.

The “Conceptual Dependency” system consists of a number of primitive kinds
of semantic objects and ways of combining them to produce arbitrarily compli-
cated “conceptualizations.” The semantics of “Pierre devoured the escargots”
could be represented! as

(ACTOR (PIERRE) ACT (INGEST) OBJECT (ESCARGOTS)).

Actions, normally represented by verbs, are categorized into eleven types, five of
which represent physical actions which people can perform: PROPEL, MOVE.
INGEST, EXPEL and GRASP; two represent changes of spatial and other rela-
tionships of things to their environments: PTRANS (which indicates a change
of location) and ATRANS (which indicates a change in an abstract relationship
with an object); two refer to superficial aspects of communication: SPEAK (1o
utter a sound) and ATTEND (to direct one's perceptual attention); and two
represent information-processing acts: MTRANS (transfer of information) and
MBUILD (creation or modification of thoughts).

Most nouns can be classified into one of the following groups: those that
represent physical objects, including animals and people, {these are given the
name “Picture Producers"): locations, and times. Nouns that do not fall into any
of these categories (e.g., earthquake, birthday party, happiness, question) may

INotation adapted from [Riesheck 1975].
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represent events (and thus are expressible as conceptualizations) or states {and
be represented with special primitives for handling states) or actions (and thus
be handled with one of the eleven kinds of acts). This categorization of verbs
and nouns helps lead to representations of the essential meanings of language
§  expressions, and it facilitates the writing of programs that make inferences from
L the representations.

' A conceptualization, like an English sentence, usually contains an agent {(a
picture producer) and an act (e.g., “Bill jumped.”). However, a conceptualization
might consist of a picture producer and an indication of its state or change of
state (e.g., “Bill’s face turned crimson.”). One conceptualization may include
. another; in “Jill hurt Jack” there is a primary conceptualization that Jill did
' comething, and a secondary conceptualization that the physical or emotional

E state of Jack changed for the worse; in addition, there is a causal relationship

£ between the conceptualizations. The whole conceptualization comprises both of
. these and the causal link. As may be seen in the LISP-like example above, the
#  Conceptual Dependency system incorporates notions of case (the roles played by
. nouns and subordinate clauses in relation to verbs).

It is beyond the scope of this chapter to describe all the details of the Con-
k' ceptual Dependency system (this would require some fifty pages). The system
i provides primitives and comnbining rules suitable for representing the semantics
}  of many everyday conversations and stories. It should be pointed out that the
f. systems of both Schank and Wilks were designed pragmatically with the aim to
- support experimental systems for natural-language text comprehension. Seman-
f tic systems built upon logical foundations (such as that mentioned below) are
£ an alternative approach.

9.3.5 Logical Forms

As we saw in Chapters 4 and 6. logic is attractive because of its simplicity
in comparison to some other methods, and because of its ability to support
deductive inference.

The limitations of logic {first-order predicate calculus) for sentence repre-
sentation have largely to do with quantification; predicate logic gives only two
choices: universal and existential, and the variables they may be applied to are
restricted to represent elements of the domain, excluding functions and predi-
cates. As mentioned in Chapter 7, the truth values provided by predicate logic,
true and false, do not leave any leeway for uncertainty.

A number of variations on predicate logic have been proposed to better
meet the needs for representing sentence semantics, One of these is Montague's
“Proper Treatment of Quantification” (PTQ) and his semantic system based
upon “Intentional Logic.” Montague’s system is logically well-founded and is rich
enough to allow expression of very complex and subtle meanings. At present, it
is difficult for the uninitiated to understand the Montague system because of its
heavy dependence upon an elaborate logical framework.
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9.3.6 The Semantics of Quantity

Because of their importance in Al systems, several specific issues in semantic
representation are now discussed. The first of these is the notion of quantity.

In our everyday uses of English we employ quantitative notions of many sorts.
We describe numbers of objects (e.g., “five apples™) and quantity of substance
(e.g., “lots of mayonnaise”). We refer to degrees of intensity (e.g.. “she loved
him very, very much"). We also may refer to objects or ideas, times, and places
by number: e.g., “the second point you made," "on the fifth day,” “north of the
45th parallel.” Some essential quantitative notions that are needed for natural-
language understanding systems are the following:

¢ numbers, such as counts of discrete objects.

s quantities: amounts of things. Amounts are values from a continuum
of possible values. Amounts are linguistically related to collective nouns
such as salt, water, and meat?. Many quantities are measures. A measure
usually has at least two important aspects:

— a physical substance, phenomenon or other notion which is measured.
and

— the units or scale on which an evaluation is given. (Note: we treat
measurement of time and of space in separate subsections, because
of their particular importance.)

Relative quantities are often important in expressing meanings through
natural language. Common notions of relative quantity are percentages.
ratios, and proportions, Concepts of relative quantity are applicable both
to discrete and continuous kinds of quantities.

¢ Relationships between quantities or numbers. Two classes of such rela-
tionships are these:

- magnitude, e.g., greater, less than, equal, approximately equal; arith-
metic relations, e.g., twice, thrice, half.

— number-theoretic, e.g., rounder ($1.25 is rounder than $1.37), prime.
relatively prime, ete,

Suppeort for concepts of quantity such as these is an area that is not well provided
for by pure first-order logic. However, it is possible to construct representations
for these concepts in logical frameworks.

It is sometimes difficult to distinguish a plural non-collective noun from a collective one.
A somewhat ambiguous case is the sentence, "We saw a lot of deer cross the field.” Hero
“deer” is plural and non-collective. On the other hand, “venison” is a collective noun: eg.in
the sentence, “We saw a lot of venison cross the butcher’s counter.”
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| 9.3.7 The Semantics of Time

The designer of a natural-language understanding system should provide rep-
resentations for the notions of time that are needed in the application area of
concern. For example, in order to talk about children’s stories, a set of concepts
involving sequences of events, the past, days and other common units of time is
appropriate. On the other hand, a conversation about a simulation of a VLSI
circuit design may require concepts of gate delay, clock rise times, microseconds
. and nanoseconds, etc. Common concepts related to time typically fall into two
F- categories: time objects, and temporal relationships.

Time objects include (a) points, {b) intervals, (c) repeated intervals {e.g.,
«On Tuesdays”), and {d) repeated points {e.g., “Every day at noon”). Such
> objects may be referred to in terms of events that are closely associated with
k. them (e.g., “one gate delay” refers to an interval of time}.

Some temporal relationships are the following:

e temporal precedence constraints. Special procedures may be needed that
combine sets of constraints into new ones. Such procedures may sometimes
be viewed as algorithms which compute intersections of sets of intervals
and collections of intervals.

» relational binders of time:

— “When John finished his program, he poured himself a drink.”
— “After John wrote his program, he poured himself a drink.”
— “Before John poured himself a drink, he wrote his program.”

] In addition to time objects and temporal relationships, there are certain tem-
b poral expressions which may denote a time object or temporal relationship indi-
i rectly. The terms today, yesterday, tomorrow, now, next week, ete. presumably
. are bound at the time of utterance.

3 There are usually three points of time that are related to a sentence. These
¥ are the time of utterance, the reference time, and the event time. Let us consider
the sentence, “Just after I finished my assignment, the professor handed out the
solution.” The time of utterance is when the sentence was spoken or written by
the speaker or writer. The reference time is the time when the speaker finished
his/her assignment. The event time is the time when the professor handed out
the solution.

It may often be necessary to understand quantification over time {or, as in this
case, a type of event): “Whenever I finish an assignment, I go eat something.”
The meaning here is roughly equivalent to, “For all events involving my finishing
an assignment, there is an event approximately coincident with it involving my
going and eating something.” _

There are interesting problems for the designer of a natural-language under-
standing system related to keeping track of the temporal context. In a conver-
sation there may be a number of time objects in the context:
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A: “When I was on sabbatical, I lived in France for a while.”
B: “Did you visit the French Alps?”

A: *Yes. I did some skiing there.

B: “What else did you do then?”

A more complicated example is this:

A: When 1 was a child, I did a lot of reading.

B: Did you read any of the “Hardy Boys” stories?
A: Yes, in my late childhood.

B: What else did you read then?

A: “The Little Engine that Could”

This sequence establishes two intervals of time, and proceeds to illustrate a
possibly incorrect interpretation of a slightly ambiguous reference. The odd
aspect of this conversation is that “then” in the 4th line seems to refer to the
most recently referenced interval of time (the period of A's late childhood), but
A’s response in line § is the name of a story normally read in early childhood.
and therefore this suggests that A interpreted “then” as referring to the first
interval of time, A’s childhood in its entirety.

If the conversation continued as follows, we see another interesting aspect of
reference to time:

A: And what did you read then?
B: I wasn't yet born.

Presumably, by “then” A meant “during your childhood.” However, B presun-
ably took it to mean the absolute time interval during which A was a child. not
B.

It should be clear that the proper resolution of “then” references requires
reasoning about time and about the temporal aspects of the situation heing
discussed. The probable inconsistency of reading “The Little Engine that Could”
in late childhood can only be detected with a knowledge of the reading level of
this story and the reading expectations for children in late childhood.

In the second case, the ambiguity of “then™ ought normally to be resolved in
a way most likely to meet the expectation of the person asking the question. In
this case, the answer “T wasn’t yet born™ seems not to be an answer that provides
the kind of information that A was requesting, By reinterpreting “then” to be
B’s childhood, it becomes possible for B to provide the kind of information A is
asking for.

9.3.8 The Semantics of Space

The designer of natural-langnage understanding system may need to provide
representations for notions of space that are relevant to robot planning, human

h
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b interactions with microwoilds. and discussions about problems where space plays
¥ an important role {e.g., architect’s advisor).

: Words for spatial relations are a part of basic English (and any other natural
E language). “The phone is to the left of the computer.” “The wine is inside the
pottle.” However, these relationships are often elusive when it comes time to
b decide what they mean in specific geometrical terms. (For example, if A is 1
E unit to the left of B and one hundred units up from B, is A “to the left of” BY)
' Therefore, it is often helpful to be able to take advantage of constraints of the
; application in assigning meanings to these terms. (In the “Stone World" LISP
| example described later in this chapter, the cellular space used in the microworld
L suggests a specific semantics for several spatial terms.)

~ Analogous to the problem of resolving temporal references that use “then”
is the problem of understanding the meaning of “there.” If the spatial aspects
E of a discussion are important, it may be necessary to use a spatial-reasoning
g subsystem to properly interpret such references.

‘-: 9.3.9 The Semantics of Knowing and Belief

£ One of the most challenging research areas in Al is the development of good
i systems for inferring people's beliefs from speech or text. Aside from the difficulty
. of extracting such information, achieving such inference implies that one has a
E. good system for representing the beliefs. Such a system should support useful
E inferences about the other beliefs these people might hold and about the actions
k. they might take as a result of their beliefs.

1 The natural-language part of the problem is difficult enough. The context
f. of an utterance can play a very large role in the analysis. Satire and sarcasm,
L for example, are used to express beliefs indirectly. An unsophisticated computer
f system, when told, “Oh sure, pink elephants can fly,” might accept this as a
E statement of literal fact. Another interpretation of it would be to assume that
f the speaker believes this to be fact, without assigning any degree of belief itself to
¥ the statement. A better interpretation is that the speaker wishes to cast doubt
£ on (i.e., lower the degree of belief in) some other statement in the context.

_ Degrees of belief may be represented using such techniques as certainty values
and distributions (such as those discnssed in Chapter 7) and Dempster-Shafer
theory. The semantics of certain qualified statements such as, “John believes it
possible that the Loch Ness monster exists” can be represented using “modal
logic.” However, a discussion of such systems is beyond the scope of this text.

9.4 Computing Interpretations
In this section we consider two important methods that have been used to struc-

ture systems for automatic language understanding. One of these, the use of “se-
mantic grammar,” moves much of the work of extracting meaning from sentences
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onto the syntactic analyzer (the parser). The second scheme, the “augmenteq
transition network,” provides a framework in which semantic-analysis rontines
can be easily integrated with parsing. Later, we shall see how we can obtain
the advantages of semantic grammars and augmented transition networks at the
same time.

In a third subsection we consider some problems of reference: when does 3
noun phrase introduce a new object to the conversation, and when and how does
a noun phrase refer to an object that is already subject to attention?

9.4.1 Semantic Grammars

Syntax was relatively well-understood by the late 1960’s. By contrast, at that
time, semantic analysis was viewed as a separate, mysterious process that would
have to be studied in its own right. However, one practical method for building
natural-language interfaces developed out of the opposite view: that since syntax
is so well understood, we should modify the syntactic analysis of a sentence so
that a maximum of the semantic analysis is performed at the same time. The
technique called “semantic grammar” provides a way to do just that. While
the method generally requires more elaborate grammars than nermally used for
syntactic analysis, the same parsing techniques can be used; context-free parsing
is the only essential analysis technique needed. In this way it is pessible for the
semantic-grammar approach to exploit well-understood mechanisms.

Formally, there is no difference between a semantic grammar and a context-
free grammar. However, in practice, a semantic grammar is a context-free gram-
mar most of whose non-terminal symbols represent more specific categories of
words than those of an ordinary context-free grammar for natural language do.
For example, instead of having a general symbol (noun), a semantic grammar
may have several more specific symbols: (tool), {cut}, (location}, {work-piece).

§ — {cut-verb} a {cut){prep) the {work-piece-part}
with the {tool}.
{cut-verb) — bore | gouge | cut | drill | mijll
{cut) — hole | groove | rabbet | trough
{prep} — in | along | into | through | across
{work-piece-part) — {component) of the (work-piece)
{component} — flange | rim
{work-piece} — baseplate | wheel assembly | assembly cover
{tool) — minidrill | gantry drilf |
dado cutter on the milling machine |
dado cutter on the portasaw

Figure 9.4: Semantic grammar for a (hypothetical) robotics application.
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¥ (component) and {work-picce-part}.

Let us consider an example of a semantic grammar that can be used to inter-
¢ pret commands in a subset of English for the purpose of instructing an industrial
. robot in the manufacture of some machine part. Here are some example sen-
i tences that this semantic grammar can handle:

“Bore a hole in the flange of the baseplate with the gantry drill.”

3 “Gouge a groove along the rim of the assembly cover with the dado cutter
¥ on the milling machine.”

3 The grammar is given in Fig. 9.4. The parse of a sentence with a semantic
: grammar contains the information necessary to build a semantic representation of
f the sentence; in fact, the parse itself may he considered a semantic representation.
The overall action requested from a command such as one of the two above s
¥ specified by the verb of the sentence. The role that each noun plays in that
k. action is apparent in the semantic-grammar parse.

On the other hand, there is a disadvantage in using the semantic grammar
[ approach: except when describing very small languages, semantic grammars
k' tend to have a great many productions, and so the parsing can be very time-
g consuming.

[ 9.4.2 Augmented Transition Networks

t  Augmented transition networks (or “ATNs") were developed in an attempt to
provide a practical framework for natural-language understanding.

: In order to combine parsing with semantic analysis, it should be possible to
¥ atiach semantic routines to specific parts of the parsing mechanism or grammar.
B An ATN can offer the following advantages: (1) The basic parsing scheme is
'~ easy to understand; the grammatical information is represented in a transition
network, and consequently. an ATN is relatively easy to design. (2) Semantic
f analysis proceeds simultaneously with syntactic analysis, and semantics may
easily be used to constrain parsing to resolve ambiguities.

The arcs of an ATN correspond to words and phrases. Each arc of an ATN
is labelled with a specification of the condition under which the arc may he
traversed. This is typically either a word, a phrase, a predicate to be satisfied by
a prefix of the unscanned portion of the input sentence, or the name of another
{or the same} ATN (in which case another ATN is called, possibly recursively).
In addition to the condition on each arc, there is an action associated with
each arc. The action may involve procedures that make partial interpretations,
examine registers set by other actions, or perhaps do nothing at all. The ATN
framework does not place any restrictions on the kinds of actions one can specify.
Thus by deciding to use an ATN, one does not narrow the design alternatives
for a system very much. However, the ATN approach seems to provide enough
structure to a natural-language system to be helpful.

A sample transition network for parsing commands is Mustrated later, and
an implementation given.
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9.4.3 Detecting and Resolving References

A system that constructs a semantic representation for a sentence builds a daty
structure {usually a graph) which is linked into a long-term memory or perma-
nent knowledge base. Most meanings consist of interrelationships among objects.
'The objects may be classes of things (e.g., as in “Dogs are fun to have”), known
individuals (e.g., “former president Carter™), unknown individuals {e.g.. “a cat
named Fuzzy”), or concepts (e.g., happiness). The objects may also be ones that
have not been previously discussed but are in the immediate experience of the
conversants: “You see that house? It needs a paint job.”

When a system builds a representation, it is important that the correct ol-
Jjects be linked. A primary decision must be made about each noun phrase in
the input sentences: Does it introduce a new object or does it refer to one that
is already in the scope of the conversation? If it refers to a new object, then
a representation of the object must be created. If the noun phrase refers 1o
a pre-existing object, it is important not to create a second representation for
it, because making inferences involving the object would become awkward or
impossible.

In English, there are certain clues that help to reveal the newness or oldness
of an object in a conversation. The pronouns he, she, i, him, her, we, and they
usually refer to an old object—a person, group, or other object which already
has been introduced into the conversation. The pronouns I and you refer to the
transmitter and receiver of the message, respectively; these are old objects which
do not need explicit introduction into the conversation. Occasionally, a pronoun
such as he introduces a new object: “He who tells not the truth shall have a
long nose.” However, this form is relatively unusual and can often be detected
by its use of a relative clause involving who, which or that.

Most noun phrases that do not consist of pronouns begin with a detemmmr
such as a, an or the (these three words are commonly called “articles™). As
was mentioned in Chapter 4, determiners such as a, an and some are said to
be indefinite, and such a word often indicates that its noun phrase introduces
a new object into the conversation. On the other hand, the is called definite
and it usually signals that its noun phrase is not introducing a new object but
refers to a concept that the speaker considers to be already in the experience of
the listener. Unfortunately, English is sufficiently complicated that these rules
are not adequate in some cases. The definite article can introduce a new object
when the noun is followed by a relative clause: “The house which I just bought
needs work.” The listener may not be familiar with the speaker's new house:
“the” indicates that the house is a particular one. Also, an indefinite article can
refer to a concept well established in the listener’s experience: “I always like a
good wine.” Here “a good wine" refers to the class of good wines (something
well understood) and the indefinite article serves not to introduce something
new but to generalize from “good wine” in the singnlar to the set of good wines.
One way to handle new-or-old decisions is to assume that cach noun phrase

'ﬂ
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introduces a new object and then to merge objects when implications indicate
that two objects should be regarded as the same.

The challenge of handling the new-or-old decision is probably not half as
difficult as the problem of resolving references to old objects. The problem is
most difficult with pronouns. because they are the least specific of the noun
phrases and they offer ambiguity its greatest opportunities. The next sentence
illustrates one nstance of this problem.

I'd never heen tobogganing, but I took a train to Switzerland and
gave it a try.

Two nouns in this sentence are placed so that it might well refer to them: train
and Switzerland. The gerund tobogganing is used here both as an adverb modi-
fying “had been”™ and as a noun, the antecedent of it. A system that didn’t treat
the gerund both ways could have trouble resolving the reference.

In some cases “it" is used to refer to an overall situation, event or expe-
rience, rather than some object that is explicitly mentioned: “She wined and
dined me. It was great!” Here it refers to the speaker’s particular experience
of being wined and dined. Making this reference explicit requires the knowledge
that wining and dining is an activity specifically oriented towards creating a
pleasurable experience for the person who is the object of the action. Let us
consider the similar-sounding example, “She took me to a performance of Ham-
let. It was great!” The preferred antecedent of if in this case is perfermance. A
performance is something for which it is usual o make an evalnation, and the
explicit mention of performance together with the fact that it is a noun make
it a stronger antecedent than the experience of being taken to the performance.
However, if the speaker were to stress the word took heavily enough, the listener
would then be inclined to accept the experience as the antecedent.

The general problem of resolving pronomial references may sometimes be
solved using a constraint-oriented approach. First a set of candidate objects
is identified; these objects are implicated either by their proximity in the text
(or conversation) to the pronoun or by rules {e.g., rules that suggest events and
experiences as possible antecedents}. Then constraints and/or rules of preference
are used to eliminate and/or order the alternatives. Some constraints may be
simple {e.g.. based on gender or number): “Jack and Jill went up the hill. She
tumbled.” The pronoun she cannot refer to Jack because they are incompatible
in gender. In more subtle cases, we have a preference relationship that is only
apparent after a fair bit of the meaning of the sentence has been extracted. For
example, regarding the tobogganing example above, “giving something a try” is
an effort often reserved for activities not yet experienced.

The above examples have illustrated some of the difficulties of determin-
ing references. These problems can be critical to the understanding of textual
documents: inability to resolve a reference may lead to a complete failure to
understand the text. Fortunately, however, there are modes of communication
with natural language that are more robust. In a dialog, it is possible to ask a
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question about the referent of a word and then receive an answer. There need
not be an impasse in the dialog due to failure to resolve a reference unless one
party has no concept whatsoever of the thing being referred to by the other. Be.
sides this “robustness™ property, there are other interesting and useful aspects
of dialog, and some of these are discussed in the next section.

9.5 Dialog Management

Unlike reading a text, participation in a dialog involves give-and-take, and each
party to the dialog has some control over its course.

9.5.1 Modes of Conversation

There are different kinds of conversations that we might want a machine to
participate in. The designer of a natural-language dialog system must take into
account the kinds of conversations the system will handle. A system could be
designed to handle one type of conversation only; another system might be able
to shift modes and thereby exhibit greater sophistication. Here are some kinds
of conversations:

L. Small talk. Much of human conversation may be considered small talk.
The purpose of such conversation is generally to demonstrate goodwill
and friendliness. It usually takes very little effort to understand small
talk because most of it is predictable. For example:

A. “Hi, John. How are things going today?"
B. “Not too bad, Al. And you?”
A. “Real good, ever since that downpour ended.”

Small talk typically tends to stick to subjects such as people’s feelings,
health, and the weather. Its expressions are often idiomatic or colloquial,
and they may break the rules of “proper” English.

2. Question-and-answer (e.g., database querying). Some conversations are
entirely focussed around the transfer of a single piece of information. One
party to the dialog (the interrogator) wants to know a particular fact. The
other party presumably has this information but needs to find out exactly
what the interrogator wants to know. The dialog may proceed to narrow
the range of subjects until the desired information is identified and can he
transferred.

3. Database update or teaching. This mode is analogous to the previous one,
except that the information will be transferred in the other direction.

4. Persuasion. One party is attempting to communicate a proposition and
establish a high degree of belief in it by the other party.

N
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5. Manipulation of emotions. While this mode is similar to persuasion in that
it involves one party trying to bring about a change in the other, there
are some particular strategies for emotional manipulation (e.g., flattery)
that tend to be insufficient for persuasion.

This list is intended to be suggestive, and there are certainly other kinds of
conversations.
In addition to kinds of communication, one can often differentiate phases of a

- conversation. Typical phases are the opening, body and close of a conversation.

9.5.2 The Phases of a Conversation

Before communication of key information is possible, certain aspects of the con-
versational context must be established. One of these is the identities of the
parties to the conversation. These may be understood a priori, and not need ex-
. plicit mention in the dialog, but without this information, the conversation will
i be limited. In the case of a human conversing with a computer, the computer
¥ may assume that it is always talking with “the user” and not need any partic-
[ ular identification from him/her. The human may not need to be told which
program he/she is talking to, because he/she may have started up the program
and obviously know which one it is. However, without being allowed to know the
F name of a user, it is likely that the computer is not able to build and maintain
F a model of the nser’s beliefs and preferences, and the conversation is likely to be
a shallow one. The opening phase of a conversation may involve the following:

1. Greeting. This signals the commencement of the dialog, and it should
wake up processes that seek to establish basic contextual information.

2. Establishing identities of parties to the conversation.

3. Loading the context. Any previously developed context for this commu-
nication partner should be retrieved and activated.

4. Determining the goals of the user. The purpose of the present conversation
should be determined.

Much as “opening” and “endgame” refer to loosely defined phases in the
playing of chess. the opening and close of a conversation do not have strictly
defined boundaries. However, a conversation program can be designed to shift
modes when certain developments have taken place in the dialog. For example,
the opening could be considered complete when the identity of the user has been
established. The beginning of the close of a conversation might be defined as the
time when

1. the user types “goodbye,” “see you later” or “gotta go.” or

2. five minutes have elapsed without the user responding to a simple question.
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During the close, the following may be involved:
1. a summary of conclusions reached during the body,
2. re-affirmation of the next meeting time.

3. courteous affirmation of the end of the conversation; e.g.. “It was a plea-
sure to talk with you. Goodbye.”

4. filing of conclusions reached for use on a future occasion,

5. clearing the current context in preparation for a fresh conversation with
a potentially different user, or the same user on a different topic.

9.5.3 Monitoring Communication Effectiveness

The body of a conversation is generally where the purpose of the conversation
is achieved. The degree to which the dialog needs to be controlled depends
on what that purpose is. When the subject of communication is complicated
or abstract, there is a greater chance for error (misunderstanding) than if the
subject is simple and short. It is desirable to check for successful communication
and take remedial action when problems are discovered. Demons (background
processes) may monitor the following variables:

1. How well the user is understanding
2. The user’s level of attention
3. The user’s emotional disposition (happy, angry, etc).

If any of these variables is found to have a bad value, the course of the con-
versation should be adjusted before proceeding with the main flow. How such
variables should be determined is a research question at, present.

9.5.4 Schemata for Controlling Conversation

Somewhat beyond the state of the art is the design of a system that can converse
flexibly in English with a user and persuade him or her to accept a political or
religious argument. However, it is fun to imagine some of the mechanisms that
could contribute to such a system.

Bome conversations could be controlled with simple algorithmic strategies. A
schema for persuasion is the following:

1. If the proposition is a simple fact, say so, and if possible, give its source
(in this case the argument is complete): otherwise,

2. communicate the structure of the ensuing argument,

3. persuade the user of the premises,
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P
Figure 9.5: Map showing the initial state for Stone World.

4. persuade the user of the soundness of the rule of inference, and

5. demonstrate how the conclusion follows from the premises using the rule
of inference.

. This is just one schema for persuasion, and it uses a logical style. Another schema

| might involve identifying alternative beliefs and maligning their adherents.

9.6 An English Interface to a Microworld

£ 9.6.1 System Description

Bl In order to illustrate the interplay between a natural-language understanding
£ system and the program it scrves as a front end to, a miniature environment
¥ called “Stone World” is described. Stone World serves as a simulation environ-
¢ ment in which actions can be taken. This world consists of a two-dimensional
£ space {called “Stone Land”}, a character called “Mace,” and a set of objects
¢ some of which are movable and others of which are fixed. The 2-D space (Stone
B Land) is cellular, and any location in the space may be specified by a pair of
B integers giving the row and column for the cell.

' The character Mace may be thought of as a man or as a robot who carries
on some of the activities of a stonemason. Mace can move around in Stone Land
according to commands given in natural language by the user. The objects in
Stone World are the following: a tree, a pillar, a well. a quarry, a gem, and some
stones. The gem and the stones are portable. Mace can be directed to pick them
up and put them down. A map showing the initial state of Stone World is given
in Fig. 9.5.

9.6.2 Network Description

The ATN used in the Stone World interface is shown in Fig. 9.6. The starting
node for the main network is G1. The “accept” nodes are shown with double
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circles and are unlabelled. Arcs are labelled with either literal material or condi.
tions. Conditions are shown in parentheses, while literal material is shown with-
out parentheses. The symbol A denotes the empty string. An arc involving ) i
tried last, of all the alternatives from a node. Note that some conditions are pred-
icates on the next word to be scanned. For example “(DIRECTION_ADVERB)"
specifies that, in order to traverse the arc. a word of the direction-adverb type
must be next. Other conditions are expressed as calls to subnetworks of the
ATN. Thus “(NP1)" specifies that the subnetwork whose start node is NP1 iy
to be traversed, pushing the context within the main net. The phrase parsed by
the subnetwork is considered scanned as the arc in the main net is traversed.

The network and parsing scheme are defined in such a way as to eliminate
any possibility of backtracking. This results in some restriction of the language
subset recognized by the system, but it greatly simplifies the parsing procedure
and reduces the average time required to parse a sentence.

A typical command (sentence) that this ATN handles is:

PICK UP A STONE FROM THE QUARRY *

Note that “*" is used to terminate a sentence here, so that we can avoid the
use of strings in LISP, and we implement more of the interface with standard
functions. This command would be parsed by starting at G1 in the main net.
and traversing a path as follows: The arc labeled “{TAKE_VERB) would be
traversed since the predicate TAKE_VERB applied to PICK yields T; the arc
labeled “UP" would be traversed. The arc labeled “(NP1}” would be traversed
in accordance with the successful parsing of the subnet starting at NP1, The
portion of the sentence scanned by the subnet would be "A STONE." Then
the self-loop arc from and to node T4 would be taken, scanning “FROM THE
QUARRY" since FROM satisfies DIR_PREP (that is, FROM is a directional
preposition) and “THE QUARRY” would be successfully parsed by the subnet
starting at DNP1 (which handles a directional noun phrase). Then the arc from
T4 to LAST would be taken, scanning the * at the end of the sentence. Finally
the A arc would be traversed, taking the process to an accepting node.

9.6.3 Implementation

The program consists of two sets of functions and forms: those primarily used
to implement the constraints of Stone World, and those primarily used in the
natural-language interface.

We first describe how space and objects in Stone World are represented. Stone
Land is represented as a 10 by 20 array {actually as a list of ten lists of 20 elements
each). These elements are initially all set to V" {for vacancy}, and then objects
are placed at particular locations with the help of the function SET_PLACE. The
function SHOW, which displays Stone World, manipulates this representation
directly. It uses helping functions SHOW_ROW and FRINT_PLACE.

N
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(PUT_VERB}

. (ARTICLE) . (OB NOUN) o O

W.O
S

(DIRECTION_ NOUN)

Figure 9.6: The Augmented Transition Network for the Stone World interface.
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; STONEWLD.LSP

; A "Stone World" and a natural-language interface to it.
; This program demonstrates how a natural-language

; understanding program can be set up around a

; "micro-world".

(SETQ -N_ROWS 10) ; dimensions of Stome World
(SETQ N_COLS 20)

; Let VR be a row of vacancies:
GETQ VR *(VVVVVVVVVVVVYVYVYVYVVVVV)

; And here is the initially vacant array:
(SETQ STONELAND (LIST VR VR VR VR VR VR VR VR VR VR))

; This procedure puts an object at a place:
(DEFUN SET_PLACE (ROW COL OBJECT)
(PRDG O
; replace atom at row=ROW, column=COL by OBJECT:
(SETQ STONELAND
(REPNTH ROW
(REPNTH COL
OBJECT
(GETNTH ROW STONELAND) )
STONELAND) )
; update the coordinates of the object:
(PUTPROP OBJECT (LIST ROW COL) ’POSITION) ) )

; The following helping function replaces the Nth element
; of L8T by ELT:
(DEFUN REPNTH (N ELT LST)
(COND ((EQUAL N 1)(CONS ELT (CDR LST)))
(T (CONS (CAR LST)
(REPNTH (SUB1 N) ELT (CDR LST)) )) ) )

; SHOW displays STOMELAND on the screen.
; Note that (LOCATE I J) is a primitive function which puts
; the cursor at row I, column J.
(DEFUN SHOW ()
(PROG () (LOCATE 0 0)(CLS){PRINTM STONE WORLD)
(MAPCAR ’*SHOW_ROW STONELAND) ; display each row.
(LOCATE 18 0) ) ) ; move cursor to lower screen area.

B
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(DEFUN SHOW_ROW (ROW) ; display one row of STONELAND
(PROG () (MAPCAR °PRINT_PLACE ROW) (TERPRI)) )

; The next function prints one cell of Stome Land.
. ; There are 2 characters per cell, one of which is
" ; always blank (ASCII 32).
(DEFUN PRINT_PLACE (PLACE) iprint PLACE (except V’s as dots).
(COND ((EQ PLACE ’*V)(TYD 250) (TYD 32))
(T (PRIN1 PLACE)(TYO 32)) )} )

; Place landmarks in STONELAND:

(SET_PLACE 5 5 'W) ; well

. (SET_PLACE 7 15 ’'Q) ; quarry

. (SET_PLACE 4 13 °MN) ; "Mace", the mason
(SET_PLACE 7 2 ’'T) ; tree

E (SET_PLACE 10 18 °’P) ; pillar

£ (SET_PLACE 2 6 ’G) : gem

} Now that the space and objects have been created, and the objects all have
E locations in the space, we need to specify more properties of the objects than
4 just their Jocations. Some objects are portable and some are not. Also we
b initialize Mace as facing north and carrying nothing.

; stones and gems are portable; landmarks are not:

(MAPCAR ’ (LAMBDA (OBJ) (PUTPROP DBJ T ’PURTABLE)) *(S &))

(MAPCAR ° (LAMBDA (OBJ) (PUTPROP DBRJ NIL ’PORTABLE))
QWTP) )

(SETQ CARRYING NIL) ; Mace starts out empty-handed
(SETQ LAST_DIRECTION ’NORTH) ; and facing north.

Next we define several functions which manipulate positions and directions. Be-
fore doing so, the four principal directions are declared:

(SETQ DIRECTIONS ’(NORTH EAST SOUTH WEST))

The function CONTENTS provides a means to access values in the array
STONELAND.

(DEFUN CONTENTS (I J) ; returns contents of place I J.
(GETNTH J (GETNTH I STONELAND)) )

The function NEIGHBOR_CONTENTS returns the contents of the particular
cell neighboring Mace’s current postion in the specified direction, or it returns
the atom OFF_LIMITS if the neighbor would be outside STONELAND. The
function NEIGHBOR_POS gets the coordinates of the neighbor. It uses the
function VECTOR _ADD which returns the sum of two vectors.
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(DEFUN NEIGHBOR_CONTENTS (DIR)
(PROG (NEI_POS I 1)
(SETQ NEI_P0OS (NEIGHBOR_POS DIR))
(SET@ I (CAR NEI_POS))
(SETQ J (CADR NEI_PDS))
(COND ({OR (ZEROP I)
(ZEROP J)
(EQUAL I N_ROWS)
{EQUAL J N_COLS) )
(RETURN ‘OFF_LIMITS) )
(T (RETURN (CONTENTS I 1)) ) ) )

(DEFUN NEIGHBOR_POS (DIR)

; add the appropriate displacement vector to

; Mace’s coordinate pair.

(VECTOR_ADD (GET °’M ’POSITION)

(COND ((EQ DIR ’NORTH) ’{-1 0))

((EQ DIR ’SOUTH) ’(1 0))
((EQ DIR ’WEST) {0 -1))
({EQ DIR ’EAST) *(0 1)} ) ) )

(DEFUN VECTOR_ADD (X Y) ; return vector sum of X and Y
(COND ((NULL X) NIL)
(T (CONS (PLUS (CAR X)(CAR Y))
(VECTOR_ADD (CDR X)(CDR Y)) )Y

Several functions are now defined which carry out operations and/or perform
tests for the legality of those operations. Some of these functions help Mace
move, pick things up, or put them down. For example, the function MOVE is
used to effect the change of Mace’s position in the course of obeying a “GO"
command. MOVE takes one argument, a direction such as NORTH. Then in the
PROG body, it sets the value of POS to the pair of coordinates of the cell which
is the neighbor of Mace’s current position, in the given direction. Then, using
a call to SET_PLACE, Mace's current cell is updated to be vacant. and this is
shown on the screen by the call to PLOT. Then the atom M is written into Mace's
new location and shown on the screen. The helping functions MACE_ROW and
MACE_COL return the row number and column number, respectively, of Mace's
current position.

(DEFUN MOVE (DIRECTION) ; makes Mace move in direction
(PROG (POS)
(SETQ POS (NEIGHBOR_POS DIRECTION))
(SET_PLACE (MACE_ROW) (MACE_COL) 'V)
(PLOT V¥ (GET ’M *PQSITION))
(SET_PLACE (CAR P0S) (CADR POS) °M)
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(PLOT *M PD3) ) )

. (DEFUN MACE_ROW () (CAR (GET ’M *POSITION)))
- (DEFUN MACE_COL ()} (CADR (GET 'M °’POSITION)))

; The next function returns T if 0K to move
; in the specified DIRECTION:
(DEFUN MOVE_LEGAL (DIRECTION)

(ER (NEIGHBOR_CONTENTS DIRECTION)} V) )

; Here is a function which makes Mace pick up the object
b ; that lies in the given DIRECTION:
§ (DEFUN TAKE (DIRECTION)
(PROG (PDS)
(SETQ POS (NEIGHBOR_POS DIRECTION))
(SETQ CARRYING
(STONE_OR_GEM (CONTENTS (CAR POS)(CADR POS))}) )
(COND ((NULL (EQUAL PDS (GET ’Q ’POSITION)))
(SET_PLACE (CAR POS)(CADR POS) 'V}
(PLOT 'V POS) ) ) ) )

é (DEFUN STONE_OR_GEM (OBJ) ; convert Q to 5.
f  (COND ((EQ OBJ ’Q) ’S) (T 0BJY) )

¥ ; The following function returns T if it is OK

. ; to take an object from the specified DIRECTION:

" (DEFUN TAKE_LEGAL (DIRECTION)

(AND (MEMBER DIRECTION DIRECTIONS)
(MEMBER (NEIGHBOR_CONTENTS DIRECTION) ’(Q S G))
(NULL CARRYING) ) )

; In order to make Mace drop an object in a
; particular DIRECTION, the following definitiom
; is given:
(DEFUN PUT (DIRECTION)
(PROG (PDS)
(SETQ PDS (NEIGHBOR_POS DIRECTION))
(COND ({NULL (EQUAL POS (GET °Q ’POSITION)))
(SET_PLACE (CAR POS){(CADR PDS) CARRYING)
(PLOT CARRYING POS) )) ; update screen
(SETQ CARRYING NIL) ) )




362 CHAPTER 9. NATURAL-LANGUAGE UNDERSTANDING

; In order to make sure that it is 0K to put an object
; down in a given DIRECTION, we define this function:
(DEFUN PUT_LEGAL (DIRECTION)
(AND (MEMBER DIRECTION DIRECTIONS)
(MEMBER (NEIGHBDR_CONTENTS DIRECTION) '(Q V))
CARRYING) )

The following function is used to update the display of Stone World withoyt
redrawing it all

(DEFUN PLOT (SYMBOL POS)  ; display SYMBOL at POS on CRT
(PROG ()
(LOCATE (CAR POS) (TIMES 2 (SUB1 (CADR P0S))))
(COND ((EQ SYMBOL *V)(TYD 250))
(T (PRIN1 SYMBOL)) )
(LOCATE 22 0) ) )

Let us now describe the second half of the program, which implements the
English-language interface to Stone World. Before we describe how the parsing
procedure operates, we describe how the ATN is represented in LISP. Each node
of the ATN is represented by an atom (e.g., G1). The arcs emanating from a
node are represented by an expression which is stored on the property list of the
atom. The expression is a list of the individual are descriptions. Each arc is
represented by a list whose first item is a pattern that must match the current
portion of the input sentence if the arc is to be traversed. The rest of the list is
a sequence of actions to be taken if the pattern matching is successful. If the arc
leads to any node which is not a final node, then the last action for an arc has
the form (NEXT N) where N is the name of the node to which the arc leads.

The function PARSE takes as its argument the current node in the ATN from
which parsing is to proceed (or continue). It assumes that the global variable
S contains, as its value, the remaining portion of the sentence being analyzed.
PARSE has the job of attempting to traverse one of the arcs which leaves the
cwrrent node by matching the value of § with the pattern for the arc. If the
pattern matching is successful for an are, then the corresponding actions are
executed. Because of the way the arcs emanating from a node are represented.
PARSE has only to take the list of arcs from the property list of the node, make
some simple modifications to it and apply the COND function to it. The two
modifications to the arclist are the following: (1) The pattern to be matched is
embedded in a call to the MATCH function, and (2) a clause is appended o
the list, correspounding to an “else” condition (to handle the situation when no
arcs can be traversed from the current node, with the particular user input).
The first modification is effected by the function ADDMATCH and the second
is accomplished by the call to APPEND in the function PARSE itself.

The function NEXT, which is called as the last action in most of the arcs.
functions mainly to call PARSE recursively to contitue the analysis of the sen-
tence after an arc has successfully been traversed.
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[ : The PARSE function starts the parse of the current
[ . string from NODE:
| (DEFUN PARSE (NODE)
(APPLY ’COND (APPEND (ADDMATCH (GET NODE °’ARCS))
'((T (PRINTM STUCK IN PARSE)
(SETQ INTERP ’(NIL))
(SETQ SUCCESS NIL))) ) )} )

E  (DEFUN ADDMATCH (ARCLIST) : make each compressed clause into a
 (MAPCAR ’(LAMBDA (ARC) ; legitimate COND clause.
(CONS (APPEND ’ (MATCH)
(LIST (CONS ’QUOTE
(LIST (CAR ARC)) ))

(8) )
(CDR ARC) ) )
ARCLIST) )
i (DEFUN NEXT (NODE) ; displays progress and continues parse

(PROG () (PRIN1 NODE){(TYQ 32)(PARSE NODE)) )

k' Now the representation for onr particular angmented transition network is pre-
f sented. For each non-final node, we place a list of arcs on its property list.

; Here is the ATN for command analysis.
; It is based on a semantic grammar:
(PUTPROP °G1
'(
((SHOW =*)
(SETQ S * (%))
(SETQ INTERP ’(SHOW_COMMAND}) )
(({GO_VERB X) (* Y))
(SETQ S Y)
(SETQ DIRECTION_SLOT ’(DIRECTION FORWARD)) ; default direc,
(SETQ DISTANCE_SLOT ®{STEPS 1)) ; default dist.
(NEXT °G2) )
(((TAKE_VERB X}(x Y})
(SETQ S Y)
(SETQ COMMAND ’TAKE_COMMAND)
(SETQ DIRECTION_SLOT *{DIRECTION UNSPEC))
(SETQ 0BJ_SLOT ’STONE)
(NEXT °T2) )
(((PUT_VERB X)(* Y))
(SETQ 5 Y

; default direc.
; default object
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(SETQ COMMAND ’PUT_COMMAND)
(SETQ DIRECTIDON_SLOT ’(DIRECTION FORWARD)) ; default direc.
(SETQ OBJ_SLOT (LIST CARRYING)) ; default object
(NEXT 'P2) ))

*ARCS)

(PUTPROP ’G2
:l( .
((x) (NEXT ’G3)) ; end of command
((TO (= XH ; "TD" are
(SETQ S X)
(PARSE 'DNP1) ; get destination infe
(NEXT °G3) )
((TOWARD (* X))
(SETQ 3 X)
(PARSE 'DNP1) ; get directiomal info
(NEXT 'G3) )
(((DIRECTION_ADVERB X)(* Y))
(SETQ S8 Y)
(SETG DIRECTION_SLQOT
(LIST ’DIRECTION (NORMALIZE_DIRECTION X)) )
(NEXT °G3) ) )
*ARCS)

(PUTPROP ’G3
2 (
((*) (SETQ INTERP (LIST ’‘GO_COMMAND
DIRECTION_SLOT
DISTANCE_SLOT))
(NEXT ’LAST) ) )
' ARCS)

(PUTPROP ’DNP1 ; sub~ATN for directional noun phrase
"(
((x) (PRINTM THIS MUST BE A NAME) (NEXT ’DNP2))
(((ARTICLE Z) (* Y))

(SETQ S Y)
(NEXT ’DNP2) ) )
ARCS)

(PUTPROP ’DNP2
7(
(((DBJ_NOUN W) {* Y))
(SETQ S Y)
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(SETQ DIRECTION_SLOT (LIST 'TOWARD
(NORMALIZE_OBJECT W))) )
(((DIRECTION_NOUN W) (* Y))
(SEIQ S Y)
(SETQ DIRECTION_SLOT (LIST ’DIRECTION W))
)
* ARCS)

. (PUTPROP ’T2
1
((UP (> X)) ; ignore particle "UP" if present here.
(SETQ S X
(NEXT ’'T3) )
(({(+ X))
(NEXT ’T3) ) )}
*ARCS)

E (PUTPROP °T3 ; get object (if any)} of TAKE or PUT verb
r ] (

(((ARTICLE X)(* Y))

(PARSE ’NP1)

(SETQ OBJ_SLOT NP1)

(NEXT 'T4) ) )
?ARCS)

- (PUTPROP 'T4
. H (
((*)
(SETQ INTERP (LIST COMMAND DBJ_SLOT DIRECTION_SLOT))
(NEXT 'LAST) )
(((DIR_PREP X)(* Y})
(SETQ S Y
(PARSE ’DNP1)
(NEXT ’T4) ) )
'ARCS)

; The next subnetwork parses a noun phrase and

| ; saves the result as NP1’s value:

(PUTPROP NP1
> (
(((ARTICLE X){(* Y))
(SETQ 5 V)
(COND ((EQ X ’THE) (SETQ DEFINITE T))
(T (SETQ DEFINITE NIL)) )
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(NEXT *NP2) ) )
*ARCS)

(PUTPROP ‘NP2
’(
(((OBJ_NDUN X)(* Y)})
(SETQ S Y)
(SETQ NP1 (LIST (NDRMALIZE_OBJECT X)
(CONS ’DEFINITE (LIST DEFINITE)) )} ) )
?ARCS)

(PUTPRDP ’P2

'
((DOWN (* X)) ; ignore particle "DOWN" if present here.
(SETQ S X)
(NEXT ’T3) )
((IT (= X))
(SETQ S X)
{(NEXT 'P3) )
(((*x X))
(NEXT °T3) ) )

*ARCS)

(PUTPROP ’P3 ; object seen already

' (
((DOWK (* X)) ; ignore particle "DOWN" here, too.
{SETQ 5 1)
(NEXT ’T4) )
(((x X))
(NEXT °'T4) ) }

'ARCS)

(PUTPROP ’LAST
> (
((*) (PRINTM I UNDERSTAND YOU)) )
?ARCS)

The structure of the ATN has now been given. However, there remain par-
ticular tests and actions that occur in the arc desctriptions which we haven't vet
defined. Here we define them. Some of these functions such as GO_VERB are
predicates that provide the interface with the ability to recognize common syn-
onyms for the names of the actions, objects or directions that it understands.

; functions that support the pattern matching in the ATN:
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g:(DEFUN GO_VERB (W) (MEMBER W * (GO MOVE HEAD WALK)))
E (DEFUN TAKE_VERB (W) (MEMBER W '(TAKE PICK GRAB LIFT CARRY)))

E (DEFUN PUT_VERB (W)
i (MEMBER W ’ (PUT DROP PLACE RELEASE POSITION LEAVE)) )

8 (DEFUN DIRECTION_ADVERB (W)

¥ (MEMBER W ’ (NORTH EAST SQUTH WEST NORTHWARD EASTWARD
SOUTHWARD WESTWARD RIGHT LEFT UP DOWN
STRAIGHT AHEAD)) )

L (DEFUN DIRECTION_NOUN (W)
§  (MEMBER W ’(NORTH EAST SOUTH WEST)) )

} (DEFUN DIR_PREP (W)
E  (MEMBER W ’(TO FROM TOWARD TOWARDS)) )

§ (DEFUN OBJ_NOUN (W)
f  (MEMBER W
*(QUARRY CORNER PLACE TREE WELL PILLAR STONE GEM) ) )

b (DEFUN ARTICLE (W)
£ (MEMBER W ’ (A AN THE)) )

i; functions that support the actions on ATN arcs:

t (DEFUN NORMALIZE_DIRECTION (W)

. (TRANSLATE W ’ ((NORTHWARD . NORTH) (EASTWARD . EAST)
(SOUTHWARD . SOUTH) (WESTWARD . WEST) (RIGHT . EAST)
(LEFT . WEST)(UP . NORTH){DOWN . SOUTH)
(STRAIGHT . FORWARD) (AHEAD . FORWARD) )) )

'3 Here is a simple look-up function which
'3 looks word W up in DICT which must be a
t + list of dotted pairs. TRANSLATE returns
i the corresponding word or W if none.
} (DEFUN TRANSLATE (W DICT)
f (COND ((NULL DICT) W)

((EQ W (CAAR DICT))(CDAR DICT))

(T (TRANSLATE W (CDR DICT))) ) )

 (DEFUN NORMALIZE_OBJECT (W)
E  (TRANSLATE W ’ ((QUARRY . Q) (TREE . T)(WELL . W)
(PILLAR . P)(STONE . S)(GEM . G)
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(MACE . M)(YOU . M) ) )

The function ACT_UPON dispatches commands to the particular functions that
can carry them out such as OBEY_GQO, SHOW, etc.

(DEFUN ACT_UPON (L) ; linguistic object
(COND ((EQ {(CAR L) °*GO_COMMAND)
(SETQ SUCCESS T) ;T until proven NIL
(OBEY_GO) )
((EQ (CAR L) ’SHOW_COMMAND)
(SHOW)

(SETQ SUCCESS T) )
((EQ (CAR L) ’TAKE_COMMAND)
(SETQ SUCCESS T)
(OBEY_TAKE) )
((EQ (CAR L) ’PUT_COMMAND)
(SETQ SUCCESS T)
(OBEY_PUT) )
(T (SETQ SUCCESS NIL)
(PRINTM CANT SATISFY THAT KIND OF REQUEST) } ) )

The function OBEY _GO begins by extracting the direction and number of steps
parameters from the encoded command (which is the value of L, the argument
passed to ACT_UPON). If the direction given is FORWARD then this is changed
to the value of the global variable LAST_DIRECTION. Then a loop is begun
which, in each iteration, attempts to move Mace one cell in the given direction.

(DEFUN OBEY_GO ()
(COND ((AND (EQ (CAADR L) ’DIRECTION)
(EQ (CAR (CADDR L)) ’STEPS) )
(SETQ DIRECTION_SLOT (CADR L))
(SETQ DISTANCE_SLOT (CADDR L))
(SETQ DIRECTION (CADR DIRECTION_SLOT))
(COND ((EQ DIRECTIDN ’FORWARD)
(SETQ DIRECTION LAST_DIRECTION) ))
(SETQ NSTEPS (CADR DISTANCE_SLOT))
{DO_N_TIMES NSTEPS
(COND ((MOVE_LEGAL DIRECTION)
{MOVE DIRECTION)
(SETQ LAST_DIRECTION DIRECTION))
(T (SETQ SUCCESS NIL)) ) ) )
(T (SETQ SUCCESS NIL)
(PRINTM CANT HANDLE COMPLEX DIRECTION OR DISTANCE) )
) )

(DEFUN CAADR (X) (CAR (CADR X))) ; a utility function
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¥ [n order for Mace to pick up an object, the function OBEY_TAKE deter-
b mines which object has been specified and which direction the object is to be
L taken from. Since the first element of L is the type of command {in this case
t TAKE_COMMAND), the parameters are in the remainder of L, and the form
[ (SETQ PRMS (CDR L)) accesses them. If the user does not specify a direction,
b then the function FIND_DIR is called to determine which direction the object
t can be taken from. If the direction is specified as “THE QUARRY" then a
[ special function FIND_DIRI1 is called to determine the corresponding compass
E direction. Finally, if it is possible to carry out the resulting command, it is done.
f. Otherwise the atom SUCCESS is given a value of NIL.

§ (DEFUN OBEY_TAKE ()
;- (PROG (PRMS DIRECTION)
(SETQ PRMS (CDR L))
(SETQ OBJECT (CAAR PRMS)) ; thing to take
(SETQ DIRECTION {CADAR (CDR PRMS)))
(COND ((EQ DIRECTION ’FORWARD)
(SETQ DIRECTION LAST_DIRECTION) )
((EQ DIRECTION 'UNSPEC)
(SETQ DIRECTION (FIND_DIR OBJECT DIRECTICONS)) )
((EG DIRECTION ’Q)
; handle Quarry direction as special:
(SETQ DIRECTION (FIND_DIR1 ‘Q DIRECTIONS)) )
)
(COND ((TAKE_LEGAL DIRECTION) (TAKE DIRECTION))
(T (PRINTM CANT TAKE THAT WAY)
(SETQ SUCCESS NIL) ) } ) )

f ; The next function searches in the given
¢ ; DIRECTIONS to find the given 0BJ:

f (DEFUN FIND_DIR (OBJ DIRECTIONS)

E. (COND ((NULL DIRECTIONS) NIL)

((EQ (STONE_OR_GEM : consider Q as S
(APPLY ’CONTENTS (NEIGHBOR_POS (CAR DIRECTIONS))))
0BJI)

(CAR DIRECTIONS))
(T (FIND_DIR 0BJ (CDR DIRECTIDNS)}} } )

t ; The next function is like FIND_DIR, except
L 5 that § is not mapped to S.
} (DEFUN FIND_DIR1 (OBJ DIRECTIONS)
(COND ((NULL DIRECTIONS) NIL)
((EQ (APPLY ’CONTENTS
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(NEIGHBOR_POS (CAR DIRECTIONS)) )
0BJ)
(CAR DIRECTIDNS))
(T (FIND_DIR1 OBJ (CDR DIRECTIONS))) ) )

(DEFUN OBEY_PUT ()
(PROG (PRMS OBJECT DIRECTION DK)
(SETQ PRMS (CDR L))
(SETQ OBJECT (CAAR PRMS)) ; thing to put
(SETQ DIRECTION (CADAR (CDR PRMS)))
(COND ((EQ OBJECT CARRYING)(SETQ 0K T))
(T (SETQ DK NIL)) D
(COND ((EQ DIRECTION ’FORWARD)
(SETQ DIRECTION LAST_DIRECTION) ))
(COND ((AND OK (PUT_LEGAL DIRECTION))
(PUT DIRECTION} )
(T (PRINTM CANT PUT THAT WAY)
(SETQ SUCCESS NIL) ) ) ) )

(DEFUN PRODUCE_REPLY ()
(COND (SUCCESS (PRINTM DK, NEXT?))
(T (PRINTM I CAN’T QUITE DO THAT ONE)) ) )

The function START is used to begin a session. It calls SHOW, which displays
Stone World, and then the dialog with the user is begun. The function PARSE
is called to begin the interpretation of each sentence of user input.

(DEFUN START () ; main program
(PROG (INPUT DIRECTION_SLOT DESTINATION_SLOT OBJECT_SLOT)
(SHOW)

(PRINTM HEY YOU UP THERE! WHAT SHOULD I DO7?)
(PRINTM PLEASE END YOUR SENTENCES WITH % DR 7)
LOOP (SETQ INPUT (INPUT_SENTENCE))
(SCROLL)
(SETQ S INPUT)
(PARSE ’G1) ; analyze the English input in S.
(ACT_UPDN INTERP) ; try to obey command or answer query.
(SCROLL)
(PRODUCE _REPLY)
(SCROLL)
(GO LOOP) ) )

(DEFUN INPUT_SENTENCE () ; get atoms until * or ?
(PRUG (TEMP)
(RETURN
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(COND ((TERMINATORP (SETQ TEMP (READ))) (LIST TEMP))
(T (CONS TEMP (INPUT_SENTENCE))) ) ) ) )

. (DEFUN TERMINATORP (ATM) (MEMBER ATM ’(+ 7)))

The following code is machine-dependent for the IBM PC: it is included here in
keeping with the tenet that all programs presented in this text be complete and
.- runnable without modification. It is a function to scroll a window that consists
- of the lower half of the screen.

(DEFUN SCROLL ()
(PROG NIL

(SET_REG 6 12) ;CH = 12 = upper row

(SET_REG 10 0) :CL = 0 = left col

(SET_REG 7 24) :DH = 24 = lower row

(SET_REG 11 79) iDL = 79 = right col

(SET_REG 5 2) :BH = 2 = attribute for blank line
(SET_REG 8 2) ;AL = 2 = \#lines to blank

(SET_REG 4 6) ;AH = 6 means scroll active page up

(BIOSCALL 10)
(LOCATE 22 0) ) )

‘ 9.6.4 Sample Session

5’: Once all of Stone World's definitions and other expressions have been loaded
" (and evaluated), a session is begun by typing:

i (START)

f. This causes a map to be displayed (resembling Fig. 9.5) and the dialog is initiated.
8. The lower portion of the screen serves as a dialog window, and in it soon appears
I the message:

E HEY YOU UP THERE! WHAT SHOULD 1 DO?
{ PLEASE END YOUR SENTENCES WITH * OR ?

. The user mnay then type a line such as the following, terminated with a carriage
return:

WALK TD THE SOUTH =*

The program then parses the command. displaying its progress by printing the
labels of the nodes in the angmented transition network that it encounters:

G2 DNP2 G3 LAST_NODE

Soon. a pusitive acknowledgement appears:
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1 UNDERSTAND YQU

This is followed by an updating of the map to show the motion of the mason,
The user might then type:

G0 EAST »

The system will again parse and interpret the command and take the requeste
action. Using several such steps, the user can position Mace next to the quarry,
Suppose that Mace is in the cell just north of it. The user may then type

PICK UP A4 STONE *

and this might be followed by the command

PUT DOWN THE STONE TO THE NORTH *

If the user then types

PICK UP 4 STONE FROM THE WEST #*

the program responds (after giving the trace of its parsing) with the objection

CANT TAKE THAT WAY
I CAN’T QUITE DO THAT ONE

since there is no stone or quarry in the cell to the west of Mace.

Since the quarry is an unlimited source of stones, it is possible for the user
to make a complicated layout of stones, even though this would be somewhat
painstaking. Several improvements to the program are suggested in the exercises.
A session is terminated with control-C; creating a means of graceful exit is left
as a trivial exercise.

9.7 Bibliographical Information

In order to solve the problems of natural-language understanding, knowledge of
several kinds is needed. One must have linguistic knowledge: the morphology
of words and syntax of sentences is one part; knowledge about the roles words
can play and how these roles can be determined from the sentence is another.
One must understand computer algorithms and data structures for constructing
automatic language processing systemns. One also must have knowledge about
the domain of discourse, that can be represented in the understanding systein
and brought to bear on the interpretation process.

Much of the linguistics background that is useful in building natural-language
understanding systems is provided in the following books: [Fromkin and Rodman
1978} is a general and elementary book introducing linguistics. [Culicover 1982]
provides thorough coverage of linguistic syntax. Semantics is the subject. of
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| [Lyons 1977]. and pragmatics is covered well from the linguistic point of view
| by [Gazdar 1979]. A good introduction to Montague semantics is [Dowty et al
1981]. A system for representing everyday situations, much of which is amenable
' to logical manipulation, has been proposed [Barwise and Perry 1983 and appears
| promising. A theory of language acquisition is presented in [Pinker 1984].

' A compact survey of natural-language understanding systems is [Tennant
} 1981]. The role of syntax in language understanding by computers is treated in
| [Winograd 1983]. A mathematical introduction of formal languages is [Hoperoft
i and Ullman 1969]. An overview of Al with an emphasis on the representation
k of common-sense knowledge in “conceptual graphs” is [Sowa 1984]. A collection
| of articles was compiled by Minsky that cover relatively early efforts [Minsky
 1968].

Computer systems that understand certain kinds of sentences in Erglish are
described in {Woods et al 1970], and [Wilks 1975]. The integration of a natural-
. language interface with a microworld was first successfully demonstrated by
| Winograd and is described in [Winograd 1972]. The details of several experimen-
tal programs for langnage understanding are described in [Schank and Riesbeck
1981]. A system of primitives for expressing meanings of words is described in
[Schank 1972]. The use of noun cases in interpreting verh meanings is discussed
& in [Fillmore 1968] and [Bruce 1975]. The analysis of a speaker’s purpose from
- the natural-langnage input is called “speech-act” analysis and is described in
1 [Perrault and Allen 1980], [Searle 1969]. Semantic grammars were used exten-
. sively in the LADDER systemn [Hendrix et al 1978]. A syntactic formalism that
b facilitates semantics, known as “lexical functional grammars,” is described in
| [Kaplan and Bresnan 1982]. A good discussion of practical issues in building
| natural-language interfaces is given in [Simmons 1986]. A text on data struc-
} tures that covers methods (such as B-trees) suitable for implementing symbol
tables and lexicons is [Standish 1980).

Computer systems for machine translation {e.g., from English to French)
are now finding commercial use, although it is generally necessary for a human
translator to post-edit the computer's cutput. The papers in an edited volume
[Lawson 1982] describe not only current practice and systems under development,
but also the colorful histery of machine translation, a ficld which for many years
was not considered respectable.

Computer understanding of human speech was the focus of an intensive re-
search effort dnring the early 1970's under funding from the Defense Advanced
Research Projects Agency. Two of the products of this effort are the HARPY
system [Lowerre and Reddy 1980] and the HEARSAY-II system [Erman et al
1980]. A good introduction to speech understanding is [Newell 1975].

References

1. Barwise. J. and Perry. ). 1983, Situations and Attitudes. Cambridge, MA:



374

10.

11.

12,

13.

14.

15.

CHAPTER 9. NATURAL-LANGUAGE UNDERSTANDING

MIT Press.

. Bobrow, D. and Collins, A. (eds.) 1975. Representation and Understand-

ing: Studies in Cognitive Science. New York: Academnic Press,

. Bruce, B. C. 1975. Case systems for natural language, Artificial Intelli-

gence, Vol. 6, pp327-360.

. Culicover, P. W. 1982, Syntax, Second Edition. New York: Academic

Press.

. Dowty, D. R., Wall, R. E., and Peters, S. 1981. Introduction to Montague

Semantics. Dordrecht, Holland; and Boston: D. Reidel Publishing Co.

. Erman, L. D., Hayes-Roth, F., Lesser, V. R., and Reddy, D. R. 1980,

The HEARSAY-II speech understanding system: Integrating knowledge
to resolve uncertainty. ACM Compuiing Surveys, Vol. 12, No. 2, pp213-
253.

Fillmore, C. J. 1968. The case for case. In Bach, E., and Harms, R. T.
(eds.), Universals in Linguistic Theory. New York: Helt, Rinehart and
Winston.

Fromkin, V. and Rodman, R. 1978, An Introduction to Language, Second
Edition. New York: Holt, Rinehart and Winston.

Gazdar, G. 1979, Pragmatics. New York: Academic Press.

Hendrix, G. G., Sacerdoti, E. D., Sagalowicz, D., and Slocum, J. 1978, De-
veloping a natural language interface to complex data. ACM Transactions
on Database Systems, Vol. 3, ppl05-147,

Hoperoft, J. E., and Ullman, J. D. 1969. Formal Languages and Their
Relation to Automata. Reading, MA: Addison-Wesley.

Kaplan R. M. and Bresnan, J. 1982. Lexical-functional grammar: A for-
mal system of grammatical representation. In Bresnan (ed.}), The Mental
Representation of Grammatical Relations. Cambridge. MA: MIT Press.

Lawson, V. {ed.) 1982. Practical Ezperience of Machine Translation.
Amsterdam: North-Holland.

Lowerre, B., and Reddy, D. R. 1980, The HARPY speech understanding
system. In Lea, W, {ed.) Trends in Speech Recognition. Englewood Cliffs.
NJ: Prentice-Hall, pp340-360.

Minsky, M. (ed.) 1968. Semantic Information Processing. Cambridge.
MA: MIT Press.



| REFERENCES 375

16.

17.

13.

19.

20.
21.

22.

23.

24.

25.

26.

27.

28,

29,

30.

31.

Lyons, J. 1977. Semantics, (2 volumes). New York: Cambridge University
Press.

Newell, A. 1975. A tutorial on speech understanding systems. In Reddy,
D. R. (ed.}) Speech Recognition: Invited Papers Presented at the 197}
IEEE Symposium. New York: Academic Press, pp3-54.

Perrault, C. R., and Allen, J. F. 1980. A plan-based analysis of indirect
speech acts. American Journal of Computational Linguistics, Vol. 6,
ppl67-182.

Pinker, S. 1984. Language Learnability and Language Development. Cam-
bridge, MA: Harvard University Press.

Rich, E. 1983. Artificial Intelligence. New York: McGraw-Hill.

Riesheck, C. K. 1975. Conceptual analysis. In Schank, R. C. (ed.), Con-
ceptual Information Processing. New York: American Elsevier.

Schank, R. C. 1972. Coneceptual dependency: A theory of natural language
understanding. Cognitive Psychology, Vol. 3, pp82-123.

Schank, R. C., and Colby, K. M. (eds.), 1973. Computer Models of
Thought and Language. San Francisco: Freeman.

Schank, R. C., and Riesbeck, C. K. (eds.), 1981. Inside Computer Un-
derstanding: Five Programs Plus Minigtures. Hillsdale, NJ: Lawrence
Erlbaum Associates.

Searle, J. R. 1969. Speech Acts. Cambridge, England: Cambridge Univer-
sity Press,

Simmons, R. F. 1986. Man-machine interfaces: Can they guess what you
want? IEEE Expert, Vol. 1, No. 1, pp86-94.

Sowa, J. F. 1984. Conceptual Structures: Information Processing in Mind
and Machine. Reading, MA: Addison-Wesley.

Standish, T. 1980. Date Structure Techniques. Reading, MA: Addison-
Wesley.

Tennant, H. 1981. Natural Language Processing. New York: Petrocelli
Books.

Wilks, Y. 1975. An intelligent analyzer and understander of English.
Communications of the ACM, Vol. 18, No. 5, pp264-274. '

Winograd, T. 1972. Understanding Natural Language. New York: Aca-
demic Press.



376 CHAPTER 9. NATURAL-LANGUAGE UNDERSTANDINCG

32. Winograd, T. 1983. Language as a Cognitire Process, Vol 1. Syntar.
Reading, MA: Addison-Wesley.

33. Woods, W. A, 1970. Transition network grammars for natural language
analysis, Communications of the ACM, Vol. 13, pp591-606.

34. Woods, W. A, Kaplan, R. M., and Nash-Webber, B. L. 1972. The LI-
NAR Sciences Natural Language System, Final Report, National Technical
Information Service Report No. NTIS N72-28084,

Exercises

1. Describe as many of the interpretations for the following sentences as you
can:

(a) John, lving, told the truth.

(b) Jennifer saw robots welding panels and grippers lifting subasseiublies
walking through the factory.

2. Determine the kind of event and determine the roles played by each par-
ticipant (noun) in the following sentences:

(a) Ivan programmed the computer to play chess in his spare time using

LISP,

{b) Last week, someone smashed the back window with a plank for a
lousy old radio.

(¢} Ellen took the train from Montreal to Vancouver hy way of Calgary.

3. Determine the number of times nonterminal symbols are expanded by

PARSE2 in the job of parsing “THE MAN OVER THERE OVER THERE
RAN FAST."

4. The discussion of left-recursive productions on p.336 gave some idea of
how changing the grammar can affect the efficiency of parsing.

¢ Write a small grammar G for PARSE.LSP so that it can parse the
sentence:

S = “PARSERS DEAL WITH SYNTAX."
e Now, by adding productions to G1. obtain G to parse

53 = "TRANSLATORS HANDLE SEMANTICS."

.



E EXERCISES 377

e Experimentally determine the number of expansions of nonterminals
for each of the four combinations: §; with Gy, §, with G2, §; with
G, and Sy with G. Of course, it should not be possible to parse Sy
with Gy. What does your experiment indicate about how the size of
a grammar affects the efficiency of parsing with it?

5. In a grammar for a subset of English, is it necessary to provide a sepa-
rate production rule for each (terminal) word? Suggest a way in which
production rules for words could be represented efficiently.

6. Design and implement a bottom-up parser that uses depth-first search.
How does its performance compare with that of PARSE.LSP?

7. Write a semantic grammar that can be used to parse the following sen-
tences and ones similar to them: (1) “Compute the total of my itemized
deductions for the month of November.” (2) “Display a list of this month’s
messages from Jack.” (3) “Erase that message.” What are some of the
other sentences that your grammar can parse? Now give an example of
a sentence which seems related or similar to one of the three sentences
above which your grammar does not handle.

8. In the following passage pronouns occur four times. What is referred to
in each instance?
“ "Twas a night fit neither for man nor beast. She was listing to starboard
and we darn near called it quits.”

9. For each of the following, judge whether the noun phrase in italics intro-
duces a new object or refers to one already in the listener’s experience.
Explain your decision. Also, does the noun phrase refer to a class or an
instance? Singular or plural?

(a) The man in the moon smiled.
(b) 1 saw a nasty dog. It barked.
(¢} a certain U. S. president inqugurated in 1981
(d) The best experience of my life was being born.
(e) the best experience of your life
(f) Skiing is good at Sun Valley.
(g) Jim bought five apples.
(h) T love your pecan pie.
(i) 1 love your pecan pies.
10. Modify the Stone World language interface to permit it to accept questions

of the forms “Where are you 7" “What are you carrying?” and “Are you
carrying a stone?”
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11.

12.

13.

14.

15.

16.
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Extend the Stone World program to understand distances in commandy
such as “MOVE WEST 5 STEPS *",

Add a feature to the Stone World program that enables it to he taught
sequences of commands, so that the mason can be told to perform the
entire sequence of operations with one new command.

Add one or more of the following features to the Stone World progran::

(a) an adversary: a new animate entity which moves on its own {perhaps
using some pseudo-random scheme) and poses a threat to the mason,

{b) the ability for the mason to “sce” the objects that are more than
one cell away, and to understand directions in terms of them. They
it could understand “Walk towards the tree.” If done in conjunc-
tion with exercise 11, then the program should be able to handie
commands such as “Head towards the tree for seven steps.”

(c) an ability for the mason to plan and solve problems, so that if the
user enters a command such as “Place a stone next to the tree,” and
the mason is not carrying a stone, it will find a way to obtain one.
then find a way to walk to the tree (possibly avoiding obstacles) and
finally put the stone down.

{d) new objects with interesting properties, including objects which inay
be visible to the mason from within a certain distance, and invisible
to the user (not displayed).

Augment the program LINNEUS of Chapter 4 with a natural-language
front end based upon an augmented transition network. The goal of this
project should be to enlarge the number of sentence forms that can be
handled by the program.

Add a natural-language front end to the probabilistic inference-net pro-
gram of Chapter 7. The interface should allow the user to present input
probabilities in sentences such as the following: "THE DECOR VALUE
IS 0.88”. The user should be able to ask questions about the structure
of the network and the probability values in the network. Examples iu-
clude these: “WHAT IS THE CURRENT PROBABILITY FOR POPL-
LARITY", “WHAT NODES ARE IMMEDIATE PREDECESSORS OF
OVERALL_FOOD_QUALITY", and even “WHY IS THE CURRENT
PROBABILITY OF HYGIENE HIGH".

Add a user interface to the PYTHAGORUS program so that the user cau
do the following: (a} instruct PYTHAGORUS to proceed with concept
exploration for a given number of steps (agenda tasks). (b} ask questions
about the concepts that have been explored so far, (¢} instruct the progrant
1o assign new names to existing concepts. and {d} instruct the program
to alter the “interest” values for particular concepts.



Chapter 10
Vision

10.1 Introduction

-_ 10.1.1 The Richest Sense

F Intelligent beings must obtain information from their environment. Perhaps the
B richest of the five sensing modalities of human beings is vision. Vision is essential
b to reading and to normal navigation through the world around us.

[ The large role for vision in human intelligence is suggested by the proportion
f of the hrain that is dedicated to seeing. The occipital cortex, where visual signals
E are processed, together with portions of the cerebral cortex that appear to be
[ dedicated to vision occupy approximately one fourth of the brain’s volume.

L A position can be taken that is even stronger. A number of writers have
£ suggested that all thinking is visual in nature {e.g.. [Arnheim 1969]). It is worth
F noting that there is experimental evidence supporting the view that conscious-
E ness is based upon the activation of visual representations of experience and
| plans (see [Kosslyn and Schwartz 1978]).

t 10.1.2 A Key Area of Al

Vision has heen and continues to be a key area of artificial intelligence. The
£ development of several general Al concepis is largely the work of researchers
[ in computer vision. Early on, for example, neural network studies centered
b around the “perceptron” model, and several early studies of learning were tied
I to machine recognition of patterns. The notion of applying constraints to solve
. a problem was made explicit in early work on line-drawing analysis, and the
E relaxation paradigm for constraint satisfaction made its AT debut in vision. The
b “frame” approach to knowledge representation was in large part a suggestion for
E solving the problem of representing contextual information for machine vision.
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The information-processing aspects of vision are particularly interesting he.
cause one is concerned simultaneously with spatial. geometrical relations, and
symbolic, semantic structures. As is true for Al in general. some researchers iy,
vision seek computational models that will improve our understanding of hoyw
humans do it, while others are primarily concerned with producing systems that
are useful for applications in industry, medicine, commerce, etc. Vision hy ma-
chine is sometimes called computer vision, pictorial pattern recognition. picture
processing, automatic image analysis, scene analysis or image understanding.

10.1.3 The Challenge of Computer Vision

It has proven difficult to construct artificial vision systems that are capable of
understanding indoor or outdoor scenes at a human level. A computer system
has not yet been created that can look at an image and describe the scene
depicted in words such as, “There is a tall oak tree to the left of a colonial-style
house, and a blue Volvo is visible in the garage on the right side of the house.”

There are several reasons why vision is such a challenging kind of artificial
intelligence to achieve:

1. The world is three-dimensional, and the images from which a description
must be formed are only two-dimensional projections.

2. Each pixel of an image represents the interaction of many processes, and
it is difficult to separate these different influences. For example, a pixel's
value may depend upon the illumination of the scene, the reflective prop-
erties of a surface in the scene (including color, texture, and specularity),
fog or dust in the atmosphere, geometrical and chromatic distortions in
the lens of a camera, characteristics of the imaging device, and the manner
in which the image is digitized. Imaging devices such as vidicons intro-
duce high-frequency noise into the image, and this is a common source of
trouble for algorithms.

3. The volume of data in a good image is very large. In order to perform a
simple operation such as filtering on a 512 x 512 image with 8 bits/pixel.
several minutes of computer time may be needed. Certain edge operators
may require hours on ordinary computers. Although parallel computers
are being built for computer vision, they are not vet widely available.

4. In order to interpret an image intelligently, much knowledge is needed
about the objects that may appear in the scene. The representation and
use of this knowledge by algorithms must be coordinated.

10.1.4 Overview

This chapter discusses the most important issues in computer vision. and it
presents an introductory sample of the many techniques which have heen dovel-
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oped to address these issnes. After a brief examination of human vision. we look
at where images come from and how they are represented. Then we examine
elementary 1nanipulations snch as filtering. and we proceed to the extraction
of meaningful structures. The processes that contribute directly to vision are
diagrammed below. Information flows primarily from bottom to top.

description
segmentation
preprocessing
sensing
mage formation

After examining alternative methods of edge detection and segmentation into
regions. and their supporting techniques, we consider the problems of analyzing
shape. Representing and determining three-dimensional structure presents its
own set of problems; we discuss these problems and a few of the methods that
have been suggested to overcome them. Special heuristics for handling “blocks-
world” scenes were important in the development of constraint techniques in Al
and so there is a brief discussion of vertex and segment labelling in line drawings.

10.1.5 The Physiology of Human Vision

A brief overview of the human visual system gives us a useful perspective from
which to begin discussing the kinds of computing structures that can understand
images as complex as natural scenes. Unlike most of the brain, the visual cortex
has a regular structure that has been extensively studied. and an investigation
of human vision seems to be more instructive for the design of machine vision
systems than a general study of the brain is for designing most other kinds of
Al systems.

The human eye receives information, encoded as structured light, from the
environment. In most cases, the light is reflected by surfaces comprising a scene,
and a two-dimensional projection of the scene is formed on the retina by the
refractive components (cornea and lens) of the eye. The gross anatomy of the
human eye is illustrated in Fig. 10.1a.

Intensities and/or colors of small spots of the image are sensed by rods and
cones  spocialized cells which produce electrical pulse trains in response to light.
The rod or cone signals are gathered by long nenrons called bipolar cells and
transmitted to other neurons: amacrine cells and ganglion cells. The ganglion
cells have axons which carry the visnal signals out of the retina along the optic
nerve. The electrical signals from the rods and cones are also transmitted to
specialized neurons which may hias the sensitivity of adjacent rods or cones
(this is probably the function of the horizontal cells). A schematic illustration
of these retinal strnctures is given in Fig. 10.2a. An actual photograph of these
retinal structures is shown in Fig. 10.2h.
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Figure 10.1: {(a) The human eye {from [Polyak 1957|, courtesy
of University of Chicago Press), and (b) the visual pathway.

The neurons are interconnected both in the retina and further back along the
“visual pathway” (see Fig. 10.1b) so as to detect a number of local phenomena
such as light-to-dark edges (in particular orientations), bars, spots, and changes
of intensity with time. After the optic nerves leave the eyes they cross at the
optic chiasm, where each splits and combines with the other. In this way, each
side of the brain gets signals from both eyes. The lateral geniculate body is
generally considered to be a relay station for visual signals, without significant
information-processing function.

The brain region called “area 17" is known to be responsible for a great deal
of the analysis of edges and contours required for perception. Experiments by
Hubel and Wiesel, in which electrodes were implanted into the visual cortex
of the cat, showed that there indeed exist neurons which fire only when verv
specialized patterns (such as a dark vertical bar on a light background in a
certain position) are displayed in the cat’s visual field. (These results helped
to encourage the development of computer Image-processing operations such as
edge detectors.)

An interesting physical feature of the human retina is worth noting: the
retina is structured to have non-uniform resolution of detail; the region of highest
resolution is the area centralis or “fovea.” Here the density of cone receptors is
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Figure 10.2: Cross section of neural material in the human retina: (a) schematic
diagram, and (b) photograph (from [Polyak 1957), courtesy of University of
Chicago Press).
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roughly 150,000 per square millimeter. As the angle between the line of sight ang
the portion of the visual field of interest increases, the density of receptors drops
significantly. This is illustrated in Fig. 10.3. This “multi-resolution™ aspect of
human vision finds a parallel in contemporary research in machine vision. The
“pyramid” structures of section 10.2.11 is a manifestation of this.
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Figure 10.3: The density of rods and cones on the retina as a function of the
angle from the visual axis (after [Pirennc 1967)).

10.1.6 Visual Illusions

In order to understand how a vision system works, it helps to be aware of its
limitations. Visual illusions are important in the theory of human vision. becanse
a theory is usually evaluated according to whether it is consistent or inconsistent
with known facts and observations; visual illusions give us facts about errors
that the human vision system makes.

Geometric illusions are a class of perceptions involving line drawings in which
angles, lengths, colinearity and straightness do not appear as they really are.
Some well-known examples are shown in Fig. 10.4a-d. These illusions suggest
that spatial context and the organization of forms in a scene strongly influence
human perception of these basic geometric characteristics.

Another class of illusions. the “subjective contour™ illusions. illustrates how
contextual forms can create the impression of edges or contours and foreground
objects on a background. The “sun illusion,” evoked by the drawing in Fig. 10.4¢.
is that there seems to be a disk in the center of the spokes that is brighter than
the background. One has to work fairly hard not to see a contour surrounding
this disk. This vivid illustration of the human propensity to perceive contours
helps one understand why a large part of the research in machine vision has
been directed to edge-finding algorithins. Closely related to the sun illusion is
the perception of a triangle in Fig. 10.4f. The triangle is also perceived as being

N
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Figure 10.4: Visual illusions: (a) Mueller-Lyer, (b) Ponzo, {¢) Poggendorf, (d)
L Zocllner. (e) “sun,” and {f) triangular subjective contour.




386 CHAPTER 10. VISION

brighter than its background.

A rather different sort of illusion is that elicited by Fig. 10.5. This is known as
the Herman grid illusion. The spots that are perceived at the grid intersectiong
can be partly explained hy a theory of vision that employs a spatial-freguency
model. Patterns that give rise to visual illusions in humans have been used ag
input to image-processing algorithms in attempts to test theories of vision. often
with interesting results [Levine 1985).

Figure 10.5: The Herman grid illusion. Light spots are seen at the intersections
of the dark lines, and dark spots are seen at the crossings of the white lines.

10.2 Image Formation and Acquisition

10.2.1 The Variety of Image Sources

Vision is a process of deriving an understanding of situations from their repre-
sentations in images. In order to have a good understanding of vision. we first
must understand what information is carried by an image and how the image has
come to be a representation for a scene or situation. Images are formed through
processes that are either phvsical, computational, or hoth.
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Typically. images are the result. of focussing light from a scene onto an im-
age plane. Soine images are produced by computer graphics systems. Some
are produced by artists who employ both the information-processing capaci-
ties of their own Drains and physical tools such as paintbrushes, pigments and
canvasses. The kinds of image-formation processes that are most relevant to
E computer vision include not only optical focussing of light but also medical-
jmaging methods such as fluoroscopy, computerized axial tomography (CAT
scanning), positron-emission tomography (PET scanning), ultrasound scanning,
and magnetic-resonance imaging (MRI, sometimes called nuclear-magnetic res-
. onance or NMR). Other imaging methods are also of importance in machine
'~ perception and vision. Pressure-sensitive “tactile arrays” allow a kind of spatial
perception without light. Computer graphics and typesetting produce images
that may contain arbitrary sorts of information, and specialized algorithms may
be needed to analyze such images.

Remote-sensing processes such as LANDSAT satellite sensing record imagery

E' that is formed optically. Images or ordinary indoor or outdoor scenes are formed

i by optical processes in our three-dimensional environment, and they are of par-
F ticular importance for human and robot vision. Because of the large role played
b by this last kind of image-formation, we describe such processes in some detail
i below.

10.2.2 Scenes of Three-Dimensional Surfaces

Although images are formed by a wide variety of physical and computational
processes, we can usefully deseribe image formation for a large class of scenes
by one fairly simple model. (This model can be generalized to handle more
physical factors.) The model we present involves the following entities situated
in a three-dimensional space: a viewer, a surface {possibly curved}, and a distant
light source. These entities are diagrammed in Fig. 10.6.

The light source is assumed to be sufficiently far away from the surface and
sufficiently small that the rays reaching the surface are practically parallel, and
the intensity of light coming from the source is assumed to be uniform with
respect to position. The surface is assumed to be “matte” —that is, to reflect
incoming light so as to scatter it in all directions. Let us assume even more: that
the surface is “Lambertian”— that the surface appears equally bright from any
viewing angle on the same side of the surface as the light source.

The intensity of light that is reflected by the surface to the viewer in a small
arca dA depends upon several factors. The principal factors are these:

1. the intensity of the illumination, L, known as the irradiance,

2. the orientation #; of the surface at dA with respect to the direction of
illumination. @ is the angle between the incoming rays of illumination
and the surface normal at dA.
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Figure 10.6: The light reflected from a small section of a surface.

3. the orientation 8y of the surface at d4 with respect to the viewer,

4. the solid angle o (subtended by the viewer's optical system), whose vertex
is a point in dA,

5. the reflectivity = of the surface, and
6. the size of the surface component, i.e., dA.

The solid angle ¢ is measured in steradians. One steradian is the amount of
solid angle subtended at the center of a sphere of radius one unit by an arca of
one square unit on the surface of the sphere.

The amount of light that falls on the area dA is L cos f1dA. The amount
of light reflected by the area dA in a particular direction does not depend on
the directions, since the surface is assumed to be Lambertian. This amount of
light, called the radiance, is usually measured in units of intensity of light per
steradian, since the light may be considered to he radiating through a hemisphere
from its center point in dA. The radiance R is given by

Lceosf@pdAr

B= 2

Thus the radiance is equal to the amount of [j ght falling on the surface element
(dA) times the reflectivity of the surface, divided by 27, the number of steradians
subtended by a hemisphere.

Finally, we can compute the amount of light reflected from dA to the viewer

o oLcosfdAr

2r

This model of the image formation process makes some strong assumptions.
but it can provide a starting point for developing more sophisticated models.

V=0oR=
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With the use of more elaborate physics and mathematics. it can be extended to
handle such attributes as

1. specular {i.c.. non-Lambertian) surfaces,
2. wavelength-dependent illumination and reflectivity. and
3. diffuse light sources.

The image formation process is considerably more complicated if such phe-
pomena as clouds. haze, translucent surfaces and secondary light sources {light
reflected from surface serving to illuminate another} are taken into account.

1 10.2.3 Tmage Acquisition

Where humans and many of their animal relatives have retinal surfaces of minute
light receptors to translate patterns of light into patterns of electricity, machines
may also have surfaces covered with sensors. The solid-state CCD (charge-
coupled device) cameras are examples of devices that have such sensitivity to
light.

More economical sensors may be constructed by having not an array of sen-

f sors, but one sensor that is “multiplexed”: scanned back and forth, up and down,

¥ through the visual field to cover all of the parts of the scene one may be inter-
- ested in. In fact there exists an animal (a one-celled swimming creature, the
female Copilia quadrata). that apparently has a scanning eye that moves rapidly
across the visual field to obtain an impression of its surroundings (see [Gregory
1974]: Chapter 32: “The curious eye of Copilia,” pp390-394).

An ordinary television camera is an example of a system that uses a scanning
approach to image sensing. In this case, the optics are fixed and do not move
with the scan, but an electron heam scans a stable image that is focussed onto
a surface.

10.2.4 The Vidicon

The device most commonly used to transform optical images into electrical sig-
nals is the vidicon tuhe. Home video systems typically use the vidicon, and
many computer vision systems work with it, as well. How a vidicon does its job
is briefly described helow.

An optical system is used to focus an image on the face of the vidicon which
has a photoconductive surface. An electron gun in the tube is deflected either
electrostatically or magnetically to scan the image. Since the resistance of the
photoconductive surface is reduced wherever there is an increase of intensity in
the image. the net current through the photoconductive surface varies accord-
ing to the scanned image position. This continuously varying current is easily
converted into a varying voltage, and the resulting signal is typically combined
with scan-synchronization pulses and is output as a video signal.
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An analog-to-digital converter (A /D converter) may then be used with $am-
pling circuitry to convert the video signal into a series of integer values suitabie
for computer processing.

A typical commercial video digitizer allows a vidicon television camera to ba
plugged into its video input port, and it accepts commands from the computer
in a form such as DIGITIZE X Y, where X and Y are to be in the range 0 ¢,
511,

Digitizing systems that cost under US$2000 typically require 1/30 of a second
to capture a 512 by 512 image from the video source.

The vidicon, while relatively inexpensive, has some disadvantages, The signal
from a vidicon contains a large component of high-frequency noise; this noise
can be partially filtered out, but often presents problems in image analysis. The
vidicon is more vulnerable to geometric distortion of the image than some other
devices such as the CCD array (described below); any abnormal fluctuation in
the scanning circuitry usually causes a distortion in the scan pattern, and hence,
in the image. Thirdly, a vidicon tube, like most vacuum tubes, is fragile and
easily broken by vibration or shock.

10.2.5 Solid-State Image Devices

Most of the problems with vidicon tubes are overcome by using solid-state arrayvs
of sensing elements. These arrays are highly durable, compact and not subject
to geometrical distortions. Although the dynamic range (from dark to light) of
solid-state devices has been relatively poor, the gray-scale capabilities of these
devices has been improving. With rapid advances in integrated-circuit technol-
ogy, solid-state imaging devices are also attaining higher resolution, and they
are more likely to be manufactured in large batches at low per-unit costs.

The solid-state imaging device in widest use at present is the charge-conpled
device array (CCD array). In a CCD system, a chip contains an array of zones
each capable of storing a charge. After an initial charging, the charge begins to
leak off at each zone roughly in proportion to the number of photons falling onto
the zone. After a brief period of time, the charges remaining represent the image
focussed on the array. Then, the charges are shifted out of the array through a
coupling arrangement between zones, and the charge magnitudes are converted
into a signal of varying voltages.

There are many variations of this solid-state imaging array. Some chips
employ separate arrays for sensing and for buffering the image, so that the cap-
tured image is not degraded during the shifting time by the continued influence
of photons. One can sometimes use a linear CCD array rather than a 2-D array
to capture an image by scanning the array across the visual field, or by holding
it fixed while the imaged object passes by on a conveyor belt. Today there is a
trend toward integrating some processing logic with the sensing array all on the
same chip; a possible use for such logic is to enhance the image through filtering
or to compress it with a technique such as run-length coding,
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It appears likely that solid-state imaging devices will eventually dominate
i the world of image acquisition just as the transistor has supplanted the triode
¥ yacuum tube for most uses.

. 10.2.6 Rangefinders

f  Particularly important in industrial robotics applications are devices which ob-
# tain a “depth map.” Such devices are called rangefinders. In order to get a
£ depth value for each pixel in arr image, a device may use a number of possible
. methods. The “time-of-flight” method {with light or sound) involves measuring

£ the time it takes for a pulse of light emitted by a laser or a front of sound waves

k- to travel to and back from the object. Some popular instant cameras use an
b acoustical method of this sort to automatically focus the lens on whatever sur-
¥ face is in the center of the field of view. Sound waves are difficult to focus, and
. it is impractical to obtain good resolution with sonic echos; however, sonic-echa
g devices are useful in robotics for gauging proximity. Light, on the other hand,
& can be facussed well, but, because it travels so rapidly in relation to the circuitry
E used to measure its transit time, does not give good resolution in depth unnless
E: additional measures are taken. By modulating the laser light as it is transmitted
i and then measuring the phase of the arriving reflected light, resolution of better
E than 1cm is possible. Using such laser rangefinders, good quality depth maps
E. may be obtained, but it typically requires minutes or hours for a full image of
f 512 by 512 pixels.

" Some rangefinders employ a “triangulation” method involving stereo imaging

and/or structured-light techniques such as projecting a pattern of stripes onto
g the object being imaged. By illuminating only a single spot or line on the surface

g of an object at one time, a camera, viewing the object along a different axis from
b the illumination axis, records the spot or line either displaced or distorted, so that
" the depth of the surface at the spot or along the line can be readily calculated.
A third type of rangefinder uses the inverse-square law governing the fall-off
& of light intensity with distance from an object. In this method, the objects to
. be sensed are illuminated first by a lamp which is near the camera, and then by
¥ 8 camera farther away. By examining the degree to which the light intensity at
¥ a point changes, an estimate of the depth at that point can be computed. An
¥ inverse-square-law rangefinder is relatively inexpensive, but is not as accurate as
£ a laser rangefinder, and it does not work well with specular surfaces or darkly-
E colored objects.

Rangefinders are generally “active sensing” systems because the operation
} of the device involves dynamically projecting light or sound on the objects to
' be sensed. It is not usually necessary to use an active sensor to obtain depth
' information; humans use passive means—binocular stereo, textural gradients,
[ shading cues, etc. However, rangefinders can make the job of getting a depth map
" much easier than it would be using computational stereo, depth-from-texture,
or other methods.
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10.2.7 Sampling

If we try to express a scene as a two-dimensional matrix of numbers, we are face
with the problem of deciding how big an array to use. For cxample, we might
try taking a sheet of graph paper having 100 rows and 80 columns. and place g
number in each box to represent a little square region of the scene. With eacl
number standing for a shade of gray, we could then reconstruct the picture by
coloring each square of the graph paper with the corresponding shade of gray.

If the resulting reconstruction looked like a good rendering of the original scene.
we would agree that the sampling rate was adequate, The term “sampling rate”

in computer imaging normally refers to the number of samples per unit area iy
a picture. It is sometimes used to mean the number of samples per unit of angle
in the visnal field, or just the total number of samples in a digital image. Thesc
uses of the term are not the same but share an underlying common notion of
degree of detail.

A typical digital image for use in computer vision has 128 rows and 12§
columns and allocates one byte of storage to each sample. Such an image there-
fore requires 16K bytes of memory or disk space. This size of image is popular
because it is often a practical compromise between the following considerations:

1. image fidelity: The higher the sampling rate (or spatial resolution). the
more details can be represented in the image, the sharper the object cdges
can be, and the finer the textures that can be represented.

2. processing time: The lower the sampling rate, the fewer picture elements
there are to process and the faster can a single image be processed.

3. memory requirements: The lower the sampling rate, the less memory is
required to store the image. This can be particularly important when
many versions of each image need to stored simnltanecusly.

4. cost of image acquisition equipment: The higher the sampling rate. the
more expensive the cameras or digitizers usually are.

10.2.8 Aliasing

1t is important to understand the relationship between the sampling rate and
the fidelity of the resulting representation. Although an image is a two-
dimensional signal, let us consider, for the sake of simplicity. the sampling of
a one-dimensional signal. If we have a slowly varying signal y = f1(2) as shown
in Fig. 10.7a, then the samples shown do a reasonahly good job of representing
the signal.  That js, it is quite apparent from the samples that the function
gradually rises and then falls. Now consider fy(x), shown in Fig. 10.7h. It o=
cillates at a higher frequency. The samples shown manage to capture one value
in each cycle of the oscillation. If we knew only about the samples. we might
conclude that the function being represented was constant. Even worse. the
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Figure 10.7: Sampling a function: (a) truthful sampling, and (b} aliasing with
an apparent frequency of 0, and (c) aliasing with an apparent frequency of
one-third of the original.

function f3{x) shown in Fig. 10.7c, which is oscillating 50% faster than fa, gives
a sampled signal that appears to oscillate at a frequency 50% slower than that
of fo and only 1/3 that of f5. This mapping of high frequencies into lower ones
as a result of sampling is termed “aliasing.”

It was proved by Shannon that in order to avoid aliasing of a particular fre-
quency, it is necessary to sample the function with at least two samples per cycle.
In other words, the sampling frequency must be at least twice the frequency of
the highest-frequency component of the signal to be sampled.

Because aliasing is an undesirable effect that can lead to mvsmterpretation of
images, it is important to assess the oscillations in an image to be sampled, and
make sure either that the sampling rate is high enough to avoid aliasing or that
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the high-frequency components of the image are filtered out prior to sampling,
Each zone of the image that is represented by a single sample value is called
a pixel. We also refer to the sample itself as a pixel.

16.2.9 Non-Rectangular Pixels

The numbers describing intensities or colors in an image need not be organized
as a matrix of squares as on graph paper. The arrangement could be one of many
little triangles. It could even be one of hexagons. In fact, it need not be a regular
tessellation at all. For example, the printed guide sheets in a paint-hy nunbers
set have regions of very irregular shapes and sizes. These arrangements, however,
are not very general: a new one is needed for each picture, whereas the regular
arrangements can suit a wide variety of pictures. It is easy to find examples of
digital pictures in everyday life: cross-stitch samplers are digital pictures. and
mosaic-tile murals are, also.

10.2.10 Quantization

“Quantization” describes the manner in which numbers are used to represent
the intensities or colors at each sample point {or in each sample region). A very
simple quantization scheme is to allow only two levels of intensity: black and
white. This makes the representation very simple and compact: a single bit can
represent each pixel. Such a method has the limitation that subtle differences
among shades of grey in a scene are lost in the digital representation. A more
general quantization scheme is to perform an analog-to-digital conversion for
each pixel, to obtain a more accurate measure of its intensity. Typically. eight
or sixteen bit values are used for this purpose.

The mapping of a continuous gray-scale into a finite number of values is
usually done by the analog-to-digital converter hardware in a roughly lincar
fashion. Each continuous interval of input values which are mapped to a common
output value is approximately equal in length to the other intervals.

10.2.11 Pyramids

When an image contains a variety of structures or objects in it, it may be usecful
to create several digitizations of it at different sampling rates. If the sampling
rate (along a side) is doubled each time starting with the minimum resolution of
1 pixel for the whole image, the resulting collection of images is called a pyramid.
A typical pyramid contains images of dimensions 1 x 1,2 x 2, 4 x 4. 8 x 8,.. ..
512 x 512

A pyramid can just as easily be constructed from a digital image of dimen-
sions, say, 512 x 512. First, the 256 x 256 level is construeted from the 512 x 512
original by taking 2 x 2 blocks of original pixels and creating a new pixel con-
taining their average value. After continuing this process to the limit, a 1 x 1

“‘
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image is constructed whose single pixel's value is the average value of the entire
original picture.

Figure 10.8 illustrates a pyramidal representation for a picture of some hu-
man chromosomes taken with a microscope. Multi-resolntion image-processing
methods often operate on pyramid data structures.

10.3 Preprocessing
10.3.1 Low-Pass Filtering

Images can be economically digitized using a video camera together with an
apparatus for sampling and holding the video output at a measured time point
in the scan, and an analog-to-digital converter. However, as with most methods
for image digitization, the results are “noisy.” A noticeable amount of “snow”
has been added into the image. This noise is a byproduct of the physical process
of converting patterns of light energy into electrical patterns.

} Noise wreaks havoc with many a computer algorithm for analyzing images.
| Therefore, an important step is eliminating or reducing the noise in an image
F prior to its analysis. When the scene to be analyzed is static, it may be possible
§ to capture several similar images and average them together to form a single one
k- in which the effects of noise are reduced. However, either because the objects in

B the scene are moving or for reason of time, or other constraint, it is often not

[ possible to solve the problem of noise by averaging several images. Then, spatial
L filtering on the one image is appropriate.

10.3.2 The Two-Dimensional Discrete Fourier Transform

A form of the Fourier transform often is used as the basis for image filtering. The
two-dimensional discrete Fourier transform (2DDFT) is an invertible mapping
from an image to an equal-sized array of complex numbers that represent the
amplitudes and phases of the spatial frequency components of the image. The
2DDFT, Flu.v] of an N by N image f(x,y) is defined by

N—

Flu,v) = Z Z Fla, y)e2riluz+on/N

£=0

where i = /—1. While u and v are typically taken in the range 0 to N — 1
with the origin thus positioned at the lower left of the transform array, one may
also set the range for u and v so as to position the origin in the center. The
component F[0,0] represents the zero frequency or constant component of the
image. and it is sometimes called the “DC” (direct current) component. As the
point (u, v} moves away from the origin, the spatial frequencies represented by
Flu. ¢] increase.
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Figure 10.8: An image of human chromosomes represented as a pyramid.
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Low-pass filtering of an image may be cffected by setting the high-frequency
compouents of the 2DDFT of the image to zero and then inverting the trans-
} formation by again applying the 2DDFT, but with a slight modification. The
 inverse 2DDFT is defined by

N_1N-1

fle.y) = Z Z Flu. v]e?ritastvu)/N

u=0 c=h

.. The 2DDFT {or the inverse 2DDFT) can be computed rapidly using the Fast
f Fourier Transform (FFT) algorithm. The FFT is applied to each of the rows of

B he image producing a partially transformed array Flu, y|. and then the FFT is

b applied to cach of the columus of Flu,y] to produce the 2DDFT Flu,v].

10.3.3 Moving-Average and Median Filtering

E The technique most often used for noise reduction is low-pass filtering. This is
- typically done by producing from the original A, j] a new picture array Bli, j|
E for which each element bli. j] is a weighted sum of values a[i + p.j +¢], p = -2
P to 2, g = —2 to 2, where the weights are all positive and the highest weight is on
| the term where p = ¢ = 0. In one dimension, this technique is called a moving
I average filter. In two dimensions, it is sometimes referred to as a neighborhood
f averaging filter.

_ An interesting filtering method which is based upon sorting rather than av-
¥ eraging defines blt, j] to be the median over the neighborhood of values around
F ali, 7]. Median filtering has the advantage that it tends to preserve the edges in
B a digital picture without smearing them. It always assigns to b[Z, j] one of the
F actual values from the original picture, rather than some fractional, in-between
F value that can occur with averaging.

10.3.4 Histograms and Thresholding

¥ One way to judge the effectiveness of a picture digitization is to examine its
- histograin of pixel values. Like film exposure in photography, it is easy to under
E or over-expose digital pictures. It is easy to tell from a histogram whether there
' is a predominance of light pixels, or of black pixels, or whether the distribution
- is well halanced. The histogram may be described by

H[k] = munber of ocenrrences of value & in Ali, j].

- A common technique in image analysis is to transform a gray-value picture (one
Tepresenting each pixel value by several bits) to a binary (black/white) one by
" automatically choosing a threshold and then mapping all pixel values helow the
threshold to 0 and all others to 1. The selection of the threshold can often be
- done using the “valley™ method, whereby the computer searches for two peaks
- in the histogran: one presnmably corresponding to the pixels of the hackground
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and the other containing the pixel values from the object of interest. The valley
is the minimum histogram value between the two peaks. Thresholding with the
corresponding value of k often has the effect of segmenting the image into 4
single “object” region and a single “background” region. Image thresholding
is an important operation in many machine-vision algorithms. It provides the
simplest method for segmenting an image into groups of pixels according to their
values. :

10.4 Connectedness and Cellular Logic
10.4.1 Pixel Adjacency

The result of thresholding is a binary image—that is, an image whose pixels take
on values of 0 or 1. It is usual to interpret pixels having value 1 as helonging to
the objects of interest or the “figure” (sometimes called the foreground) and to
interpret pixels having value 0 as belenging to the background (“ground™),

Any pair of pixels that share an edge (i.e., side) is said to be edge-adjacent
or “4-adjacent.” (Note, however, that a pixel is not considered to be adjacent to
itself.) A pixel in the interior of an image has four edge-adjacent neighbors. If a
pair of pixels shares a vertex, they are said to be vertez-adjacent or “8-adjacent.”
The 4-neighborhood of a pixel is the set of pixels that are 4-adjacent to it, plns
the pixel itself. Thus there are generally five pixels in a 4-neighborhood. Only
a pixel on the border of an image but not in a corner has a 4-neighborhood
of four pixels; a pixel at the corner of an image has a 4-neighborhood of only
three pixels. The 8-neighborhood of a pixel consists of up to eight pixels which are
vertex-adjacent to it, together with the pixel itself. The standard 4-neighborhood
and &-neighborhood are illustrated in Fig. 10.9.
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Figure 10.9: Edge-adjacent and vertex-adjacent pixels: {a) the 4-neighborhood
of P, and (b) the 8-neighberhood of P.
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10.4.2 Connected Sets of Pixels

A sequence of pixels (Py, Py, ..., P,) is a {-connected sequence if P; is 4-ad)acent
E o Piyy for i = 1,...,n — 1. The sequence is an 8-connected sequence if P; is
i 8-adjacent to P;y;. Let S be a nonempty set of pixels (that is, a nonempty
b subset of the pixels of an image). S is {-connected iff either (1) for any two
$ pixels A and B there exists a 4-connected sequence (P, Ps,..., P,) of pixels in
E S such that P, = A and P, = B, or (2) § contains only one pixel. Similarly,
k5 is said to be 8-connected iff either any two pixels in § are the endpoints for
F some 8-connected sequence of pixels in §, or § is a singleton set.

We now define the concept of connected component. To be brief, we use the
- variable & in the definition so as not to have to give separate definitions for 4- and
| 8-connected components. A set S is a k-connected component of the foreground
¥ of a binary image I if the following conditions are all true:

1. §is a k-connected set of pixels;
2. the value assigned by I to each element of S is 1; and
3. there is no set S’ satisfying both (1} and {2) that properly includes 5.

The 4-connected components of the figure of an image are thus the maximal
E sets of ones that are each 4-connected. {Connected components can be defined
. for the background in a similar fashion.) Figure 10.10 shows a binary image that
¥ contains four 4-connected components of the foreground, two 8-connected com-
f ponents of the foreground and two 8-connected components of the background.

_ It is common for machine-vision software packages to contain a subroutine
f for determining the 8-connected components of the foreground of a binary image,
F and this is usually what is computed by a “connected-components routine.”

1 It is interesting to note that an anomalous situation often arises when one ex-
e amines the 8-connected components of both the foreground and the background.
E' Intuitively, the diagonal set of ones in Fig. 10.11 divides the background into two
- halves. However, the background, as well as the set of ones, is considered to be a
- single component. In order to avoid this apparent contradiction, it is customary
t to compute 8-connected components only for the ones or foreground portion of -
8 the image, and if connected components of the background are needed, to com-
. pute 4-connected components of the ground. Tt is also interesting that no such
| anomalies arise when working with pixels based upon a hexagonal tessellation
E of the plane, and that the meanings of edge-adjacency and vertex-adjacency are
b equivalent in that context.

l 10.4.3 An Algorithm

A simple algorithm for finding the 8-connected components of the foreground of a
binary image makes use of the depth-first search strategy introduced in Chapter
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Figure 10.10: A binary image.

5. The algorithm begins by scanning the image left-to-right, top-to-bottom in
search of a foreground pixel. As soon as one is found, it is used as the starting
point for a depth-first search. The search identifies all the foreground pixels that
can be reached from the starting pixel along 8-connected sequences of foregrouncd
pixels. Each of the pixels reached is marked as soon as it is first visited to prevent
the search from getting stuck in a loop. and to allow the scanning procedure to
skip over the pixels of components that have been found, when it is looking for
a new starting pixel. The algorithm terminates when no new starting points
can be found: that is, it stops when the scanning has passed the pixel in the
lower-right corner of the image.

10.4.4 A Connected-Components Program in LISP

We now describe a LISP program that implements the algorithm just described.
The mput to this program is a binary image. represented as a list of lists. The
output is a “components image” in which each foreground pixel has been replaced
by the number of the connected component to which it belongs. The components
are numbered starting from 1, in the order in which they are reached in the loft-
to-right., top-to-bottom scan.

The functions in this program are divided into three groups:  those that
manipulate the images directly (inciuding simulating array accessing). those that
define the search procedure, and functions to test the program and display the
results. Let us begin by presenting the representation of the mput imapge,
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:" Figure 10.11: An anomaly: both the foreground and background are 8-con-
E nected.

£ . CONNECTD.LSP
. ; A program for connected-components labelling.

E ; Set up the input array:

b (SETQ INPUT ¢

' (01000000)
(0110006600
(0001000 0)
(00001110)
(D000 101 Q)
(11101110
(01100000}
(V00000 CO)Y))

i The two functions GETVAL and STORE allow us to read and write a pixel's
F value in the simulated array IMAGE. (Some LISP implementations provide ef-
| ficient array manipulations; GETVAL and STORE could be rewritten to take
E advantage of such features—or the array operations could be used in place of
- GETVAL and STORE.) The function GETVAL uses the function GETNTH
I (which was also nsed in the SHRINK program of Chapter 3). In order to keep
four presentation of CONNECTD.LSP complete, the short definition is repeated
¥ here. Similarly, STORE calls the function REPLACENTH (also used in the
STONEWLD program of Chapter 9).

. ; Array access routines:
| (DEFUN GETVAL (I J) (GETNTH J (GETNTH I IMAGE}))

& (DEFUN GETNTH (N LST) ; return Nth element of LST
P (COND ((NULL LST) NIL)
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((ZEROP N) (CAR LST)) ; (O for first...)
(T (GETNTH (SUB1 N) (CDR LST))) ) )

(DEFUN STORE (I J VAL) ; store VAL at row I, column J in IMAGE.
(SETG IMAGE
(REPLACENTH I
IMAGE
{REPLACENTH J (GETNTH I IMAGE) VAL) ) ) )

; Return a copy of LST where the Nth value
H has been replaced by VAL:
(DEFUN REPLACENTH (N LST VAL)
(COND ((NULL LST) NIL)
((ZEROP N)(CONS VAL (CDR LST)})
(T (CONS (CAR LST)
(REPLACENTH (SUB1 N) (CDR LST) VAL) )) } )

The function NEGATE, which negates all the numbers in a list structure,
is used in this program to flag all the foreground (nonzero) pixels of the iuput

image as “unvisited” before the connected-components search begins. NEGATE
is defined below:

(DEFUN NEGATE (L)
(COND ({NUMBERP L) (DIFFERENCE 0 L))
((ATOM L) L)
(T (CONS (NEGATE (CAR L))
(NEGATE (CDR L)) )) ) )

A top-level function, CONNECTED_COMPONENTS, does nothing more

than initialize the input image by “NEGATEing" it and then call SCAN 1o start
the real work.

; Top-level function for finding connected components:
(DEFUN CONNECTED_COMPONENTS ()
(PROG O
(SETQ IMAGE (NEGATE INPUT))
(SCAN) ) )

The functions which define the search procedure are these: SCAN, DFS. and
BRANCH. Their definitions are given below. The variable DIRECTIONS holds
the adjacency definition desired for the formation of the connected compeonents:
each direction is represented as a displacement vector.

; Perform a raster-scan of the image looking for successive
; connected components:
(DEFUN SCAN ()
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(PROG (I J COUNT)

(SETQ I 0)

(SETQ COUNT 0)

(DO_N_TIMES 8 ; for each row...
(SETQ J O)
(DO_N_TIMES 8 ; for each columm...

(PRINT (LIST ’SCAKNING I J)) ; show progress.
(COND ((EQUAL (GETVAL I J) ; is the pixel
-1) ; unmarked, foreground?
(SETQ COUNT ; ves,
(ADD1 COUNT) ) ; up the count, and
(DFS COUNT I J) )) ; label the component.
(SETQ J (ADD1 1)) )
(SETQ I (ADD1 I)) ) ) )

b ; Depth-first search for more cells in the component:
. (DEFUN DFS (COUNT I J)

(COND ({EQUAL (GETVAL I J} -1) ; be sure cell is foreg.
(STORE I J COUNT) ; label the cell, and
(MAPCAR *BRANCH DIRECTIDNS) ); go in all DIRECTIONS.

(T NIL) ) ) ; don’t search if cell is

; marked or background.

i {SETQ DIRECTIONS ; 8-adjacency definition.
P((-1 -1D(-1 0)(-1 1O -1 N - 0 1))

; Attempt to continue search in direction DIR:
(DEFUN BRANCH (DIR)
(PROG (II JJ)
(SETQ II (PLUS I (CAR DIR})) ; determine row and col
(SETQ JJ (PLUS J (CADR DIR})); of mew cell.
(AND (LESSP -1 II) : check array bounds...
(LE3SSP -1 11}
(LESSP II 8)
(LESSP 1J 8)
(DF$ COUNT II JJ} ) ) ) ; OK, continne search.

The three search functions SCAN, DFS, and BRANCH work together. SCAN
has the responsibility for finding new starting points for connected components.
It marches across the image in raster-scan order. Whenever it finds a foreground
pixel that has not yet been marked, it starts a new component by incrementing
the count of components found and calling DFS to label the component. DFS
has the job of marking the current pixel and causing the search to “fork” in all
of the specified directions. It is the job of BRANCH to continue the search in
each of these directions {each call to BRANCH continues the search in one of
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the directions). Note that DFS and BRANCH are co-recursive (each calls the
other). These could have been combined into a single recursive function; however,
by separating them, it is easy to use the “comirol fork™ (MAPCAR 'BRANCH
DIRECTIONS), which not only simplifies the code to effect the branching but
makes it very easy to modify the set of directions in which the search is allowe
to proceed.

The last two functions make it convenient to test the others. PRINT_IMAGE
formats an array nicely. It assumes that each pixel only needs one character of
output.

; Print an image array, nicely formatted:
(DEFUN PRINT_IMAGE (IMAGE)
(COND ((NULL IMAGE) NIL)
(T (PRINT_ROW (CAR IMAGE))
(TERPRI)
(PRINT_IMAGE (CDR IMAGE)) ) ) )

; Helping function for PRINT_IMAGE:
(DEFUN PRINT_ROW (ROW)
(COND ((NULL ROW) NIL)
(T (PRIN1 (CAR ROW))
(TYD 32)
(PRINT_ROW (CDR ROW)) )} ) )

The program is tested by the following pair of S-expressions.

(CONNECTED_COMPONENTS) ; Test the program.
(PRINT_IMAGE IMAGE) ; Display the results.

This program illustrates only one algorithm for labelling the connected com-
ponents of a binary image. The problem is a very important one for machine
vision, and apparently, a computationally challenging one even for very highly
parallel computers. A class of theoretical devices for pattern recognition that
were popular during the 1960's called “perceptrons™ fell into disfavor when it
was proved that they could not economically handle the connected-components
problem [Minsky and Papert 1969). Today, the development of algorithms anc
special hardware that can compute connected components efficiently on useful
classes of images is an area of active research.

10.4.5 Cellular Logic and Parallel Operations

A digital image of size 512 x 512 has some quarter of a million pixels. Since
analyzing the image at each pixel generally requires examining the neighborhood
of a pixel (perhaps a 5 x 5 neighborhood), around 5 million value-examinations
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can be necessary for processing such a picture, let alone any of the arithmetic
operations. These large volumes of data have prompted the design of parallel
computers for machine-vision jobs.

Perhaps the most appropriate format for a parallel computer for vision is
just the form of the image itself: a rectangular array of cells. For example
the CLIP4! is a 96 x 96 array of simple processors, each interconnected with
eight neighbors and to a central control unit. Each of these processors has its
own local memory of 32 hits, each of which can be individually addressed. A
program for the CLIP4 is stored only in the control unit, and there is just one
program counter (in the control unit). Each instruction is read by the control
unit and broadcast to all the cellular processors for simultaneous execution by
each of them. Thus, for example, the controller might say, {in a manner of
speaking) “clear your accumulator,” and each cell would clear its accumulator.
More interesting operations are those telling each cell to examine the values of
its eight neighbors (edge-connected and corner-connected neighbors), and write
a 1 to its own accumulator if it sees a particular pattern. Such machines also
have the ability for each cellular processor to perform a one or two-input boolean
function such as NOT, OR or AND on values stored in their local memories.

A one-step cellular logic operation may be specified by a boolean function of
nine inputs:

ry = F(x1.29, 23,24, 25, L5, 7, L3, Lg)

The nine inputs are the values of the 3 by 3 neighborhood centered around xs:

1 ra2 T3
Ly Ty Tg
Iy Xz Tg

For example, an operator to fill single-pixel holes is the following:
oy = o5 + (21222324{—25)LeT7TaLe}

Where “r + 3" indicates boolean OR of x with y, and “xy” indicates boolean
AND of & with y. This operation might be computed on a cellular array machine
by reading x;, then forming the product x, xs, etc. On a more powerful ma-
chine, the entire product might be computed in one step and the sum computed
in a second and final step. Operations of this type can also be performed rea-
sonably efficiently on special pipelined computers that map each neighborhood
configuration into an output value using table-lookup means; such systems are
commercially available from a variety of manufacturers.

By repeating one or more simple cellular-logic operations in a loop, motre
interesting operations may be performed. We will examine (in the section of
this chapter on “shape”) how various kinds of “thinning” operations may be
repeated to shrink an object down to a single point or to produce a “skeleton”
of the object.

I'The CLIP4 (Cellular Logic Image Processor version 4) was developed at University College
London during the 197¢s [Duff 1978].
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10.4.6 Erosion and Dilation

Two very important cellular-logic operations are “erosion” and “dilation.” Ac-
tually, they may be defined for sets of points in the continuous plane as well ag 4
cellular {discrete} space. The operations are based on the notions of intersectiong
and unions of sets of points in the plane. Suppose A and B are sets of points in
the plane. We assume @ = (z,,y,) is an arbitrary member of 4 and b = {x,, p)
is an arbitrary member of B. The translation of a set C by v = (dz, dy) we write
7,{C). The erosion of A by B is the set:

) 7(4)

bel

Thus, for each point of B, we make a translation of A. The interscction of all
these translated versions is the erosion of A. If B consists of a single point. the
result is just a translated (or perhaps untranslated, if that point is at the origin)
version of A. If B contains two or more points, erosion produces a result smajler?
than the original A. If we consider the sets of points now to be sets of pixels
(i.e., those pixels in a binary image having values equal to 1), we have a notion
of erosion that can be computed with cellular logic operations. Each translation
can be done as a sequence of shifts in the array, and the intersections are easily
computed with the AND operation on two values within each cell. Figure 10.12
illustrates the erosion of A by B where the origin is considered to be at the center
of the 5 by 5 array, and elements translated from outside the array are taken as
ZETOS.

00101 000060 000000
1 0010 00000 ¢ 0000
1 0111 01100 ¢ 0010
1 0111 0 6100 00110
00110 00000 00100

Figure 10.12: Two binary images A and B. and a third: the erosion of 4 by B

Dilation is the “dual” operation to erosion. The dilation of set 4 by set B is
defined as the set:
lJ n(4)

beB

For example, if the set B consists of two horizontally adjacent pixels, the dilation
of A by B is a set like A but one pixel wider everywhere. Any hole of width one
or vertical channel of width one in A would also be filled.

2This assumes that A is a bounded set of points. This assnmption is true for all practical
examples.
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00000 0 00O0O 60 0000
11010 00000 11110
101 00 01100 11 110
10110 00100 1 1110
¢ 0000 00000 1 01140

Figure 10.13: Two binary images A and B, and a third: the dilation of 4 by B.

: The two operations of erosion and dilation may be combined to produce other
b operations. Two such other operations are “closure” and “opening.” The closure
t of A by B consists of the dilation of A by B, then eroded by R(B), where R(X)
. is X rotated by 180 degrees. If B consists of the “ell” image, closure of A by

} B has the effect of filling small holes and channels in A. However, at the edges

[ of the array, there may be a loss of ones as a result of the convention that data
E outside the bounds of the array are taken as 0.

000611 00000 00111
11 010 0 0000 001110
1 ¢ 1 00 01100 01110
1 0111 001 00 00111
00000 00000 000 00

Figure 10.14: A, B, and the closure of 4 by B.

Similarly, the opening of A by B is defined to be A eroded by B, then dilated
by R(B). Opening has the effect of eliminating small, isolated fragments of 4, or
parts of A that are narrow or riddled with holes. Figure 10.15 shows an example.

[
[ e I - i o Y
— et ()
— et T
=l
fnar i e I e i e
= o S
=Tl i )
[ e e e
Lo R e e B e e
cooo oo
[ i e i e i e
— e e O D
—_ e - T
o= -0 o

Figure 10.15: The opening of A by B.

The analysis of shapes of two-dimensional objects using operations such as
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erosion, dilation, opening and closing is sometimes called mathematical morphol.
ogy, and it has found numerous applications in industrial wachine vision.

10.5 Edges and Lines

In order to compute the shape of an object in a picture, one must usunally derive
a representation of its boundary. The points in the inage where the houndaries
lie are generally places where the intensity changes abruptly. Various technigues
have been developed to locate such places, These techniques usually involve the
computation of a function of a neighborhood of values, such that the function
yields a high value when there is a large change of intensity across the neigh-
borhood (say, from left to right). Such methods are called “edge-detection”
methods. Let us now examine several of them.

10.5.1 Local Differencing Methods

Let the original image be A[4, j], and let the edge image (to be defined) be E|i. il
Then Roberts” “cross operator” is:

Ef,gi=VAL - AT+ 1,5 +1)2+ (Ai.j+ 1) — Ali + 1,72

A more computationally-efficient edge operator is the *Absolute value of crossed
differences™ operator:

El,g] = Al g] - Ali+ L+ U]+ A5, 5 + 1] — Ali + L. j]|
Another variation is the following, which reorients the cross into a “plus:”
Ef gl = ARG = 1] = Ali,j + 11 1Al - 1,5] - Ali + 1,4

Commonly used for edge detection is an approximate-gradient operator some-
times called the Sobel-edge operator:

Elx.y)=[c+2f+) - (a+2d+ )P +[(g+2h+1) — (a + 2+ 2

where @ through i are the pixel values in a 3 x 3 neighborhood centered at (.. y)
as follows:

alblc
diel|f
gl h| i

Often, surprisingly good results may be obtained with a very simple edge
detector for vertical (or similarly, horizontal) cdges:

Eli.j] = Ali.j] - Ali.j +1).

Here, very negative results indicate a low-to-high-intensity edge and very positive
results indicate a high-to-low-intensity edge. Thresholding the absolute value of
this E[t, j] gives a binary-image representation of the vertical-cdge pixels in au
image.
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. 10.5.2 Compass Gradients

. Operators based on 3 x 3 neighborhoods have been developed by Sobel (defined
above), Kirsch, and Prewitt. One family of 3 by 3 edge operators is called
~ “eompass gradients.” An operator in this family is computed by applying eight
E nasks, one representing each of eight directions (North, Northeast, East, South-
east, South, Southwest, West, and Northwest). The mask returning the highest
| value indicates the direction of the edge, and this maximum value indicates the
. strength of the edge.

Two of the eight masks used for the Kirsch operator are shown below.

51 5| 5 5( 57 -3

-3 0| -3 50 0] -3

-3]-3{-3 -3]1-3[-3

Two of the eight masks for one of several operators due to Prewitt are shown
- below,

1 1 1 1 1 1

-2 1 1}-2)-1

—-1]-1(-1 1f-1[-1

f_ 10.5.3 A Vector-Space Approach

An interesting technique for edge detection is the Frei-Chen operator. In this

©  method we consider each 3 x 3 neighborhood to be a vector in a 9-dimensional

vector space. A linear transformation is applied to vectors in this space, to
express them in terms of a special “feature basis.” Each basis vector for the
feature basis may also be expressed as a 3 x 3 array of values. The nine basis
vectors may be arranged in three groups. The first group contains four vectors
and defines the “edge subspace.” The second group also contains four vectors
and it defines the “line subspace.” The third group consists of a single vector,
and represents the “average subspace.” The basis vectors are as shown in Fig.
10.16.

The intensity of an edge is computed as the square root of the sum of the
squares of the projections of a neighborhood vector onto each of the four basis
vectors of the edge subspace. Similarly, the line intensity is computed by project-
ing onto the line subspace and taking a root of sum of squares. This approach
yields reasonably good results and has a formulation that is mathematically
pleasing.

10.5.4 Heuristic Search for Object Boundaries

One way to avoid the problem of linking the disconnected edges usually ob-
tained with edge-detection transformations is to trace edges directly in the image.
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1 V2 1 1 ¢ -1
0 0 0 V2 0 —2
-1 -vV2 1 0 -1
edge subspace
0 -1 V2 v2 -1 0
1 -1 -1 1
—/2 1 0 1 -2
0 1 1] -1 0 -1
-1 -1 0 0 0
0 1 0 -1 0 -1
line subspace
1 -2 1 -2 1 -2
-2 4 - 1 1
1 -2 1 -2 1 -2
1 1 1
average subspace 1 1 1
1 1 1

Figure 10.16: Frei and Chen basis for local neighhorhood analysis.

An interesting method for contour tracing uses the heuristic-search approach of
Chapter 5. A starting location in the image may be found by scanning the im-
age with a simple edge detector such as a horizontal difference of two adjacent
pixels, until a pair of pixels is found that is very likely to lic on an edge. The
edge between these two pixels is vertically situated, and the initial direction for
search may be chosen arbitrarily as upward (north). From that location on. the
contour is extended by one edge element at a time by heuristically searching for
the completion of the contour. With such a scheme. a good contour corresponds
with an optimal or nearly optimal path through a state-space graph. The cost of
a contour can be defined to ignore length, decrease as the average contrast across
the contour increases, and decrease as the contour becomes relatively smooth.
Figure 10.17 illustrates the choices for the second edge element in tracing a con-
tour by such a means. The starting element is the segment between pixels P
and Ps. written (Py, P5). The contour may be extended taking either (Py. Py).
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PP P
Pyl Py | Py
| B | Py

Figure 10.17: Contour tracing between pixels with heuristic search.

(P1. P2). or (Po.P5) as the next segment. One heuristic evaluation function
which may be used is the following

wy n 1 s n—-d+1
Cin)= — + : &
) n ;1—!—10,1 n—d+1 ; I

where C gives the cost of path +4; n is the length of the path; w; and w, are
weighting factors; the local contrast a; is given by V(P;) — V{(P,,) where P,
and P;, are the pixels to the left and right, respectively, of the {'* edge element
- in the path. and V' gives the value of a pixel; and &; is the local curvature at the
L it edge element.

_ The local curvature may be defined using a table-lookup scheme where a
F small number 4 of edge elements are examined, and the pattern of their relative
directions determines what the local curvature value is. For d = 3 there are five
 possible relative configurations, after symmetry has been taken into account.
f These five patterns and their curvature values by one (albeit an arbitrary) as-
I signment is shown in Fig. 10.18. Thus x;, the local curvature at the i edge
'~ element, may be computed by examining the i, i + 1t*, and i + 2t edge ele-
ments. The table of curvature values here takes only two angles into account at
a time. If larger tables are used, considering three or more angles at a time, a
greater degree of control can be attained.

The weighting factors w; and wy can be adjusted to regulate the relative
influence of the contrast and the curvature. As with any edge-detection method,
the success of this approach depends upon the quality of the edges present in
the image. However, the method constructs contours that are connected, and it
gets around the edge-linking necessary with other methods.

10.5.5 Gaussians, Laplacians and Zero Crossings

One approach to edge detection has gained influence among those who seek a
computational model of human vision. This approach uses three steps, .each
of which has intnitive justification. First. the image is filtered with a two-
dimensional ~Ganssian filter” to reduce the effects of noise in the image. Next,
a two-dimensional second derivative of the filtered image is computed. Thirdly,
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|

0 2 1 2 5

Figure 10.18: An assignment of curvature values to sequences of length 3.

the zero crossings of the second-derivative image are located and marked as edge
elements. Let us discuss each of these steps in more detail.

The Gaussian function (sometimes called a “normal distribution™) for a given
pair of parameters p and o is defined as follows:

f.u,a = e_(#_x)if;a?

The general shape of the Gaussian is that of a bell with sides asymptotically
approaching zero as z goes toward plus and minus infinity. The parameter j
specifies the location of the center of the bell while ¢ controls how wide the hell
appears. The (Gaussian is desirable as a weighting curve in filtering because it
clearly gives maximum weight to the signal point at x = y, and the weights for
surrounding points taper off in either direction.

In two dimensions we can define a Gaussian surface analogous to oo as

G“ Vo.(_’]‘_:‘ y) = e_[(.li—.‘l‘)2+(u—y}2]o-2.

However, we usually have 4 = v = 0, and with the subscript ¢ understood. we
use the simpler definition, G(z, y) = e~ +¥")/o*,

In a discrete space, a Gaussian can be represented as an infinite array of
samples. There is a computational disadvantage of the Gaussian in that it is an
infinite curve and would overlap with an image so greatly as to require on the
order of N* multiplications and additions to filter an N by N image. The fact
that the Gaussian tapers off to the sides, however, allows one to approximate it
well enough with only a finite number of samples. In practice, therefore, only a
central portion of the Gaussian is used, the rest heing treated as if it were zero.
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A two-dimensional Gaussian function may thus be approximated by an array
of values such as the following:

00 |01[02[01]00
0.1 0310510301
0205 |10]05102
0110310503701
00 01[02]01]00

A seven-by-seven or even larger array could give a closer approximation to a
true Gaussian, but would incur greater computational cost in filtering.

Once the image has been processed with a Gaussian filter, one may compute
partial second derivatives 8*/9x°G(x,y) and 8?/0y*G(x,y) and combine them
into the Laplacian:

, o° 92
V3620 = 3Gl + Gl ).

This operator generally produces its strongest outputs where the gradient of
the filtered image is changing most rapidly. The positions where the Laplacian
passes through value 0 are the locations where the gradient (representing edge
strength) goes through an extremum.

The zero crossings in the Laplacian can be obtained in the horizontal and
vertical directions by scanning horizontally and vertically, detecting pairs of ad-
¥ jacent pixels where one has a positive value and the other has a negative value,
or a triplet of pixels im which the outer two have opposite signs, and the middle
one has value zero. If the edges in the original image are very gradual, or if the
Laplacian is coarsely quantized, zero crossings of this form may not appear, even
though the edges exist in the image. A wider latitude may be used for detecting
zero crossings by allowing sequences of some number k of pixels, the k —2 middle
of which are zero and the end pixels of which have oppaosite signs.

A computational shortcut can be taken to obtain the filtered and differenti-
ated image from which zero crossings are extracted. It is possible to apply the
differentiation operator directly to the Gaussian function once and for all, so
that the image can be both filtered and differentiated with a single convolution
operation. The resultant operator is called a 7?G operator (“del-squared G").
In one ditension, a Gaussian and a °G look as shown in Fig. 10.19a and b,
respectively.

The two-dimensional versions of the functions in Fig. 10.19 are surfaces
formed by rotating these functions around their central axes. Assuming this
axis is at the origin, such a 772G operator may be described by the formula:
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Figure 10.19: One-dimensional Gaussian {a} and 72G operator (b).

Because of its shape, this operator is commonly referred to as a “Mexican
hat” or “sombrero” operator. There is evidence supporting the notion that the
human visual system computes convolutions with 772G operators [Grimson 1980].

The results one gets by obtaining the zero crossing of the convolution of the
image with a ?G operator are usually very semsitive to the value of ¢ used
in the Gaussian. The use of a small value of o typically leads to an intricate
fabric of contours, while a large value of & results in a few contours that are
relatively smooth. By taking a whole set of contours using a range of values for
o one gets effectively a collection of edge images that represent edge effects in
the image at different spatial frequencies. In many cases, the prominent edges
in an image may be identified as those segments of zero-crossing contours that
recur in several of the zero-crossing images. If this is true for a particular class
of images, the class is said to satisfy the “spatial coincidence assumption.” This
assumption is conceptually equivalent to a statement that if an edge in an image
is a prominent one, then the edge is visible in each of a series of representations
at different resolutions.
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Although the 772G approach to edge detection has not found much aceeptance
in practical applications of machine vision to date, it may find wider use as new
computing systems reduce the computational penalty one currently incurs with
the technique.

10.5.6 Edge Linking

Having found a set of pixels we believe to represent the contour of an object, we
usually wish to extract from them a closed contour. Traditionally, the object is
to obtain a “Freeman chain” (or “chain code”} representation. The chain code
for a houndary is a sequence of “elementary” vectors which, when linked end-to-
end, follow the contour being represented. The elementary vectors are typically
from a set of four, or of eight. Sets of four and eight elementary vectors are
shown below:

N
NW N NE
w E W E
S SW S SE

Figure 10.20: Elementary vectors for chain codes.

Note that each link in the chain can be indicated with two bits (if the four-
directional code is used) or three bits (for the eight-directional code).

Extracting the closed contour is not always so easy. If there is noise in the
original image, there may be gaps in the contour as found by the edge detector.
There may also be spurious edge pixels which do not correspond to any actual
edge in the original scene. These difficulties can sometimes be overcome through
simple techniques. Incomplete contours, if the breaks are short, can be closed
through a process of dilation.

If the edge information is represented in a binary image where pixels contain-
ing 1 are edge pixels, then simple gap closing may be effected by the following
cellular logic operation: at each cell containing 0, set it to 1 if at least two non-
adjacent neighbors (of its eight} are equal to 1. For example, the center pixel in
the pattern helow would be set to 1:

0
0
1

[ R B ]
= =
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To close larger gaps, a more general me.hod {which is essentially dilation} can be
used: beginning with E°i, 5] = E[Z,j] if EC~1[4, j] has a neighbor with value
1, then set E"[i, 5] to 1. Gaps of length 2k pixels are closed in E*[i, ;). This
operation expands the set of edge pixels in all directions, not just along the gaps,
and thus it is appropriate to follow k steps of gap filling by an equal nnmber of
steps of thinning.

Isolated edge fragments resulting from noise should be eliminated by relateq
cellular-logic techniques. For example, any pixel without any neighbors having
1, is set to 0.

Another class of edge-linking techniques incorporates directional information
into each edge primitive. Then gaps can be closed by extending edges in the
directions they have at the gaps,

10.5.7 Relaxation Labelling

One method for cleaning up the results of edge detection involves the itera-
tive adjustment of the edges to improve the extent to which the 2dge segments
re locally consistent with one anoth . Let us describe a techmique known as
“probabilistic relaxation” for enhancing the results of local line detection in an
mage.
We assume that eight line detectors {each in a different orientation) have heen
ppplied to the image, and that from th. results a set of nine probability values
has been assigned to each pixel. Each probability value represents the strength
fvith which a corresponding label is implied by the image at the pixel. Eight of
the labels correspond to lines at the eight given orientations, and the ninth label
s “no line.” If none of the line detectors yields a high value. then “no line" is
given a high value and the other labels are given low values. The nine values are
ronstrained to sum to 1.0, and thus they are referred to as probabilities.
In each iteration of the algorithm, every pixel gets its probability values
updated using a function of its current values and those of its neighbors. The
ipdating strengthens the labels that are consistent with the current labelling
nformation in the surrounding pixels, and it weakens labels that are inconsistent.
The updating makes use of “compatibility functions™ between labels of adjacent
pixels. Let a; and a; be a pair of adjacent pixels, and let A and A’ be labels. Then
fve say that ry; is a compatibility function if ri;(A, X') gives a number between
1 and 1 indicating the degree to which A and A’ are compatible. For example.
et us assume that a; 1§ directly above (North of) a;. If ) is a vertical-line label
and A’ is a horizontal line label, then r;;{(X, A) = —0.25, and this indicates that
bhiey are somewhat incompatible; it is possible but unlikely that a contour in the
mage will make a 90° turn. On the other hand, if A’ is the same vertical-line
abel as X, then the two labels are mutually supportive and ri{A X} =1.01s an
hppropriate value.

Let p;{A) and p;(A’) be the probability assigned to label A in pixel a; and the
probability assigned to label X" in pixel a;, respectively. The updating should
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increase p;(A) if p;(\) is high and ry;(X, X') is close to 1. On the other hand,
the updating should decrease p;(A) if p;(X') is high and ri(A, X'} is close to —1.
If either p; (X} is low or r;;(A, X' is close to 0. then the updating should not
significantly alter p;{A). An updating formula which possesses these properties
is:

kit PFIML+ g (M)
PN = TArFL + gF ()]

where
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Here the cij are weights that may depend upon the spatial relationship between

pixels a; and a;. For example, if pixel a; is at the center of the neighborhood

below, then the values of ¢;; for each neighboring pixel a; could be as shown (the

Y diagonal neighbors have weights roughly 1/ 2 of the others’ and the weights sum
* to 1),

0.1 [0.15] 0.1
0.15 0.15
0.1 |0157 0.1

The formmla says that in order to get the probability of label A on pixel a; for
iteration k + 1, one computes the expression involving the iteration-k values of
lahels on a; and its neighbors.

A relaxation-labelling operation of this sort can be useful in producing sig-
nificantly cleaned-up line-element images, typically requiring on the order of ten
iterations to clean up the image. Such a method cannot usually produce a glob-
ally consistent labelling, but it can reduce the number of local inconsistencies
and ambiguities and is useful in simplifying the work of subsequent steps in the
analysis of the image. This sort of improvement could be followed by a gap-filling
operation (e.g., by dilation), or it could be used in conjunction with a method
such as the heuristic-search houndary-finding method described earlier.

10.5.8 The Hough Transform

When analyzing scenes of the man-made world, straight lines are very important.
Most buildings and many other artificial objects have straight lines as their edges.
Being able to automatically find lines in an image is important. Although one
can perform edge detection, attempt to link edges together, and then fit straight
line segments to the edge sequences, this method runs into trouble when the
noise in the image is very serious or if there are big gaps in the lines as a result
of poor contrast or occluding debris or fog.

A straight line is a very highly constrained geometric object. Unlike an
arbitrary edge sequence, it cannot continually change its direction as it extends
in length: the direction eannot change at all. This means that even if we have
only a few points of the image representing the line, we may still have more than
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enough information to determine the parameters of the line {actually two points
is enough). We shall define the Hough transform to be an operation that maps
an image f(z,y) into another two-dimensional function H{p.#). such that the
value of H(p,8) indicates the degree to which a line parameterized by pand 6 ig
present in the image.

We now give a precise definition of the Hough transform and explain how
it is computed. A common representation of a line in the plane is with an
equation such as y = mz +b. This is sometimes called the “slope and intercept™
representation since m represents the slope of the line (rise over run) and b gives
the value of y at which the line crosses the y axis. The slope and intercept
representation is not very appropriate for image analysis work because it breaks
down for vertical lines (that is, m = oo for a vertical line), and vertical lines are
very common in images {particularly in indoor scenes and outdoor scenes with
buildings). A formulation that is more robust is the polar representation of a
line:

p=1xcosB+ ysinf.

Each pair (p, #) specifies a line.

If we assume that both the domain of the image f(x,y) and the domain of
the transform H(p,#) is the whole continuous Euclidean plane, the continuous
Hough transform (also known as the Radon transform) may be defined by:

+00 400
H(p.8) = ] f F(2,)6(0.8.2. y)dz dy

- — 00
where ¢ is an integrable delta function satisfying

Bory) = { o if p=zcosd + ysiné;
bipbiry) 0  otherwise.

The transform domain is called the parameter space or p—48 space. The transform
is periodic, so that only values of @ in the range 0 to 27 need be considered. It
is usual to consider the image as having value zero outside of a fixed square
region, and one is usually interested only in values of p in some non-negative
range [0, prax]. Note that each point of the image influences the values along a
curve in the parameter space.

The usual means of computing Hough transforms for digital images is by
partitioning the parameter space into cells and keeping a total of all of the
contributions to each cell that have been accounted for so far. The whole trans-
formation is effected by scanning the image array and for each pixel, determining
the (p.8} pairs that are affected, and adding the pixel's value {possibly scaled
down by a constant) into the current total of each of the affected cells. The
(p.0) pairs are easily determined from the pixel coordinates (.y) by computing
pi = xcost; + yeosh;, for 8;'=0,.... 2r, in suitable increments. The process

of determining the (p,#) pairs and accumulating the values is sometimes called
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“yoting.” since cach image pixel “votes” for all the (p,8) pairs that describe lines
passing through the pixel.

In order to find the lines representing object boundaries in an image, using
the Hough transform. the following sequence should be followed:

1. apply an edge-detection operator to the image obtaining a rough edge
image;

2. compute the Hough transform of the rough edge image;

3. scan the transform to identify peaks and/or clusters of high values, and
make a list of the {p,8) pairs for these peaks; and

4. for each (p, 8) pair, examine the pixels along the specified line to determine
the endpoints of the segment(s) along the line.

The Houngh transform is thus only one step in the process of finding line segments
L in an image. Yet it is the crucial step which does the most to get around the
L problems of noise and gaps.

A disadvantage of the Hough transform is that it is computationally expensive
to compute, requiring O(N2M) “vote counting” steps for an N by N image,
where A is the number of distinct values of @ used in the parameter space. The
development of faster algorithms and special hardware for Hough or Hough-like
transformations is a subject of current research.

With minor modifications, the Hough transform may be used to detect ge-
ometric objects other than lines. For example, to detect circles, the transform
below may he used.

+50 400
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where 8, is nonzero only if (z — £.)? + (y — yo)* = %. The parameter space
for this transform is three-dimensional. The higher the dimensionality of the
parameter space, the more costly the transform becomes to compute. Therefore,
the useful variations of the Hough transform are generally of dimension not more
than three or four.

10.6 Region Growing

In the previous section we have examined methods of edge detection, edge link-
ing and line finding. There is an alternative approach to finding the boundaries
of objects in an image. That is to first find the groups of pixels that belong to
the same objects, and then to trace the boundaries of these groups. It is often
the case that the pixels that belong to one object share some property; for ex-
ample, their brightness values may all be within a small tolerance of each cother.
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The “region-growing” approach to image segmentation is primarily CONCerned
with the determination of these pixel groups or “regions.” We begin our discug.
sion of region-growing methods with a formal definition of “segmentation” whicl,
includes a definition of “region.”

A segmentation of an image can be formally defined as a set of regions
{R1, Ry, ..., R} that satisfies five conditions:

1. Each region is a 4-connected set of pixels of the image.
. The regions are disjoint {and thus do not overlap).
The union of all the regions is the entire image.

Each region satisfies a “uniformity” predicate.

Mo W N

If R; and R, are adjacent regions, then the union of R, with R; does not
satisfy the uniformity predicate.

For example, let us consider the digital image of Fig. 10.21a. Here we may
consider a region as “uniform” if all its pixels have the same valie,

(a) (b)

Fignre 10.21: A digital picture (a), and its segmentation according to the crite-
rion that a region is uniform if a]l its pixels have the same value (b},

This image contains only three different pixel values. However, a segmenta-
tion of it contains seven regions. Three regions have pixel value 1, one has value
2 and three have value 3. Notice that two of the regions with value 3 consist of
only a single pixel. These two regions cannot be merged because thev are not
adjacent in the sense that they share one or more pixel edges.

In the previous example, there exists a unique segmentation for the image.
With a more liberal criterion for uniformity, there may or may not exist a unigue
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E segmentation for an image. For example, we may declare that a region is uniform
- if its largest pixel v .ue minus its smallest pixel value is less than or equal to 1.
. Geveral different. segmentations with this criterion are consistent with Fig. 10.21a.
. Figure 10.22 shows three of them. Each of the first two has four regions. The
L first has one regic * containing both ones and twos (and three regions containing
threes), while the second has three regions containing only ones and one region
E containing hoth twos and threes. The third segmentation shows how pixels with
intermediate values may not always be grouped together.
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i Figure 10.22: Threc segmentations for the same image under the criterion that
L a region is uniform if its largest value minus its smallest value is less than or
- equal to 1.

10.6.1 Pixel-by-Pixel Region Growing

A segmentation using the criterion of Fig. 10.22 can be computed by starting
from the upper left corner of the image, taking the first pixel to be part of the
first region, and successively examining neighboring pixels (in some systematic
fashion), adding them to the region so long as the criterion of uniformity remains
' satisfied. When no new neighboring pixels of any in the region can be added,
'~ one of those neighbors is taken as the starting pixel for a new region. And so this
process continues until all the pixels are put into some region or other. Typically,
a push-down stack is used to keep track of which pixels need to have neighbors
examined (for example, a simple rule is: each time a new pixel is added to a
region, place the four neighbors of that pixel on the stack). This algorithm is
quite similar to methods used to fill regions on a graphics display screen with
a particular color. It could be easily implemented in LISP by making some
modifications to the program CONNECTD.LSP, presented on page 401.
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10.6.2 Split-and-Merge Algorithm

One feature of the pixel-by-pixel approach to region growing is that it is com-
putationally costly. The region uniformity predicate must be evaluated O(NY
times even if the final segmentation only has one region. An alternative approach
evaluates that predicate less often, in the expected case, although perhaps over
larger regions. In this approach. an initial partition of the image into stjuare
blocks is used as an approximation that is to be gradually transformed into the
segmentation. The uniformity predicate is evaluated on each of these blocks. If
it is true on a block, then that block can be a component of an even larger region,
If it is not true on a block, the block is subdivided into four subblocks {of equal
size) and the test is applied recursively to each one. When this splitting phase is
complete, a set of square blocks, of various sizes, each satisfying the uniformity
predicate, has been obtained. Next, a merging phase considers adjacent pairs of
these blocks, merging such pairs into single regions whenever the predicate holds
on their union. For most natural images, the computational effort in the split-
and-merge algorithm is less than that required by the pixel-by-pixel method.
Several phases of split-and-merge segmentation are illustrated in Fig. 10.23.

)

initial after splitting complete
partition phase segmentation

Figure 10.23: Segmentation with the split-and-merge algorithm.

10.6.3 The Phagocyte Heuristic

One of the drawbacks of the straightforward approach to segmentation just men-
tioned is that results tend to be either messy, with many more regions than
wanted, or overmerged, with things like sky and sea being combined into one
large region. A simple means of taking shape information into account to off-
set some of the mischievous effects of pure pixel values is something called the
“phagocyte” heuristic.

With this method, a pair R; and Rj of adjacent regions is considered, having
perimeters Py and P, respectively, and with a number W of elements (of the
common boundary) that separate pixels whose intensity values differ by less than

N
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a constant ¢. The pair is merged if either W/Py or W/P; exceeds a threshold
7. Thus if, say. R had a perimeter that is short in relation to W (the size of
the weak part of the common boundary), then the ratio W/P, would be high,
probably exceeding the threshold, and so R, would be merged with Rs. This is
analogous 1o a phagocyte “swallowing up” another cell (as one may have come
across in biology class). Figure 10.24 illustrates a typical merging situation for
the phagocyte heuristic.

=

Figure 10.24: The phagocyte heuristic for region growing. The common bound-
ary consists of W weak elements and S strong elements.

Another way to attack the problem of messy segmentations is “edit” the
segmentations after they are computed with one of the above algorithms. They
can be edited by examining each region, testing it for undesirable properties,
and eliminating it if it has such properties. A region is eliminated by selecting a
neighboring region and merging the two. A region may be deemed “undesirable”
if it has the characteristics of regions arising from noise. Although slightly risky,
a region consisting of a single pixel can usually be correctly eliminated, since
imaging processes such as vidicons generate a considerable amount of “salt and
pepper” {white) noise in the image that gives rise to spurious but small regions.

Another class of undesirable region is “transition” regions which result from
the distortion of high-contrast contours by the digitization process. Where in the
original scene there may have been a sharp boundary between the horizon and the
sky, there may be a strip of pixels in the digitized image that are half land, half
sky, and thus produce a region of intermediate brightness in the segmentation,
Such transition regions may (usually) be identified using heuristics based on the
numbers and kinds of neighbors they have, their widths, and the relationship
between their pixels values and those of their neighbors. Once they have been
identified. transition regions can be eliminated by forcing them to be merged
with one of their non-transition neighbors.
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Figure 10.25: Transition regions.

10.6.4 Relational Descriptions

Once a segmentation has been computed, one is typically left with a two-
dimensional array each of whose cells contains the identification number of the
region to which it belongs. Often, however, a more symbolic representatiou is
desired for the segmentation. In such cases, we can represent the relationships
among regions using a labelled graph and eliminate much of the data. The nodes
of such a graph correspond to the regions of the image, and the {directed) arcs
indicate relationships such as “is to the left of,” “surrounds.” etc. Figure 10.26
illustrates a segmentation and a corresponding relational description.

The problem of analyzing a scene is then reduced to one of finding configura-
tions in the relational description that match known patterns. It might not be a
difficult job to test two relational descriptions for isomorphism: there are known
algorithms for finding a one-to-one correspondence between the nodes of two
labelled graphs that preserves arc connections. The problem is that the graph
for an object usually changes as the illumination, orientation, and camera noise
change. Thus we need ways to find best approximate matches between pairs of
graphs. This is a very difficult computational problem, in general, and is the
subject of ongoing research.

10.7 Shape Analysis

Intuitively, the shape of an object is the quality or form of an object which is
invariant to translation, scaling, and rotation. Shape is dependent. upon the
arrangement of the object's component material in space; on the other hand.
texture, color, and other reflective properties are not aspects of shape (althongh
such surface properties can act as cues for inferring three-dimensional shape).
The shape of a red square 3cm on a side is square. In some sense, shape is
everything that is left after one has determined the position, size, and orientation
of an object, except for surface properties such as color. The shape of an object
depends on the object’s boundary, but not on its interior.

.
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o

right-of

Figure 10.26: A picture segmentation (a), and its corresponding relational de-
scription (b).

Slightly more formally, we may define a shape characteristic 5 of a set of
points in the plane or in 3-D) space to be a function S: P(E™) — R which assigns
a real number to each set of points in £ (an n-dimensional Euclidean space).
With n = 2, § is a 2-D shape characteristic, and with n = 3, it is a 3-D shape
characteristic. This definition does not itself rule out parameters such as size,
orientation and position; however, we can simply consider such parameters as
poor characteristics of shape.

Shape is usually the most important. visual aspect of an object for recognition,
although color or texture can be very important in some situations. The fact
that we recognize human figures and faces in cartoons drawn with only a few
contour lines suggests how powerful shape is.

There are many shape characteristics which have been proposed or used for
machine vision. In this section we describe a few of them. Our presentation will
be in two dimensions. Most 2-D shape characteristics have analogous 3-D shape
characteristics.
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10.7.1 Circumscribing and Inscribing

Complex shapes are often described using their relationships to simpler ones,
The most commonly used reference shapes are rectangles. The dimensions of g
“bounding box” give an indication of the extent of an object along cach of the
coordinate axes. Sometimes called a “Ferret box,” a bounding box is describe
by four parameters: the maximum and minimum z and y values occurring in the
set of points. For a given set of points, the bounding box is unique provided that
the set is bounded (i.e., the set does not extend infinitely far in any direction),
However, translating or scaling the set must change the bounding box. Rotation
usually changes the box as well. If we describe a bounding box only by its length
and width, the result is a translation-invariant characteristic of the set of points,

A type of bounding box which is invariant to rotation as well as translation is
the rectangle of smallest area, in any orientation, which completely encloses the
object and which is described only by its length and width, Unlike the Ferret
box, this bounding box may not always be unique for particular objects. For
example, if the object itself is circular, then a bounding box may be rotated in
any amount without changing the fact that it is a smallest rectangle enclosing
the object. However, for most objects, this kind of bounding box is unique, and
certain values, derived from the box, are useful shape characteristics.

The “aspect ratio” of the bounding box for an object sometitnes is a good
indication of how elongated the object is. For a Ferret box, the aspect ratio is:

Y2 —ith
Iy — a0

and for a rotation-invariant bounding box, a ratio may be defined as
length/width. In the latter case, the ratio is always greater than or equal to
1, because we define the length to be the longer of the two dimensions of the
rectangle, unless they are equal. The aspect ratio is scale-invariant.

Just as one may use the characteristics of a box that encloses the object. one
may also use features of the largest box that can be inscribed in the object. This
is generally more difficult to compute, however, than a circumscribed box.

Another kind of circumscribing shape is the “convex hull” for an object. A
set A of points is conver if for any two points P € A and Q € A, any point R
situated on the line segment from P to ¢ is also in A. The eonver hull H(B) of
a set B of points is the smallest convex set which contains B. The convex hull
of an object is usually simpler in shape than the original. For example. a shape
and its convex hull are shown in Fig. 10.27a and b. If one stretches a rubber
hand around a two-dimensional object the band takes on the form of the convex
hull, There are numerous algorithms in the literature for computing the convex
hull of a set of points.

In a cellular space the only truly convex sets are rectangular in shape. hecansce
any diagonal boundary line must be tepresented as a “staircase” of pixcls. and
such a staircase contains indentations {concavities). In gencral, the convex hull
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Figure 10.27: A shape (a) and its convex hull (b).

of the digital image of an object is different from the digital image of the convex
hull of the object. Tt is interesting to note that the Ferret box (defined above)
for an object is the smallest convex set including a set of pixels that may be
accurately ropresented as a set of pixels itself. Thus the Ferret box may be
considered as a form of cellular convex hull.

The Ferret box is usually so different from the true convex hull for a shape
that it does not make sense to treat it as one. An enclosing form which is usually
closer to the convex hull is one that permits staircases at 45° angles as well as
horizontal and vertical boundaries. Such a hull has at most eight sides and is
sometimes called the “octagonal closure” of the object. It can be efficiently
computed by parallel computers that perform cellular-logic operations.

A useful shape characteristic based on the computation of the convex hull is
the converity index defined as the ratio of the area of the object to the area of its
convex hull. The convexity index for a set of points may be as low as 0 for a very
non-convex object, or as high as 1 for a truly convex one. The portion of the
convex hull that is not in the object is called the deficiency and can be divided
into two components: the “bays” which are indentations on the boundary of the
object, and the "lakes” which are holes in the object. The ratic of bay area to
object area gives another shape characteristic, as does the ratio of lake area to
object area.

A largest convex set that can be inscribed in an object is sometimes called
a conver kernel. Unlike the convex hull, convex kernels for an object can be
non-unique. For example there are two convex kernels for the cross shown in
Fig. 10.28. Computing convex kernels is more difficult than convex hulls.



428 CHAPTER 10. VISION

Figure 10.28: A shape having two convex kernels.

10.7.2 Integral Projections

A mapping from two-dimensional objects to real numbers effectively reduces the
dimensionality of representation from 2 to 0. Some shape-analysis techniques
work through the intermediate level of one-dimensional objects. An important
class of such methods is known as “integral projections.” An example of an
integral projection is the following:

+20
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If f(z,y) represents a binary image, then P(z) gives the number of pixels having
value 1 in column . Such projections are easily computed by scanning the
columns of the image and totalling the pixel values in each one.

A useful pair of integral projections is a vertical one {as above) and a hor-
izontal one (in which the integral is with respect to x instead of ). Then the
problem of characterizing shape is reduced to describing one-dimensional func-
tions. A binary image and its vertical and horizontal integral projections are
illustrated in Fig. 10.29. Some characteristics of one-dimensional functions are:
the number of peaks in the function, the number of non-zero intervals (connected
components}, and statistical moments.

10.7.3 Topology

Some characteristics of a set of points or pixels have more to do with how the
pixels are connected than how their contours bend. The number of connected
components in an image is one of these, Another is the “Euler number” which is
defined as the number of 4-connected components minus the number of “holes.”
where a hole is an 8-connected group of background points or pixels that is

.
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Figure 10.29: A shape and its horizontal and vertical integral projections.

[ entirely surrounded by object (foreground) pixels. A convenient shorteut exists
b for computing the Euler number of a binary image. If E is the Euler number,
then

E=M-A+F

where Al is the number of ones in the image, 4 is the number of edge-adjacencies
of ones, and F is the number of occurrences of 2 by 2 blocks of ones in the image.
Figure 10.30 shows three binary images and their Euler numbers.

10.7.4 The Medial-Axis Transform

In order to reduce 2-D shapes to simpler plane figures, one of a number of kinds
of “skeletons™ may he computed. The “medial axis transform” {MAT) can be
defined for sets of points in the Euclidean plane in an elegant way. Let p; and
p2 be points in the plane. Then by d{p,.p2) is denoted the Euclidean distance
from p, to pa. Let A be a set of points in the plane, and let p be a point (either
in A or not in it). Then by d(A.p) is denoted the shortest distance d(q,p) for
some point ¢ in A.

We define p(A,p) to be the set of points ¢ in A where d(g,p) is equal to
d{A.p). Thus (A, p) consists of the points of A which are closest to p. Clearly,



B

430 CHAPTER 10. VISION

%

N

Y

.

\
N\
N
N\
\
L N

N N
NN

AN
| N
NN

NN

.QQ‘
N

N
w
N

N
N

ENEN\N

\%

5% 772252, %77

Figure 10.30: Three binary images and their Euler numbers: (a)} 2, (b} 0, and
{c) 12.

for any p in A, u(A,p) = {p} and d(4,p) = 0.
The medial azxis transform of A, denoted o(A4) is defined to be:

{p such that |u(A4,p)| > 2).

That is, the medial axis transform of A contains a point p if and only if p attains
its distance to A at more than one point of A.

The medial axis transform of a rectangle consists of four diagonal line seg-
ments, open at one end, and meeting {if the rectangle is not square) on a fifth
segment, also part of the medial axis transform. The segments are open at the
corners of the rectangle, because each of the corners, being a member of the
rectangular set of points, has only one member in its w{A, p). The medial axis
transform of a circle is its center. The medial axis transform of any convex set
is empty.

For a filled-in shape, B, we may define the boundary 6(B) of B, as the set of
all points ¢ such that for any € > 0, there exists a point ¢’ outside of B so that
the distance between @ and ¢ is less than €. That is,

8B)={¢e B :Y¢>0,3¢ ¢ B:dq.¢) < e}

The endoskeleton of a filled-in shape B is the intersection of o{8(B)) with B
itself. Similarly, the ezoskeleton of B is that portion of o(8(B)) that lies outside
of B. Note that if B is convex, then its endoskeleton is non-empty but its
exoskeleton is empty.

It is interesting to note that if A4 is a closed polygon, then o(A) consists of a
unien of portions of straight lines and arcs of parabolas.

The medial axis transform, exoskeleton, and endoskeleton have been applied
to the problem of shape analysis of regions in computer vision. Although the
Euclidean plane versions of these structures are quite sensitive to noise {minor
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. variations of the shapes A4 or B), it is possible in practice to compensate for this
f to some extent.

: It is interesting to note that the medial axis transform may be of use in path
E' planning for robots. In a two-dimensional room with two-dimensional obstacles,
E a robot is to move from point A to point B. To minimize the chances of running
| into an obstacle, the robot may attempt to maximize its distance from the nearest
L wall or obstacle at all times. A natural way to achieve this is first to compute
¥ the medial axis transform {skeleton) of the room with the obstacles, then begin
the journey by moving from point A to the closest branch of the skeleton, then
E follow the skeleton around the obstacles toward B, finally moving off the skeleton
- toward B (unless B is on the skeleton).

L 10.7.5 Digital Skeletons

£ Unless one is dealing with analytic representations of shape such as polygons, it
| can be very difficult to compute continuous skeletouns for arbitrary sets of points
b in the plane. If one's shape is represented using a binary image, then digital
E approximations to the medial-axis transform can be employed.

_ One algorithm for obtaining a digital endoskeleton (internal skeleton) of a
. binary image is due to Stefanelli and Rosenfeld, and it is iterative in nature. It
E consists of the following:

: At each step, each pixel is considered as a possible final point, and then
L for deletion and possibly deleted. There are two kinds of local conditions, the
deletion conditions and the final point conditions. A point is deleted if it isa 1
b and one or more of its four neighbors {to the north, east, south and west) is a zero.
b However, the four directions are tried one at a time, with deletion performed after
- each, thereby preventing a line of width two from being completely eliminated
E in one step.

i A pixel is a final point if it has value 1 and, when scanning clockwise around
- the pixel, there are no cases in which a neighbor with value 1 is adjacent to
b another neighbor with value 1.

' This algorithin produces a result which may be dependent upon the order in
E which the directions are tried. Directional preferences are generally inevitable
E in skeletonization schemes that yield skeletons of width 1.

10.7.6 Polygonal Approximation

- In order to reduce the dimensionality of pictorial information, one may transform
i a two-dimensional-array representation of a shape to a (one-dimensional) string.
! The Freeman “chain code” provides a natural way to do this. For this method,
the boundary of the shape is traversed, and the string is created by outputting
a symbol at cach step of the boundary, which indicates the direction of the
boundary at that step. Codes based on 4 possible directions are often used, as
* are codes based on § possible directions. The strings which result are usually
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still more cumbersome than desired. Additional data reduction may be effecteqd
by approximating the chain-code representation by a polygon having a relatively
small number of sides. Such an approximating polygon can be computed in man‘v
ways. A few of them are described here. )

Since the chain-coded boundary may itself be regarded as a polygon. its ver.
tices may be sampled to produce a new polygon with fewer vertices. For exampie
the new polygon might contain every other vertex of the original polvgon. This
is “subsampling” the polygon. A disadvantage of this method of approximation
is that there is no control of the error of approximation once the sampling ip-
terval has been fixed. Also, it may be that a good approximation would require
different sampling intervals in different places in the boundary.

A second method, sometimes called “running approximation” takes a given
error tolerance 7 and tries to skip as many original vertices along the boundary
as it can, but it must keep the distance from each original vertex in the interval
to the vector of approximation less than or equal to 7. The problem with this
method is that it tends to keep the error of approximation near = even when a
solution {using the same number of vertices) exists with zero error.

Both the subsampling method and the running-approximation method are
“local” methods in the sense that the decision to keep a vertex for the approxi-
mation is made without considering all of the original vertices.

10.7.7 Ramer’s Recursive Algorithm

A third method, known as Ramer's algorithm, uses a recursive approach. Like
the method of running approximation, Ramer's method takes a given error tol-
erance and produces a solution in which the original vertices are within 7 of a
side of the new polygon. However, all of the original points are examined be-
fore Ramer’s algorithm makes its first decision; it is not a local method. The
polygon for Ramer's algorithm is not necessarily closed. Ramer's algorithm may
be started by calling the recursive procedure with two arguments: the entire
polygon (representing the portion to be approximated) and a pair of pointers
to the first and last vertices (representing the current approximating segment
for this portion). The procedure first checks to see if each vertex in the portion
to be approximated is within a distance of 7 of the approximating segment. If
all vertices are, then the procedure returns the approximating segment, Oth-
erwise, the vertex farthest from the approximating segment is identified. and
used to create two new approximating segments (that improve the accuracy of
the approximation). The portion to be approximated is also divided into two
sub-portions by the chosen vertex. A pair of recursive calls to the procedure
is made with the subportions and new segments. Ramer’s algorithm tends to
choose a good set of vertices for the approximating polygon more often than the
running-approximation method does. The algorithm is reasonably efficient wheu
the error tolerance is not too small.
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10.7.8 Ramer’s Algorithm in LISP

The ease with which polygons can be manipulated in LISP was apparent in
the PYTHAGORUS program in Chapter 8. Here, although the arithmetic we
. perform on polygons is more substantial, the recursive structure of Ramer’s
L algorithm maps very neatly into LISP. We now describe a LISP program for
Ramer’s algorithm.

The input to this program is a list of vertices, each of which is a pair with an
b z-coordinate and a y-coordinate. This implementation assumes that the polygon
E to be approximated is not closed; the first and last points must be distinct. Tt
¥ is a simple matter to provide an additional function that will accept a closed
| polygon as input and call the functions here to perform the real work, and this
[ is left as an exercise for the reader.

| ; RAMER.LSP
j ; A LISP implementation of Ramer’s recursive algorithm
} ; for approximating a polygon with another polygon.

b (SETQ TEST_POLY *((0.0 0.0)(0.0 4.0) (2.0 6.0) (4.0 6.0)
'- (6.0 4.0)(6.0 0.0) (4.0 -2.0) (2.0 -2.0) ))

| The above-described polygon nsed as test data here is illustrated in Fig. 10.31.
f (Additional examples are given in the exercises.)

3 Of the function definitions that make up the program, the first three,
F RAMER, RAMER1 and SPLIT, embody the algorithm itself. Most of the re-
L maining functions support the computation of distance information.

The function RAMER is the top-level function. However, it does nothing
more than call RAMERI] to do the real work and then affix the last vertex of
b the polygon to complete the solution. RAMERI calls the arithmetic function
t ERRORS to determine the relative distances of each vertex from the segment
| that connects the first and last vertices. It checks the maximum of these errors
i against the value of TOLERANCE, and if the error is within the tolerance,
i RAMER1 returns the first vertex of the polygon as the approximation (the last
| vertex is omitted to simplify the APPENDing of partial solutions). If the error
L exceeds the tolerance, then the polygon is split at the vertex of maximum error
'~ (the function SPLIT does this), and RAMERI1 returns the result of appending
the approximations of the two subpolygons (which are computed with recursive
t calls to RAMER1).

| (DEFUN RAMER {POLY)
(APPEND (RAMER1 POLY)(LIST (LAST POLY))) ),

; return polygonal approx. of POLY, without last point:
(DEFUN RAMER1 (POLY)
(PROG (ERROR_LIST LASTPOINT POLY1)
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Figure 10.31: The test polygon used as sample data in RAMER.LSP.

{SETQ LASTPOINT (LAST POLY))

(SETQ ERROR_LIST (ERRORS POLY))

(SETQ EMAX (APPLY °*MAX ERROR_LIST))

{COND ({(GREATERP TOLERANCE EMAX) ; if approx. OK,
(RETURN (LIST (CAR POLY))) ) ; return lst point.
(T (SETQ POLY1 (SPLIT POLY ERROR_LIST EMAX))

(RETURN (APPEND (RAMER1 (CAR POLY1))
(RAMER1 (CADR PDLY1)) )) ) ) ) )

The function SPLIT takes three arguments: POLY: a polygon to be split.
ERROR_LIST: a list of the vertex error values as computed for making the
decision of whether or not to split, and EMAX: the value of the maximum in
this list. It returns two lists, each representing a subpolygon of POLY. breaking
POLY at the position in ERROR_LIST where value EMAX is found.

(DEFUN SPLIT (POLY ERROR_LIST EMAX)
(COND ((EQUAL (CAR ERRDR_LIST) EMAX) ; at pt. of max error?
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(LIST (LIST (CAR POLY)) POLY) ) ; yes, return lst vertex
; and POLY itself.

(T (SETQ TEMP ; no,
(SPLIT (CDR POLY) : SPLIT the CDR of POLY
(CDR ERROR_LIST)
EMAX) )

(CONS (CONS (CAR POLY)(CAR TEMP)) ; put CARs back om.
(CDR TEMP) )} ) ) )

: Return list of approximation errors for internal points of POLY
(DEFUN ERRORS (POLY)
(PROG (X1 Y1 X2 Y2)

(SETQ X1 (CAAR POLY))

(SETQ Yi (CADAR POLY))

(SETQ %2 (CAR LASTPOINT))

(SETQ Y2 (CADR LASTPOINT))

(RETURN

(CONS 0.0 ; Error for first point is clearly 0.
(MAPCAR ’ (LAMBDA (P)
(DIST3 (CAR P)(CADR P) X1 Y1 X2 Y2) )
(CDR POLY) ) ) ) ) )

The function DIST3 takes as arguments the coordinates of three points, which
| we may call Py, Pi, and P. It calculates the square of the distance from P to
| the line segment whose endpoints are P, and Ps.

(DEFUN DIST3 (X0 YO X1 Y1 X2 Y2)
(PROG (SO1 802 S12)
(SETQ S01 (DISTSQ X0 YO X1 Y1))
(SETQ $02 (DISTSQ X0 YO X2 Y2))
(SETG $12 (DISTSQ X1 Y1 X2 Y2))
(COND ({LESSP 301 $02)
{COND ((LESSP (PLUS S01 S12) S02)
(RETURN S01) )
(T (RETURN
(PDIST X0 YO X1 Y1 X2 Y2) }) ) )
(T (COND {(GREATERP S01 (PLUS S02 $12))
(RETURN 502) )
(T (RETURN
(PDIST X0 YO X1 Y1 X2 Y2) 1)) ) ) )

In case the minimum distance between the point and the line segment is not
achieved at one of the endpeints but in the interval between them, it is necessary
to compute the distance (squared) between the point Py and the line passing
through P, and P>. Thus PDIST computes the square of the perpendicular
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distance from the point (X0 Y0) to the line that passes through peints (X1 Y1)
and (X2 Y2). It first computes @ = 2y — &3, b = y1 — y2, ¢ = 19 — &1, and
d =y — y1. Then it uses the formula:

{ad — bc)?

2
[D{P[), Iinepl‘pz) = W

By comparing the square of the distance with the tolerance directly. the costly
square-root operation (required to obtain the actual Euclidean distance) is made
Unnecessary.

(DEFUN PDIST (X0 YO X1 Y1 X2 Y2)
(PROG (A B C D TEMP)

(SETQ A (DIFFERENCE X1 X2})

(SETQ B (DIFFERENCE Y1 Y2})

(SETQ C (DIFFERENCE X0 X1))

(SETQ D (DIFFERENCE YO Y1))

(SETQ TEMP

(DIFFERENCE (TIMES A D)(TIMES B C)) )
(RETURN (QUOTIENT (TIMES TEMP TEMP)
(PLUS (TIMES A A)(TIMES B B)) )) ) )

The square of the distance between Py and Py is (z1 — 22)% + (11 — ¥2)° and
is computed by DISTSQ.

(DEFUN DISTSQ (X1 Y1 X2 Y2)
(PROG (A B)
(SETQ & (DIFFERENCE X1 X2))
(SETQ B (DIFFERENCE Y1 Y2))
(RETURN {(PLUS (TIMES A A)(TIMES B B))) ) )

The function LAST, used to identify the last vertex in the input polygon.
has the straightforward definition below.

(DEFUN LAST (L)
(COND ({NULL (CDR L))(CAR L))
(T (LAST (CDR L))) ) )

In order to test the program, the following code enables tracing and initiates
processing the test polygon.

(TRACE RAMER PDIST SPLIT)

(DEFUN TEST (}
(PROG ()
(SETQ TOLERANCE 5.0)
(PRINT (APPEND ’ (APPRUX_OF_TEST_POLYGODN)
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(RAMER TEST_POLY) ))
))

(TEST)

This test results in a three-segment approximation to the seven-segment int-
put polygon. This is displayed (overlaid on the original) in Fig. 10.32.
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Figure 10.32: The result of Ramer’s algorithm on the test polygon, with
TOLERANCE = 5.

10.8 Three Dimensions and Motion

Although there is a wide variety of applications for two-dimensional machine-
vision methods, thorough analysis of indoor or outdoor scenes requires that three-
dimensional descriptions be produced. Robots that work or navigate in a three-
dimensional environment are likely to need 3-D vision technigues. In this section,
representations and vision algorithms for 3-I) structures are discussed.
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10.8.1 Representations for 3-D Objects

Whereas two-dimensional objects are represented by such data structures as two.
dimensional images and lists of line segments, 3-D objects can be represented
by 3-D images, by collections of surfaces, space curves, and combinations of 3.
D primitives. The number of mathematical and computer representations that
have heen developed for 3-D structures is very large. Let us consider a few of
them.

Some 3-D structures are just collections of points in 3-D space. When finite,
such a collection can be represented as a list of ordered triples. Other structures
such as polyhedra can be described as relations on finite sets of points, and so
they can be represented as a list of triples together with a representation of the
relations. 3-D surfaces described as surface patches also can be represented in
terms of points in space called “control points.”

10.8.2 3-D Arrays

A series of sectional images of a human brain, created with a CAT scanner, effec
tively represents a 3-D density function f{z,y,z}. A natural representation for
this is as a 3-I) array of numbers, Alternatively, the domain of this function can
be segmented into volumes divided by surfaces; these surfaces can be represented
together with indications of the density within each volume.

Three-dimensional solids may also be represented by 3-D arrays. Just as a
binary image represents the shape of a 2-D object, a 3-D binary array can handle
a 3-D shape. Because the number of cells (called vozels) is equal to N3 where
N is the number of cells in one row of the array, the memory requirement for
the array is large if ¥ is anything but small. In order to represent a 3-D binary
array more efficiently, an “octree™ can be used.

10.8.3 Octrees

An octree is a tree structure each of whose nodes corresponds with a cube-shaped
volume of the 3-D array; the root of the tree corresponds to the whole array.
Each non-leaf node in an octree has eight immediate descendant nodes. Any node
except the root corresponds to one of the eight octants of the cubical volume
that its parent node correponds to, where the octants are the spaces formed by
bisecting the cube three times using mutually-orthogonal planes parallel to the
cube’s faces. Each node of an octree is marked as “full,” “empty.” or “mixed.” A
full node correponds to a volume that is completely contained in the object being
represented. An empty node’s volume is totally disjoint from the object’s. The
volume for a mixed node contains some ohject and some empty space. Memory is
saved by only allowing mixed nodes to have children. An octree can be computed
from a 3-D binary array by building a complete tree up to the root, determining
the labels for each node, and then pruning off all the descendants of nodes that
are full or empty.
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Both 3-D binary arrays and octrees belong to a class of representations called
“gpatial-occupancy” methods. Spatial-occupancy methods can handle complex-
ity of shape very well, provided that high spatial resolution is not needed. For
high spatial resolution, methods that use explicit representations of coordinates
are generally preferable.

10.8.4 Generalized Cylinders

A method of 3-D shape description which has proved versatile and efficient for
many applications is called “generalized cylinders.” An ordinary cylinder is a
geometric object that can be described in terms of its axis {a line segment) and
its cross section (a circle). A generalized eylinder is a structure having an axis
which is an arbitrary space curve, and whose cross section may vary along the
¢ curve and is not restricted to be circular; each of a generalized cylinder’s cross
| . sections may be a different planar, simple closed curve. The cross sections are
assumed to form a continuous surface. A representation for a generalized cylinder
can consist of a list of cross-section curves (represented with some 2-D method)
together with a space-curve representation (e.g., with a 3-D chain encoding, a
3-D polyline by a list of vertices in 3-space, or a 3-D spline curve) of the axis,
and with a list of the points along the axis to which the specified cross sections
correspond.

10.8.5 3-D Structure from 2-D Images

The fact that we humans are skilled at determining three-dimensional relation-
ships in a scene given only a {flat) photograph is a good reminder that it is
possible to deduce much 3-D structure from a 2-D projection. To be sure, the
projection process “throws away” information in the scene, and without any
knowledge about what the world is like, it would not he possible to correctly
reconstruct the 3-D structure. Without world knowledge, the interpretation of
the image is underconstrained.

However, the world operates only in certain ways; for example, an opaque
object in front of another one hides it or hides part of it. Trees, houses, people,
roads and cars have certain ways of appearing, and when we see a tree standing
in front of a car, we perceive the car as one complete object, even though its
image is divided by that of the tree. The fact that the tree’s region divides the
car’s region is a depth cue telling us that the tree is in front of the car. Our
knowledge of the world provides enough constraining information so that a rea-
sonable interpretation can usually be made. Even with much world knowledge,
the 3-D structure is usually still underconstrained; there may always be some
details of the situation being examined which can not be determined. Answering
the question “was there a rabbit behind the house?” is beyond the ahility of a
vision system if neither the image nor the system’s world knowledge can provide
evidence one way or the other. We must be happy if a vision system helps us
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answer a reasonable set of questions (but not all questions involving 3-D scene
structure) about the observed situation.

Two of the methods for determining depth-related information in a scene,
from a single image, are called “shape from shading™ and “shape from texture *

10.8.6 Shape from Shading

As graphic artists are well aware, a surface such as that of a sphere can be given 3
three-dimensional appearance by shading it. In the other direction, it is possible
to compute the 3-D shape of a surface from the shading information in an image.
To explain how this is done, we first introduce the “gradient space.”

Suppose that the surface is represented by z — f(z,y), and that 2 is the
depth of the surface from the viewer at image position {x,y). For a small change
in x or in y there is a corresponding change of z. These changes are given by
p =0z/0r and q = 82/0y. The pair (p,q) denotes the gradient. The space of
possible values of (p, q) is called gradient space. Since the gradient of a plane in
space is constant, a plane or section of a plane is represented in gradient space
as a point.

Let us assume that the surface in the scene is Lambertian (i.e., matte), so
that it reflects light uniformly in all directions. The intensity of the reflected
light depends only upon the angle of incidence 8; and not on the angle of reflec-
tion. The intensity of reflected light is given by R = rcosf;. Thus, given the
magnitude and direction of the incident light, the orientation of the surface, and
the reflectance of the surface, the radiance, which corresponds to the image in-
tensity, can be found. Fixing the light-source intensity and direction, and fixing
the reflectance, the intensity of the reflected light is a function of orientation:
R = G(p,q). The function G is called a reflectance map.

Given a value of R, the amount of light reflected, the set of possible pairs
{p,q) such that B = G(p, q) forms a curve in gradient space called an iso-intensity
curve. The value of R therefore does not uniquely determine the surface orients.
tion (p, g) but constrains it. With the help of additional constraints, it is possible
to recover the surface orientation. Additional constraints can be obtained from
vertices in the edge image of the scene (if the surface is polyhedral). or from
continuity of the gradient across the surface (if the surface is smoothly curved).

Information about the orientation of a surface can also be obtained using cues
other than intensity in the image. Some other kinds of cues are: the coarsencss
and directionality of textures on the surface, the relative motion of parts of the
surface (requiring a sequence of images to analyze}. and the 2-D shape of the
projected beundaries of a surface.

10.8.7 Stereo .

Several forms of stereo imaging can be used to obtain depth information in an
image. The best-known method is binocular stereo, Humans use this method in
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normal 3-D vision, and can also use it with stereograms to obtain the sensation
of 3-D perception. For example, the random-dot stereogram of Fig. 10.8.7, when
viewed such that the iinages seen by each eye are aligned, evokes the perception
of a square protrusion [rom the otherwise flat surface. This stereogram was gen-

Figure 10.33: A random-dot stereogram.

erated by making two copies of a random binary image and displacing the black
dots within a square region in the right-hand copy horizontally by a distance of
two pixels. The two-pixel-wide column uncovered by the square is randomly re-
filled. The fact that humans can perceive depth from random-dot stereograms is
evidence that our visual system does not require meaningful features in order to
perceive depth, and so the perception of depth seems to be a lower-level process
than the recognition of features or objects.

Algorithms have successfully been devised for computing depth information
from a stereo pair of images. The general structure of the different stereo algo-
tithms is similar. It consists in obtaining separate images of a scene from two
distinct viewpoints, with a known relative orientation. The two images are put
into correspondence by locating and matching various features, and then depth
information is computed from the relative disparities of the features in the two
images. The most difficult part of this process is usually obtaining the correct
correspondence between the features of the two images. If the two viewpoints
are separated by much of a distance, the two views of the same scene can be
dramatically different so that a feature in one image may not have any counter-
part in the other. If the viewpoints are very close together, the correspondence
aspect is easier, but there will not be enough disparity between the images to
get accurate depth information.

Other methods of stereo imaging are motion parallax and photometric stereo.
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In motion parallax, one camera takes a sequence of images of the scene from
different viewpoints. Although it is easier to get images with great disparity this
way, the positions of the viewpoints may not be known with as much accuracy as
with binocular stereo. With photometric stereo, a scene is imaged from a single
viewpoint two or more times, with the position of the light source different each
time. Using the shape-from-shading method, enough constraints can be buijlt
up to obtain local surface orientation. References for more details on stereg
techniques are given at the end of the chapter.

10.8.8 Motion

The visual perception of motion is important in robotics and numerous other
application domains. The simplest dynamic image-analysis task is “change de-
tection.” Change detection has practical applications in the security industry:
a single night watchman can monitor a large building with the help of video
cameras and change-detection equipment. Industrial robots can handle a wider
variety of jobs or perform manufacturing functions more quickly if they can vi-
sually follow moving objects and pick them up, weld, paint or inspect them in
motion. Visual navigation systems, such as an automatic driver for a car, need
the ability to determine motion parameters of objects so as to avoid collisions.

Although the goal of motion analysis is usually to extract the parameters of
motion in order to predict the future positions of objects moving in the scene,
motion analysis has other uses. Sequence of images can help solve the noise
problem that plagues the analysis of static images. For example, it is easicr to
see the moving heart in some ultrasound pictures than to find the heart in a
single (static) picture from the same sequence. The redundancy of information
in a sequence of images allows the effects of noise to be overcome; however. a
system mnst either determine the motion parameters in the sequence or put the
key features of the moving object in each frame into correspondence in order to
take advantage of the redundancy. Another use of motion is to gain additional
constraints for determining 3-D structure. For example, an image of a uniforinly-
illuminated white cylinder with an irregular sprinkling of small black dots is
difficult to interpret as a cylinder, if viewed perpendicular to its axis: there are
no shading cues and the texture is not regular enough to help. However, if the
cylinder is rotating around its axis, it shape is obvious. The motions of the dots
give the shape away,

Computational methods for analyzing motion from images fall into several
categories. “Correspondence” or feature-matching techniques try to put the
prominent features of a pair of images (representing the scene at different times)
into correspondence. Once such a correspondence has been found that is self-
consistent, the spatial disparities of the features may be used to estimate the
velocity of scene objects relative to the camera.

Another class of methods is useful in estimating the velocity of the observing
system through its environment: optical-low determination. If the observer ix
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moving forward. the static objects in the environment seem to stream by. The
optical-flow field is represented by a 2-D array in which each cell holds a 2-
D velocity vector, Each vector V(z,y) represents the rate at which the surface
element represented at point (z, y} in the image seems to be moving. The surface
clement is the one closest to the observer along the ray from the viewpoint which
passes through the image plane at (z,y). If the observer’s visual axis is along
the direction of motion, the velocity field will have a focus of expansion at its
center. Around a focus of expansion, the velocity vectors poiut away, and the
magnitudes of the vectors are small near the focus, gradually increasing as the
radius from the focus increases. Algorithms for finding the focus of expansion
usually have, as their main problem, determination of the optical flow field. If
there is not enough visual contrast in the environment, it may only be possible to
compute reliable velocity vectors for a few locations in the array. Interpolation
may sometimes be used to fill in flow information; or the focus of expansion may
| sometimes be derived directly from a sparse set of velocity vectors.

Another method for analyzing motion in image sequences assumes that most
of the scene is static, and that the moving objects are large in relation to the
frame-to-frame movement. By subtracting the previous frame from the current
one, the regions where changes have occurred can be readily identified. Further-
more the regions can be labelled as “aceretion™ or “depletion” regions according
to whether they have positive or negative pixel values in the difference image. A
moving object. which is brighter than its background gives rise to an accretion
region at the end of the object in the direction of motion. It is trailed by a
depletion region, where the object has just been but no longer is. A line drawn
through the centroids of a pair of accretion regions {or depletion regions) arising
from the same object gives the direction of motion for the object. By treating
the history of a pixel's values in the image sequence as a single vector value for
the pixel. segmentation of the image into regions can be performed using unifor-
mity predicates which are sensitive to such properties as the rate of change of
the brightness; the result of such a segmentation is a motion map.

10.9 Blocks-World Heuristics

A collection of vision techniques have been developed for analyzing line draw-
ings of toy blocks. These techniques, while not very useful in practice, have been
influential in the development of general methodology not only for vision but for
other kinds Al problems. For example, the general idea of labelling graphs ac-
cording to constraints is a product of this work. For this reason, it is appropriate
to examine these methods.

Let us suppose that we have available a clean line drawing of a scene of some
blocks on a table. On the hasis of the shapes and connections of the lines in this
drawing. it is possible to determine the correspondence between regions in the
drawing and the blocks in the scene. Two noteworthy studies of this problem
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are by Guzman and by Waltz. They are briefly described below.

10.9.1 Guzman Labelling for Line Drawings

The objective is to find objects such as rectangular prisms and pyramid-shaped

blocks through an analysis of the junctions of lines in the drawing. A typical line-
drawing for Guzman's method is shown in Fig. 10.34. Each vertex {junction}

Figure 10.34: A line drawing for analysis by Guzman's method.

is classified according to the number of lines meeting there and the angles they
form. The basic kinds of vertices are: fork, arrow, ell, tee, kay, ex, peak, and
multi. These are shown in Fig. 10.35.

S A

fork arrow

\éxwﬁ

peak multi

Figure 10.35: The eight types of junctions for Guzman’s method.,
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After each junction in the line drawing bas been classified, the regions defined
by the lines are “linked” on the hasis of the junctions. A link between two
regions means that they may belong to the same object. When a pair of regions
is doubly linked, the pair is intcrpreted as belonging to the same object. The
rules for linking are as follows:

1. fork: three links are created, one across each of the three arms of the fork.
arrow: one link is put across the shank of the arrow,

ell: no linking done.

- N

tee: if two tees can be found with colinear stems, tops toward one another,
the pair is said to match. In this case the two regions to one side of the
stem line are linked, as are the two on the other side of the stem line;
however, this linking is not performed if it would link a background region
to a non-background region.

5. ex: the lines forming the 180-degree angle get links across them.

6. peak: like the arrow, links are put across all lines except those making the
obtuse angle.

Guzman developed additional rules to handle more complex cases. Others
later greatly elaborated the junction-based approach. However, the first steps
by Guzman were significant in showing how junction information could be used
to get an interpretation for the scene.

10.9.2 Huffman-Clowes Labelling

Huffman, and independently, Clowes developed a more rigorous technique for
labelling line drawings of blocks. They considered not ouly the junctions where
line segments meet, but also the types of lines themselves. They identified four
line types: convex edges, concave edges, occluding edges with object on the right,
and occluding edges with object on the left. These are illustrated in Fig. 10.36.
Taking some of the angular junction configurations used by Guzman {only
those where two or three lines meet), they worked out the possible ways that
the lines at these junctions could be labelled. For example, the number of ways
a fork, arrow, or tee junction can be labelled is 4 ¥ 4 x 4, and the number of
ways an ell can be labelled is 4 x 4. With ells, forks, arrows, and tees, we have
some 212 different junction possibilities. The interesting fact, however, is that
not all of these combinations correspond to possible situations in scenes, To find
out which actually occur, we can enumerate the possible ways a scene vertex
can be produced. Let us imagine a point in space where three perpendicular
planes intersect. These planes divide space into eight octants. Depending on
how many of these octants are full of matter or empty, we may have a corner
at the point or not. In general. if the number of full octants is odd, we have a
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boundary interior

—— ——
occluding

+ -
convex concave

Figure 10.36: Four types of lines for Huffman-Clowes labelling.

corner. (However, if only two diagonally-related octants are full, or are empty,
we also have a corner, but we assume that in our line drawing, no more than
three lines come to a junction.) For these cases where corners exist in this three-
dimensional situation, consider the possible views of the corners. Assuming we
only view each corner from empty octants, the actual number of different labelled
Jjunction configurations is only 16, but one of these can occur in three different
orientations, so that we have a total of 18, as shown in Fig. 10.37.

Starting with a line drawing of the same type as for Guzman’s method. we
can usually find a labelling using Huffman-Clowes labels using a straightforward
technique known as “Waltz filtering” or “discrete relaxation.” We begin by
associating with each junction in the drawing a list of all the possible labels that
could go there (e.g.. a list of six for an arrow junction). We then make note of
the fact that a line segment must have matching line types at each end. This
allows us to eliminate from the sets at the endpoints of each line, junction labels
that have no consistent counterparts at the other endpoint. For most legal line
drawings, this process terminates with unique labels at each junction, and the
convergence is rapid.

10.10 Bibliographical Information

A general reference on biological vision systems is [Gregory 1974] and a very
readable introduction to human vision is [Gregory 1972]. References on the phys-
iology and neurophysiology of the visual system include [Polyak 1957], [Hubel
and Wiesel 1962] and [Kuffler and Nicholls 1976]. Visual illusions have been of
interest for many years. Sources of illusions are [Coren and Girgus 1978| and
[Gregory 1968]. Stereo human vision using random-dot stereograms was intro-
duced by [Julesz 1975]. One of the motivations for studying machine vision is the
hope of obtaining good models for human vision. [Crettez and Simen 1982) is an
example of such a model. A book that presents human vision and machine vi-
sion in juxtaposition is {Levine 1985]; this book includes hundreds of references.
as well. A theory that takes psychological as well as computational evidence
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Figure 10.37: The eighteen junction configurations of Huffman and Clowes.

into consideration is outlined in some detail in [Marr 1982, where particular
emphasis is given to binocular stereo vision.

Pattern recognition in digital images began to be investigated in the early
days of artificial intelligence [Uhr and Vossler 1963]. For a time great interest
was focussed on “perceptrons,” neural-network-like models which seemed po-
tentially very powerful; that interest largely subsided when some limitations of
perceptrons were discovered [Minsky and Papert 1969].

The study of picture processing, concerned largely with thresholding and

non-linear approaches to edge detection, took place largely during the late 1960’s
and early 1970°s. Good introductions to that are [Rosenfeld and Kak 1976) and
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[Pavlidis 1977). A number of good algorithms, as well as the relationship of
image processing to graphics, are described in [Pavlidis 1982].

Vision research at the surface, line-drawing, and object levels was fundeq
largely by the U.S. Dept. of Defense Advanced Projects Agency, starting with
Roberts’ well-known study [Roberts 1963}, and followed by other studies pri-
marily at M.LT. [Winston 1975]. More recently the boundaries betweern pattern
recognition, picture processing, and ARPA-style computer vision have begun tq
fade, and there has been a realization that low-level and high-level processes
must usually be integrated to obtain useful vision systems. A good survey of
research literature relevant to machine vision is [Ballard and Brown 1982]. A
somewhat less imposing introduction is [Nevatia 1982].

The physics of image formation has been extensively studied [Horn 1977],
and models of the process have been used to design algorithms that determine
surface shape and reflectance properties [Horn 1986).

Low-level vision may be treated as a two-dimensional signal processing prob-
lem. A thorough reference with this perspective is [Pratt 1978). The use of
Gaussian filters and Laplacians in computational models of human vision was
argued by Marr, Hildreth, Grimson, and Poggio [Marr and Hildreth 1980], [Grim-
son 1980}, [Marr, Hildreth and Poggio 1979]. The spatial coincidence assumption
which justifies the use of zero crossings of the Laplacian as edges if they occur
at several resolution levels is also the implicit Justification for an edge-detection
method that uses pyramids [Tanimoto and Pavlidis 1975]. Another way to obtain
the effect of a \72G operator uses a difference of Gaussians [Burt 1981] and secms
to have some computational advantages over the Laplacian. A relatively con-
cise introduction to image transforms such as the Fourier transform is [Andrews
1970]. A computationally efficient method for the 2-dimensional discrete Fourier
transform computes the 2DDFT directly in a recursive manner [Naccarato and
Chien 1979].

Edge detection, treated in most of the image-processing texts, goes back at
least to [Roberts 1963]. A vector-space approach to edge detection is given in
[Frei and Chen 1977]. The extraction of linear features is described in [Nevatia
and Babu 1981]. Line and curve enhancement using “relaxation” is described
in [Zucker et al 1977}; the relaxation approach was subsequently adopted in
numerous other vision experiments, The Hough transformation described here is
an adaptation of the “point-to-curve transformation” of [Duda and Hart 1973]. A
number of more recent studies of Hough transforms and a generalized version arc
mentioned in {Ballard and Brown 1982|. Hough's patent for a pattern-recognition
device used the slope-and-intercept representation of a line as the basis for the
parameter space [Hough 1962). The continuous Hough transform is a special case
of the Radon transform [Deans 1981]. The use of heuristic search for boundary
finding was developed in [Martelli 1976).

Recent work on low-level vision has focussed on the issue of computational
speed. The algorithms based on celiular logic are attractive because they can
be executed by very parallel processors [Preston et al 1979], [Duff 1978, 1980)].
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[Rosenfeld 1981], [Tanimoto 1983]. [Uhr 1984]. Hierarchical data structures and
their impact on low-level vision are assessed in [Tanimoto and Klinger 1980]. A
variety of multi-resolution image-analysis methods are described in [Rosenfeld
1984]. The digital skeleton algorithm described in this chapter is from [Stefanelli
and Rosenfeld 1971},

Segmentation has received much attention in the literature. The thresholding
approach was successfully developed by [Ohlander et al 1978]. EBarly work on
the Tegion-growing approach, and the introduction of the phagocyte heuristic is
described in [Brice and Fennema 1970]. One survey of region-growing methods
is [Zucker 1976]. Another treatment of the problem is [Riseman and Arbib 1977).
The split-and-merge method is described in [Pavlidis 1977]. Color information
j enlarges the possibilities for segmentation methods [Ohta et al 1980].

Shape-from-shading methods were developed by Horn and further extended
L by Woodham [Horn 1975), [Woodham 1978]. A general scheme for separating
[ the different factors in the scene-formation process, called “intrinsic images” is
presented in [Barrow and Tenenbaum 1978]. The analysis of image sequences
and motion analysis are essentially the same subject, and they are treated in
[Huang 1981]. A method for computing 3-D shape from texture information is
in [Kender 1979). Another method for determining 3-D structure from an image
is in [Kanade 1981). Representations for 3-D structure are surveyed in [Faugeras
1983], and the octree method, introduced in [Jackins and Tanimoto 1980], is
related to the “quadtrees” used for two-dimensional map data [Samet 1984].

The lahelling of line drawings received much attention during the early 1970’s.
Building on [Guzman 1968], important studies were made by [Clowes 1971],
[Huffman 1971], [Mackworth 1973] and [Waltz 1975].

A number of complete systems for computer vision are described in {Hanson
and Riseman 1978, and the techniques in the ACRONYM system in particular
are described in {Brooks 1981].
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Exercises

1.

o

How many bytes of storage are required for an image of size 512 by 512
with 2 bits per pixel?

What is the difference between the radiance and the irradiance? Describe
a situation in which some light plays both roles at the same time.

Why is radiance measured in terms of light energy per steradian?

. Suppose that a 128 by 128 digital image is used to represent a scene of a

dark house behind a white picket fence. What is the maximum number
of pickets that would be distinguishable in the image?

Make a collection of visual illusions. Devise a series of image-processing
operations for each illusion to help explain why the illusion is perceived.
Some of the operations you may want to use are: low-pass filtering, edge
detection, endpoint detection, and Hough transformation.

e
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6. Plot a histogram for the 8 by 8 image shown below. Choose a threshold
nsing the “valley” method. Show the results of thresholding with this
valne and also with the values T=.25 and T=5.5.

RO O ;N ;
DO RO RN
N O =0 Oowrm
L I I N
[ R
N O G = = 5 Ow0

B R O RO DR
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7. Use canned software or write your own program to experiment with some
elementary image processing techniques. Print out, describe or demon-
strate the effects of applying each technique to a digital image of your
own choosing.

(a) median filtering with a 3 by 3 neighborhood;

(b) gray-value histogram;

(c) thresholding using the mean value in the image:

(d} edge detection with the Roberts cross operator;

(e} filtering with a Gaussian kernel over a 5 by 5 neighborhood,;
(f) computing a Laplacian or 72G over a 5 by 5 neighborhood;
(g) detecting zero crossings in the Laplacian or ?G image; and
(h) two-dimensional discrete Fourier transform.

8. Describe the following three methods for breaking a picture up into parts
for analysis:

{a) thresholding
{b) edge detection

(¢) region growing
What are some advantages and disadvantages of each method?

9. Write a prograin that inputs (1) an image and (2) a desired number of
regions and tries to find a threshold (using binary search) that produces
a number of connected regions as close to the desired number as possible.




456 CHAPTER 10. VISION

10. For the binary images A and B shown below, apply dilation (hy B) to 4
three times followed hy erosion three times. The desired image is given by
(({({{A® B)® B)® B)o B) © B) & B). What is the resuit?

0000O0QO0COCC
00000O0D0O0
0001010090 111
00110010 111
00010010 111
00001000
Q0000CO00
00000O0C0C0O0

A B

11. In an N by N binary image, what is the maximum number of connected
components possible for the foreground and for the background if

(a) 4-connected components are counted for each of the foreground and
background?

(b) 8-connected components are counted for each of the foreground and
background?

(c) 8-connected components are counted for the foreground and 4-
connected components are counted for the background?

12. (a) Modify the LISP program for connected components so that it lahels
4-connected components.

(b} Produce a variant of the program, which labels the background §-
connected components as well as the foreground connected compo-
nents.

{c) Produce a variant of the program which uniquely labels each 8-
connected component of the foreground and each 4-connected conr-
ponent of the background.

In each case, test your program on the binary image of Fig. 10.10.

13. The number of connected components in an image is sometimes used as
a feature of the image. Discuss the variance or invariance of this feature
under the following kinds of transformations. Can any of these operations
increase the number of components?

(a) rotations (d) dilation
{b) translations {e) erosion
(¢) scale changes
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14. Several steps are necessary to develop a program for tracing contours in
an image using heuristic search.

(a) Write a function which computes the local curvature &; using the
table-lookup method.

(b) Write a function that computes the cost of a contour.

{¢) Write a function which scans an image with a simple edge detector
and chooses a starting location for tracing a contour.

(d)} Using your functions for parts (a), (b) and (¢), develop a program
that employs best-first search to construet a contour in an image.
Demonstrate your program using image data (either synthetic or from
a scanner or digitizer).

(e) Modify your evaluation function so that a path is penalized if it
wanders back on itself at any point other than the starting point.

(f} Change the relative influence of contrast and curvature in the eval-
uation function and describe the resulting changes in the contours
computed by your program.

15. Describe an evaluation function (for the tracing of contours using heuristic
search) that would bias the program to trace circular contours of a fixed

radius.

16. {a} Write a program that computes a segimentation of an image. The uni-
formity predicate for a region is satisfied if the maximum value in the
region, mitus the minimum value, is less than or equal to epsilon. You
may choose to do this by making modifications to CONNECTD.LSP
as suggested on page 421.

(b) Take an image and segment it with the program of part a. Now
rotate the image 180 degrees by reversing the order of the bytes in
its file. Segment the rotated image using the same value of epsilon.
How do the results compare {bhesides being rotated)?

17. Consider the point data shown in Fig. 10.38.

{(a) Describe (in words) the result of applying a least-squares line fit to
this data.

{b} Describe the Hough transform of the data and how this transform
should be interpreted.

18. Find the maxunum value of TOLERANCE that causes the RAMER pro-
gram to produce a four-segment approximation of the test polygon in the
text.
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Figure 10.38: Noisy point data.

Compare the results of approximating the two open polygons of Fig. 10.39
using the RAMER. program with a TOLERANCE of 5.0. The LISP rep-
resentations for the polygons are:

(SETQ SINE ’({(0.0 0.0)(1.0 2.0)(3.0 -2.0)(5.0 2.0)
(7.0 -2.0)(9.0 2.0)(10.0 0.0} »)
(SETQ COSINE °{((0.0 2.0)(2.0 -2.0)(4.0 2.0)
(6.0 -2.0)(8.0 2.0)(10.0 -2.0) })

Which result is preferable and why? Describe how Ramer’s algorithm
could be extended to produce approximations that meet the same toler-
ance requirement but require fewer segments to do approximations when
it is possible to get by with fewer.

Modify RAMER.LSP to handle polygons that are closed rather than un-
closed. Make up two or three test polygons and use them to demonstrate
that your program works correctly.

Use or write a program that computes the horizontal and vertical integral
projections of a 32 by 32 binary image and detects and counts the peaks
in these projections.

(a) Study and describe the resulting features for images of the capital
letters A, E, I, O, and U.
(b} Study and describe the features for all the capital letters.

(c) Write a program that attempts to recognize the capital letters hy
using these features.

{d) Improve the performance of your recognizer by adding additional
features to it, of your own design.
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Figure 10.39: Polygons “SINE” {(a} and “COSINE" (b} for use with the RAMER
program.

22.

23

24

One of the difficulties of vision is that a three-dimensional scene, when
digitized as an image, is represented in a two-dimensional array. What are
some ways in which the depth information in the scene can be inferred?

Let us suppose that all thinking is visual in nature.

(a} Suggest some of the operations that a computer designed to “think
with images” might perform.

{b) How counld the memory of such a system be organized?
(¢) How could such a system possibly solve problems?

(d) What are some of the mechanisms that would be required to support
such visual thinking?

(Term project) Develop a program that is capable of analyzing pictures
of cups and saucers on a table top and which reports on its analysis.
The program should successfully recognize: a cup in isolation in different
orientations, a saucer in isolation in different orientations, and a cup-and-
saucer combination, What does your program report when it looks at a
stack of two cups? An overlapping pair of sancers?






Chapter 11

| Expert Systems

'_ 11.1 Introduction

. The previous chapters of this book have focussed on particular techniques of
E artificial intelligence. These ideas and methods may be likened to the chemical
. elements; they are the basic building blocks of larger, more complicated entities.
L We now wish to examine some of the possibilities for compounds, alloys and
- other mixtures, which can be formed to meet particular, practical needs.

' In this chapter we use the term expert system to refer to a computer system
or program which incorporates one or more techniques of artificial intelligence to
perform a family of activities that traditionally would have to be performed by a
skilled or knowledgeable human. {(However, an expert system need not replace a
human expert; it may play the role of a colleague or an assistant to the human.)}
Expert systems may be thought of as the delivery vehicles for Al techniques.
Artificial intelligence is applied to a real-world problem by incorporating it into
a piece of software or a hardware/software combination, and the resulting system
is what we call an expert system.

This chapter addresses several issues related to the application of artificial
intelligence in systems that automate or support problem-solving, diagnosis, ad-
vising. decision-making and control. The process of developing an expert sys-
tem shares much with software engineering in general, and yet it requires addi-
tional considerations regarding the construction and appropriate use of knowl-
edge hases. Expert systems are often very complex, and they may require the
successful integration of several diverse components. The interfaces among these
components must be carcfully specified, because the information that must pass
across thetn often consists of semantic representations, and their meanings must
not he accidentally distorted as they move from one part of the system to an-
other. Special software tools are needed in the design, debugging and mainte-
nance of expert systems. Expert systems may place heavy demands on computer
hardware. and special parallel architectures can help to meet such needs.



b2 CHAPTER 11. EXPERT SYSTEMS

Knowledge Inference
Base Engine
Knowledge-Base Natural
Maintenance Language
Tool Interface

Figure 11.1: The typical structure of an expert system.

11.2 Integration of AI Techniques
11.2.1 Design Methodology

b Chapter 3 the typical structure of a production system was illustrated (see
ig. 3.1). There, a base of production rules was coupled to a databasc of state
igformation and a control scheme or interpreter. We may generalize such a
ructure, obtaining that shown in Fig. 11.1. The knowledge base may cousist
f production rules, but may also take other forms: semantic networks, frames.
lational database plus inference rules, ete.

The inference engine is the procedure which generates the consequences. cou-

cjusions or decisions from. the existing knowledge. It may be a rule interpreter or
if may be the routine which updates certainty values in a probabilistic inference
nptwork.
Relatively simple expert systems can often be constructed etfectively, makiug
e of the production-rule format of Chapter 3. The developiuent of such a
'stem can be easier than that for systems requiring multiple Al techniques.
ere is an overall design cyele for relatively simple rule-based systems:

— oy LD = e e

_h

1. Define the problem and determine whether it is an appropriate one for
which to build a rule-based expert system.

2. Construct the rule base. This may involve a knowledge engineer working
together with an expert,
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3.

Debug and refine the rules.

In order to cover a broader class of applications, a somewhat nore lengthy design
process is needed. The steps of this process are as follows:

o

N

. Define the nature of the tasks to be accomplished by the system.

Define the nature of the knowledge available. (Are there facts known with
certainty together with inference rules, is the knowledge probabilistic, does
the knowledge consists of mathematical models, or is it a semantic system
of some sort?)

Choose appropriate mechanisms for representation and inference.
Define the interfaces required to integrate the components.
Tailor the components if necessary.

Construct the knowledge base.

Debug and refine the knowledge, and any other system components, as
NeCessary.

For some of these steps, computer-based tools are available {and seme kinds of
tools are discussed below).

The powcer of this second approach is that a wider variety of Al techniques
may be incorporated in the expert system, as needed. The greater challenge
arises from the diversity of possible ways the techniques may be combined and
from the increased complexitics of sume of these combinations.

11.2.2 Ways to Combine AI Techniques

Here are some of the ways in which the elementary Al techniques can be com-
bined to produce more complex components to teet particular needs:

¢ Combine two knowledge-representation methods, such as semantic net-

works and frames. Each node of the semantic network is associated with
one frame.

Combine a knowledge representation method with an inference method
{this may require some knowledge-representation conversion when the
knowledge is accessed). For example, we could use a resolution theorem
prover with a scmantic network: a link in the net could easily be converted
into a unit clause whose predicate symbol corresponds to the arc label and
whose two arguinents correspond to the labels on the nodes that are con-
nectedl by the fink. With the semantic net containing only facts (i.e., the
cquivalents of atomic formalas), the network must be augmented with a
set of additional forimulas which includes rules to allow useful deductions
to be made.
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¢ Combine a machine-learning method with a visual featurc-extraction pro.
cedure. For example, the learning algorithm for single concepts could be
applied to sets of images using characteristics of the images such as the
numbers of connected components of area greater than 50 pixels whep
each image is thresholded with the *valley” method. The result would be
a method for learning about classes of images in terms of the numbers of
regions (OF this particular type) that they contain.

These combinations certainly do not exhaust the possibilities, but they are
meant to suggest the sorts of combinations a designer can create,

11.2.3 Incorporating Numerical Models

Che capabilities of expert systems would be greatly restricted if they were lin-
ted to knowledge bases consisting of rules, frames, semantic networks, and facts
represented in the predicate calculus. Many natural (e.g., the weather) and
nan-made systems (e.g., a nuclear power plant) can be modelled with sets of
lifferential equations. A good mathematical model should be regarded as an
mportant piece of knowledge about such a system. An expert system for eval-
hating the safety of nuclear reactors might include, as one of its components. a
funnable mathematical model of a typical reactor; the advice it would give to
ts users would be based in part upon the outcomes of simulations that it would
perform.

The developiment of mathematical models for nuclear reactors and other such
ystems is not generally considered to be within the domain of artificial intel-
igence. However, such model-building might be considered to be Al if it were
lone automatically by a learning or model-building program. Also, it may be
pecessary to modify a model to make it compatible with the rest of an expert
ystem, and this may require that an expert and a knowledge engineer work
ogether. For example, if the reactor expert system needs margins of error in
prder to make safety recommendations, then the model might need to be mod-
fied to maintain intervals or probability density distributions instead of sealar
barameter values,

In order to integrate a numerical model inte an expert system. it may be nee-
pssary to program the model in LISP, or to make it efficiently callable from LISP
ven though it is written in, say, Fortran. Incorporating a mathematical model
n an interactive software system may lead to long response times and frustrated
hsers. It may well be worth incorporating rapid approximation techniques that
Mlow useful feedback to the user or to the executive portion of the expert systent.
o that detailed calculations are only performed when such accuracy is actually

heeded,
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11.3 Tools

Tools are very important in developing expert systems. An expert system usu-
ally contains a complicated body of knowledge that may give rise to complex
behavior. During development, a set of rules may be inconsistent and/or in-
complete. (Indeed, there may still be inconsistencies and omissions even after
delivery.) Tools that assist in the organizing and editing of sets of rules can help
the designer to understand his rule base and detect problems. The behavior of
an expert system may be difficult to trace, and tools for tracing can help the
designer to find all of the state changes that are of interest during a chain of
inferences.

The designer should be able to use the computer to the fullest in the complex
information-engineering task of constructing an expert system. Most expert-
system construction tools fall into the following categories: “shells,” expertise-
transfer systems and knowledge-base editors, and graphical-display tools. Bases
of commonly-needed knowledge can be useful building blocks, and they may
be packaged with various browsers, editors, and/or interfacing or conversion
routines.

11.3.1 Shells for Rule-Based Systems

The term “shell.” for an expert system, usually refers to all of the system’s
software except the application-specific knowledge. The shell includes the ac-
cess procedures for the knowledge base, the inference procedure, and various
additional modules.

A shell may support only one or several knowledge-representation schemes.
It might provide only logical inference capability or it may provide others: prob-
abilistic, inductive. etc.

One of the first shells to be constructed and put to use was EMYCIN {“Empty
MYCIN.” derived from the MYCIN medical expert system by removing the
application-specific knowledge). A few of the many commercially available shells
include ART (“Automated Reasoning Tool”), OPS5, OPS83, M.1, 5.1, KEE
("Knowledge Engineering Environment”) and Knowledge Craft. A much more
detailed list is given in [Waterman 1986).

Such systems can be very usefnl for rapid prototyping of expert sys-
tems. These shells can facilitate knowledge-base construction by providing good
knowledge-representation facilities. However, the work of actually formulating
the knowledge is not the job of a shell: this generally requires interactive dialogs
between a knowledge-base building tool and one or more humans.

11.3.2 Knowledge-Base Construction

Two sorts of aids may be found for building knowledge bases. One sort conducts
an “interview” with an expert, asking the expert repeatedly for information. It
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builds up a relational structure from the expert's responses. These tools are
called ezpertise-transfer systems.

The other sort of aid is a structured editor that allows a trained knowlodge
engineer to easily add information to the knowledge base (or delete or modify
the information). For example, such a system may allow the user to view a lixt
of production rules, add and remove them, with the system checking the ruley
syntax. Many of the commercial shells include such cditing capabilities (c.g.,
KEE). -

An advantage of direct interviews between an expert and the system is thag
the middleman (knowledge engineer) is eliminated with possible economic saving,
Also, if the knowledge engineer is only marginally competent, the quality of the
resulting knowledge base may be higher.

On the other hand, a good knowledge engineer will understand the difficyl-
ties of the knowledge-transfer process, and bring a familiarity with knowledge-
representation schemes and their limitations to the task. He/she may also be
able to provide the sort of flexibility and assistance to the expert that no oxisting
automatic-interviewing system can.

11.3.3 Graphical Representations

Another class of tool is concerned with the display of knowledge and infer-
ence processes, so that the designer can understand them. Certain schemes for
knowledge representation suggest graphical-display procedures. For example. a
frame may be displayed as a rectangular box whaose contents are the slot-filler
pairs, each displayed in a separate horizontal “slot” inside the box. A scman-
tic network may be displayed as a graph, embedded in the plane, or even as a
three-dimensicnal network to be moved through, with the assistance coordinate-
transformation software and/or hardware.

It is the desire to maximize the understandability of the representation that
suggests that innovative graphical-display techniques be used in the presentation
of various types of knowledge. Most geographic information should obviously be
displayed with appropriate maps, for example.

Different designers may prefer different representations for the same kinds
of knowledge. Some designers have a general preference for visual presentation
over the textual, and they claim to think visually: for such designers. graphical
presentations are desirable. Others may prefer the textual or symbolic represcu-
tations for most information.

11.4 Hardware

The performance of expert systems depends not only on the software but on the
hardware as well. General-purpose computers may be appropriate for many Al
applications. However, there are various ways in which computer hardware may
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be tailored to Al's special needs. One approach is to design the processor to effi-
ciently execute programs written in a particular language, such as LISP. Another
approach is to provide several or many processors that can run concurrently in a
cooperative fashion, speeding up inference and problem-solving process through
parallel processing.

The added speed afforded by appropriate hardware can reduce the user's
waiting time during an interactive session, or it can allow a larger space of states
to be searched in probleni-solving, possibly improving the quality of the solutions
that are found.

11.4.1 LISP Machines

A LISP machine is a computer specially designed to execute LISP programs
efficiently. Most existing LISP machines are single-user workstations with bit-
mapped graphic display and mouse input. Examples include the Symbolics 3600
series systems. the Xerox 1100 series (running Interlisp-D), and the Texas In-
struments “Explorer.”

The Symbolics system achieves efficiency by using microcoded functions for
operations such as CAR and CDR. Space is saved using “CDR coding” of linear
lists: the links in a linked list are removed whenever it can conveniently be done,
reducing both memory requirements and the likelihood of page faults in the
virtual memory system. Garbage collection is performed incrementally to give
the user the appearance of uninterrupted processing during interactive sessions.

11.4.2 PROLOG Machines

A PROLOG machine is tailored to the efficient execution of Horn-clause logic
programs. Unification must be very fast, since it is performed very often. Pattern
matching must also be efficient.

Some PROLOG programs can take advantage of parallel processing, when
it is available. Two kinds of parallelism are common for PROLOG: “AND par-
allelisin” and “OR parallelism.” It is common for a rule in PROLOG to have
several subgoals {literals on the tight-hand side of the rule). For example the
rule

Head{x) :- Subgoall(x,yl), Subgoal2(x,y2}, Subgoal3(x,y3).

has three subgoals. If the variables y1, y2 and ¥3 are distinct. then the subgoals
can he processed i parallel, saving time. This concurrency is known as AND
parallelisim since each concurrent subgoal is a conjunct of the rule. If one subgoal
instantiates a variable that is an argument to a subsequent subgoal, then the
latter cannot be processed until the former has been satisfied, preventing the use
of AND parallelism on the particular pair of subgoals. This is often the case.
and consequently AND parallelisi cannot be expected to yield large savings.
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On the other hand, OR parallelism can be quite helpful. When a particular
goal is to be satisfied, there may be several rules whose heads match the goal.
With OR parallelism, each of these rules may be processed simultaneously. There
are no ordering constraints among them.

It is common to measure the speed of a PROLOG machine in LIPS (logical
inferences per second).

For such purposes, “logical inference”™ may not necessarily refer to the com-
plete application of a rule; it may simply refer to the partial unification of two
atomic formulas: the detection and processing of a single disagreement where
one term is a variable.

While computer architectures have been proposed to exploit AND and OR
parallelism in PROLOG programs, other efforts have been directed at more
general purpose parallel-processing systems. Some of these are described in the
following subsection,

11.4.3 Parallel Architectures

In order to provide the computational power needed by Al applications, two
broad families of parallel architectures have been explored. A parallel computer
in the first family consists of a multiplicity of processing elements that perform
operations in lockstep, perfectly synchronized like soldiers marching to a drum.
Although at any one time they all perform the same operation, the data be-
ing manipulated are generally different. This sort of system is termed “SIND"
(Single Instruction stream/Multiple Data stream).

The other family is referred to as “MIMD" (Multiple Instruction
stream/Multiple Data stream) architectures. A member of this family consists
of a collection of processors, each with its own program counter and instructiou-
interpretation unit. Such a system may employ its processors in tnultiple execi-
tions of a single program, or the processors may each run a different program.
If they execute the same program, then at any particular time they neced not
all perform the same step of the program as would be the case with an SIMD
system.

A common form for an SIMD computer is a two-dimeusional array of pro-
cessing elements, each interconnected to its four or eight near neighbors. Such
systems are very appropriate for low-level vision, where each processing element
can handle the computations for a single pixel or small region of an image.

Another way to use an SIMD system is to apply it to a combinatorial op-
timization problem such as the “travelling salesman™ problem or the painted
squares problem (see Chapter 5); we can assign one processing element to cach
of the candidate solutions and let each processing element work through the
computation that determines whether the candidate satisfies all the eriteria for
heing a solution. In the case of the travelling salesman problem. the job of cacl:
processing element might be to compute the cost of one particular tonr and test
this cost against a given threshold.
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An MIMD system can be used in a myriad of ways. One interesting approach
is to decompose a state-space search problem so that cach processor is responsible
for searching a portion of the space. This can be effected by parallelizing the
search of the successors of a node whenever there are enough processors available
to do so. Such a scheme requires a means for allocating processors to tasks
dynamically.

It is also possible to parallelize a rule-based system: each processor is given
one or more rules that it is responsible for. With condition-testing performed
in parallel, the time to find rules that can fire is greatly reduced. If the action
portion of a rule consists of several sub-actions, it may be possible to parallelize
their execution, as well.

The technical problems of dynamically assigning processor to tasks—
computing rule subeonditions and sub-actions, searching subsets of trees—are
only of few of the many challenging problems currently under investigation that
deal with parallel conputing in Al

11.5 Examples of Expert Systems

Since expert systems have been expensive to develop, most existing ones have
addressed problems in fields where there is a high potential economic payoff.
Manufacturing, medicine, and financial management are three such areas. Let
us briefly examine three existing systems.

11.5.1 XCON: A Configurer for VAX Computers

Among the rule-based expert systems that have proved successful outside of
the research laboratory, perhaps none is better known than XCON. Originally
named R1, XCON was developed jointly by Carnegie-Mellon University and
Digital Equipment Corporation. XCON inputs customer orders for VAX-series
computers and decides how to configure the orders, providing detailed descrip-
tions of spatial layouts of components, assignments of various circuit boards to
their slots. and choosing the lengths of cables, etc. XCON performs a job in
seconds that previously required skilled technicians approximately 20 minutes to
complete, even with the use of an editing program on a computer.

XCON was begun using OPS4, and soon after was using OPS5. A sample
rule from XCON's rule base is the following one for placing power supplies into
VAX 11/780 systems:

IF: The most current active context is assigning a power supply
and an SBI module of any type has been put in a cabinet
and the position it occupies in the cabinet (its nexus)
is known
and there is space available in the cabinet for a power
supply for that nexus
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and there is an available power supply
[HEN: put the power supply in the cabinet in the available space.

The development of XCON suggests that cxpert systems can be useful at
n early age and gradually be improved and extended over time. With approx.
mately 800 rules, XCON was successfully configuring VAX 11/780 systems in
1979. In 1981 it used about 1500 rules and could configure VAX 11/750 systems
s well. Rules were gradually added to handle PDP-11's, MICROVAX's and
he 11/725 and 11/785 systems, so that by 1983 XCON contained some 3000
ules. According to its developers, the level of effort put into the project was
iearly constant {four full-time people over about five years): this suggests that
he primary work in producing such a system is in designing the rules, since the
ule base grew at a roughly constant rate over the project period.

11.5.2 CADUCEOQUS: An Internal-Medicine Consultant

Perhaps the largest medical expert system developed to date, CADUCEOUS
relps a physician to diagnose diseases of the internal organs from inforniation
pbout a patient’s symptoems, medical history and laboratory tests. The knowl-
tdge of CADUCEOQUS consists primarily of the descriptions of some 500 diseases
n terms of over 3500 conditions. A strength of this system is its ability to cor-
ectly diagnose patients who have several diseases simultaneously. Originally
paving the name INTERNIST-L, the system was developed at the University of
Pittsburgh, and it has been used on an experimental basis.

11.5.3 TAXMAN: A Corporate Tax Law Advisor

Developed at Rutgers University, TAXMAN is an expert system that helps the
yser to understand legal concepts related to taxation in a corporate environment.
TAXMAN employs frames to represent tax law, corporate tax cases, and corre-
{pondences among cases (which assist in understanding the cases). By creating
nd using correspondences between a hypothetical or current situation and pre-
yious cases, TAXMAN could assist with planning of legal argumentation, which
ih turn could support litigation, out-of-court negotiation, or business decision-
haking. The development of TAXMAN has helped to open the domain of legal
feasoning as a field for expert-systems research.

11.6 Limits of Expert Systems

To put expert systems in perspective, we need to understand their limitations
qnd the potential pitfalls in using them. We consider limitations not only of
fresent day systems but future systems as well.
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11.6.1 Quality of Knowledge

An expert system is limited by the quality of the knowledge that it contains.
Even when a system's knowledge is very good in a particular area, it may be
poor or nonexistent outside of the narrow area. If the performance of the system
drops suddenly as it gets slightly outside its area of strength, it is said to have a
“knowledge cliff.” A knowledge cliff can be both bad and good. It is usually bad
to get poor performance from any system, especially when it is only “slightly”
outside its domain of expertise. On the other hand, a system with a knowledge
cliff can wnore easily be identified as outside its domain of expertise (because its
recomnnendations and observations may be obviously bad}, and this may help
prevent its use for such cases.

11.6.2 Speed of Inference

Speed of inference is most critical in competitive situations and situations where
optimal or nearly-optimal solutions are needed in a fixed amount of time. Game
(c.g.. chess) plaving. and military decision and control environments are particu-
larly sensitive to the speed of the imformation processing in expert systems. The
most time-consuming applications of Al tend to be those whose problems are
formulated as combinatorial search problems or as rule-application where the
lengths of inference chains can grow beyond, say 10.

Machine learning may be the mode of artificial-intelligence activity with the
greatest potential to svak np computer cycles. Many learning preblems are
expressed as comhinatorial optimizations such that the better the solution to
the optimization problem, the better the system learns what it is supposed to.

Expert systems that solve narrowly-focussed sorts of problems can generally
operate cificiently. However, as the context in which the system can operate
grows. the time it takes to solve a particular problem generally grows as well.
Thus there is a tradeoff between speed and generality in expert systems.

Similarly. in domains such as langnage understanding and vision, as more
ambiguity is tolerated, the interpretation speed is reduced.

11.6.3 Proper and Improper Use

Misuse of expert systems falls into two categories: accidental and malicious.
While various precautions can be taken to reduce the likelihood of misuse, it is a
limitation of expert systems that this possibility cannot be entirely eliminated.

Accidental misuse may become more and more likely with an expert system
that allows a luman to become alienated from a position of informed respon-
sibilitv. The hwannan-machine team for problem-solving has thus far generally
heen linman-directed. The user typically directs the systein to perform database
searches, particular numerical computations. etc., and then thinks about the
results and continues the process. Expert svstems can tip the balance: the hu-
man wight no longer be the “wiser™ member of the team and might no lenger
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il accountable for the team’s recommendations; the hunan may be tempted
give up hisfher last vestige of critical thinking. (Additional discussion of the
pitations of artificial intelligence may be found in Chapter 12.)

VA
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Exercises

1.

Describe how a rule base might be integrated with a numerical model of
meteorological activity to automatically make weather predictions of the
sort given in newpapers or on television.

. Make up a set of three to ten rules for choosing the best computer-

programuiing language for a software development task. Incorporate such
factors as the development, time available, importance that the software
be free of bugs, the expected munber of times the software will have to
he modified to meet future needs, and programmer familiarity with the
language. Describe what an expert system should be able to do that uses
these and additional rules.

Develop a graphical tool that can display portions of inclnsion hierarchies
such as those created by the LINNEUS program of Chapter 4.

Develop a graphical teol for manipulating a probabilistic inference net-
work. The tool is to consist of two parts:

(a) a graphical editor for probabilistic inference networks. and
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(b) an updating display routine that shows the updating of the Current
probabilities of nodes.

The tool should be integrated with a set of functions for performing the
computations, such as those used in the INFNET.LSP program in Chapter
7.

. Develop a graphical tool to support the design of augmented transition

networks such as that used in the STONEWLD program of Chapter 9.
The tool should be able to display an ATN as a graph. and to permit
editing the ATN interactively.

. Develop an appropriate natural-language interface and couple it to a rule-

based “wine advisor” that uses rules such as those mentioned in Chapter
6, Section 6.7.

. Describe a means that could help prevent the inadvertent use of an expert

system for problems outside its domain of expertise.



Chapter 12

The Future

'12.1 Where is Al Going?

In this chapter we discuss the future of artificial intelligence and the relationship
' between Al and lmman culture. There is good reason to attempt to predict what
the future holds in store for us. Man is a planning animal. It is in our nature
to attempt to control our destiny: to have food on the table tomorrow, to be
prepared for any dangers, to continue the existence of our species.

However, there is an imherent difficulty that any prognosticator has: there is
a thin line between appearing provocative and appearing foolish. In order to he
- provecative. it is generally necessary to predict something new and unexpected.
At the same time. anyone who readily accepts the prediction and does not find
it “foolish™ finds it to be consistent with his/her own current beliefs, and it is
thus to some extent already “expected” and not very provocative. Someone who
finds the prediction so unexpected as to be inconsistent with his/her beliefs is
apt to judge it foolish. Nonetheless, it seems worthwhile to give consideration to
even the far-flung possible eventualities, because these may be the ones which
change us the most.

We begin our discussion with some trends in the technology. Then we exam-
ine a few of the possible benefits and detrimental effects that Al may have on
our economy, society and culture.

12.1.1 Better Integration

In Chapter 11 we identified the key to applying Al as the integration of Al tech-
niques with other information-processing technology. Achieving such integration
presents many challenges. Some of these are involved with creating standard
forms for knowledge representation and transmittal and getting these standards
accepted. Others are to understand the useful interactions among the various
kinds of subsystems.
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Much work needs to ke done to develop methods to conple numerical mod-
& with non-numerical knowledge representations. Such couplings may require
bstems of decision and cuantization. Furthermore, gualitative models may e
peded to augment the quantitative ones, in order to support qualitative reason-
3g at acceptable speeds.
The information techriologies that need to be integrated are diverse, Besides
the above-mentioned namerical models, such technologies include computer net-
orks and telecommunications, databases, computer graphics, speech and other
oustical techniques, robotics, process-control, parallel electronic computing,
tical computing, and possibly biochemical information-processing technology.

— =

2.1.2 More Mature Application Methodologies

he discipline of software engineering arose in response to the need to develop
cpmplex software systerns for many applications. Design disciplines such as soft-

are engineering provide standard procedures for producing solutions to certain
classes of problems. Because of the complexity and often open-ended scope of Al

plications, traditional software design methods are not adequate, One proh-
1¢m is that the specificatiomns of what function the Al software is to perforin are
uch more likely to change as the system is developed than would be the case
ith, say, a payroll-computation program. The methodology for Al must sup-
rt the experimental aspect of Al developiment and allow the system to grow
ganically from a small kernel prototype to the complete applications system.

We can expect that there will be very general and useful Al development
ethodologies available in the future. In applying artificial intelligence, new
ays are being discovered to classify and solve problems. By developing new
bols and step-by-step procedures for the design of expert systems. methodologics
re evolving that eventually will allow the successful application of Al to many
jore fields than have heen tackled so far.

o Lo o+

12.2 Economic Benefits

—

) the past, in order to develop an expert system for a class of problems. it was
bcessary that there be a high potential for economic benefit: this was needed to
ystify the great expense of developing the system. This criterion wilt continue to
ride most serious applications of artificial intelligence techniques for some time.
owever, as the costs of corputing systems continues to fall, and Al technology
pcomes more widespread, we can expect to see many expert systems developed
r reasons such as their intrinsic interest.

It is obvious that successful expert systems can bring econoinic rewards to
peir creators, owners and users. By cheaply perforining a task that otherwise
bquires an experienced professional. labor costs may be greatly reduced. How-
ber, it is worth mentioning that expert systems have some potential advantages
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over lnnan cxperts.

12.2.1 Advantages of Expert Systems

The fact that software can be easily copied means that expert systems can permit
a wider distribution of operational expertise than would be possible when only
a limited number of human professionals have such expertise.

Software, when protected from damage, can remain intact for arbitrarily
long periods of time. Thus one can gain a permanence of expertise relative to
the tainporary life cycle of the human professional. A company with valuable
expertise may be able to help assure its longevity by embodying it in software.

Whereas human professionals in fields such as medicine have great difficulty
keeping abreast of the latest practical recommendations, expert systems can be
rapidly updated and distributed electronically, allowing the end user or patient
to benefit from new advances.

The commitment of knowledge to a knowledge base can make it more con-
venient to validate and/or ratify than it would be if the knowledge were never
recorded in the formalism.

12.2.2 Al Pushing Computer Technology

Rescarch in Al has had a positive influence on other aspects of computer technol-
ogy. For example, the development of the LISP language in the late 1950’s helped
spread knowledge of symbolic-programming constructs into the mainstream of
programming-language design. Some of the most advanced programming en-
vironments have been developed in response to the needs of Al researchers.
The heavy computational requirements of Al applications has stimulated the
developnient. of parallel processing and special-purpose integrated-circuit chips.
Automatic programming technology is beginning to have a positive impact on
software development as algorithm generators and smart data structures come
into use.

12.3 Social Growing Pains

While Al promises economic benefits to its creators, vendors and many of its
users. like any new technology its development is likely to cause some problems
and a certain amount of chagrin for some people. By taking over various mental
activities from peonle. there will be some who lose their jobs; others will lose
their sense of involvement in the information-processing activities— planning,
diagnosing, understanding that go on in the world.
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12.3.1 Labor

s the automobile replaced the horse-drawn carriage, stable attendants and car-

§age drivers were replaced by auto mechanics and motorcar chauffeurs. Robuts
dre replacing some assembly-line laborers in factories.
Al will probably lead to the replacement of various professionals by computers
dnad by teams of researchers and knowledge engineers that supply and maintain
dxpert systems. In the future, a good medical clinician will rely on a great deal
4t computer-delivered expertise. The top medical people will probably all he
nesearchers involved in improving the knowledge bases that the clinicians are
ysing. These medical people will use Al in their work; their experiments will e
designed in interactive dialogs, as will the results.

Some clinicians are bound to resent the lowering in status their profession
1ay undergo, while most will probably welcome the improved quality of service
Elley can deliver with the new technology.

Unlike previous technological changes, however, the “Al revolution™ may lead
flo fundamental changes in the way people regard their own brains and belicf
dystems.

12.3.2 The Possibility of Greater Confusion

ook knowledge is being transformed into interactive-system knowledge. While
is has the benefits of making the knowledge operational, providing automatic
dceess to the relevant facts and rules, and providing the computational power
#o bring simulation models to life, there is also a greater potential for confusion
yith expert systems than with books. Particular knowledge hases, unlike books.
dre readily modified. Thus, they may grow, whereas a single book is a static
pository of knowledge. A professional who “goes by the book™ is one who
ses a fixed, documented procedure for his or her actions. To say that one
goes by the expert systemm”™ may not imply the same degree of stability and
donservatism, particularly if the knowledge hase of the expert system can evolve
i an uncoordinated way.

L

12.3.3 User Responsibility and Alienation

{Dnce the user of an expert system hegins to trust its judgment, he/she may be
tlermpted to avoid the intellectual effort required to check the machine's arguments
r even to feel “in touch™ with the reasoning processes. Without intellectual
fesponsibility. the user will grow lazy and will lose his/her sensitivity to many
qubtleties of the planning, diagnosis, or other problem-solving task. Once the

ser’s awareness is reduced, the likelihood of misunderstanding increases; the
Iser is apt to take the computer's advice out of context or to slip up in mere direct
ways. For example, a medical clinician who routinely prescribes medication for
farious ilinesses with the assistance of an expert system could cause a patient

ol

A
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subtantial harm with a careless misinterpretation of the system’s advice. The
kind of “de-personalization” that often occurs in bureaucracies could manifest
itself in worse ways if the bureancrats are even further removed from the concerns
of the people they “serve” than they already are.

To prevent apathy among those involved in the distribution and use of Al will
be a challenge. Part of the solution may be to place liability on all of the parties
involved, rather than only the client, only the designer, or only the vendor. The
parties are the following: the designers of the expert system, including any sep-
arate parties who build the knowledge base, inference engine or other utilities;
the vendor, who sells the product and claims it useful for the purchaser’s busi-
ness; the user, who operates the program, feeding it inputs and interpreting its
outputs; the client, who provides details of his problem and is partially respon-
sible for implementing the sohition. On the other hand. justice would seldom be
served if all the parties are routinely held liable for the negligence of only one of
them.

Research is needed in the design of systems that encourage the users to take
a responsible, intellectually active role in problem solving wherever there are
substantial penalties for misinterpretation.

12.3.4 A Human Identity Crisis

Artificial intelligence poses a kind of psychological threat to people whose sense
of identity is based on their {possibly misguided) perception of the difference
between a mind and a machine. “I think, therefore I am” was Rene Descartes’
way of proving his existence to himself. To many people, a more apt belief is “I
think, therefore I am not a mere machine.” If these people come to believe that
machines can think, and they believe that machines are inferior entities, then
they will probably feel disheartened and possibly threatened. Indeed, there is a
controversy among philosophers, theologians, and others about the relationship
between the concept of person (or, more specifically, mind) and the concept of
machine {or, more specifically, artificial intelligence).

One can imagine that Al techniques might provide a new means with which
to evaluate systems of beliefs, including religious beliefs. Dimensions of such
evaluations might include logical and qualitative consistency, the relationship
hetween evidence and generalizations, and the “utility” of dogma and other
teachings in helping to satisfy human needs. In fact, it is possible to think of the
problem of planning man'’s future as a kind of state-space search. While some
people may welcome the new ways of thinking about human activity on earth,
others may find the new ideas disturbing, particularly if they find the ideas both
compelling and in conflict with cherished beliefs.
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2.3.5 The Sorcerer’s Apprentice

erhaps the greatest danger of any new technology is that we may lose control
it, or that its power may fall into the hands of those who use it against human
imterests. One unfortunate but possible role for Al is that of the magic in The
orcerer’s Apprentice. Researchers may learn just enough about AI technology
b put it into motion, initially for the good of man; but it tay turn out that
hey are unable to stop it from becoming a menace. A similar story is that of the
rankenstein monster, created with good intentions but successful only enough
b be able to terrorize mankind.
Recognizing this problem, Isaac Asimov laid down his “Three Laws of
obotics” which are as follows:

ot e e =

(ol

1. A robot may not injure a human being, or, through inaction, allow g
human being to come to harm.

2. A robot must obey the orders given to it by human heings cxcept where
such orders would conflict with the First Law.

3. A robot must protect its own existence as long as such protection does
not conflict with the First or Second Law.

Unfortunately, it would appear to be very difficult to create a piece of Al soft-
ware that is capable of making the discriminations that would allow it to actually
fpllow the three laws. Acting as an advisor to a human, a program would prob-
ably not be able to tell whether the advice was going to he used for injuring
Human beings. Thus the problem is this: an Al system could probably be put
thgether with some mechanism that attempts to obey the laws, but it would not
He intelligent enough to ensure that the laws are really obeyed in the long run
and in the general sense of the word injure.

Artificial intelligence technology is information technology, and it is capable of
eing transmitted relatively rapidly. There is thus a somewhat greater potential
br it to move into irresponsible hands than, say, explosives technology. This
uts an extra measure of responsibility for the proper use of Al on its developers
hd vendors.

o o Bl B

12.4 Cultural Benefits

12.4.1 Refinement of Human Knowledge

Ih the course of reformulating our knowledge of history. philosophy and nature
(fo mention just a few areas}, academicians and knowledge engineers have an
gpportunity to attempt to resolve ambiguities and eliminate inconsistencies in
the knowledge. Such attempts might lead to such improvements in the knowledge
that interesting new truths can easily be inferred.
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Machine learning research is introducing new methods of formalizing and
validating knowledge, including not only techniques of inductive inference, rule
formmlation and clustering. but also “ratification,” and methods for the justifi-
cation and explanation of knowledge.

It is conceivable that “knowledge rtefineries” could be set up to facilitate the
production of high-quality knowledge bases. These institutions could function
commercially and/or as parts of educational or government research establish-
ments. If the management of knowledge can be entirely automated, one can
imagine electronic networks in which autonomous agents produce, refine, buy,
sell and otherwise exchange knowledge like commodities options or like electrical
power.

12.4.2 Improvements to Human Language

The reformulation of human knowledge is a process that brings to attention
the strengths and weaknesses of the languages that the knowledge has been
recorded with. With our present-day knowledge of syntax, semantics and formal
knowledge-representation methods. we can improve the natural-language repre-
sentation of the knowledge for human readers at the same time that we put it
into Al-usable form.

As the elements of artificial intelligence become more widely known, people
will use these concepts in the course of describing everyday situations and solving
various problems in their lives. For example, someone might describe his own
reasoning in the terms of production systems: “My Don't eat smelly fish rule
fired and I threw the ripe package in the garbage.”

Analogies to Al concepts are bound to be used inappropriately on occasion,
and yet they offer many new expressive opportunities. While the development of
mathematical logic undoubtedly led to more rigor in the works of many writers,
Al enlarges the set of concepts we can bring to bear in relating our knowledge
to other people. It gives us alternative names for the certainties of statements,
ways to deseribe what we see and hear, and new ways in which to describe our

heliefs.

12.4.3 New Ways of Seeing

Vision technology can provide “ways of seeing.” In the future, it will be possi-
ble to generate specific image transformations which correspond with forms of
artistic interpretation.

The imposition of familiar structure on random data is the activity of a psy-
choanalysis patient interpreting a Rorschach-test ink-blot diagram; computer-
vision systems can be made to hallucinate in similar situations and to display
surrealistic or schematic representations of the perceived results. Systems may
also be made to reconstruct scenes in particular styles, in caricature, or adhering
to particular resource constraints such as amounts of various colors, shapes of
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omponent forms, number of pixels, etc. Such capability could have a profound
ffect on the graphic arts, advertising, and educational sectors of society.

12.4.4 Revitalization of Intellectual Pursuits

[he excitement in artificial intelligence is giving a new vigor to intellectual ac.
lvities in general. The questions Al asks of each field are essential ones;

¢ “What are the goals of the field?”

¢ “What is the nature of the knowledge in this field?”
» “How is this knowledge changing?”

¢ “How is new knowledge acquired?”

¢ “How is the knowledge to be used or appreciated?”

¢ “How does the knowledge in this field relate to that in other ficlds?"

By helping to focus attention on inconsistencies, Al is encouraging rethinking
f old issues. Its techniques are offering new ways of solving old problems. and
Jew questions are becorning apparent.

12.5 Bibliographical Information

Piscussions of the economic promise of expert systems may be found in the
teferences for Chapter 11. The social and economic impact of Al is discusse
ih [Feigenbaum and McCorduck 1983]. Excellent chapters on the psychological.
fhilosophical and social impact of Al may be found in [Boden 1977]. The impact
qf Al upon religious thought is discussed in [Wiener 1964] and [LaChat 1986;.
Isaac Asimov’s famous “Three Laws of Robotics” may be found in [Asimov 1950'.
The prospect of Al as a new medium for knowledge is discussed in [Stefik
19861, and the notion of “knowledge refineries" is introduced in [Michie 1975].
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Appendix A

Summary of LISP
Functions

Listed here are the built-in LISP functions that are assumed to be available for
the programs in the text. They are listed alphabetically. Functions marked with
a dagger (t) either are peculiar to the dialect of LISP used here, or have some
notable system-dependent properties.

(ADD1 N): Returns 1 plus the value of N. Reports an error if overflow occurs
in the addition. If N is represented as a FIXNUM, then the arithmetic
is performed on 16-bit integers represented in 2's complement form. If N
is represented as a FLONUM, then the arithmetic is performed on IEEE
Floating Point Standard 64-bit numbers.

{AND X1 X2 --- Xn): Successively evaluates the Xi until one is found with
value NIL (in which case AND immediately returns NIL), or they are all
found to be non-null, in which case AND returns T.

(APPEND L1 L2 - -- Ln): Returns the result of concatenating the lists L1, L2,
etc. The arguments are not altered as they are with NCONC.

(APPLY FUNC ARGLIST): The function is applied to the arguments which
are given in the list which is the value of ARGLIST. The value of FUNC
may be cither an atom which is the name of a function, or it may be a
LAMBDA expression defining a local function.

{ATOM X): Returns T if the value of X is an atom, and it returns NIL other-
wise.

(BIOSCALL N)t: Calls a ROM-resident BIOS function. Arguments for the
BIOS function are set up using SET_REG. N specifies a software interrupt
mumber.
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(BOUNDP X}: Returns T if the value of X is bound.

(BREAK X)f: As soon as this function is evaluated, the interpreter stops fur-
ther evalnation and prints “BREAK:” followed by the result of ev aluating
X. It then enters a “READ-EVAL-PRINT" loop similar to that at the top
level. Local variable values can be examined or changed, and functions cap
be executed as if at top-level. To continue the evaluation of an expression
after a BREAK, type the atom RESUME. BREAK always returns NI[..
(An escape to the top level can be obtained by typing control-Break .)

CAAR X): This is equivalent to (CAR (CAR X)).
CADAR X): Equivalent to (CAR {CDR (CAR X))).
CADDR Xj): Equivalent to (CAR (CDR (CDR X))).

CAR L): Returns the first element of a list or dotted pair.

{
{
{
(CADR X): Equivalent to (CAR (CDR X)).
(
(CDAR X): Equivalent to (CDR (CAR X)).
(

CDDR X): Equivalent to (CDR (CDR X)).

(CDR L): Returns all but the first element of a list, or returns the right-land
side of a dotted pair.

(CLS}T: Clears the screen.

(COND (C1 E1) (C2 E2) --- (Cn En)): Successively evaluates the Ci until
one is found that is not NIL. Then the corresponding Ei is evaluated and
returned as the value of the COND. It is permissible to follow each Ci with
more than one Ei. In this case, if Ci is the first non-null condition. the
E's immediately following it are successively evaluated and the value of
the last one in the group is returned as the value of the COND expression.
This feature is called an “implicit PROG.”

(CONS A B): Constructs a new dotted pair whose left half is the value of A
and whose right half is the value of B. If the value of B is a list. then
(CONS A B) has the effect of creating a new list like B, but containing
the value of A as an additional element at the front.

(DEFEXPR FNAME (L) FN_BODY): Defines a “FEXPR” or user-defined
special form. When the FEXPR is called, there may be any number of

arguments to it; they are all passed to the FEXPR unevaluated in a list.
bound to L.
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{DEFPROP A V P): Associates value V with property P on the property list
for atomn A. DEFPROP is similar to PUTPROP, except that A, V and P
are not evaluated and generally do not need to be quoted.

(DEFUN FNAME (ARG1 ARG2 --- ARGn) FN_BODY): Defines a normal,
user-defined function. This function will take a fixed number of arguments,
when called, which are always evaluated before being bound to the formal

arguments of the function definition. Such a function is known as an
"EXPR.”

(DEF_SEG N)T: Defines a segment for the PEEK and POKE functions.

(DIFFERENCE N1 N2): Returns the resnlt of subtracting the value of N2
from the value of N1, or it reports overflow or underflow.

(DOSCALL)L Calls a DOS function using the assembly language instruction
INT 21H. as described in the DOS manual. Arguments are passed using
SET_REG and GET_REG. It is useful for setting the time and date, and
for miscellancous I/O functions.

(DSKREAD ‘D:FILENAME.EXT)J‘: Searches disk D for a file named FILE-
NAME having extension EXT, and if found, reads the text in that file
as LISP input. Note that the disk drive designation is optional, as is the
extension of the filename.

(EQ Al A2): Returns T if Al and A2 have values stored in the same memory
location. It is a valid and efficient way to test two literal atoms for identity.
However. it is not valid as a test for the equality of composite S-expressions
or numbers.

(EQUAL X1 X2): Used to test two arbitrary S-expressions for equality.

(EVAL X): Applies the evaluator to the value of X.

(FUNCTION FN)‘L: Is defined here to have the same effect as QUOTE. Some
LISP compilers require that function atoms be quoted using FUNCTION.

(GET A P): Searches the property list for the atom which is the value of A for
an entry of the form (value(P) . X) for some S-expression X and if found,
returns whatever X is. Otherwise, it returns NIL.

(GET_REG N)f: Returns the contents of an 8088/8086/80286 accumulator
register following a call to BIOSCALL. The number N specifies which
register: 0 = AX; 1 =BX;2=CX;3=DX;4 = AH; 5 = BH; 6 = CH;
7=DH: 8= AL: 9 = BL: 10 = CL; 11 = DL.

{GO A): See PROG.
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{(GREATERP N1 N2): Returns T if the value of N1 is numerically strictly
greater than the value of N2.

(LESSP N1 N2): Returns T if the value of N1 is numerically strictly less than
the value of N2.

(LIST X1 X2 --- Xn): Returns a list of the values of the arguments.

(LOCATE 1] )T: Positions the cursor on the screen at row I, column J. The
upper-left position of the screen is at 1=0, J=0.

{(MAPCAR FN ARGLIST): Applies the function given by the value of FN to
each element of ARGLIST and returns a list of the results.

(MAX N1 N2 --. Nk): Returns the maximum of its arguments.

(MEMBER ELT L): Returns NIL if ELT is not a (top-level) member of the
list L; otherwise, it returns T.

(MIN N1 N2 --. Nk): Returns the minimum of its arguments.

(NCONC X Y): Attaches Y to the end of list X by a non-copying concatena-
tion; NCONC resembles APPEND with two arguments except that X is
modified rather than copied. Circular lists can be created using (NCONC
X X), where X was any normal list.

(NULL X): Returns T if the value of X is NIL.

(NUM_EQ N1 N2}T: Returns T if the numeric values of N1 and N2 are equal.
It is not defined if either N1 or N2 is non-numeric.

(NUMBERP X): Returns T if the value of X is a number; otherwise, it returns
NIL.

(OR X1 X2 --- Xn): Evaluates the Xi until one is found which is not NIL
{whence OR immediately returns that value) or until they are all found
to be NIL (whence OR returns NIL).

(PEEK N)*: Returns the value (0 to 255) of the byte stored at offset N of the
segment last declared with a call to DEF_SEG.

(PLIST A): Returns the property list of the atom which is the value of A.

(PLUS N1 N2 --. Nk): Returns the sum of the arguments, or reports overflow.

(POKE N B)Jf: Stores B (which should be in the range 0 to 255) at offset N
of the segment last declared with DEF_SEG.

(PP X}T: Pretty-prints the value of X. This is a good way to display function
definitions within LISP.
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(PRIN1 S): Prints the S-expression and leaves the cursor at the position just
after the last character printed.

(PRINT S): Prints an S-expression and a carriage return and line feed after it.
(PRINT_DATE)T: Prints the current date, as maintained by DOS.

(PRINTM El1 E2 --. En)t: Prints the unevaluated arguments separated by
spaces, followed by carriage return and line feed.

(PRINT_TIME)*: Prints the time of day according to the computer’s time-
of-day clock.

(PROG (X1X2---Xn) YL Y2--- Ym): The Xi are taken to be local variables
(current bindings of them are saved at entry to the PROG and restored
at exit). The forms Y1, Y2, etc. are considered in order. If form Y is
atomic, it is skipped. Otherwise it is evaluated. If a form such as (GO
Yk) is encountered, the LISP interpreter immediately begins searching the
sequence of Y1. Y2, etc. to find one which is EQ to Yk. If one is found,
control transfers to the Yj immediately following Yk. Thus, a “GOTQO”
is executed. If a form such as (RETURN Z) is evalnated, the PROG
immediately is exited with the value of Z as its value. If the last Ym is
evaluated and is not (nor does it contain) a GO or RETURN form, the
PROG is exited with the value NIL,

(PUTPROP A V P): Places value V on the property list for atom A, associated
with the property P.

(QUOTE X): Returns its argument unevaluated. One may also use the single-
quote character to indicate a quoted S-expression. For example, '(A B C)
= (QUOTE (A B C}).

(QUOTIENT N1 N2): Returns the integer-division quotient of N1 divided by
N2. Reports an error if the value of N2 is 0.

(READ): Returns an S-expression that is typed at the keyboard by the user.

(REMAINDER N1 N2): Returns N1 mod N2. Reports an error if the value of
N2 is 0.

(RETURN X): See PROG.
(RPLACA X Y): Replaces the CAR of X by Y; X is “permanently” modified.
(RPLACD X Y): Replaces the CDR of X by Y; X is “permanently” modified.

(SET A X): The value of X is assigned to the atom which is the value of A. If
the value of A is not a literal atom, an error is reported.
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(SET_PLIST A L)T: Makes the value of L become the new property list for
the atom which is the value of A.

{(SET_REG N1 NQ]T: Sets an 8088/8086/80286 accumulator register prior
to a call to BIOSCALL. N1 indicates which register {as explained for
GET_REG} and N2 is the integer value to be placed in the register.

(SETQ A X): The value of X becomes that of A, Argument A is not evaluated.

(SUB1 N): Returns the value of N minus 1. Reports an error if underflow
ocecurs in subtraction.

(SYS_BREAK]T: Terminates evaluation and prompts the user for either es-
cape to top devel or for access to the local binding envirommnent. This
function has the same effect as the user's typing control-Break.

(SYS_PRM N)t: Returns the LISP system parameter designated by N, If N=1
then the maximum number of LISP cells allowed in the system is returned.
N=3: the total number of bytes allocated for strings {names of atoms) is
returned; N=4: the number of bytes used so far for strings is returned;
N=5: the number of times the garbage collector has been invoked in the
current session; N=6: the current value of the pointer for the stack of
protected temporary results {this stack has 512 bytes allocated).

(TERPRI): Prints a carriage-return and line-feed.

(TIMES N1 N2 ... Nk): Returns the product of the arguments, or reports
overflow,

(TRACE F1 F2 --. Fn): Makes each function Fi a traced function. Note that
the Fi are unevaluated and should not be quoted. Any function can be
traced, be it a system function, library function, or user function. If any
Fi is not a literal atom, the function ahorts to the BREAK error hancdler.

(TYI)Jf: Waits for a key to be typed on the keyhoard and returns an integer
ASCII code value for it. If the key typed was an extended scan key (such as
the Ins key or one of the cursor-arrow keys), the value returned is 256+ r.
where x is the second scan code value. For example, if the cursor-up arrow
key is typed, TYI returns 328,

(TYO N)T Prints the character whose ASCII code is given by the decimal
integer N, Note that if N=7 then this causes a beep to sound. Graphies
can be created by printing special characters of the IBM PC’s extended
character set.

(UNBIND X): Unbinds the atom which is the value of X. That is, if X has a
binding in the current environment, it is removed.
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{(UNTRACE F1 F2 -- - Fn): Turns off trace mode for each Fi. If no arguments
are given, all traced functions are made untraced. If any Fz is not a literal
atom, UNTRACE aborts to BREAK.

(WRITECHAR CHAR ATTRIBUTE COUNT)T: Displays the character
whose ASCII value is CHAR on the screen with given ATTRIBUTE,
according to the IBM PC Technical Reference Manual, allowing color,
blinking, underlining, ete. Display is at the current cursor position, with
COUNT copies of the character.

{ZEROP N): Returns T if the value of N is zero; otherwise, it returns NIL.
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Subject Index

A* algorithm, 160
abduction: hypothesis formation,
251
ABS: absolute value function, 154
absolute value of crossed differ-
ences, 408
abstraction: learning, 285
ABSTRIPS, reference on, 177
accident: learning, 296
accountability, human, 472
accretion region, 443
acoustic rangefinder, 391
acoustical level: speech, 328
acquisition
image, 356
knowledge, 129, 313
language, 297, 373
learning, 283
ACRONYM, 2
reference on, 449
action in COND form, 26
active sensing, 391
active voice, 327, 339
ACT_UPQON, 268
ADD: exercise on rational numbers,
87
Add axiom, 196
ADDI1, 19, 483
additive law: probability, 241
ADDMATCH, 362
ADD_PAIR, 206, 222
ADDSUBSET, 96, 309
ADDSUPERSET, 94, 309
ADDTOSET, 96, 309

adjacency
graph representation, 149
pixel, 398
adjective, 117
admissibility of A* algorithm, 162
advising, 461
agenda, 298, 299
agent, 117, 327
algorithm: A* search, 160
aliasing
exercise on, 454
sampling, 392
alienation, human, 478
ALL_BUT_LAST, 145
ALLEQUAL, 301
alpha cutoff, 176
alphabet: langnage, 329
alpha-beta search, 172
reference on, 177
AM, 3, 91, 316
amacrine cell: vision, 381
ambiguity: syntax, 332
exercise on, 376
analog-to-digital converter, 389, 394
anaphora: pronoun reference, 350
anatomy: vision, 381
AND, 24, 483
parallelism, 467
AND-OR graph, 171
ANDWFF, 193
Angiosperms: example of relation,
125
angle, solid, 388

antecedent: pronoun reference, 351
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antisymmetry, 93, 131
ANY, 97
apathy, human, 478
APPEND, 31, 483
compared with NCONC, 41
append function
in exercise on PROLOG, 237
in PROLOG, 226
application
of Al, &8, 461
of LISP function, 34
APPLY, 34, 483
exercise on, 50
approximate reasoning, 276
approximation
in modelling, 464
polygonal, 431
arc
augmented transition network,
349
in definition of graph, 93
in semantic net, 115
arc expression, 265
exercise on, 279
ARC_DIST, 160
arch
exercise on learning, 319
learning example, 291
architecture, parallel, 468
AREA, 302
area centralis, 382
area seventeen: vision, 382
AREA1, 302
argument
evaluation of LISP, 34
functional, 34
to LISP function, 27
arithmetic expression, exercise on,
Y
array
for image in LISP, 400
processor, 468
three-dimensional, 438
use in Stone World, 356

SUBJECT INDEX

ART, 465
art
image formation, 387
visual, 481
ARTICLE, 366
article, 350
indefinite, 92
artificial intelligence
definition, 6
mind, 479
aspect ratio: shape, 426
assert function; PROLOG, 227
Assoc axiom, 196
association in semantic net, 115
ASTAR, 162
A_STAR_SEARCH, 162
ATN: augmented transition network,
349, 355
ATOM, 25, 483
atom, LISP definition, 16
ATOMCAR, 82
atomic proposition, 188
ATRANS, 342
attachment to frame slot, 114
attention
conversation, 354
learning, 297
attribute: representation in seman-
tic net, 117
attribute-value pair in frame, 113
augmented transition network. 349
in Stone World, 355
automatic programming, 477
automobile repair: fuzzy inference.
248
average subspace, 409
axiom
in non-monotonic logic, 228
in Principia Mathematica, 196
in Wang's algorithm, 190
input to theorem prover, 217
of probability, 241, 271
axon: vision, 381
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backed-up value in game tree, 170
backgammon, 177
background, image, 398
backing up values in game tree, 169
backiracking
in an ATN, 356
in parsing, 333 ,
LISP implementation, 144
relation to depth-first search,
151
scarch, 142
backups in LISP programming, 45
Backus-Naur form, 108
backward chaining, 98, 196
BACON: Langley, 316
Baroque Chess game, exercise on,
184
hasic probability assignment, 272
example, 274
basis vector, 409
Bayes' rule. 242, 252
exercises on., 279
limitation of, 271
odds-likelihood formulation, 253
Bavesian dilemma, 257
be. verb to. 92
belief, 240
as probability, 242
degree of, 271
function, 272
human, 10, 478
religious, 479
semantics, 347
hest-first search, 154
in PYTHAGORUS, 2938
beta cutoff, 176
BETTER. 156
binary relation. 93. 131
in semantic net, 115
binary resolvent. 207
binding
of LISP variable, 34
in function call. 27
binocular stereo, 391, 440
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binomial coefficient. 241
biechemical computation, 476
biology: theory formation, 314
BIOSCALL, 483
bipolar cell: vision, 381
blind search, 153, 157. 159
blocks world

example in planning. 165

in exercise on planning, 182

vision, 381, 442
board evaluation function, 169
book

compared with expert system,

478

knowledge source, 286
boolean value in LISP, 25
botany: example for knowledge

representation, 125

bottom-up parsing, 331

exercise on, 377
boundary of point set. 430
bounding box, 426
BOUNDP, 434
brain

semantic net, 90, 115

vision, 379, 381
brainwashing: learning, 284
BRANCH, 402
breadth-first search, 152

robot planning example, 166
BREADTH_FIRST_SEARCH, 153

exercise on, 180
BREAK, 43, 484
British Museum search, 140, 195
brute-force search, 195

exercise on, 179
B-tree. 373

in lexicon, 338
buy: example event. 338

CAADR, 369

CAAR, 484

CAAR, CADR. etc., 22
CADAR, 484
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ADDR, 148

ADDR, 484

ADR, 484

ADUCEQUS, 470

alculus

Dempster-Shafer, 271

differentiation with LEIBNI1Z,
71

formula manipulation, 82

predicate, 110

propositional, 108

damera

CCD, 289

vidicon, 389

CAR, 20, 484

dardiology: motion vision applica-

tion, 442

dareers in Al 8

daricature, visual, 481

dase frame, 326, 338

exercise on, 376

script, 340

TAT scanning, 387

volume representation, 438

dqataloging, 296

dategory in ISA hierarchy, 95

dausal link: semantic primitive, 343

'CD camera, 390

sensing, 389

'DAR, 484

'DAR, CDDR, ete., 22

'DDR, 484

DR, 484

DR, 22

DR-coding of LISP memory, 47,

467

bll, LISP memory, 17, 20, 45

bllular logic, 404

octagonal closure, 427

references on, 449

Ellular space in Stone World, 355

brtainty, 240

hain code, 415, 431

hain rule in LEIBNIZ exercise, 86
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chaining
backward, 196
forward, 196
change detection, 442
checkers
evaluation function, 173
example of alpha-beta search,
173
game playing, 168
reference on, 177
reference on learning in, 315
Samuel’s program, 3
chemical computation: learning,
285
chemistry: theory formation, 314
chess
alpha-beta search, 172
as search, 139
Baroque, exercise on, 184
game playing, 168
references on, 177
chiasm, optic, 382
Chinese, 323
Chomsky hierarchy, 330
chromosome, image of, 395
chronology, 90
in script, 344
semantics, 345
circuit
electrical example for constraints,
121
electronic design as search. 139
circular reaction: learning, 296
circumscribing: shape, 426
circumseription, 229
exercises on, 237
class hierarchy, 91
class-conditional probability, 249,
252
classification rule: learning, 284,
287
clause
in COND form, 25
predicate calculus, 199
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propaositional calculus, 197
clause form
exercise on, 234
predicate caleulus, 200
propositional calculus, 197
CLEARTOP: planning macro-operator,
168
CLIP4, 405
close of conversation, 353
closed-world assumption, 128
circumscription, 229
exercise on, 138
in PROLOG, 227
closure
morphological, 407
octagonal, 427
transitive, 94
of function, 35
cloud: vision, 389
CLS, 484
co-agent
representation in semantic net,
117
thematic role, 338
collective noun, 344
colloquialism, 352
color: vision, 380
combinatorial algoritiim:
processing, 468
combinatorial explosion, 6, 196
in learning, 289
in planning, 168
in search, 140
combinatorial quagmire, 140
combinatorics
exercise on size of state space,
179

parallel

COMBINE_CONJUNCTIVE_LAMBDAS,

269

COMBINE_DISJUNCTIVE_LAMBDAS,

270
COMBINE_INDEP_LAMBDAS, 269
command interface in Stone World,

355

501

comment in LISP code, 31
communication, 4
dialog effectiveness, 354
natural langnage, 323
pragmatics, 328
compaction in garbage collection,
46
COMPARE, 335
compass gradient, 409
compatibility function:
labelling, 416
compatible pair: relational join, 126
complementary pair:  resolution,
197
completeness of resolution, 207
theorem, 213
component, connected, 399
components image, 400
COMPOSE, 222
composite S-expression, 19
compound: expert system, 461
computational complexity: learn-
ing, 316
computer vision, 380
in ACRONYM, 2
concatenation
APPEND, 31
NCONC, 41
concept
equivalence, 312
exploration, 295
formation, 295-297
formation in PYTHAGORUS,
298
parent, 305
concept hierarchy, 91
CONCEPT_INTEREST, 305
Conceptual Dependency, 342
conceptual graph, reference on, 373
concepiualization
semantic primitive, 343
system, 284
COND, 25, 484
conditional probability, 243

relaxation
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bndition-testing, 57
hne: vision, 381
pnfirmation, 253
pnflict
in evidence, 275
multiple inheritance, 106
pnfusion, human, 478
pnjecture in AM, 207
bnjunct dropping: learning, 289,
201
bnjunction
in LINNEUS, 101
probabilistic inference, 252
njunctive normal form, 201
bnjunctive subgoal: AND-OR graph,
171
ONNECTD, 400
in segmentation exercise, 457
bnnected component, 399, 464
algorithm, 400
Euler number, 428
LISP program, 400
ONNECTED _COMPONENTS, 402
nnective: mathematical logic, 108
pnnectivity
exercises on, 456
pixel, 399
ONS, 20, 484
compared with ADDTOSET,
96
nsciousness, 379
pnsistency
line-drawing analysis, 446
of prior probabilities, 257
relaxation labelling, 416
nsistency assumption
for A* algorithm, 162
pnstant: predicate calculus, 111
pnstraint, 131
exercises on, 137
for pronoun reference, 351
for surface orientation, 440

chart, 129

in knowledge representation summary

SUBJECT INDEX

knowledge reprepresentation, 90,
120 '

on frame slot value, 115

semantics of time, 345

vision, 379

Waltz filtering, 446
construction of knowledge base, 465
CONTENTS, 359
context

conversation, 353

temporal, 345
context-free language, 330, 331

semantic grammar, 348
contexi-sensitive language, 330
continuous Hough transform, 418
continuum: semantics, 344
contour following, 410
contour, subjective, 384
contradiction

definition, 110

exercise on, 233

lack of model, 210

null clause, 197

proof by, 198
contrast

in contour following, 411
control, 461
CONTROL in LEIBNIZ, 78
control fork in search, 404
control scheme: production system,

55

conversation, 82

close of, 353

greeting, 353

mode, 352

phase, 353

schema, 354

SHRINK, 65

temporal reference, 345
convex

combination, 255

hull, 426

kernel, 427

shape, 426



SUBJECT INDEX

convexity index, 427
convolution, 414
Copilia quadrata, 339
COPY, 223
COPY1, 223
correlation: relevance test, 251
correspondence

motion vision, 442

stereo vision, 441
cortex

cat's visual, 382

visnal, 379
cost

future of Al 476

search of graph with, 154, 157
COUNTSUBLISTS, 29

exercise on, 49
courtesy in conversation, 354
covering relation, 94
creating concepts, 295
crime: probabilistic inference, 243
culture, human. 475
CURRENT _ODDS, 266
CURRENT_PROB, 266
curriculum: learning, 296
cursor positioning with LOCATE,

39

curvature in contour following, 411
curve

detection with Hough transform,

419

space, 439
cut: PROLOG, 219, 226

exercise on, 236
cutoff: alpha-beta search, 173
cycle: Piaget’s paradigm, 296
Cycle-Flip puzzle

exercise on, 181

danger of Al, 477
data structure
reference on, 373
database, 124, 476
knowledge representation, 90

503

natural language dialog, 352
DC component: Fourier transform,
395
debugging, 41
decision making, 244, 461
decision theory, 239
reference on, 276
declaration in LISP, 43
DECREASING, exercise using, 84
deduction, 207
learning, 285
proof example, 213
with transitivity, 93
default
closed-world assumption, 128
in frame slot, 114
in non-monotonic logic, 228
in script, 341
default inheritance, 106
defense application, 480
DEFEXPR, 36, 484
possible use in APPEND, 31
deficiency: shape, 427
DEFINE_NODE, 265
definite article, 350
DEFPROP, 485
DEF_SEG, 485
DEFUN, 27, 485
degree of a graph, 95
degree of belief, 240, 271, 347
as probability, 242
Dempster-Shafer calculus, 272
example, 274
degree of intensity: semantics, 344
del-squared G operator, 413
delta function in Radon transform,
418
DeMorgan’s laws, 200
Dempster’s rule of combination,
273, 276
exercises on, 280
Dempster-Shafer calculus, 240, 271
belief semantics, 347
exercises on, 280
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depletion region, 443
depth map, 391
depth-first search, 151
in parsing, 333
in PROLOG, 218
connected components, 400
DEPTH_FIRST_SEARCH, 151
exercises on, 180
derivation: parsing, 330
derivative in LEIBNIZ, 70
description: vision, 381
design
decision-making, 246
of expert system, 462

250
detachment in the Logic Theory
Machine, 195

detail: spatial resolution, 382
determiner: language, 350
DFS, 402
diagnosis, 461

probabilistic inference, 245
dialog, 82, 352

reference resolution in, 352

schema, 354

SHRINK, 65
dictionary, English, 337
DIFFERENCE, 485
difference image, 443
differentiation, symbolic, 71
diffuse source: illumination, 389
digitizer, video, 390
dilation, 406
exercise on, 456
dilemma applying Bayes’ rule, 257
direct object: thematic role, 327
DIRECTION_ADVERB, 356, 366
DIRECTION_NOUN, 366
DIR_PREP, 366
disagreement set, 203
discovery
learning, 284
scientific law, 316

of probabilistic inference network,

SUBJECT INDEX

discrimination net, 57, 82

exercises on, 84
disjunction, probabilistic, 252
disjunctive subgoal, 171
disjunctive syllogism, 109
DISPLAY_CONCEPT, 310
DISTS, 435
distance

graph search, 154

search of graph with, 157
distributive law, 201
DISTSQ. 436
documentation of LISP code, 31
domain

of relation, 125

predicate calculus, 111
dominant position in ISA hierarchy,

103

dominoes, exercise on, 180
DOSCALL, 485
DO_SUBST, 206
dotted pair, 16, 17

relationship to list notation. 18
doubt function, 273
DPRED, 68
dropping conjuncts: learning, 289
DSKREAD, 485
duality in erosion and dilation, 106
DX in PYTHAGORUS, 301
DY in PYTHAGORUS, 301

echo, sonic 391
economic benefits of Al 476
economics: theory formation, 314
edge

avoiding linking, 409

cat’s vision, 382

detection. 408

human vision, 382

image, 408

linking, 415

subspace, 109
edge-adjacent, 398
Edinburgh dialect of PROLOG. 218
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editing of LISP code, 15
editor, rule-base, 466
effective lambda

in LISP, 269

probabilistic inference, 261
EFFECTIVE_ARC_LAMBDA, 269
efliciency

of A* algorithm, 164

of SOLVE_SQUARES, 148
electronics: theory formation, 314
element, 461
elementary vector, 415
ELIZA, 65, 82
else clause in COND form, 26
embedding: context-free language,

331

emotion: dialog, 353
employment

impact of Al, 477

in Al, 8
empty string, 329
EMYCIN, 465
endgame: conversation, 353
endoskeleton, 430
engineering as search, 139
English, 323

ambiguity, 332

example interface, 355

grammar, 336

lexicon, 337
EQ. 25, 485
EQUAL, 25, 485
EQUALELTS, exercise on, 50
EQUALSIDES, 301
equation as constraint, 123
erosion, 406

exercise on, 456
error, approximation, 432
ERRORS, 435
ETS: Boose, 316
Euler number, 428
EURISKO, 297, 316
EVAL. 34, 485
EVAL_ARC_EXP, 270
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EVALQUOTE, 82
evalnation
in LISP, 19
LISP, 34
of arguments, 36
of called function, 27
in propositional logic, 109
evaluation function
for edge detection, 411
learning, 283
search, 140, 154
event
probability, 241
representation, 117, 326, 338
time, 345
evidence
Bayes’ rule, 243
combination in arc expression,
265
combination with Dempster’s
rule, 273
independent, 261
prebabilistic inference, 252
simple function, 274
uncertain, 255
example
of concept in PYTHAGORUS,
299
exammple generator
exercise on, 321
PYTHAGORUS, 313

EXAMPLES_TASK_INTEREST, 305

EXIFY, exercise on, 49
existential quantifier, 111
clause form, 201

exoskeleton, 430
experience, direct, 286
experiment in PYTHAGORUS, 298
expert system, 461
advantages of, 476
future of Al 476
learning, 283
limitations of, 470
medical, 470
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probabilistic inference network,
245

PROLOG example, 219

restaurant evaluation, 263

structure of, 462

TAXMAN, 470

maintenance of, 8

expertise

preserving, 477

transfer, 466

EXPLAIN_CHAIN, 102

EXPLAIN_LINKS, 101

explanation in LINNEUS, 101

149

explicit vs implicit representation,
93, 128

EXPLODE, 82

exploration: Piaget’s paradigm, 296
EXPLORE_CONCEPTS, 299, 309
Explorer: TT workstation, 467
explosives, 480

EXPR, 36

DEFUN, 485

extention, concept, 315
EXTRACT_PATH, 152

eye

human, 381

of Copilia quadrata, 389

F: search evaluation function, 154,
160, 164

FACT, 42

factor of clause, 207
factorial, 42

PROLOG example, 227
fail: PROLOG, 227

failure node, 211

failure tree, 211

Fast Fourier Transform, 397
fault diagnosis, 245

feature hasis, 409

Ferret box, 426

FEXPR

explicit representation: search space,

SUBJECT INDEX

DEFEXPR, 484
definition of, 36
FFT algorithm, 397
fidelity, image, 392
field of relation, 125
Fifth Generation Project, 187
figure: image foreground, 398
filler;: frame, 113
filter
Gaussian, 411
image, 380
Laplacian, 413
low-pass, 395
median, 397
moving-average, 397
on CCD sensor, 390
speech, 328
Waltz, 446
comiinatorial with constraints.
124
finance, 246
FIND_DIR, 369
FIND_DIR1, 369
FIND_EXAMPLES_OF, 302
FIRE, 79
firing: production rule, 55
first-level hypothesis, 248
first-order logic
limnitation of, 343
predicate caleulus. 110
flatly contradictory
Dempster-Shafer caleulus, 274
flip, in exercise on Cycle-Flip puzzle.
182
FLONUM, 16
flow. optical, 442
Auoroscopy, 387
focal element:  Dempster-Shafer
calculus, 272
focus
camera, 391
Dempster-Shafer calculus, 275
of expansion. 443



SUBJECT INDEX

food quality: probabilistic inference.

263
foreign langnage translation, 324
forgetting: learning. 285
fork in scarch procedure, 403
form
functional. in LISP, 19
special. in LISP. 24
formal language. 329
formal parameter in LISP function,
28
forialization, knowledge, 313
FORMAT, 193
formatting of LISP programs, 44
FORTRAN, 27. 31
forward chaining, 98, 196
Fourier transform
FFT algorithm, 397
two-dimensional, 395
reference on, 448
Four-peg Towers of Hanoi puzzle,
exercise on, 180
fovea: vision. 382
frame
case, 326
display of, 166
exercise on, 137

in knowledge representation summary

chart, 129
in vision. 379
knowledge representation, 90,
112
learning. 287
of discernment, 272, 274
script. 340
use in lexicon. 338
France: example search space. 149
Frankenstein monster, 479
Freeman code 415, 431
Fret-Chen operator. 409
French. 323
exercise on. 84
translation, 373
frequency

Fourier transforn, 395
sampling, 392
funarg, 35
FUNCTION, 35, 485
function
body, 27
defining with DEFUN, 27
evaluation, 154
evaluation of LISP. 34
in exercise in PYTHAGORUS,
321
naming, 44
predicate calculus, 111
functional argument, 34, 35
functional form in LISP, 19
functional programming, 44
functor: PROLOG, 219
future
of humman language, 481
of intellectual activity, 481
planning man’s, 479
of Al 475
fuzzy logic, 246
exercise on, 278
reference on, 276

G: search distance value, 164
game playing, 168

chess as search, 140
game tree, 169

exercise on, 183
ganglion cell: vision, 381
gap-filling: edge linking, 415
garbage collection, 46, 467
gauging: robotics, 391
Gaussian hlter, 411,448
gender: pronoun reference 351
generality vs speed, 471
generalization

dropping conjuncts, 289

learning, 285
generalized cylinder, 439
generator, example, 313
genetic engineering, 2, 177
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geniculate body, lateral, 382
GENSYM, 309
geological exploration, 3
geometry
illusion, 384
in PYTHAGORUS, 298
painted squares puzzle, 141
German; exercise on, 84
gerund, 351
GET, 40, 485
in retrieving relationships, 96
GETNTH, 223
GETNTH, 66, 401
GET_REG, 485
GETVAL, 401
GETVAR, 223
give: example event, 326
Go, 177
game playing, 168
game playing reference, 177
GO in PROG, 32, 487

goal
in LEIBNIZ, 71
search, 139
goal-oriented format: Horn clause,
217
GO_VERB, 366
GPS, reference on, 176
gradient

compass, 409
Sobel! operator, 408
gradient space, 440
grammar, 328
definition of, 329
lexical functional, 373
propositional calculus, 108
semantic, 348
granularity, task, 303
graph
definition of, 93
probabilistic inference network,
264
search, 139
isomorphism, 424

SUBJECT INDEX

graphics, 448, 476
exercises using. 473
future of, 481
IBM PC—WRITECHAR, 489
image formation, 387
knowledge representation, 466
gray scale, 394
GREATERP, 25, 486
greeting, 353
ground: image background, 398
Guzman labelling, 444

H: estimated distance function, 164
hallucination, 481
hardware for expert system, 466
HARPY, reference on, 373
HAS relation, 104
exercises on, 134
Hasse diagram, 94
exercise on, 134
haze: vision, 389
head: PROLOG, 219
HEARSAY-II, reference on, 373
Herbrand base, 210
Herbrand universe, 209
Herbrand’s theorem, 210
Herman grid illusion, 386
heuristic
EURISKO, 316
in AM, 297
in PYTHAGORUS. 313
probabilistic modelling, 244
restaurant evaluation, 263
search, 140, 153
in edge detection, 409
hexagonal tessellation, 394, 399
hierarchical planning, 167
histogram, image, 397
history: system representation in
semantic net, 119
hit ratio: PYTHAGORUS, 305
hole: Euler number, 428
Horn clause, 217
Hough transform, 417
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exercise on, 457

references on, 448
Huffiman-Clowes labelling, 445
hurman

alienation, 478

culture, 475

eve. 381

indentity crisis, 479

vision. 381, 446
human-machine interaction

theory formation. 314
hypothesis

Bayes' rule, 242

design of probabilistic inference

net. 251

hypothesize and test, 150

IBM-PC. 371
identifier, 16
identity, human, 479
idiolect: difficulty with English, 336
idiom, 352
if-added/if-needed attachment
in frame slot, 115
ignorance: Dempster-Shafer calcu-
lus, 273
illusion, 446
visual, 384
image
acquisition, 386
analysis, 380
binary, 398
fidelity, 392
formation. 381, 386G, 448
processing, reference on, 448
sequence. 442
understanding., 380
imaging
medical. 387
tactile, 387
immpact of Al 477
implementation
of LISP. 45
PROLOG, 220

implication, probabilistic, 252
implication connective
elimination of, 200
implicit PROG, 484
implicit representation
search space, 149
implicit vs explicit representation,
93, 128
improvement: learning, 283
inclusion hierarchy, 90, 92
in PYTHAGORUS, 309
incomplete knowledge. 239
incounsistency
constraint, 124
multiple inheritance, 106
of prior probabilities, 257
tools to detect, 465
INCREASING, exercise using, 84
incremental garbage collection, 47,
467
incremental learning, 291
indefinite article, 92, 350
indentation of LISP programs, 44
independence
combining evidence, 261
fuzzy logic, 246
probability, 242
index in lexicon, 338
indirect object: thematic role, 338
induction: learning, 285
inexact knowledge, 239
inference, 6
deductive, 6
Dempster-Shafer caleulus, 272
engine, 462
fuzzy, 246
indunctive, 6
probabilistic, 245
rule of, 109
with uncertain evidence, 255
resolution, 212 .
inference node: resolution, 212
inference rule: resolution, 207
infinite loop, 40
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inflection, word, 328
INFNET, 264
exercises on, 279
expert system exercise, 474
in exercise on language under-
standing, 378
informed search, 162
inheritance, 103
in logic exercise, 135
in PYTHAGORUS, 305
multiple, 105
INITIALIZE in PYTHAGORUS,
310
injury: robot ethics, 480
input using READ, TYI, 39
INPUT_SENTENCE, 371
inscribing: shape, 426
INSERT in ordered search, 156
inside-out learning, 315
instance
of frame schema, 114
of class in semantic net, 117
integral projection, 428
integrated-circuit design as search,
139
integration
exercise on symbolic, 87
future of Al, 475
of Al techniques, 462
symbolic, 83
intellectual activity, 481
intellectual development, 285, 296,
313, 316
intelligence, human, 4
intension of concept, 315
intensity
irradiance, 387
iso-intensity curve, 440
semantics, 344
Intentional Logic, 343
interaction: theory formation, 314
interestingness, 297
interest in PYTHAGORUS, 298

SUBJECT INDEX

nterface, natural language, 324,
355
interference: learning, 286
INTERLISP, 15
Interlisp-D, 467
intermediate assertion
probabilistic inference, 244, 251
INTERNIST, 470
interpolation: subjective-Bayesian
updating, 256
INTERPRET, 99
interpretation
predicate calculus, 210
propositional caleulus, 208
interpreter
LISP, 45
production system, 55
interrogation: dialog, 352
INTERSECT, 192
interview with an expert, 465
intrinsic image, 449
invariant: planning operator, 168
inverse-square law rangefinder, 391
investment: probabilistic inference,
246
irradiance, 387
irrelevance: closed-world assump-
tion, 128
is
PROLOG operator, 227
in exercise on PROLOG, 236
ISA hierarchy, 92
in AM, 207
in knowledge representation summary
chart, 129
in PYTHAGORUS, 309
ISATEST, 97
exercise on, 133
isosceles triangle, 301
iso-intensity curve, 440
isomorphism, graph, 424

join: in relational database, 126
joker clause, 61



SUBJECT INDEX

junction: vision, 444, 446

KEE, 465
kinship relations, exercise on, 133
Kirsch operator, 409
kitchen frame example, 112
knowing, semantics of, 347
knowledge
acquisition, 129, 283, 286, 324
base construction, 465
cliff, 471
combinations of representations,
463
formalization, 313
improving human, 480
in books, 478
informal definition, 89
instability of, 478
intellectual activity, 481
network, 480
ratification, 480
references on acquisition, 315
refinery, 480
representation, 6
constraints, 120
frames, 112
logic, 107
relational databases, 124
scripts, 342
semantic nets, 115
summary chart, 129
source, 286
validation of, 477
KRL, reference on, 131

label in PROG, 32
labelled graph: French cities, 157
labelling
connected components, 400
relaxation, 416
labor, human, 477
LADDER, reference on, 373
LAMBDA, 34
use of with MAPCAR, 38
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lambda
calculus, 15
likelihood ratio, 253
Lambertian surface, 387, 440
LANDSAT satellite, 387
language
acquisition, 297
context-free, 331
formal, 329
FORTRAN, 27, 31
future of human, 480
human, 323
LISP, 15, 228
PASCAL, 27, 43
PROLOG, 217, 228
semantics, 337
SNOBOL, 82
syntax, 328
Laplacian flter, 413, 448
laser rangefinder, 391
LAST, 436
Last One Loses, exercise on, 183
lateral geniculate body, 382
law: legal reasoning, 470
learning, 5, 283
by example, 288
children’s, 296
computation speed, 471
concept exploration, 296
definition of, 284
design of probabilistic inference
networks, 252
exercises on, 318
for vision, 464
incremental, 291
inside-out, 315
optimization, 290
outside-in, 315
PYTHAGORUS, 298
version space, 293
leftmost derivation, 333 )
left-recursive production, 336
legal reasoning, 470
LEIBNIZ, 70



exercises on, 86
ENGTH, 28
Ens: vision, 381
ESSP, 25, 486
ex

et

reference on, 315
version space, 293
bxenie, 328
lbxicon, 326, 328, 337
definition of, 338
English, 337
ability: future of Al 478
ght source, 387
kelihood ratio, 253
ne
detection with Hough transform,
417
drawing, 444, 449
enhancement, 416
geometry, 301
in images, 408
polar form, 418
subspace, 409
lFear convex combination, 255

—

linear format strategy, 214

linguistics, 372

Iinking

avoiding edge, 409

edge, 415

Guzman labelling, 445

HINNEUS

closed-world assumption, 128

definition, 99

exercises on, 133

in exercise on language under-
standing, 378

sample session, 102

Hips

exercise on, 236

logical inferences per second.,
468

HIsp

advantages of, 43

compared with PROLOG, 228

SUBJECT INDEX

history of, 15
implementation of, 45
influence of. 477
machine, 467
LIST, 25, 486
list
i LISP, 16, 17
in PROLOG, 225
literal
in exercises on unification, 235
propeositional calculus, 197
unification of, 203
literal atom
as label in PROG, 32
evaluation of, 34
in LISP, 16
LOCATE, 39, 486
logic
cellular, 404
knowledge representation, 90
modal, 347
predicate, 110
propositional, 108
reasoning with, 187
references on, 230
use for natural language, 343
logic programming, 218
Logic Theory Machine, 195
logical inferences per second, 468
exercise on, 236
logical reasoning, 187
longitude as heuristic inforiation.
154
LONGITUDE_DIFF. 154
loop, infinite, 40
lumped evidential variable, 263
Lush resolution, 218

MACE_COL, 360
MACE_ROW. 360
machine translation, 3. 7, 324, 373
MACLISP, 15
macro-operator
in Stone World exercise, 378



SUBJECT INDEX

planning, 167
MACSYMA. 82
magnetic resonance imaging, 387
maintenance of expert system, 461
MAKECONJ, 101
MAKE_ISA, 310
MAKEQPPOSITES, exercise on,
51
MAKEPAST. 38
MAKE_SPECIALIZATION, 303, 306,
307
malaria: Bayes’ rule example, 242
malicious use, 471
manufacturing
in semantic graminar example,
349
XCON, 469
MANYSIDES, 301
MAPCAR, 37, 486
exercises on, 50
mark-and-sweep algorithm, 46
marketing, 246
Marseille dialect of PROLOG, 225
mass, probability: Dempster-Shafer
calculus, 272
MATCH, 82
exercises on, 84
LISP definition, 63
nse in SHRINK, 66
MATCH]1, 60
MATCH2, 60
MATCH3, 61
MATCHA4, 61
MATCHS, 62
MATCHS, 63
MATCHARTICLE, 100, 101
MATCHKTH, 29
MATCHNORTH, 146
MATCHWEST, 146
mathematical logic
knowledge representation, 107
reasoning with, 187
mathematical morphology, 408
mathematics
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formula manipulation, 70
learning of, 297
logic, 107, 187
theory formation, 314
matte surface, 387, 440
MAX, 486
as special form, 24
maximal image region, 399
MEAN, 37
meaning: semantics, 337
means-ends analysis in MOLGEN,
2
measure of evidence, residue, support,
275
medial axis transform, 429
median filter, 397
medicine, 477
Bayes’ rule example, 242
CADUCEQUS, 470
future of Al, 477
in exercise on knowledge repre-
sentation, 132
MYCIN, 3
probabilistic inference in, 245
probability example, 241
vision in cardiology, 442
MEMBER, 4386
member function
in exercise on PROLOG, 237
in PROLOG, 225
memory management in LISP, 45
merit function: learning, 285
message: communication, 326
metaphor expressed with “is a”, 92
methodology
expert system design, 462
future of, 476
LISP programming, 43
Mexican hat operator, 414
microworld, 355, 373
military decision-making: probabilistic
inference, 246
MIMD: parallel processing, 468
MIN, 486
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nind vs machine, 479
minerals prospecting: PROSPEC-
TOR, 3
minimal description: learning, 290
minimax search, 169
minimum-length path: search, 153
Missionaries and cannibals problem,
128
misunderstanding, 354
misuse of Al, 471
exercise on, 474
mock PROLOG, 220
modal logic, 347
nodel
Bayes’ rule, 242
learning systems reference, 315
mathematical, 315
numerical, 464
predicate calcunlus, 210
modularity, 53
in LISP, 43
hodus ponens, 109
compared with Bayes™ rule, 242
molecular biology: theory forma-
tion, 314
MOLGEN, 2
reference on, 177
onotonic logic, 228
lontague semantics, 343
reference on, 373
Nlontessori school, 285
morals: human belief, 479
rhorphology
erosion and dilation, 406
mathematical, 408
word, 328, 372
host general unifier, 203
Jotion
map, 443
reference on, 449
parallax, 441
vision, 437, 442
[OVE, 360
ove generator, 140

= =

=

SUBJECT INDEX

MOVE_LEGAL. 361
moving-average filter, 397
MTRANS, 342
Mueller-Lyer illusion, 384
multiple inheritance. 105
multiple-evidence: probabilistic inference,
261
multiplicative law: probability, 242
MULTIPLY: exercisc on rational
numbers, 37
multi-resolution: vision, 384, 395
references on, 449
music: in learning example, 288
MYCIN. 3, 91, 276
EMYCIN, 465
subjective-Bayesian updating.
255, 258
MYSETQ, 36

naming LISP functions 44
natural language, 323
interface, 324
representation. 326
understanding, 92, 323
navigation: robot vision, 442
NCONC, 41, 486
near miss: learning, 293
NECESSITY, 266
necessity coefficient, 254
necessity-only rule: subjective-Bavesian
updating, 258
NEGATE, 402
negation as failure
closed-world assumption. 129
vs circumscription. 230
in PROLOG, 227
NEIGHBOR_CONTENTS, 359
neighborhood: pixel adjacency. 398
NEIGHBOR_POS. 359
NE{Q): not-equal function. 222
nerve, optic, 381
nested functional forms in LISP. 20
nesting of PROG environments. 33
network
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augmented transition, 349
computer, 176
constraint. 122
probabilistic inference, 245, 264
search, 139
semantic, 115
neural net: semantic net, 115
neuron: vision, 381
neurophysiology, 446
NEW_ATOM, 308
new-or-old decision: language refer-
ence, 351
NEXT. 362
exercise on, bl
NIL
as boolean “false”, 25
definition of, 17
NOAH: reference on, 177
node
as state in search, 139
in definition of graph, 93
in semantic net, 115
noise
edge cleaning, 416
Gaussian filter, 411
imaging. 390, 395
insensitivity in Hough transform,
419
region. 423
salt-and-pepper, 423
vision, 380
non-wonotonic logic, 228
learning, 286
nonterminal symbol, 329
NONZEROAREA. 301
normal distribution: Gaussian, 412
NORAIALIZE_DIRECTION, 367
NORMALIZE_OBJECT. 367
NO_SPEC_TASK. 304
NOT: synonym for NULL, 25
nom
colleetive, 344
in case frame. 327, 339
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representation in semantic net,
116
NP1, 356
nuclear magnetic resonance, 387
nuclear reactor, 464
NULL, 25, 486
mull clause, 197
number
exercise on rational, 87
semantics, 344
number theory: learning, 283
NUMBERP, 25, 486
NUM_EQ, 486
numeric atom, 16, 25, 34
numerical model, 464, 476
NWFF, 193

OBEY_GO, 368
OBEY_PUT, 369
OBEY_TAKE, 369
OBJECT in PYTHAGORUS, 298
ohject

image foreground, 398

thematic role, 327
OBJ_NOUN, 366
occurs check

exercise on, 236

in PROLOG, 220

unification, 206
OCCURS_IN, 206
octagonal closure, 427
octree, 438, 449
ODDS, 264
odds

exercises on, 279

in probahility, 253
Ohm's law as constraint, 120
OP, 193
opening

conversation, 353

morphological, 407
OPEN_NODE, 156, 163
operational definition: understand-

ing, 325
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operator
move in search, 142
planning, 167
OPS5, 465, 469
0OPS33, 465
optic chiasm, 382
optic nerve, 381
optical computing, 476
optical flow, 442
optical illusion, 384
optimality of A* algorithm, 162
optimization: learning, 290
OR, 486
OR parallelism, 467
ordered search, 154
ordinal: semantics, 344
organization: learning, 285
ORIENT, 145
orientation
human vigion, 382
illumination, 387
surface, 388, 440
orthogonal sum, 273
ORWFTF, 193
ostrich, 106
outcome: probability, 241
output using PRINT, 39
output using TYO, 39
outside-in learning, 315
ownership in buying event, 338
ownership relation, 118
exercise on, 135

painted squares puzzle 140
exercises on, 179

PALLINDROMEP, exercise on, 50

parallax, 441

parallel processing, 467
image operation, 404
of PROLOG, 467
references on, 472
stimulated by Al, 477

paralielogram, 301

parameter

SUBJECT INDEX

motion, 442
space in Hough transform, 413
parametric learning, reference on,
315
paranoia, artificial, 82, 86
PARENT, in PYTHAGORUS, 306
parent clause, 197
parent concept, 305
parenthesis in S-expression, 16
PARRY, 82
PARSE, 333
exercises on, 376
in STONEWLD, 362
parse tree, 331
PARSE?2, 334
parsing, 328
semantic grammar, 349
partial order, 93
PASCAL, 27, 43
Pascal's triangle, 241
passive voice, 327, 330
path planning, 431
pattern analysis: learning, 285
pattern matching, 53, 58, 82
in STONEWLD, 362
pattern recognition, 315, 379, 447
PDIST, 436
PEEK, 486
perception: vision, 379
perceptron, 379, 404, 447
reference on, 215
perfect induction, 189, 210
exercise on, 234
performance
hardware speed, 466, 468, 471
learning, 284
Perm axiom, 196
persuasion, 352, 354
phagocyte heuristic, 422
philosophy, 8
mind, 479
phenomenological, 7
phone: speech, 328
phoneme: speech, 328
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photeconductive surface, 389
photometric stereo, 441
physics
image formation, 448
theory formation, 314
physiology, 446
vision, 381
Piagoet
reference on, 316
theory of, 296
picture processing. 380
picture producer, 342
piecewise-linear function: snbjective-
Bayesian updating, 258
pixel, 380, 394
difference image, 443
exercise on, 454
from rangefinder, 391
histogram, 397
non-rectangular, 394
pixel-by-pixel region growing, 421
plan, 165
compared with script, 341
PLANNER, reference on, 231
planning, 165
exercises on, 182
hierarchical, 167
in MOLGEN, 2
in Stone World exercise, 378
with medial axis transform, 431
plant: botany example, 125
plausibility function, 273
plansible reasoning, 4
PLIST, 486
PLOT. 362
plural: collective noun, 344
PLUS. 20, 486
as special form, 24
plus operator: edge detection, 403
PLUSFORM. 73
ply in game tree, 169
Poggendorfl illnsion, 384
pointer
in LISP memory. 17
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in semantic net, 115
manipulation in LISP, 40
POKE, 486
polar form: line equation, 418
politics, 7
polygon
approximation, 431
exercises on, 457
in PYTHAGORUS, 298, 313
polyhedron: blocks world, 443
polynomial in LEIBNIZ, 70
Ponzo illusion, 384
possibilistic logie, 246
posteondition: planning operator,
168
power set, 272, 274
PP, 486
pragmatics in, 328
precedes: partial order, 93
precondition for planning operator,
166
predicate
in concept specialization, 299
in condition for matching, 62
in LISP, 25
in predicate calculus, 111
intension of concept, 315
predicate calculus, 110, 187
in knowledge representation surmnmary
chart, 129
resolution with, 198
use in learning, 287
predicted component variable: prob-
abilistic inference, 263
prediction, 475
prefix of word, 328
premise in logic, 188
preposition, 327
prepositional phrase, 331
representation in semantic net,
117
preprocessing, 381, 395
prerequisite: example predicate for
circumscription, 230



518

presentation of knowledge, 466
presupposition in LINNEUS exer-
cise, 135
Prewitt operator, 409
primary evidential variable: proba-
bilistic inference, 263
primary key of relation, 125
prime number
in AM, 297
in resolution example, 198
primitive, semantic, 342
PRIN1, 487
Principia Mathematica, 195
exercise on, 234
PRINT, 39, 487
PRINTIM, 310
FRINT_B, 221
PRINT_DATE, 487
PRINT_IMAGE, 404
printing special characters with
TYQ, 39
PRINTL, 66
PRINTM, 487
PRINT_PAIR, 221
PRINT_PLACE, 356
PRINT_ROW, 404
PRINT_TIME, 487
prior odds, 253
prior probability, 243, 252
consistency, 257
PRIOR..ODDS, 266
PRIOR_PROR, 266
PROB, 264
probabilistic inference network, 245
example, 262
exercises on, 278
probabilistic reasoning, 239
probabilistic relaxation, 416
probability, 241
exercises on, 278
mass in Dempster-Shafer calcu-
lus, 272
problem decomposition: AND-OR
graph, 171

SUBJECT INDEX

problem solving, 461
logical reasoning, 187
planning, 165
puzzle solving, 141
resolution example, 215
procedural attachment in frame
slot, 115
process control, 476
PRODUCE_REPLY, 370
production: grammar, 329
production rule, 91
as representation of knowledge,
90
expert system, 462
in knowledge representation summary
chart, 129
in learning example, 285
learning, 287
production system, 53, 82
learning, 286
PRGG, 31, 487
implicit, 26, 484
projection
image formation, 381
in relational database, 126
integral, 428
PROLOG, 217
compared with LISP, 228
interpreter, 220
exercises on, 236
machine, 467
pronoun
exercise on reference, 377
reference, 350
proof
using the Logic Theory Machine,
196
using Wang's algorithm, 190
propagation: probabilistic inference.
246
Proper Treatment of Quantifica-
tion, 343
property list, 39
frame representation, 113
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use in INFNET, 265

use in LINNEUS, 96

use in PARSE, 333

use in PROLOG.LSP, 223
nse in PYTHAGORUS, 307
use in search examples, 149
use in STONEWLD, 362

use in storing relations, 96

proposition: Dempster-Shafer calculus,

272
propositional calculus, 108

in knowledge representation summary

chart, 129
proofs, 188
prospecting: probabilistic inference,
245
PROSPECTOR, 3, 91, 276
subjective-Bayesian updating,
258
prototype expert system, 465
PROVER, 190
exercises on, 233
provisional value in game tree, 170
proximity: robotics, 391
pruning: alpha-beta search, 172
psychology: human alienation, 479
PTQ: Montague, 343
PTRANS, 342
PUNTS, 66
purpose
of conversation, 353
of AL, 7
PUT, 361
PUT_LEGAL, 362
PUTON: planning macro-operator,
168
PUT_ON_AGENDA, 304
PUTPROP, 39, 487
in storing relations, 96
PUT_VERB, 366
puzzle, 140
PY: in PYTHAGORUS, 302
pyramid: vision, 384
definition of, 394

519

reference on, 448
PYTHAGORUS, 284, 298
exercises on, 320
in exercise on language under-
standing, 378
limitations, 311

quadramino, exercise on, 179
quadtree, 449
quantification: in language 343

over time, 345
guantifier

in logic exercise, 136

predicate calculus, 111
quantity, semantics of, 344
quantization, image, 394
quasi-balanced tree, exercise on, 50
QUASI_DEPTH_FIRST_SEARCH,

exercise on, 181

QUERY, 220
query

in LINNEUS, 101

in relational database, 127
question answering in LINNEUS, 98
question-mark construct, 62
QUOTE, 23, 487
QUOTIENT, 487

R1, 469
radiance, 388, 440
Raden transform, 418
reference on, 448
RAMER, 433
exercises on, 457
RAMERI1, 433
Ramer’s algorithm, 432
random-dot stereogram, 441
rangefinder, 391
ratification, knowledge, 477, 480
rational number, 87
READ, 38, 487
reasoning
logical, 187
probabilistic, 239
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receptor: rod or cone, 384
Fecipient: thematic role, 327
Fecognition, pattern, 380, 447
Fecord, compared with frame, 112
fecursion in context-free language,

331

Fecursive definition, 17, 27

recursive function, 28
ecursively-enumerable language, 331
REDUCE: exercise on rational num-

hers, 87

reductio ad absurdum proof method,

198

teference

natural language, 350
spatial, 347
temporal, 346

eference time, 345

SUBJECT INDEX

closed-world assumption, 128
design of probabilistic inference
network, 251
religion, 7, 10, 479
REMAINDER. 487
remote sensing. 387
repertoire: learning, 296
REPLACE, exercise on, 49
replacement in the Logic Theory
Machine, 195
REPLACENTH, 401
REPNTH, 358
REPORT_PROGRESS, 268
representation: message, 326
research: learning, 296
RESEMBLES relation: inheritance,
106
resolution

efinery, knowledge, 480
eflectance map, 440
eflectivity, 440

surface, 388
eflexive property, 93, 131

completeness of, 207

exercises on, 234

predicate calculus, 198
propositional calculus, 110, 197
spatial, 382

exercise on, 133

egion

description, 424
growing, 419, 422
Guzman labelling, 445
transition, 423

egular language, 330

spatial, 347, 424

elational database, 90, 124, 131

exercises on, 137
in knowledge representation summary
chart, 129

Jelaxation

discrete, 446
labelling, 416
reference on. 448

¥elevance

strategy, 213
RESOLVE, exercise on, 236
resolvent, 197, 204, 207
responsibility, human, 478
restaurant

in exercise on PROLOG, 237

probabilistic inference example.,

1elation 262
binary, 93 restriction of concept, 306
exercises on, 133 retina, 381
n-ary, 125 retract function: PROLOG, 227

retraction:
230

RETURN: in PROG, 32, 487
REVERSE, exercise on, 50
revolution,

Al 478

computer, 10
re-write rule: grammar, 330
rhombus, 301
right triangle, 301

non-monotonic logic.
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risk, 239, 244
Roberts’ cross, 408
robot
example in planning, 165
in exercise on planning, 182
in frame example, 112
i physics research, 314
in semantic grammar example,
349
planning with medial axis trans-
form, 431
Stone World example, 355
Three Laws, 479
vision, 442
rod: vision, 381
Rogerian psychiatrist, 65
role in case frame, 326
Roman numeral, 54
ROMANI1, 55
ROMAN2, 56
ROMAN3, 58
Rorschach test, 481
ROTATE_LIST, 145
route finding: search, 150
RPLACA, 40, 487
RPLACD, 40, 487
rule
fuzzy inference, 246
inference, 109
preduction, 54
rule-hased system, 462
rule-version space, 293
running approximation, 432
Russian, translation of, 324

S.1, 465
salience: learning, 294
SAME, exercise using, 85
sampling
imaging, 392
polygonal approximation, 432
rate, 392, 393
sarcasm, 347
satire, 347

521

satisfaction, constraint, 124
satisfiability, 110
scaffolding, 44
SCAN, 402
scanning: vision, 389, 400
scene analysis, 380
schema
circumscription, 229
constraint, 120
frame, 113
script, 342
science vs art, 6
scientific discovery, 296, 316
scope of negation: clause form, 200
script, 340
dinner party example, 340
knowledge representation, 90
SCROLL, 371
search, 6, 139
A* algorithm, 160
alpha-beta, 172
AND-OR graph, 171
best-first, 154
blind, 153, 157, 159
breadth-first, 152
connected components algo-
rithm, 400
depth-first, 151
edge detection, 409
heuristic, 153
human planning, 479
hypothesize and test, 150
ISA hierarchy, 97
minimax, 169
parallel processing, 469
parsing, 333
planning, 165
production system, 57
puzzle solving, 140
semantic net, 115
state space, 140
uniform-cost, 159
vision exercise, 457
search method, 140
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decurity: vision application, 442
jegmentation, 381

definition of, 420

reference on, 449

region growing, 419
thresholding, 398
$ELECT_BEST, 156

lection in relational database, 125
ELECT_PRED, 308
elf loop in definition of graph, 93
li-directed conceptualization, 296
elf-improvement, 283
emantic grammar, 348
exercise on, 377

femantic net, 90, 115

as extended ISA hierarchy, 107
display of, 466
exercises on, 135

chart, 129
interlinked frames, 113
learning, 287

mantic primitive, 119, 342
£mantic tree: resolution, 208
mantics, 328, 337
of quantity, 344
micolon, 31
nsing, 379, 381
active, 391
CCD camera, 389
multiplexed, 389
remote, 387
tactile, 387
vidicon, 389
fentence
communication, 326
parsing, 328
predicate calculus, 209
representation with semantic

net, 115

intential form: parsing, 330
parable support function: Dempster-
Shafer calculus, 275
dequence extrapolation, 51

in knowledge representation summary

SUBJECT INDEX

sequent: Wang's algorithm, 189
SET, 487
set of support, 214
SET_DIFF, 152
SET_PLACE, 356
SET_PLIST. 488
SETQ, 24, 488
compared with MYSETQ and
SETQ2, 36
SETQ2, 36
SET_REG, 488
S-expression, 15, 16
composite, 19
evaluation of, 34
formal definition, 17
shading, shape from, 440
shape, 424
characteristic, 425
from motion, 442
from shading, 440, 442, 449
from texture, 440
shell, expert system, 465
shortest path: search, 152, 162
SHOW, 358
SHOW_ROW, 356
SHRDLU: Winograd, 373
SHRINK, 65
exercises on, 85
knowledge representation in.
91
SIDE_LENGTH_SQ_LIST. 301
SIDESOK, 145
signal processing
sampling, 392
speech, 328
SIMD: parallel processing. 468
simple evidence function, 274
simple support function, 275
simulation, 464, 478
in theory formation, 314
single-concept learning, 295
singleton set: Dempster-Shafer calculus.
272
skeleton, 429
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digital, 431
reference on, 449
skepticism about Al 1
Skolem constant: clause form, 201
Skolem function: clause form, 201
Skelemization: clause form, 201
slot: frame, 113
SLSL, 301
small talk: conversation, 352
SMARTY, exercise on, 134
SMP: formula manipulation system,
82
SNOBOL, 82, 83
snow: noise, 395
Sobel operator, 408
social impact, 477
software engineering, 461, 476
auntomatic programming, 477
solid, three-dimensional, 438
solid angle, 388
solid-state CCD camera, 390
solution graph in AND-OR. graph,
172
SOLVE, 220
SOLVEL1, 221
solved node in AND-OR graph, 171
SOLVE_SQUARES, 147
sombrero operator, 414
sonic echo, 391
sorcerer’'s apprentice, 479
5P, 271
space
gracient, 440
search, 140
semantics, 346
three-dimensional, 387
spatial coincidence assumption, 414,
448
spatial occupancy, 439
spatial frequency, 386
edge detection, 414
Fourier transform, 395
special form in LISP, 24, 36
specialization of concept, 298

523

SPEC_TASK_INTEREST, 306

specular surface, 389

speech, 328, 476

speech act, references on, 373

speech understanding, references
on, 373

speed, 471, 468

sphere: solid angle, 388

gpiral of recursion, 28

SPLIT, 434

split-and-merge algorithm, 422

spreading activation: semantic net,
115

SQ in PYTHAGORUS, 301

stack of bindings, 28

standardization of variables, 200,

212
star method: reference on learning
with, 315

START in STONEWLD, 370
start symbol: grammar, 329
state, 139

in painted squares puzzle, 142

representation in semantic net,

119

state of nature

probahilistic inference, 248, 252
state space

explicit, 149

in painted squares puzzle, 142
static value in game tree, 169
statistical learning, 252
statistics compared with Al 1
stepwise refinement, 44
steradian: solid angle, 388
stereo

rangefinder, 391

vision, 440, 446
stereogram, 441, 446
Stone World, 355

sample session, 371
STONE_OR_GEM, 361
STONEWLD, 355, 356

exercises on, 377
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expert system exercise, 474
STORE, 401
story: chroneclogy, 345
straight-line dominoes, exercise on,
180
ptring: language, 329
ftructural approach: learning, 283
Etructured light: rangefinder, 391
BUBI, 483
bubevent in script, 341
bubject, sentence, 327
bubjective contour, 384
bubjective-Bayesian updating, 252
exercises on, 279
bublist, 29
tubproblem: AND-OR graph, 171
bubproblem list, 196
bubsampling: polygonal approxima-
tion, 432
bubservience, robot, 479
bubset relation, 92
SUBST, 206
bubstitution
in the Logic Theory Machine,
195
unification, 202
bubsumption of clauses, 214
bubtask in planning, 167
SEUCCESSORS, 152, 160
BUFFICIENCY, 266
bufficiency coefficient, 254
bufficiency-only rule:  subjective-
Bayesian updating, 258
buffix of word, 328
Bum axiom, 196
bun illusion, 384
bupport function: Dempster-Shafer
calculus, 275
burface, 380, 387
Gaussian, 412
Lambertian, 440
matte, 440
motion of element, 443
orientation, 440

SUBJECT INDEX

patch, 438

reflectivity, 388
surprise: learning. 296
syllable, 328
symbolic algebra: LEIBNIZ, 70
Symbolics LISP machine, 467
symptom: malaria diagnosis, 242
syntactic scaffolding, 44
syntax, 328
SYS_BREAK, 438
SYS_PRM, 488
systems view of Al, 475

T: LISP “true”, 25
table-lookup: curvature, 411
tactile sensing, 387
TAKE, 361
TAKE_LEGAL, 361
TAKE_VERB, 366
task

granularity, 303

in planning, 167

m PYTHAGORUS, 293
Taut axiom, 196
tantology, 110

elimination in resolution, 214

exercise on, 233

in answer extraction, 216
TAXMAN, 470
taxonomy: LINNEUS, 98
teacher: learning, 235
teaching: dialog, 352
telecommunications, 476
television: sensing, 389
TELL, 102
term: predicate calenlus, 111
terminal symhol, 329

in English, 377
TERMINALP, 334
TERMINATORP, 371
TERPRI, 488
tessellation, image, 394
TEST

in SOLVE_SQUARES, 147
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in best-Arst search, 157
in INFNET, 271
in PARSE, 336
in PYTHAGORUS, 310
in RAMER, 436
in A_STAR_SEARCH, 164
in uniform-cost search, 160
texture, 380
shape from, 440
shape from, reference on, 449
surface orientation, 440
thematic role in case frame, 326
then: temporal reference, 346
theology: mind, 479
theorem in Principic Mathematica,
196
theorem proving, 217
as search, 149
theory formation: learning, 285,
297, 313
there: spatial reference, 347
ThingLab, reference on, 131
thinking, visual, exercise on, 459
thought, visual, 379, 466
three-dimensional
generalized cylinder, 439
gradient space, 440
rangefinder, 391
representation, 438
vision, 387, 437
threshold
edge image, 408
image, 397
viston, 464
thresholding
exercise on, 455
reference on, 449
Tic-Tac-Toe, 168
exercisc on, 184
game tree, 169
time
representation in semantic net,
118
semantics, 345
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time-of-flight rangefinder, 391
TIMES, 20, 488
to be, 92
tomography, 387
tool
expert system, 461, 465
expert system exercises, 473
expertise transfer, 466
graphical, 466
learning, 287
top-down parsing, 331
topology, 428
Towers of Hanoi puzzle, 141
exercise on, 180
toy in PYTHAGORUS, 298
TRACE, 41, 488
transfer, expertise, 287
transformation: move in search, 144
transition region, 423
transitive closure, 94
transitive reduction, 94
exercise on, 133
transitivity, 93, 131
TRANSLATE, 367
translation, language, 324, 325, 373
trapezoid, 301

Traveller's Restaurant Selection Problem

262

tree

exercises on, 50, 51

game playing, 169

parse, 331
TREEMAZX, exercise on, 51
TREEMIN, exercise on, 51
triangulation rangefinder, 391
trigonometric function, 51

in LEIBNIZ exercise, 86
true: LISP representation, 25
truth

belief, 240

maintenance, reference on, 231

table, 109, 188

value, 109
TRYORIENTATION, 147



TRYPIECE, 147

TRY_RULE, 78

TRY_RULEL, 79
TRY_RULE_ON_LIST, 79
TRY_RULES, 78

tuning: probabilistic inference, 252
ring’s test, 9

type-0 language, 331

U[ILISP, 15

ulkrasound, 387, 442

UNBIND, 488

upcertain evidence, 255, 272
ugcertainty, 239

upderstanding, language, 323, 325
ujemployment: labor, 477
ujexpected hit: learning, 294
ugification, 202

algorithm, 202

as pattern matching, 81
exercises on, 234

LISP implementation, 204
UNIFORM_COST, 159
uniform-cost search, 159
ugiformity predicate: region grow-
ing, 420

UNIFY, 204

exercises on, 235

UNIFY1, 204

UNIFY?2, 222

utfinformed search, 162

ulit clause, 215

ullit preference: resolution strategy,
215

utfiversal quantifier, 111

clause form, 201

ulfiverse

Dempster-Shafer calculus, 272
Herbrand’s theorem, 209
PYTHAGORUS, 299
predicate calculus, 111

SUBJECT INDEX

unlearning, 285

unsatisfiability: predicate calculus,
210

UNTRACE, 41, 489

UPDATE_CLOSED, 164

UPDATE_NODE, 270

UPDATE_NODES, 270

UPDATE_PROB, 268

updating: probabilistic inference,
252

upper probability function, 273

utility of religicus belief, 479

utterance, time of, 345

valence, 95
VALID1, 192
validity: predicate calculus, 210
valley method: thresholding, 397
value of S-expression, 34
variable

in PROG, 32

predicate calculus, 111
VARIABLEP, 206, 223
variablization: learning, 289
VAX computer: XCON, 469
vector

elementary, 415

optical flow, 443
vector space in edge detection, 409
VECTOR_ADD, 359
velocity: optical flow, 443
verb

in case frame, 327

in semantic net, 116
VERBP, 66
version space: learning, 293

exercises on, 319

reference on, 315
vertex: junction, 444
vertex-adjacent, 398
video digitizer, 390
vidicon, 380, 380
viewer: vision, 387
viewpoint
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of sentence, 327
stereo vision, 441
virtual memory: garbage collection
of, 46
vision, 379
as Al 379
blocks world, 443
future of human, 481
human, 381, 411, 446
illusion, 384, 446
neurophysiclogy, 446
parallel processing, 468
stereo, 440
thinking, 466
visual pathway, 382
visual thinking, 379
exercise on, 459
vodka, 324
voice, active or passive, 327, 339
volume representation, 438
voting; Hough transform, 419
voxel, 438

Waltz fltering, 446
Wang's algorithm, 189
exercises on, 233
Warshall's algorithm, reference on,
131
wavelength, 389
weather: Dempster’s rule of combi-
nation example, 274
weather prediction, 240
weight of conflict: Dempster’s rule
of combination, 274
well-formed formula
in PROVER, 193
predicate calculus, 111
WFF. 193
wild sequence construct, 63
wine: learning counterexample, 285
wine selection: PROLOG example,
219
word in lexicon, 338
workstation: LISP machine, 467

527

WPRED, 67
WRITECHAR, 489
WWORD, 66

XC in PYTHAGORUS, 302
XCON, 3, 469
Xerox 1100 workstation, 467

YC in PYTHAGORUS, 302
YOUME, 66
YOUMEMAP, 66

zero crossing filter, 413

ZERQP, 489

zero-sum game, 168

Zoellner illusion, 384

zone of inconsistency: subjective-
Bayesian updating, 258
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