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Preface

This is a straightforward introduction to the basic concepts, theory, methods,
and applications of ordinary differential equations. It presupposes a knowledge
of elementary calculus.

Designed for a one-semester course in ordinary differential equations, this
book covers and emphasizes the most fundamental methods of the subject and
also contains traditional applications and brief introductions to fundamental
theory. An examination of the table of contents will reveal just what topics are
presented.

The detailed style of presentation that characterized the first three editions
has been retained. There are over 200 illustrative examples, and each one that
illustrates a method is worked out in great detail. The first six chapters of the
text are essentially as in the third edition, with major textual changes confined
to the last three chapters.

The following additions and modifications are specifically noted:

1. Section 7.6 of the third edition, on the basic theory of linear systems, has
been replaced by a new section on the application of matrix algebra to the
solution of linear systems with constant coefficients in the case of two equations
in two unknown functions. This new section is taken from my longer book,
Differential Equations, 3rd ed. (John Wiley and Sons, New York, 1984). Section
7.7 extends the matrix method of Section 7.6 to the case of linear systems
with constant coefficients involving n equations in » unknown functions. Sev-
eral detailed examples illustrate the method for the case n = 3. This is an
expanded version of the former Section 7.7 and is also taken from Differential
Equations. A new Section 7.8 presents the most basic part of the theory that
formerly appeared in Section 7.6.
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. Section 8.4 of the third edition, on numerical methods, has been expanded

into the five Sections 8.4 through 8.8 in this edition. The new expanded
treatment includes some improved methods, detailed illustrative examples,
and more attention to errors than had been given previously. Introductory
material on numerical methods for higher order equations and systems has
also been added.

. Chapter 9 has been reorganized so as to reach the Laplace transform solution

of differential equations more quickly. Step functions and translated functions
have been postponed slightly to a new Section 9.4, and new material on the
Dirac delta function has been added.

. A brief appendix about polynomial equations has been added. This should

be helpful to students who lack sufficient preparation in college algebra.

There are over 360 new exercises, including 160 Chapter Review Exercises.
The Chapter Review Exercise sets appear at the end of each chapter except
the first. Each set consists of a number of straightforward exercises of the
various types considered in that particular chapter and thus provides a good
chapter review.

. There has been a major change in notation throughout Chapters 4 through

9. In general in these chapters differential equations are now expressed in
the prime notation rather than in the d/dx notation that was employed in the
previous editions.

The text may be covered in the order presented or may be taken up in

various alternate orders. With two exceptions, Chapters 5, 6, 7, 8, and 9 are
essentially independent of one another. The two exceptions are the final sections
of Chapters 8 and 9, which depend on Chapter 7. Thus, in general, the last five
chapters can be taken up in any order. In particular, Sections 9.1 through 9.4
on the Laplace transform can be studied immediately after Chapter 4.

I am grateful to each of the following for reviewing all or part of this edition:

Richard Bagby, New Mexico State University

Andrew G. Bennett, The University of Texas at Austin
Jim D’Archangelo, U.S. Naval Academy
Richard H. Fast, Glendale Community College

Steve Gavazza, Canada College

Paul Krajkiewicz, University of Nebraska

Thomas G. Kudzma, University of Lowell

Forrest Miller, Kansas State University

Jo E. Smith, GMI Engineering and Management Institute

John R. Tucker, Mary Washington College

H.

Clare Wiser, Washington State University

John L. Wulff, California State University
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I thank my colleague Lee Zia, University of New Hampshire, for critically
reading part of the manuscript and making useful suggestions. Additional helpful
comments and suggestions were made by my former colleagues Robert O. Kim-
ball, now retired, and Tom Dick, Oregon State University, and by my former
graduate student Tim Kurtz.

My son, Shepley L. Ross II, Bates College, Lewiston, Maine, is coauthor of
Chapter 8. His work on the numerical methods sections has made this material
much more suitable for this age of calculators and computers. He has also helped
in a variety of other ways, and I am very grateful to him for his important
contributions.

As before, the Wiley staff has been helpful, efficient, and understanding,
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Differential Equations
and Their Solutions

The subject of differential equations constitutes a large and very important branch
of modern mathematics. From the early days of the calculus the subject has been
an area of great theoretical research and practical applications, and it continues
to be so in our day. This much stated, several questions naturally arise. Just what
is a differential equation and what does it signify? Where and how do differential
equations originate and of what use are they? Confronted with a differential
equation, what does one do with it, how does one do it, and what are the results
of such activity? These questions indicate three major aspects of the subject:
theory, method, and application. The purpose of this chapter is to introduce the
reader to the basic aspects of the subject and at the same time give a brief survey
of the three aspects just mentioned. In the course of the chapter, we shall find
answers to the general questions raised above, answers that will become more
and more meaningful as we proceed with the study of differential equations in
the following chapters.

1.1 CLASSIFICATION OF DIFFERENTIAL
EQUATIONS; THEIR ORIGIN AND APPLICATION

A. Differential Equations and Their Classification

DEFINITION

An equation involving derivatives of one or more dependent variables with respect
to one or more independent variables is called a differential equation.*

* In connection with this basic definition, we do not include in the class of differential equations those
equations that are actually derivative identities. For example, we exclude such expressions as
dv

d d du
Ix (™) = ae™, Ix (uv) = u T + v I and so forth.
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EXAMPLE 1.1 EEeEEmrasammiEimmsss s e

For examples of differential equations we list the following:

d? dy\’
Z| = 1.1
dx? * xy(dx) 0, (1.1

dix d?x .

%+5ﬁ+3x—smt, (1.2)
o, (1.3)
as ot

2
%u 0“u % _ (1.4)

+— +
ax?  9y? 922

From the brief list of differential equations in Example 1.1 it is clear that
the various variables and derivatives involved in a differential equation can occur
in a variety of ways. Clearly some kind of classification must be made. To begin
with, we classify differential equations according to whether there is one or more
than one independent variable involved.

DEFINITION

A differential equation involving ordinary derivatives of ome or more dependent
variables with respect to a single independent variable is called an ordinary differential
equation.

EXAMPLE 1.2 EEEmESSssreE e es

Equations (1.1) and (1.2) are ordinary differential equations. In Equation (1.1)
the variable x is the single independent variable, and y is a dependent variable.
In Equation (1.2) the independent variable is ¢, whereas x is dependent.

DEFINITION

A differential equation involving partial derivatives of one or more dependent variables
with respect to more than one independent variable is called a partial differential equa-
tion.

EXAMPLE 1.3 s e,

Equations (1.3) and (1.4) are partial differential equations. In Equation (1.3) the
variables s and ¢ are independent variables and v is a dependent variable. In
Equation (1.4) there are three independent variables: x, y, and z; in this equation
u is dependent.

We further classify differential equations, both ordinary and partial, accord-
ing to the order of the highest derivative appearing in the equation. For this
purpose we give the following definition.
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DEFINITION

The order of the highest ordered derivative involved in a differential equation is called
the order of the differential equation.

EXAMPLE 1.4 B R

The ordinary differential equation (1.1) is of the second order, since the highest
derivative involved is a second derivative. Equation (1.2) is an ordinary differential
equation of the fourth order. The partial differential equations (1.3) and (1.4)
are of the first and second orders, respectively.

Proceeding with our study of ordinary differential equations, we now intro-
duce the important concept of linearity applied to such equations. This concept
will enable us to classify these equations still further.

DEFINITION

A linear ordinary differential equation of order n, in the dependent variable y
and the independent variable x, is an equation that is in, or can be expressed in, the form

dn—ly
dx"~!

a" d
Qo) T2+ @) =+ 4 () T+ 4,y = b,

where a, is not identically zero.

Observe (1) that the dependent variable y and its various derivatives occur
to the first degree only, (2) that no products of y and/or any of its derivatives
are present, and (3) that no transcendental functions of y and/or its derivatives
occur.

EXAMPLE 1.5 (rs e N

The following ordinary differential equations are both linear. In each case y is
the dependent variable. Observe that y and its various derivatives occur to the
first degree only and that no products of y and/or any of its derivatives are
present.

&2 d

dxy2 * 5dfc T =0 (1-9)
d* PE d
d_x}"‘ "2d_x§ * xsd_i = xen (1.6)

DEFINITION

A nonlinear ordinary differential equation és an ordinary differential equation
that is not linear.
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EXAMPLE 1.6 @t s

The following ordinary differential equations are all nonlinear:

d? dy

%ﬁ+5(§+ﬁy2=0’ 1.7)
dy (&Y

d? d

d—xy2+5yd—i+6y=0. (1.9)

Equation (1.7) is nonlinear because the dependent variable y appears to the
second degree in the term 6y®. Equation (1.8) owes its nonlinearity to the presence
of the term 5(dy/dx)®, which involves the third power of the first derivative.
Finally, Equation (1.9) is nonlinear because of the term 5y(dy/dx), which involves
the product of the dependent variable and its first derivative

Linear ordinary differential equations are further classified according to the
nature of the coefficients of the dependent variables and their derivatives. For
example, Equation (1.5) is said to be linear with constant coefficients, while Equation
(1.6) is linear with variable coefficients.

B. Origin and Application of

Differential Equations

Having classified differential equations in various ways, let us now consider briefly
where, and how, such equations actually originate. In this way we shall obtain
some indication of the great variety of subjects to which the theory and methods
of differential equations may be applied.

Differential equations occur in connection with numerous problems that are
encountered in the various branches of science and engineering. We indicate a
few such problems in the following list, which could easily be extended to fill
many pages.

1. The problem of determining the motion of a projectile, rocket, satellite, or
planet.

The problem of determining the charge or current in an electric circuit.
The problem of the conduction of heat in a rod or in a slab.

The problem of determining the vibrations of a wire or a membrane.

Otk oo N

The study of the rate of decomposition of a radioactive substance or the rate
of growth of a population.

e

The study of the reactions of chemicals.

~

The problem of the determination of curves that have certain geometrical
properties.

The mathematical formulation of such problems give rise to differential
equations. But just how does this occur? In the situations under consideration
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in each of the above problems the objects involved obey certain scientific laws.
These laws involve various rates of change of one or more quantities with respect
to other quantities. Let us recall that such rates of change are expressed math-
ematically by derivatives. In the mathematical formulation of each of the above
situations, the various rates of change are thus expressed by various derivatives
and the scientific laws themselves become mathematical equations involving de-
rivatives, that is, differential equations.

In this process of mathematical formulation, certain simplifying assumptions
generally have to be made in order that the resulting differential equations be
tractable. For example, if the actual situation in a certain aspect of the problem
is of a relatively complicated nature, we are often forced to modify this by
assuming instead an approximate situation that is of a comparatively simple
nature. Indeed, certain relatively unimportant aspects of the problem must often
be entirely eliminated. The result of such changes from the actual nature of
things means that the resulting differential equation is actually that of an idealized
situation. Nonetheless, the information obtained from such an equation is of the
greatest value to the scientist.

A natural question now is the following: How does one obtain useful in-
formation from a differential equation? The answer is essentially that if it is
possible to do so, one solves the differential equation to obtain a solution; if this
is not possible, one uses the theory of differential equations to obtain information
about the solution. To understand the meaning of this answer, we must discuss
what is meant by a solution of a differential equation; this is done in the next
section.

EXERCISES

Classify each of the following differential equations as ordinary or partial dif-
ferential equations; state the order of each equation; and determine whether the
equation under consideration is linear or nonlinear.

l.;i—i+x2y=xe". 2.%+43—3—5%+3y=sinx,
3.%+%=0. 4. x2dy + y2dx = 0.
7.3-—?5+ysinx=0 8.3—3+xsiny=0.

dbx (d‘*x) (d 3x> 3 2
9. — + [Z=ZE2) +x =t dr\" _ |4
dt® drt I\ ae? 10. (ds) 45 + 1.
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1.2 SOLUTIONS

A. Nature of Solutions
We now consider the concept of a solution of the nth-order ordinary differential
equation.

DEFINITION
Consider the nth-order ordinary differential equation
dy Ay
F[x,y, RS ’dx”] = 0, (1.10)
dy dry

where F is a real function of its (n + 2) arguments x, y, PERER s

1. Let fbe areal function defined for all x in a real interval I and having an nth derivative
(and hence also all lower ordered derivatives) for all x € I. The function f is called
an explicit solution of the differential equation (1.10) on I if it fulfills the following
two requirements:

Flx, f&), f'@), . .., fO)] (A)
is defined for all x € I, and

Flx, fx), f'®), ..., f"x)] = 0 (B)
for all x € I. That 1s, the substitution of f(x) and its various derivations for y and its
corresponding derivatives, respectively, in (1.10) reduces (1.10) to an identity on I.

2. A relation g(x,y) = 0 s called an implicit solution of (1.10) if this relation defines
at least one real function f of the variable x on an interval I such that this function s
an explicit solution of (1.10) on this interval.

3. Both explicit solutions and implicit solutions will usually be called simply solutions.

Roughly speaking, then, we may say that a solution of the differential equa-
tion (1.10) is a relation—explicit or implicit—between x and y, not containing
derivatives, which identically satisfies (1.10).

EXAMPLE 1.7 @S e
The function f defined for all real x by

flx) = 2sinx + 3 cos x (1.11)
is an explicit solution of the differential equation
2
4y L y=0 (1.12)

dx?
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for all real x. First note that f is defined and has a second derivative for all real
x. Next observe that

f'x) = 2cosx — 3 sinx,
f'x) = —2sinx — 3 cos x.

Upon substituting f"(x) for d?*/dx? and f(x) for y in the differential equation
(1.12), it reduces to the identity

(—2sinx — 3 cosx) + (2sinx + 3 cos x) = 0,

which holds for all real x. Thus the function f defined by (1.11) is an explicit
solution of the differential equation (1.12) for all real x.

EXAMPLE 1.8 ErSimmmmse s

The relation
x2 4+ 92 -25=0 (1.13)

is an implicit solution of the differential equation
x4y :? 0 (1.14)

on the interval I defined by —5 < x < 5. For the relation (1.13) defines the two
real functions f; and f; given by

filk) = V25 — x?
and
folk) = = V25 — x?,

respectively, for all real x € I, and both of these functions are explicit solutions
of the differential equations (1.14) on I.
Let us illustrate this for the function f,. Since

file) = V25 = 22,

we see that
V) = %
fi) 25 — x?

for all real x € I. Substituting f,(x) for y and f}(x) for dy/dx in (1.14), we obtain
the identity

x+(\/25—x)< = 0,

2T\/7—2)=0 or x —Xx
- X

which holds for all real x € I. Thus the function f, is an explicit solution of (1.14)
on the interval I.
Now consider the relation

x? + 92 + 25 = 0. (1.15)
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Is this also an implicit solution of Equation (1.14)? Let us differentiate the relation
(1.15) implicitly with respect to x. We obtain
dy x

dy _ 9 _ X
dx_o or o= )

Substituting this into the differential equation (1.14), we obtain the formal identity

x + y(—%) = 0.

Thus the relation (1.15) formally satisfies the differential equation (1.14). Can we
conclude from this alone that (1.15) is an implicit solution of (1.14)? The answer
to this question is “no,” for we have no assurance from this that the relation
(1.15) defines any function that is an explicit solution of (1.14) on any real interval
I. All that we have shown is that (1.15) is a relation between x and y that, upon
implicit differentiation and substitution, formally reduces the differential equation
(1.14) to a formal identity. It is called a formal solution; it has the appearance of a
solution; but that is all that we know about it at this stage of our investigation.
Let us investigate a little further. Solving (1.15) for y, we find that

y=xV-25 —«x%

Since this expression yields nonreal values of y for all real values of x, we conclude
that the relation (1.15) does not define any real function on any interval. Thus
the relation (1.15) is not truly an implicit solution but merely a formal solution of
the differential equation (1.14).

2x + 2y

In applying the methods of the following chapters we shall often obtain
relations that we can readily verify are at least formal solutions. Our main ob-
jective will be to gain familiarity with the methods themselves and we shall often
be content to refer to the relations so obtained as “solutions,” although we have
no assurance that these relations are actually true implicit solutions. If a critical
examination of the situation is required, one must undertake to determine whether
or not these formal solutions so obtained are actually true implicit solutions which
define explicit solutions.

In order to gain further insight into the significance of differential equations
and their solutions, we now examine the simple equation of the following ex-
ample.

EXAMPLE 1.9 ESsssms sl e

Consider the first-order differential equation

Y _ o9, 1.1
I 2x (1.16)

The function f, defined for all real x by fy(x) = x? is a solution of this equation.
So also are the functions f, f;, and f; defined for all real x by f,(x) = x2 + 1,
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folx) = x* + 2, and f3(x) = x* + 3, respectively. In fact, for each real number c,
the function f, defined for all real x by

felx) = x* + ¢ (1.17)

is a solution of the differential equation (1.16). In other words, the formula (1.17)
defines an infinite family of functions, one for each real constant ¢, and every
function of this family is a solution of (1.16). We call the constant ¢ in (1.17) an
arbitrary constant or parameter and refer to the family of functions defined by (1.17)
as a one-parameter family of solutions of the differential equation (1.16). We write
this one-parameter family of solutions as

y =x2 + ¢ (1.18)

Although it is clear that every function of the family defined by (1.18) is a solution
of (1.16), we have not shown that the family of functions defined by (1.18)
includes all of the solutions of (1.16). However, we point out (without proof)
that this is indeed the case here; that is, every solution of (1.16) is actually of
the form (1.18) for some appropriate real number c.

Note. We must not conclude from the last sentence of Example 1.9 that
every first-order ordinary differential equation has a so-called one-parameter fam-
ily of solutions which contains all solutions of the differential equation, for this
is by no means the case. Indeed, some first-order differential equations have no
solution at all (see Exercise 7(a) at the end of this section), while others have a
one-parameter family of solutions plus one or more “extra” solutions which
appear to be “different” from all those of the family (see Exercise 7(b) at the end
of this section).

The differential equation of Example 1.9 enables us to obtain a better un-
derstanding of the analytic significance of differential equations. Briefly stated,
the differential equation of that example defines functions, namely, its solutions.
We shall see that this is the case with many other differential equations of both
first and higher orders. Thus we may say that a differential equation is merely
an expression involving derivatives which may serve as a means of defining a
certain set of functions: its solutions. Indeed, many of the now familiar functions
originally appeared in the form of differential equations that define them.

We now consider the geometric significance of differential equations and
their solutions. We first recall that a real function F may be represented geo-
metrically by a curve y = F(x) in the xy plane and that the value of the derivative
of F at x, F'(x), may be interpreted as the slope of the curve y = F(x) at x. Thus
the general first-order differential equation

& _
I = f(x,9), (1.19)

where f is a real function, may be interpreted geometrically as defining a slope
f(x, y) at every point (x, y) at which the function f is defined. Now assume that
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the differential equation (1.19) has a so-called one-parameter family of solutions
that can be written in the form

y = F(x, c), (1.20)

where c is the arbitrary constant or parameter of the family. The one-parameter
family of functions defined by (1.20) is represented geometrically by a so-called
one-parameter family of curves in the xy plane, the slopes of which are given by the
differential equation (1.19). These curves, the graphs of the solutions of the
differential equation (1.19), are called the integral curves of the differential equa-
tion (1.19).

EXAMPLE 1.10 i e

Consider again the first-order differential equation

dy

—= = 1.16
oo - 2% (1.16)
of Example 1.9. This differential equation may be interpreted as defining the
slope 2x at the point with coordinates (x, y) for every real x. Now, we observed
in Example 1.9 that the differential equation (1.16) has a one-parameter family
of solutions of the form

y =x% + ¢, (1.18)

where c is the arbitrary constant or parameter of the family. The one-parameter
family of functions defined by (1.18) is represented geometrically by a one-
parameter family of curves in the xy plane, namely, the family of parabolas with
Equation (1.18). The slope of each of these parabolas is given by the differential
equation (1.16) of the family. Thus we see that the family of parabolas (1.18)
defined by differential equation (1.16) is that family of parabolas, each of which
has slope 2x at the point (x, y) for every real x, and all of which have the y axis
as axis. These parabolas are the integral curves of the differential equation (1.16).
See Figure 1.1.

B. Methods of Solution

When we say that we shall solve a differential equation we mean that we shall
find one or more of its solutions. How is this done and what does it really mean?
The greater part of this text is concerned with various methods of solving dif-
ferential equations. The method to be employed depends upon the type of
differential equation under consideration, and we shall not enter into the details
of specific methods here.

But suppose we solve a differential equation, using one or another of the
various methods. Does this necessarily mean that we have found an explicit
solution f expressed in the so-called closed form of a finite sum of known ele-
mentary functions? That is, roughly speaking, when we have solved a differential
equation, does this necessarily mean that we have found a “formula” for the
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v

FIGURE 1.1

solution? The answer is “no.” Comparatively few differential equations have
solutions so expressible; in fact, a closed-form solution is really a luxury in
differential equations. In Chapters 2 and 4 we shall consider certain types of
differential equations that do have such closed-form solutions and study the exact
methods available for finding these desirable solutions. But, as we have just noted,
such equations are actually in the minority and we must consider what it means
to “solve” equations for which exact methods are unavailable. Such equations
are solved approximately by various methods, some of which are considered in
Chapters 6 and 8. Among such methods are series methods, numerical methods,
and graphical methods. What do such approximate methods actually yield? The
answer to this depends upon the method under consideration.

Series methods yield solutions in the form of infinite series; numerical meth-
ods give approximate values of the solution functions corresponding to selected
values of the independent variables; and graphical methods produce approxi-
mately the graphs of solutions (the integral curves). These methods are not so
desirable as exact methods because of the amount of work involved in them and
because the results obtained from them are only approximate; but if exact meth-
ods are not applicable, one has no choice but to turn to approximate methods.
Modern science and engineering problems continue to give rise to differential
equations to which exact methods do not apply, and approximate methods are
becoming increasingly more important.

EXERCISES

1. Show that each of the functions defined in Column I is a solution of the
corresponding differential equation in Column II on every interval a < x <
b of the x axis.
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(@)

(b)

(©)

(d

(b)

(b)

(b)

I II
flx) =x + 3¢ ;ii +y=x+1
dy . dy
— 3x __ 4x — =
fx) = 2e be e 7 I + 12y =0
dy . d
= ¢ + 2 =
flx) = ¢ + 2x* + 6x + 7 T -3 ot 2y = 4x?

d? dy
(l+x)d2+4xd +2y=0

St = 1+ x?
Show thatx® + 3xy? = 1isan implicit solution of the differential equation
2xy(dy/dx) + x* + y? = 0 on the interval 0 < x < 1.

Show that 5x%? — 2x3? = 1 is an implicit solution of the differential
equation x(dy/dx) + y = x%?* on the interval 0 < x < 3.

Show that every function f defined by
flx) = (x® + c)e~3,

where ¢ is an arbitrary constant, is a solution of the differential equation

dy

I + 3y = 3x%

Show that every function f defined by

2

fle) = 2 + ce™?,
where ¢ is an arbitrary constant, is a solution of the differential equation

dy

I + 4xy = 8x.

Show that every function f defined by f(x) = c,e* + coe~?*, where ¢, and
¢y are arbitrary constants, is a solution of the differential equation
d? dy

9 oD _ g, =
In? de 8y = 0.

Show that every function g defined by g(x) = c,e®* + coxe®™ + c3e72%,

where ¢}, ¢y, and ¢; are arbitrary constants, is a solution of the differential
equation
dy _ody _ b

dx3_2d_x2 d+8y-—0



5. (a)

(b)

6. (a)

(b)

7. (@)

(b)
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For certain values of the constant m the function f defined by f(x) = ™

is a solution of the differential equation

d3 2,
) _ g4y

i

d—x2—4%+12”)’=0.

Determine all such values of m.

For certain values of the constant n the function g defined by g(x) = x”
is a solution of the differential equation

dy

3, 2
x?’%c%+ 2x2j—x{— 10x 52 — 8 = 0.

Determine all such values of n.

Show that the function f defined by f(x) = (2x? + 2¢* + 3)e~?* satisfies
the differential equation

d_y = x -2x
dx+2y—6e + 4xe

and also the condition f(0) = 5.
Show that the function f defined by f(x) = 3¢?* — 2xe?* — cos 2x satisfies
the differential equation

d? dy _ .

o 4dx + 4y = —8sin 2x

and also the conditions that f(0) = 2 and f'(0) = 4.

Show that the first-order differential equation

dy

i +y+1=0

has no (real) solutions.
Show that the first-order differential equation

dy\* _
(dx) 4 =0

has a one-parameter family of solutions of the formf(x) = (x + ¢)?, where
¢ is an arbitrary constant, plus the “extra” solution g(x) = 0 that is not a
member of this family f(x) = (x + ¢)? for any choice of the constant c.
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1.3 INITIAL-VALUE PROBLEMS, BOUNDARY-
VALUE PROBLEMS, AND EXISTENCE
OF SOLUTIONS

A. Initial-Value Problems and Boundary-

Value Problems

We shall begin this section by considering the rather simple problem of the
following example.

EXAMPLE 1.17 ol e e e R

Problem. Find a solution f of the differential equation

dy _
= = 2 (1.21)

such that at x = 1 this solution f has the value 4.

Explanation. First let us be certain that we thoroughly understand this problem.
We seek a real function f which fulfills the two following requirements:

1. The function f must satisfy the differential equation (1.21). That is, the func-
tion f must be such that f'(x) = 2x for all real x in a real interval I.

2. The function f must have the value 4 at x = 1. That is, the function f must
be such that f(1) = 4.

Notation. The stated problem may be expressed in the following somewhat
abbreviated notation:

dy _
dx 2%,
y(1) = 4.

In this notation we may regard y as representing the desired solution. Then the
differential equation itself obviously represents requirement 1, and the statement
y(1) = 4 stands for requirement 2. More specifically, the notation y(1) = 4 states
that the desired solution y must have the value 4 at x = 1; that is, y = 4 at
x =1

Solution. We observed in Example 1.9 that the differential equation (1.21) has
a one-parameter family of solutions which we write as
y =% + ¢, (1.22)

where ¢ is an arbitrary constant, and that each of these solutions satisfies re-
quirement 1. Let us now attempt to determine the constant ¢ so that (1.22) satisfies
requirement 2, thatis,y = 4 atx = 1. Substitutingx = 1,y = 4 into (1.22), we
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obtain 4 = 1 + ¢, and hence ¢ = 3. Now substituting the value ¢ = 3 thus
determined back into (1.22), we obtain

y =x%+ 3,

which is indeed a solution of the differential equation (1.21), which has the value
4 at x = 1. In other words, the function f defined by

flx) = x* + 3,

satisfies both of the requirements set forth in the problem.

Comment on Requirement 2 and Its Notation. In a problem of this type, re-
quirement 2 is regarded as a supplementary condition that the solution of the
differential equation must also satisfy. The abbreviated notation y(1) = 4, which
we used to express this condition, is in some way undesirable, but it has the
advantages of being both customary and convenient.

In the application of both first- and higher-order differential equations the
problems most frequently encountered are similar to the above introductory
problem in that they involve both a differential equation and one or more sup-
plementary conditions which the solution of the given differential equation must
satisfy. If all of the associated supplementary conditions relate to one x value, the
problem is called an initial-value problem (or one-point boundary-value problem).
If the conditions relate to two different x values, the problem is called a two-point
boundary-value problem (or simply a boundary-value problem). We shall illustrate
these concepts with examples and then consider one such type of problem in
detail. Concerning notation, we generally employ abbreviated notations for the
supplementary conditions that are similar to the abbreviated notation introduced
in Example 1.11.

EXAMPLE 1.12 s s

d2
(-i_;c% +9y =0,
y(1) =3,
y'(l) = —4.
This problem consists in finding a solution of the differential equation
d2
‘173; +9y =0,

which assumes the value 3 at x = 1 and whose first derivative assumes the value
—4 atx = 1. Both of these conditions relate to one x value, namely, x = 1. Thus
this is an initial-value problem. We shall see later that this problem has a unique
solution.
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EXAMPLE 1.13 keaEssrssssmrnimmlsmnnnnness s

d?
E+y=0,

(0)

o3

In this problem we again seek a solution of the same differential equation, but
this time the solution must assume the value 1 at x = 0 and the value 5 at x =
n/2. That is, the conditions relate to the two different x values, 0 and =/2. This
is a (two-point) boundary-value problem. This problem also has a unique solu-
tion; but the boundary-value problem

L

5.

d2
E%+y=0,

y0) =1, @ =5,

has no solution at all! This simple fact may lead one to the correct conclusion
that boundary-value problems are not to be taken lightly!

We now turn to a more detailed consideration of the initial-value problem
for a first-order differential equation.

DEFINITION

Consider the first-order differential equation

& _
2 = fe ), (1.29)

where f is a continuous function of x and y in some domain* D of the xy plane; and let
(x0, ¥o) be a point of D. The initial-value problem associated with (1.23) is to find a
solution ¢ of the differential equation (1.23), defined on some real interval containing x,,
and satisfying the initial condition

®(x0) = Yo

In the customary abbreviated notation, this initial-value problem may be written
b _
dx - f(x’ y)’

(o) = Yo-

To solve this problem, we must find a function ¢ that not only satisfies the
differential equation (1.23) but that also satisfies the initial condition that it has

* A domain is an open, connected set. For those unfamiliar with such concepts, D may be regarded
as the interior of some simple closed curve in the plane.
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the value y, when x has value x,. The geometric interpretation of the initial
condition, and hence of the entire initial-value problem, is easily understood.
The graph of the desired solution ¢ must pass through the point with coordinates
(x0, y0)- That is, interpreted geometrically, the initial-value problem is to find an
integral curve of the differential equation (1.23) that passes through the point
(xO’ yO)

The method of actually finding the desired solution ¢ depends upon the
nature of the differential equation of the problem, that is, upon the form of
f(x,y). Certain special types of differential equations have a one-parameter family
of solutions whose equation may be found exactly by following definite proce-
dures (see Chapter 2). If the differential equation of the problem is of some such
special type, one first obtains the equation of its one-parameter family of solutions
and then applies the initial condition to this equation in an attempt to obtain a
“particular” solution ¢ that satisfies the entire initial-value problem. We shall
explain this situation more precisely in the next paragraph. Before doing so,
however, we point out that in general one cannot find the equation of a one-
parameter family of solutions of the differential equation; approximate methods
must then be used (see Chapter 8).

Now suppose one can determine the equation

gx,y,¢) =0 (1.24)

of a one-parameter family of solutions of the differential equation of the problem.
Then, since the initial condition requires thaty = y, atx = x4, we letx = x, and
y = %o in (1.24) and thereby obtain

g(xo, y0, ¢) = 0.

Solving this for ¢, in general we obtain a particular value of ¢ which we denote
here by ¢,. We now replace the arbitrary constant ¢ by the particular constant ¢,
in (1.24), thus obtaining the particular solution

gx, 9, co) = 0.

The particular explicit solution satisfying the two conditions (differential equation
and initial condition) of the problem is then determined from this, if possible.

We have already solved one initial-value problem in Example 1.11. We now
give another example in order to illustrate the concepts and procedures more
thoroughly.

EXAMPLE 1.14 IEnmmmssmsesssssssins i

Solve the initial-value problem

dy x
2 1.25
dx y’ (1.25)

y3) = 4, (1.26)
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given that the differential equation (1.25) has a one-parameter family of solutions
which may be written in the form

x? + 92 = 2 (1.27)

The condition (1.26) means that we seek the solution of (1.25) such thaty = 4
atx = 3. Thus the pair of values (3, 4) must satisfy the relation (1.27). Substituting
x =3 andy = 4 into (1.27), we find

9+ 16 =¢2 or ¢ =25
Now substituting this value of ¢? into (1.27), we have
x? + 92 = 25.
Solving this for y, we obtain
y = V25 — 2

Obviously the positive sign must be chosen to give y the value +4 atx = 3. Thus
the function f defined by

fx) = V25 — x2, -5 <x <5,

is the solution of the problem. In the usual abbreviated notation, we write this

solution asy = V25 — x2.

B. Existence of Solutions

In Example 1.14 we were able to find a solution of the initial-value problem
under consideration. But do all initial-value and boundary-value problems have
solutions? We have already answered this question in the negative, for we have
pointed out that the boundary-value problem

d?

;l.;c% +9y=0,
y(0) =1,
y(m) =5,

mentioned at the end of Example 1.13, has no solution! Thus arises the question
of existence of solutions: given an initial-value or boundary-value problem, does
it actually have a solution? Let us consider the question for the initial-value
problem defined on page 16. Here we can give a definite answer. Every initial-
value problem that satisfies the definition on page 16 has at least one solution.

But now another question is suggested, the question of unigueness. Does such
a problem ever have more than one solution? Let us consider the initial-value
problem
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One may verify that the functions f, and f, defined, respectively, by

filx) = 0 for all real x;
and
fox) = Bx)*2, x=0; folx) =0, x=0;

are both solutions of this initial-value problem! In fact, this problem has infinitely
many solutions! The answer to the uniqueness question is clear: the initial-value
problem, as stated, need not have a unique solution. In order to ensure unique-
ness, some additional requirement must certainly be imposed. We shall see what
this is in Theorem 1.1, which we shall now state.

THEOREM 1.1 BASIC EXISTENCE AND UNIQUENESS THEOREM

Hypothesis. Consider the differential equation
dy _
= = flx, y), (1.28)

where
1. The function f is a continuous function of x and y in some domain D of the xy
plane, and

2. The partial derivative of/dy is also a continuous function of x and y in D;
and let (x, yo) be a point in D.

Conclusion. There exists a unique solution ¢ of the differential equation (1.28), defined
on some interval |x — xo| = h, where h is sufficiently small, that satisfies the condition

d(o) = Yo. (1.29)

Explanatory Remarks. This basic theorem is the first theorem from the theory
of differential equations which we have encountered. We shall therefore attempt
to explain its meaning in detail.

1. It is an existence and uniqueness theorem. This means that it is a theorem which
tells us that under certain conditions (stated in the hypothesis) something
exists (the solution described in the conclusion) and is unigue (there is only one
such solution). It gives no hint whatsoever concerning kow to find this solution
but merely tells us that the problem has a solution.

2. The hypothesis tells us what conditions are required of the quantities involved.
It deals with two objects: the differential equation (1.28) and the point (x,
o). As far as the differential equation (1.28) is concerned, the hypothesis
requires that both the function f and the function 9f/dy (obtained by differ-
entiating f(x, y) partially with respect to y) must be continuous in some domain
D of the xy plane. As far as the point (x,, y,) is concerned, it must be a point
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in this same domain D, where f and 9f/dy are so well behaved (that is, con-
tinuous).

3. The conclusion tells us of what we can be assured when the stated hypothesis
is satisfied. It tells us that we are assured that there exists one and only one
solution ¢ of the differential equation, which is defined on some interval
lx — xo| = h centered about x, and which assumes the value y, when x takes
on the value x,. That is, it tells us that, under the given hypothesis on f(x, y),
the initial-value problem

b _
dX' _f(x’y)’

y(xO) = )’0,
has a unique solution that is valid in some interval about the initial point x,.

4. The proof of this theorem is omitted. It is proved under somewhat less re-
strictive hypotheses in Chapter 10 of the author’s Differential Equations.

5. The value of an existence theorem may be worth a bit of attention. What good
is it, one might ask, if it does not tell us how to obtain the solution? The
answer to this question is quite simple: An existence theorem will assure us
that there is a solution to look for! It would be rather pointless to spend time,
energy, and even money in trying to find a solution when there was actually
no solution to be found! As for the value of the uniqueness, it would be
equally pointless to waste time and energy finding one particular solution
only to learn later that there were others and that the one found was not the
one wanted!

We have included this rather lengthy discussion in the hope that the student,
who has probably never before encountered a theorem of this type, will obtain
a clearer idea of what this important theorem really means. We further hope
that this discussion will help him to analyze theorems which he will encounter
in the future, both in this book and elsewhere. We now consider two simple
examples which illustrate Theorem 1.1.

EXAMPLE 1.15 Emmamsssesss s

Consider the initial-value problem

Yo e
dx_x + 55
y(1) = 3.

Let us apply Theorem 1.1. We first check the hypothesis. Here f(x, y) = x? + »?
and df(x, y)/dy = 2y. Both of the functions f and 9f/dy are continuous in every
domain D of the xy plane. The initial condition y(1) = 3 means that x, = 1 and
% = 3, and the point (1, 3) certainly lies in some such domain D. Thus all
hypotheses are satisfied and the conclusion holds. That is, there is a unique
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solution ¢ of the differential equation dy/dx = x* + y2, defined on some interval
|x — 1| = h about x, = 1, which satisfies that initial condition, that is, which is
such that ¢(1) = 3.

EXAMPLE 1.16 usimmseeseslinesssssne s

Consider the two problems:

b _ ) _
L& v =2
by _y _
2. 2~ = 7 y(0) = 2.
Here
_ o, y) 1
flx,y) = W and _6y = m

These functions are both continuous except for x = 0 (that is, along the y
axis). In problem 1, x, = 1, 3, = 2. The square of side 1 centered about (1, 2)
does not contain the y axis, and so both f and df/dy satisfy the required hypotheses
in this square. Its interior may thus be taken to be the domain D of Theorem
1.1; and (1, 2) certainly lies within it. Thus the conclusion of Theorem 1.1 applies
to problem 1 and we know the problem has a unique solution defined in some
sufficiently small interval about x, = 1.

Now let us turn to problem 2. Here x, = 0, y, = 2. At this point neither f
nor df/dy are continuous. In other words, the point (0, 2) cannot be included in
adomain D where the required hypotheses are satisfied. Thus we can not conclude
from Theorem 1.1 that problem 2 has a solution. We are not saying that it does
not have one. Theorem 1.1 simply gives no information one way or the other.

EXERCISES

1. Show that
y = 4e%* + 2¢7*

is a solution of the initial-value problem

a?y by

dx? * dx 6y =0,
3(0) = 6,
y'(0) = 2.

Isy = 2¢** + 4¢3 also a solution of this problem? Explain why or why not.
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2. Given that every solution of

dy
- 4 —- —x

2 T 2xe

may be written in the form y = (x* + c)e™*, for some choice of the arbitrary

constant c, solve the following initial-value problems:

B L g A
(@) I +y = 2xe77, (b) I +y = 2xe”%,
y(0) = 2. ¥y(—1) =e¢ + 3.
3. Given that every solution of
dy _ & -
dx® dx 12y =10

may be written in the form

y = cie® + coe™,

for some choice of the arbitrary constants ¢, and ¢,, solve the following initial-
value problems:

&y b, @y _ b g
(a) It Ix 12y = 0, (b) It dx 12y = 0,
y(0) = 5, y0) = -2,
3'(0) = 6. 3'(0) = 6.
4. Every solution of the differential equation
y
o +9y=0

may be written in the form y = ¢, sin x + ¢, cos x, for some choice of the
arbitrary constants ¢; and ¢,. Using this information, show that boundary
problems (a) and (b) possess solutions but that (c) does not.

(a)j—3+y=0, (b)j%+y=0,
y(0) =0, y(0) = 1,
y(#/2) = 1. y'(®/2) = —1.
© Z—:cyg +ty=0,
y(0) = 0,

ym) = 1.
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. Given that every solution of

3 2 d
x3%—3x2%+6xd—i—ﬁy=0

may be written in the form y = ¢;x + cox? + ¢3x® for some choice of the
arbitrary constants ¢, ¢y, and cs, solve the initial-value problem consisting of
the above differential equation plus the three conditions

y2) =0, (2 =2 (@2 =6.

. Apply Theorem 1.1 to show that each of the following initial-value problems
has a unique solution defined on some sufficiently small interval [x — 1| < &
about x; = 1:

d_ ag b __
@ g = * sy, ®) =i

y(1) = —2. y(1)

. Consider the initial-value problem

d
= Py + Q).

y(2) =5,

where P(x) and Q(x) are both third-degree polynomials in x. Has this problem
a unique solution on some interval |x — 2| < & aboutx, = 2? Explain why or
why not.

. In this section we stated that the initial-value problem

,d_y — 1/3
dx o
3(0) = 0,

has infinitely many solutions.
(a) Verify that this is indeed the case by showing that

_Jo, x =g,
Y T B - oP?,  x=e

is a solution of the stated problem for every real number ¢ = 0.
(b) Carefully graph the solution for which ¢ = 0. Then, using this particular
graph, also graph the solutions for which¢ = 1,¢ = 2, and ¢ = 3.



First-Order Equations for
Which Exact Solutions
Are Obtainable

In this chapter we consider certain basic types of first-order equations for which
exact solutions may be obtained by definite procedures. The purpose of this
chapter is to gain the ability to recognize these various types and to apply the
corresponding methods of solutions. Of the types considered here, the so-called
exact equations considered in Section 2.1 are in a sense the most basic, while the
separable equations of Section 2.2 are in a sense the “easiest.” The most impor-
tant, from the point of view of applications, are the separable equations of Section
2.2 and the linear equations of Section 2.3. The remaining types are of various
very special forms, and the corresponding methods of solution involve various
devices. In short, we might describe this chapter as a collection of special “meth-
ods,” “devices,” “tricks,” or “recipes,” in descending order of kindness!

2.1 EXACT DIFFERENTIAL EQUATIONS AND
INTEGRATING FACTORS

A. Standard Forms of First-Order

Differential Equations

The first-order differential equations to be studied in this chapter may be ex-
pressed in either the derivative form

dy _
= fey) @.1)
or the differential form
M(x, y) dx + N(x,y)dy = 0. (2.2)

An equation in one of these forms may readily be written in the other form.
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For example, the equation
2

by _ %ty

dx x —y
is of the form (2.1). It may be written
x* + yY)dx + (y —x)dy = 0,
which is of the form (2.2). The equation
(sinx + y)dx + (x + 3y)dy = 0,
which is of the form (2.2), may be written in the form (2.1) as

dy  sinx +y
de  x+ 3
In the form (2.1) it is clear from the notation itself that y is regarded as the
dependent variable and x as the independent one; but in the form (2.2) we may
actually regard either variable as the dependent one and the other as the in-
dependent. However, in this text, in all differential equations of the form (2.2)
in x and y, we shall regard y as dependent and x as independent, unless the
contrary is specifically stated.

B. Exact Differential Equations

DEFINITION

Let F be a function of two real variables such that F has continuous first partial
derivatives in a domain D. The total differential dF of the function F is defined by the
Jformula

F(x, F(x,
dF(x,y) = 9, y) f;;y)dx + 9, ) f;c y)dy

Jor all (x, y) € D.

EXAMPLE 2.1 s eswnaas i nesrrsnasTm
Let F be the function of two real variables defined by

F(x,y) = xy? + 2x%
for all real (x, y). Then

oF (x, y)
ax

aF (x, y) _

— o2 2
y? + 6x°%, Py

2xy + 2x3,

and the total differential dF is defined by
dF(x,y) = (y? + 6x%) dx + (2xy + 2x%) dy

for all real (x, y).
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DEFINITION

The expression
M(x, y) dx + N(x,y) dy (2.3)

is called an exact differential in a domain D if there exists a function F of two real
variables such that this expression equals the total differential dF(x, y) for all (x, y) € D.
That is, expression (2.3) is an exact differential in D if there exists a function F such that

oF(x, y)

_ oF(x,y)
ax - M(x’ y) and ay - N(x’ y)

for all (x,y) € D.
If M(x, y) dx + N(x, y) dy is an exact differential, then the differential equation
M(@x,y)dx + N@x,y)dy = 0

is called an exact differential equation.

EXAMPLE 2.2 mammmsammemnnnnnisnirisinmsainmeinenme
The differential equation
y2dx + 2xydy = 0 (2.4)

is an exact differential equation, since the expression y? dx + 2xy dy is an exact
differential. Indeed, it is the total differential of the function F defined for all
(x,y) by F(x,y) = xy2, since the coefficient of dx is dF(x, y)/(6x) = y? and that of
dy is 0F (x,y)/(dy) = 2xy. On the other hand, the more simple appearing equation

ydx + 2xdy = 0, (2.5)
obtained from (2.4) by dividing through by y, is not exact.

In Example 2.2 we stated without hesitation that the differential equation
(2.4) is exact but that the differential equation (2.5) is not. In the case of Equation
(2.4), we verified our assertion by actually exhibiting the function F of which the
expression y? dx + 2xy dy is the total differential. But in the case of Equation
(2.5), we did not back up our statement by showing that there is no function F
such that y dx + 2x dy is its total differential. It is clear that we need a simple
test to determine whether or not a given differential equation is exact. This is
given by the following theorem.

THEOREM 2.1
Consider the differential equation
M(x,y)dx + N(x,y)dy = 0, (2.6)

where M and N have continuous first partial derivatives at all points (x,y) in a rectangular
domain D.
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1. If the differential equation (2.6) is exact in D, then

aM(x,y) _ ON(x,9)
ady T

(2.7)

for all (x, y) € D.

2. Conversely, if
OM(x,y)  9N(x,y)

dy x
Jor all (x, y) € D, then the differential equation (2.6) is exact in D.

Proof. Part 1. If the differential equation (2.6) is exact in D, then M dx + N dy
is an exact differential in D. By definition of an exact differential, there exists a
function F such that

dF (x, y)
ax

for all (x, y) € D. Then

PF(x,y) _ M, y) and PF,y) _ N, y)
dy ox ady ox dy ox

= M(x,y) and

dF (x, y) _
—ay N, y)

for all (x, y) € D. But, using the continuity of the first partial derivatives of M
and N, we have
*F(x,y) _ 9°F(x,y)
dy ox dx dy

and therefore
oM (x, y) _ N (x, y)
dy ox

for all (x, y) € D.
Part 2. This being the converse of Part 1, we start with the hypothesis that
OM(x,y) _ ON(x,y)
ady ox

for all (x, y) € D, and set out to show that M dx + N dy = 0 is exact in D. This
means that we must prove that there exists a function F such that

oF (x,

LED - M, ) 2.8)
and

W - N, y) 2.9)

for all (x, y) € D. We can certainly find some F (x, y) satisfying either (2.8) or (2.9),
but what about both? Let us assume that F satisfies (2.8) and proceed. Then

Flx,y) = f M, y) o + 6(), (2.10)
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where [ M(x, y) ox indicates a partial integration with respect to x, holding y
constant, and ¢ is an arbitrary function of y only. This ¢(y) is needed in (2.10)
so that F(x, y) given by (2.10) will represent all solutions of (2.8). It corresponds
to a constant of integration in the “one-variable” case. Differentiating (2.10)
partially with respect to y, we obtain

OF(x,y) _ ¢>(y)
P fM( y) 9x + .
Now if (2.9) is to be satisfied, we must have
N(x, ) = ——fM(x y) ox + d’;y) @.11)

and hence

d d
%22 = Nx,y) — a—ny(x»J’) 0x.

Since ¢ is a function of y only, the derivative d¢/dy must also be independent of
x. That is, in order for (2.11) to hold,

N, y) — a%fM(x, y) ox (2.12)

must be independent of x.
We shall show that

9 ad
™ [N(x,y) - 5§fM(x,y) ax] = 0.

We at once have
9 9 _ ON(x,y) & J’
P [N(x, y) p f M(x, y) ax] = o o % M(x, y) ox.

If (2.8) and (2.9) are to be satisfied, then using the hypothesis (2.7), we must
have

2 2
_ 9F(y) _ PFEY) _ f M, ) o
dx dy dy ox By ox
Thus we obtain
9 _ 0 _ ON@&,y) f
P [N(x, ¥) p fM(x, y) ax] i By W Mi(x, y) ox

and hence

9 9 _ ON(x,y)  oM(x,y)
. [N(x, y) P fM(x, ¥) ax] o P

But by hypothesis (2.7),
OM(x,y) _ ON(x,y)

dy ax
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for all (x, y) € D. Thus
%c [N(x,y) - %fM(x,y) &x] =0
for all (x, y) € D, and so (2.12) is independent of x. Thus we may write
o) = | [N(x, » - | %;‘—y—’ Gx] &,
Substituting this into Equation (2.10), we have

Fey) = [ My as + [ [N(x, »- | %;:’—l)ax] b (@13)

This F(x, y) thus satisfies both (2.8) and (2.9) for all (x, y) € D, and so M dx +
N dy = 0 is exact in D. Q.E.D.

Students well versed in the terminology of higher mathematics will recognize
that Theorem 2.1 may be stated in the following words: A necessary and sufficient
condition that Equation (2.6) be exact in D is that condition (2.7) hold for all (x, y)
€ D. For students not so well versed, let us emphasize that condition (2.7),

oM (x,y) _ ON(x,y)
y

is the criterion for exactness. If (2.7) holds, then (2.6) is exact; if (2.7) does not
hold, then (2.6) is not exact.

EXAMPLE 2.3 s e s

We apply the exactness criterion (2.7) to Equations (2.4) and (2.5), introduced
in Example 2.2. For the equation
ydx + 2xydy = 0 (2.4)
we have
M(x,y) =%  Nx,y) = 2xy,

aM(x, y) — 9y = ON (x, 2)
ady ) ox

for all (x, y). Thus Equation (2.4) is exact in every rectangular domain D. On the
other hand, for the equation

ydx + 2xdy = 0, (2.5)
we have
M@x,y) =y, N,y = 2x,

M) _ | o NG 2)
dy ox

for all (x, y). Thus Equation (2.5) is not exact in any rectangular domain D.
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EXAMPLE 24 Emsammianmmnsmmnnninarasnmannannsms
Consider the differential equation
(2xsiny + y%*) dx + (x> cosy + 3y%*)dy = 0.

Here

M(x,y) = 2x siny + %",

N(x,y) = x?cosy + 3y,

oM (x, y) ON (%, y)
dy ox

in every rectangular domain D. Thus this differential equation is exact in every
such domain.

= 2x cosy + 3% =

These examples illustrate the use of the test given by (2.7) for determining
whether or not an equation of the form M(x, y) dx + N(x, y) dy = 0 is exact. It
should be observed that the equation must be in the standard form M(x, y) dx +
N(x, y) dy = 0 in order to use the exactness test (2.7). Note this carefully: an
equation may be encountered in the nonstandard form M(x, y) dx = N(x, y) dy,
and in this form the test (2.7) does not apply.

C. The Solution of Exact Differential Equations

Now that we have a test with which to determine exactness, let us proceed to
solve exact differential equations. If the equation M(x, y) dx + N(x,y) dy = O is
exact in a rectangular domain D, then there exists a function F such that

oF (x, y) oF (x, y)
dy

- M(x,y) and

= N(x,y) for all (x,y) € D.

Then the equation may be written

dF (x, y) dx + dF (x, y)
ox 0

dy = 0 orsimply dF(x,y) = 0.

The relation F(x, y) = ¢ is obviously a solution of this, where ¢ is an arbitrary
constant. We summarize this observation in the following theorem.

THEOREM 2.2

Suppose the differential equation M(x, y) dx + N(x,y) dy = O satisfies the differentiability
requirements of Theorem 2.1 and is exact in a rectangular domain D. Then a one-parameter
Sfamily of solutions of this diferential equation is given by F(x,y) = c, where F is a function
such that

oF (x, y)
0x

= M(x,y) and

w = N(x,y) forall (x,y) € D.

and c is an arbitrary constant.
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Referring to Theorem 2.1, we observe that F(x, y) is given by formula (2.13).
However, in solving exact differential equations it is neither necessary nor de-
sirable to use this formula. Instead one obtains F(x, y) either by proceeding as
in the proof of Theorem 2.1, Part 2, or by the so-called “method of grouping,”
which will be explained in the following examples.

EXAMPLE 2.5 o S e

Solve the equation
(3x2 + 4xy) dx + (2x2 + 2y)dy = 0.

Our first duty is to determine whether or not the equation is exact. Here
M(x,y) = 3x? + 4xy, N(x,y) = 2x2 + 2y,

oM (x, y) = 4x, ON(x, y) = 4x,
0y ox
for all real (x, y), and so the equation is exact in every rectangular domain D.
Thus we must find F such that

oF (x, y)

OF (x, y)
= = 2 —_—
™ M(x,y) = 3x* + 4xy and P

= N(x,y) = 2x* + 2y.
From the first of these,

F(x,y) = fM(x,y) ox + ¢(y) = f(3x2 + 4xy) ox + @(y)
= x% + 2x% + @(y).
Then
FE,y) _ g0 , 490
ot

dy ly
But we must have

9, y) = N(x,y) = 2x? + 2y.

dy
Thus
2x2+2y=2x2+%
or
ag(y) _
_dy = 2.

Thus ¢(y) = y? + ¢, where ¢, is an arbitrary constant, and so
F(x,y) = x* + 2x% + 9% + ¢,.
Hence a one-parameter family of solution is F(x, y) = ¢,, or

x3 + 2x%y 4+ 92 4+ ¢ = ¢).
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Combining the constants ¢, and ¢, we may write this solution as
x® + 2x% + 9?2 = ¢,
where ¢ = ¢; — ¢, is an arbitrary constant. The student will observe that there

is no loss in generality by taking ¢, = 0 and writing ¢(y) = y%. We now consider
an alternative procedure.

Method of Grouping. We shall now solve the differential equation of this example
by grouping the terms in such a way that its left member appears as the sum of
certain exact differentials. We write the differential equation

(3x% + 4xy) dx + (2x2 + 2y)dy = 0
in the form
3x2dx + (dxy dx + 2x2dy) + 2ydy = 0.

We now recognize this as
dx® + d(2x%) + d(y?) = d(c),
where ¢ is an arbitrary constant, or

dx® + 2x% + 9?)

d(c).
From this we have at once
%3+ 2x% + 92 = ¢

Clearly this procedure is much quicker, but it requires a good “working knowl-
edge” of differentials and a certain amount of ingenuity to determine just how
the terms should be grouped. The standard method may require more “work”
and take longer, but it is perfectly straightforward. It is recommended for those
who like to follow a pattern and for those who have a tendency to jump at
conclusions.

Just to make certain that we have both procedures well in hand, we shall
consider an initial-value problem involving an exact differential equation.

EXAMPLE 2.6 Sl e e
Solve the initial-value problem

(2x cosy + 3x%)dx + (x> — x2siny — y)dy = 0,

y(0) = 2.
We first observe that the equation is exact in every rectangular domain D, since
M (x, : N (x,
M, p) _ —2xsiny + 3x? = N, y)
9y 0x

for all real (x, y).
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Standard Method. We must find F such that

ina’;;ﬂ = M(x,y) = 2x cosy + 3x?%
and
_BFg;,y) = N(x,y) = x* — x%siny — y.
Then
Fex, y) = f M, y) &% + 6(y)
= f(?x cosy + 3x%) ox + ¢(y)
=x2cosy + x% + P(y),
F@wy) _ _ o siny + x + do(y)
& b
But also
aFf;;,y) — N(x,y) — x3 — x2 Slny — y
and so
a¢(y) _
dy 4
and hence
y?
¢(y) = ——2‘ + Co.
Thus
%
F(x,y) = x?cosy + x% — g o

Hence a one-parameter family of solutions is F(x,y) = ¢,, which may be expressed
as

2
x? cosy + x% —--}é—=c.

Applying the initial condition y = 2 when x = 0, we find ¢ = —2. Thus the
solution of the given initial-value problem is
2

x?cosy + x’y — -}é—= -2.

Method of Grouping. We group the terms as follows:
(2x cosydx — x*sinydy) + (Bx*ydx + x*dy) — ydy = 0.
Thus we have

d(x? cos y) + d(x%) — d()é—?) = d(c);
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and so
52
x?cosy +x*y —— =¢
2
is a one-parameter family of solutions of the differential equation. Of course the

initial condition y(0) = 2 again yields the particular solution already obtained.

D. Integrating Factors
Given the differential equation

M(x,y)dx + N(x,y) dy = 0,
if
OM(x,y) _ ON(x,y)
dy o

then the equation is exact and we can obtain a one-parameter family of solutions
by one of the procedures explained above. But if
M, y) , IN(, )
dy ox

then the equation is not exact and the above procedures do not apply. What shall
we do in such a case? Perhaps we can multiply the nonexact equation by some
expression that will transform it into an essentially equivalent exact equation. If
so, we can proceed to solve the resulting exact equation by one of the above
procedures. Let us consider again the equation

ydx + 2xdy = 0, (2.5)

which was introduced in Example 2.2. In that example we observed that this
equation is not exact. However, if we multiply Equation (2.5) by y, itis transformed
into the essentially equivalent equation

y2dx + 2xydy = 0, (2.4)

which is exact (see Example 2.2). Since this resulting exact equation (2.4) is
integrable, we call y an integrating factor of Equation (2.5). In general, we have
the following definition:

DEFINITION
If the differential equation
M(x,y)dx + N(x,y)dy = 0 (2.14)
is not exact in a domain D but the differential equation
pex, )M, y) dx + px, y)N(x, y) dy = 0 (2.15)

is exact in D, then u(x, y) is called an integrating factor of the differential equation
2.14).
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EXAMPLE 2.7 s rrniriisnnssinisssesisisrrmmnemn
Consider the differential equation
3y + 4xy?) dx + (2x + 3x%*)dy = 0. (2.16)
This equation is of the form (2.14), where
M(x,y) = 3y + 4xy?, N(x,y) = 2x + 3x%,
NGy _

. T=3+8xy, ™ —2+6xy.
Since
M(x,y) , IN(x, )
dy ox

except for (x, y) such that 2xy + 1 = 0, Equation (2.16) is not exact in any
rectangular domain D.
Let u(x, y) = x%y. Then the corresponding differential equation of the form
(2.15) is
(3x%y? + 4x%%) dx + (2x3y + 3x*?) dy = 0.
This equation is exact in every rectangular domain D, since

ofux, M(x, )] _ _ olutx, )N, y)]
P = 6x% + 12x%?% = ™

for all real (x, y). Hence u(x, y) = x? is an integrating factor of Equation (2.16).

Multiplication of a nonexact differential equation by an integrating factor
thus transforms the nonexact equation into an exact one. We have referred to
this resulting exact equation as “essentially equivalent” to the original. This so-
called essentially equivalent exact equation has the same one-parameter family
of solutions as the nonexact original. However, the multiplication of the original
equation by the integrating factor may result in either (1) the loss of (one or
more) solutions of the original, or (2) the gain of (one or more) functions which
are solutions of the “new” equation but not of the original, or (3) both of these
phenomena. Hence, whenever we transform a nonexact equation into an exact
one by multiplication by an integrating factor, we should check carefully to
determine whether any solutions may have been lost or gained. We shall illustrate
an important special case of these phenomena when we consider separable equa-
tions in Section 2.2. See also Exercise 22 at the end of this section.

The question now arises: How is an integrating factor found? We shall not
attempt to answer this question at this time. Instead we shall proceed to a study
of the important class of separable equations in Section 2.2 and linear equations
in Section 2.3. We shall see that separable equations always possess integrating
factors that are perfectly obvious, while linear equations always have integrating
factors of a certain special form. We shall return to the question raised above in
Section 2.4. Our object here has been merely to introduce the concept of an
integrating factor.
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EXERCISES

In Exercises 1-10 determine whether or not each of the given equations is exact;
solve those that are exact.

(3x + 2y)dx + (2x + y)dy = 0.

(y> + 3)dx + (2xy — 4)dy = 0.

(2xy + 1)dx + (x* + 4y)dy = 0.

(Bx% + 2)dx — (x* + y)dy = 0.

(6xy + 2y? — 5)dx + (3x% + 4xy — 6)dy = 0.
(6* + Dcosrdr + 20 sinr df = 0.

(y sec?x + secx tanx)dx + (tanx + 2y)dy = 0.

2
(y%-l—x)dx+(§-§+y>dy=0.
- _ 42
9. (2st l)ds+<s tQS)dt=O.

3/2 + 1
Qdex + (3x"%M2 — 1) dy = 0.

NS g »® N

e

10.

Solve the initial-value problems in Exercises 11-16.

11. 2xy — 3)dx + (x> + 49)dy = 0, (1) = 2.
12. (3x%? — y® + 2x)dx + (2x% — 3xy? + 1)dy = 0, y(—-2) = L
13. (2y sinx cos x + y?sinx) dx + (sin®’x — 2ycosx)dy = 0,  y(0) = 3.
14. (ye* + 2¢* + 99 dx + (e + 2xy)dy = 0,  y(0) = 6.
3 -9y 32 — 2x
15. ( = )dx+ ( > )dy=0, y=1) =2

1 + 8xy2/3 QX432 _ I3
16. x2/3y1/)‘; dx + yym. dy = 0, y(1) = 8.

17. In each of the following equations determine the constant A such that the
equation is exact, and solve the resulting exact equation:

(@) (* + 3xy) dx + (Ax* + 4y)dy = 0.

1 1 Ax + 1
(b) (;,+§§)dx+( > )dy—O.




18.

19.

20.

21.

22.

23.

24.
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In each of the following equations determine the constant A such that the
equation is exact, and solve the resulting exact equation:
(@) (Ax% + 2y?)dx + (x* + 4xy) dy = 0.
R 1 D, -
o (2 2)u (5 gm0
In each of the following equations determine the most general function
N(x, y) such that the equation is exact:
(@) * + xy?)dx + N(x,y)dy = 0.
(b) %2+ xy%dx + N(x,y)dy = 0.

In each of the following equations determine the most general function
M(x, ) such that the equation is exact:
(@) M(x,y) dx + (2x%® + x*) dy = 0.
(b) M(x, y) dx + (29" + y%*)dy = 0.

Consider the differential equation
(4x + 3y%) dx + 2xydy = 0.

(a) Show that this equation is not exact.

(b) Find an integrating factor of the form x", where 7 is a positive integer.

(c) Multiply the given equation through by the integrating factor found in
step (b) and solve the resulting exact equation.

Consider the differential equation

(y? + 2xy) dx — x?dy = 0.

(a) Show that this equation is not exact.

(b) Multiply the given equation through by y", where # is an integer, and
then determine » so thaty” is an integrating factor of the given equation.

(c) Multiply the given equation through by the integrating factor found in
step (b) and solve the resulting exact equation.

(d) Show thaty = 0 is a solution of the original nonexact equation but
is not a solution of the essentially equivalent exact equation found in
step ().

(e) Graph several integral curves of the original equation, including all
those whose equations are (or can be written) in some “special” form.

Consider a differential equation of the form
[y + xf(x® + y)]dx + [yf(x* + %) — x]dy = 0.

(a) Show that an equation of this form is not exact.
(b) Show that 1/(x?> + y?) is an integrating factor of an equation of this
form.

Use the result of Exercise 23(b) to solve the equation

[y + x(x? + y3)% dx + [y(x? + y2)? — x]dy = 0.
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2.2 SEPARABLE EQUATIONS AND EQUATIONS
REDUCIBLE TO THIS FORM

A. Separable Equations

DEFINITION
An equation of the form
F@G(y) dx + f()g(y) dy = 0 (2.17)

is called an equation with variables separable or simply a separable equation.

For example, the equation (x — 4)y* dx — x3(y? — 3) dy = 0 is a separable
equation.

In general the separable equation (2.17) is not exact, but it possesses an
obvious integrating factor, namely 1/f(x)G(y). For if we multiply Equation (2.17)
by this expression, we separate the variables, reducing (2.17) to the essentially
equivalent equation

F(x) 80) . —
5 dx + G(y) dy = 0. (2.18)

This equation is exact, since

2] 2 [e0)
oy Lfx) ax |Gy ]

Denoting F(x)/f(x) by M(x) and g(y)/G(y) by N(y), Equation (2.18) takes the form
M(x) dx + N(y) dy = 0. Since M is a function of x only and N is a function of y
only, we see at once that a one-parameter family of solutions is

fM(x) dx + fN(y) dy = ¢, (2.19)

where ¢ is the arbitrary constant. Thus the problem of finding such a family of
solutions of the separable equation (2.17) has reduced to that of performing the
integrations indicated in Equation (2.19). It is in this sense that separable equa-
tions are the simplest first-order differential equations.

Since we obtained the separated exact equation (2.18) from the nonexact
equation (2.17) by multiplying (2.17) by the integrating factor 1/f(x)G(y), solu-
tions may have been lost or gained in this process. We now consider this more
carefully. In formally multiplying by the integrating factor 1/f(x)G(y), we actually
divided by f(x)G(y). We did this under the tacit assumption that neither f(x) nor
G(y) is zero; and, under this assumption, we proceeded to obtain the one-pa-
rameter family of solutions given by (2.19). Now, we should investigate the
possible loss or gain of solutions that may have occurred in this formal process.
In particular, regarding y as the dependent variable as usual, we consider the
situation that occurs if G(y) is zero. Writing the original differential equation
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(2.17) in the derivative form

d
f®g® 7 + F®Go) = 0,

we immediately note the following: If y, is any real number such that G(y,) =
0, then y = y, is a (constant) solution of the original differential equation; and
this solution may (or may not) have been lost in the formal separation process.

In finding a one-parameter family of solutions of a separable equation, we
shall always make the assumption that any factors by which we divide in the
formal separation process are not zero. Then we must find the solutions y = y,
of the equation G(y) = 0 and determine whether any of these are solutions of
the original equation which were lost in the formal separation process.

EXAMPLE 2.8 mmEmsee
Solve the equation

(x — 4)y*dx — x3(y% — 3)dy = 0.
The equation is separable; separating the variables by dividing by x*y*, we obtain

(= 4dx (P = dy _
Nd_

x3 y 0

or
(x~ 2 —4x7%dx — (y2— 3 Hdy = 0.

Integrating, we have the one-parameter family of solutions
1 2 1

T a2 W3

1
x  x2 0y 0y

=c,

where ¢ is the arbitrary constant.
In dividing by x3* in the separation process, we assumed that x* # 0 and

y* # 0. We now consider the solutiony = 0 of y* = 0. It is not a member of the
one-parameter family of solutions which we obtained. However, writing the
original differential equation of the problem in the derivative form

dy _ (x = 4y

dx  x%y%* — 3)’
it is obvious that y = 0 is a solution of the original equation. We conclude that
it is a solution which was lost in the separation process.

EXAMPLE 2.9 mEmeaEme e
Solve the initial-value problem that consists of the differential equation

xsinydx + (x2 + 1) cosydy = 0 (2.20)
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and the initial condition
n
y(1) = 5 (2.21)

We first obtain a one-parameter family of solutions of the differential equation
(2.20). Separating the variables by dividing by (x> + 1) sin y, we obtain

x cosy , _
x2+ldx+sinydy 0

x dx cosy .,
fx2+ 1 +fsinydy_co’

where ¢, is an arbitrary constant. Recall that

du_ _Ju if uZO,
fu =Inlfu + C and |u|—{_u £ u=o0.

Thus

Then, carrying out the integrations, we find
$In(x® + 1) + Insiny| = c. (2.22)

We could leave the family of solutions in this form, but we can put it in a neater
form in the following way. Since each term of the left member of this equation
involves the logarithm of a function, it would seem reasonable that something
might be accomplished by writing the arbitrary constant ¢, in the form In |c,|.
This we do, obtaining

$In(x®> + 1) + In|siny| = In |¢)].
Multiplying by 2, we have

In(x2 + 1) + 21n |siny| = 21n ||

Since
2 In [sin y| = In (sin y)?,
and
2Inic,l =Ilnc? =Ing,
where
c=c3=0,

we now have
In(x? + 1) + Insin’y = Inc.

Since In A + In B = In AB, this equation may be written
In (x? + 1)sin®’y = Inec.
From this we have at once
(*x? + 1)sin?y = c. (2.23)

Clearly (2.23) is of a neater form than (2.22).
In dividing by (x> + 1)sin y in the separation process, we assumed that sin
y # 0. Now consider the solutions of siny = 0. These are given by y = nn (n =
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0, =1, =2, ...). Writing the original differential equation (2.20) in the derivative
form, it is clear that each of these solutions y = na(n = 0, 1, +2, ...) of sin
y = 0 is a constant solution of the original differential equation. Now, each of
these constant solutions y = nz is a member of the one-parameter family (2.23)
of solutions of (2.20) for ¢ = 0. Thus none of these solutions was lost in the
separation process.

We now apply the initial condition (2.21) to the family of solutions (2.23).
We have

(12 + Dsin® = =¢

o

and so ¢ = 2. Therefore the solution of the initial-value problem under consid-
eration is

(x? + 1)sin?y = 2.

B. Homogeneous Equations
We now consider a class of differential equations that can be reduced to separable
equations by a change of variables.

DEFINITION

The first-order differential equation M(x, y) dx + N(x, y) dy = 0 is said to be
homogeneous if, when written in the derivative form (dy/dx) = f(x, y), there exists a
Sfunction g such that f(x, y) can be expressed in the form g(y/x).

EXAMPLE 2.10 e e ereenean

The differential equation (x* — 3y?) dx + 2xy dy = 0 is homogeneous. To see

this, we first write this equation in the derivative form
dy  3y? — x?
dx 2xy

Now observing that

M=3_y__x_=§<z) _1<L)

2xy 2x 2y 2 \x 2 \y/x)’

we see that the differential equation under consideration may be written as
by _3 (y) _1 (L)
dx 2 \x 2 \y/x)’

in which the right member is of the form g(y/x) for a certain function g.

EXAMPLE 2.11 s mmninunsmnssnnenmmens

The equation

(y + Va2 + y%)dx —xdy = 0
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is homogeneous. When written in the form
by 3+ VIR
dx x ’

the right member may be expressed as

y  Valt+y?
— t —_—
x TVl

or

2
2:\/1+<2),
X X

depending on the sign of x. This is obviously of the form g(y/x).

Before proceeding to the actual solution of homogeneous equations we shall
consider a slightly different procedure for recognizing such equations. A function
F is called homogeneous of degree n if F(tx, ty) = t"F(x, y). This means that if tx and
ty are substituted for x and y, respectively, in F(x, y), and if ¢" is then factored
out, the other factor that remains is the original expression F(x, y) itself. For
example, the function F given by F(x,y) = x? + y? is homogeneous of degree 2,
since

F(tx, ty) = (tx)? + (ty)® = 3(x* + y2) = t*F(x, y).

Now suppose the functions M and N in the differential equation M(x, y)
dx + N(x, y) dy = 0 are both homogeneous of the same degree n. Then since
M(tx, ty) = t"M(x, y), if we lett = 1/x, we have

1 1 1\"
M(;-x,;-y) = (;) M(x, y).

Clearly this may be written more simply as

1 n
(1) (e

and from this we at once obtain

M(x,y) = (%) M(l, %)
_ (1™ y
Nx,y) = : N l’x .

Now writing the differential equation M(x, y) + N(x, y) dy = 0 in the form

dy _ Mk )
dx N(x,y)°

Likewise, we find
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, )y (Y
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Clearly the expression on the right is of the form g(y/x), and so the equation
M(x,y)dx + N(x,y) dy = 0is homogeneous in the sense of the original definition
of homogeneity. Thus we conclude that if M and N in M(x, y) dx + N(x,y) dy =
0 are both homogeneous functions of the same degree n, then the differential
equation is a homogeneous differential equation.

Let us now look back at Examples 2.10 and 2.11 in this light. In Example
2.10, M(x, y) = x* — 3y?and N(x, y) = 2xy. Both M and N are homogeneous of
degree 2. Thus we know at once that the equation (x2 — 3y?) dx + 2xy dy = 0
is a homogeneous equation. In Example 2.11, M(x, y) = y + Vx? + y? and
N(x,y) = —x. Clearly N is homogeneous of degree 1. Since

M(tx, ty) = ty + V(tx)? + (ty)? = t(y + Va2 + %) = t!M(x, y),

we see that M is also homogeneous of degree 1. Thus we conclude that the
equation

we find

(y + Vx2 + 9% dx —xdy =0

is indeed homogeneous.
We now show that every homogeneous equation can be reduced to a sep-
arable equation by proving the following theorem.

THEOREM 2.3

If
M(x,y)dx + N(x,y)dy = 0 (2.24)

is @ homogeneous equation, then the change of variables y = vx transforms (2.24) into a
separable equation in the variables v and x.

Proof. Since M(x, y) dx + N(x, y) dy = 0 is homogeneous, it may be written in
the form

Lety = vx. Then

d dv
I =v +x E
and (2.24) becomes
v+ x (-@ = g()
dx

or
[v — gw)]dx + xdv = 0.
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This equation is separable. Separating the variables we obtain

_dv + dx = 0. (2.25)
v — g() X
Q.E.D.

Thus to solve a homogeneous differential equation of the form (2.24), we
let y = vx and transform the homogeneous equation into a separable equation
of the form (2.25). From this, we have

J’ dv dx
— + | = =g
v — gv) x

where ¢ is an arbitrary constant. Letting F(v) denote

f v —dlg},f(v)

and returning to the original dependent variable y, the solution takes the form

F(Z) + In|x| = c.
x

EXAMPLE 2.12 Eraminnisise e e
Solve the equation
(x2 — 3y dx + 2xydy = 0.

We have already observed that this equation is homogeneous. Writing it in the
form

h_ _x .Yy
dx 2y 2x
and letting y = vx, we obtain
v+ X w_ - + il
dx 2v ’
or
N
d« 20 2
or, finally,
. dv _v* -1
dx 2v
This equation is separable. Separating the variables, we obtain

2vdv_d_x
-1 x°
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Integrating, we find
Info? — 1| = In |x| + In ||,
and hence
|v2 - ll = |cx|,

where ¢ is an arbitrary constant. The reader should observe that no solutions
were lost in the separation process. Now, replacing v by y/x we obtain the solutions
in the form

2
3% - ‘ = |ex|
or
b? = ] = laslit.

If y = x = 0, then this may be expressed somewhat more simply as

3?2 — x2 = cxb.

EXAMPLE 2.13 i
Solve the initial-value problem
(y + Va2 + 93 dx — xdy = 0,
y1) = 0.

We have seen that the differential equation is homogeneous. As before, we write
it in the form

dy_)""m
dx x ’

Since the initial x value is 1, we consider x > 0 and take x = Vx2 and obtain
2
D2y \/1+(2).
dx x X
We let y = vx and obtain

dv
v+x—=v+ VI + 2

dx
or
x % = V1 + ?
Separating variables, we find
dv__ _ dx
Vo +1 x°

Using tables, we perform the required integrations to obtain

Inlv + Vo2 + 1| = In |x| + In ||,
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or

v+ Vvui+1=cx

Now replacing v by y/x, we obtain the general solution of the differential equation
in the form

+4L +1 =

] N

or

y + \/m = ¢x%
The initial condition requires that y = 0 when x = 1. This gives ¢ = 1, and
hence

3+ VAT = a2,

from which it follows that
y = 2(* — 1)

EXERCISES

Solve each of the differential equations in Exercises 1-14.

cdxydx + (x* + 1)dy = 0.

(ky + 2x +y + 2)dx + (x* + 2x)dy = 0.
c2r(s2 + Ddr + (* + 1) ds = 0.

. cscydx + secxdy = 0.

.tan0dr + 2rdf = 0.

. (¢ + Dcosudu + e’sinu + 1)dv = 0.
e+ 9O+ Ddx + yx® + 3x + 2)dy = 0.
(x +y)dx —xdy = 0.

2%y + 3y?) dx — (2xy + x?) dy = 0.

v¥du + W® — ww?)dv = 0.

© PO NS TR BN

ol
e

11. (xtan% +y> dx — xdy = 0.
12. (25 + 2st + t¥)ds + (s2 + 25t — t3) dt = 0.
13. (¢ + 9% Vx? + y%) dx — xy Va® + y2dy = 0.

14.(\/x+y+\/x—y)dx+(\/x—y—\/x+y)dy=O.
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Solve the initial-value problems in Exercises 15—-20.

15.
16.

17.
18.
19.
20.
21.

22.

23.

24.

25.

26.

27.

(y +2)dx +yx + 4)dy=0, 9y-3)= -1

8 cos?ydx + csc2xdy = 0, y<1—n2> =

(3x + 8)(»? + 4)dx — 4y(x* + bx + 6)dy = 0, y(1) = 2.
(x2 + 3y%)dx — 2xydy = 0, y(2) = 6.

(2x — 5y)dx + (4x — y)dy = 0, y(1) = 4.

(3x? + 9xy + 5y?)dx — (6x% + 4xy)dy = 0, y(2) = —6.

NG

(a) Show that the homogeneous equation
(Ax + By)dx + (Cx + Dy)dy = 0

is exact if and only if B = C.
(b) Show that the homogeneous equation

(Ax2 + Bxy + Cy?)dx + (Dx? + Exy + Fy?) dy = 0
is exact if and only if B = 2D and E = 2C.

Solve each of the following by two methods (see Exercise 21(a)):
(@) (x + 2y)dx + 2x —y)dy = 0.
(b) Bx —y)dx — (x +y)dy = 0.

Solve each of the following by two methods (see Exercise 21(b)):

(a) (x? + 29%)dx + (4xy — y®)dy = 0.

(b) (2x? + 2xy + y?) dx + (x? + 2xy)dy = 0.

(a) Prove that if M dx + N dy = 0 is a homogeneous equation, then the
change of variables x = wuy transforms this equation into a separable
equation in the variables « and x.

(b) Use the result of (a) to solve the equation of Example 2.12 of the text.
(c) Use the result of (a) to solve the equation of Example 2.13 of the text.

Suppose the equation M dx + N dy = 0 is homogeneous. Show that the
transformation x = r cos 6, y = 7 sin @ reduces this equation to a separable
equation in the variables r and 6.

(a) Use the method of Exercise 25 to solve Exercise 8.
(b) Use the method of Exercise 25 to solve Exercise 9.

Suppose the equation
Mdx + Ndy = 0 (A)

is homogeneous.
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(a) Show that Equation (A) is invariant under the transformation
X = kC, y = k” ’ (B )

where % is a constant.
(b) Show that the general solution of Equation (A) can be written in the

form
= )
- C¢ (x) ’ (C)

where ¢ is an arbitrary constant.

(c) Use the result of (b) to show that the solution (C) is also invariant under
the transformation (B).

(d) Interpret geometrically the results proved in (a) and (c).

2.3 LINEAR EQUATIONS AND
BERNOULLI EQUATIONS

A. Linear Equations

In Chapter 1 we gave the definition of the linear ordinary differential equation
of order n; we now consider the linear ordinary differential equation of the first
order.

DEFINITION

A first-order ordinary differential equation is linear in the dependent variable y and
the independent variable x if it is, or can be, written in the form

dy
= . 2.26
T+ P(x)y = Qx) (2.26)
For example, the equation
& _
X +(x + 1)y =x

is a first-order linear differential equation, for it can be written as

dy N _
dx+<l+x)y—x,

which is of the form (2.26) with P(x) = 1 + (1/x) and Q(x) = x%
Let us write Equation (2.26) in the form

[P(x)y — Q(x)]dx + dy = 0. (2.27)
Equation (2.27) is of the form
M(x,y)dx + N(x,y)dy = 0,
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where
M(x,y) = P(x)y — Q(x) and N(x,y) = 1.
Since
oM(x,y) _ ON(x,9) _
pe = P(x) and 3 0,

Equation (2.27) is not exact unless P(x) = 0, in which case Equation (2.26)
degenerates into a simple separable equation. However, Equation (2.27) possesses
an integrating factor that depends on x only and may easily be found. Let us
proceed to find it. Let us multiply Equation (2.27) by u(x), obtaining

[u(x)P(x)y — u(x)Q(x)] dx + p(x) dy = 0. (2.28)
By definition, u(x) is an integrating factor of Equation (2.28) if and only if
Equation (2.28) is exact; that is, if and only if

9 _9
3 [u(x)P(x)y — pu(x)Q(x)] = ox [u(x)].

This condition reduces to

WP () = 2 ()] (2.29)

In (2.29), P is a known function of the independent variable x, but u is an
unknown function of x that we are trying to determine. Thus we write (2.29) as
the differential equation

d
pP(x) = d—;‘

in the dependent variable ¢ and the independent variable x, where P is a known
function of x. This differential equation is separable; separating the variables,
we have

du

— = P(x) dx.

U
Integrating, we obtain the particular solution

In |y| = fP(x) dx

or
u = elP®dx (2.30)

where it is clear that g > 0. Thus the linear equation (2.26) possesses an inte-
grating factor of the form (2.30). Multiplying (2.26) by (2.30) gives

efP(x)dx‘% + efP(x)dx ID(x)-)J — Q(x)efP(x)dx,

which is precisely

% [efP(x)dxy] — Q(x)efP(x)dx-
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Integrating this we obtain the solution of Equation (2.26) in the form

efP(x)dxy — fefP(x)de(x) dx + c,

where ¢ is an arbitrary constant.
Summarizing this discussion, we have the following theorem.

THEOREM 2.4

The linear differential equation

d
ﬁ + P(x)y = Q(x) (2.26)

has an integrating factor of the form
eIPdx, (2.30)
A one-parameter family of solutions of this equation is

yefP(x)dx = IefP(x)de(x) dx + c:

that 1s,

y = e‘f”")""[f eP@EQ(x) dx + c].

Furthermore, it can be shown that this one-parameter family of solutions of the linear
equation (2.26) includes all solutions of (2.26).

We consider several examples.

EXAMPLE 2.14 s e e

b (22 1),
I + ( . )y = ¢7%, (2.31)
Here
2x + 1
P(x) = P

and hence an integrating factor is

exp[f P(x)dx] exp[f(Qx x+ 1) dx] = exp(2x + In |x|)

exp(2x) exp(In |x|) = x exp(2x).*
* The expressions ¢* and exp x are identical.
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Multiplying Equation (2.31) through by this integrating factor, we obtain

xe?* dd_fc + e2*(2x + 1)y = x
or
d
2x =
Ix (xe**y) = x.

Integrating, we obtain the solutions

xe2*y = x_"’ + ¢
2

or

¢
Yy = ixe ¥ 4+ —e7%
x

where ¢ is an arbitrary constant.

EXAMPLE 215 s s i S S

Solve the initial-value problem that consists of the differential equation

dy
2 =
(x*2+ 1) + 4xy x (2.32)

and the initial condition
y(2) = 1. (2.33)
The differential equation (2.32) is not in the form (2.26). We therefore divide
by x? + 1 to obtain
dy + 4x _ X
dx T x2+ 17 e+l

(2.34)

Equation (2.34) is in the standard form (2.26), where

4x
x2+ 1

P(x) =

An integrating factor is

explif P(x) dx] = exp<f x‘txfxl) = exp[ln(x? + 1)?] = (x? + 1)

Multiplying Equation (2.34) through by this integrating factor, we have
(x% + 1)2% + 4x(x? + 1)y = x(x2 + 1)
or

‘% [(x* + %] = x* + x.
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We now integrate to obtain a one-parameter family of solutions of Equation
(2.23) in the form

4 2

2 9, — X X
(x*+ 1) 4 + 9 + ¢.
Applying the initial condition (2.33), we have
25 =6 + c.

Thus ¢ = 19 and the solution of the initial-value problem under consideration

18
2

x*t  x
2 2y = —_
(2 + Yy =5 + 5+ 19,
EXAMPLE 216 @i

Consider the differential equation

y2dx + (3xy — 1)dy = 0. (2.35)
Solving for dy/dx, this becomes
b _ ¥
de 1 — 3xy’

which is clearly not linear in y. Also, Equation (2.35) is not exact, separable, or
homogeneous. It appears to be of a type that we have not yet encountered; but
let us look a little closer. In Section 2.1, we pointed out that in the differential
form of a first-order differential equation the roles of x and y are interchangeable,
in the sense that either variable may be regarded as the dependent variable and
the other as the independent variable. Considering differential equation (2.35)
with this in mind, let us now regard x as the dependent variable and y as the
independent variable. With this interpretation, we now write (2.35) in the de-
rivative form

dx 1 — 3xy
dy
or
dx 3 1
— 4+ —-x = (2.36)
dy y oy
Now observe that Equation (2.36) is of the form
dx

g T PO =Q0)
and so is linear in x. Thus the theory developed in this section may be applied

to Equation (2.36) merely by interchanging the roles played by x and y. Thus
an integrating factor is

3
epr P(y)dy] = eXp(f;dy> = exp(ln |y|*) = y°.
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Multiplying (2.36) by y* we obtain

dx
ys@ + 3ytx =y

or
d 3 -
G =
Integrating, we find the solutions in the form
2
9% =y§ + ¢
or
I S 1
2y ¥

where ¢ is an arbitrary constant.

B. Bernoulli Equations

We now consider a rather special type of equation that can be reduced to a linear
equation by an appropriate transformation. This is the so-called Bernoulli equa-
tion.

DEFINITION
An equation of the form

&b _ "
-+ P(x)y = Q(x)y (2.37)

is called a Bernoulli differential equation.

We observe that if n = 0 or 1, then the Bernoulli equation (2.37) is actually
alinear equation and is therefore readily solvable as such. However, in the general
case in which n 7 0 or 1, this simple situation does not hold and we must proceed
in a different manner. We now state and prove Theorem 2.5, which gives a
method of solution in the general case.

THEOREM 2.5
Suppose n # 0 or 1. Then the transformation v = y' ™" reduces the Bernoulli equation

b _ »
o+ P(x)y = Qx)y (2.87)

to a linear equation in v.
Proof. We first multiply Equation (2.37) by y ", thereby expressing it in the
equivalent form

-n ﬂ 1-n —
Y I + P(x)y Q(x). (2.38)



54 FIRST-ORDER EQUATIONS FOR WHICH EXACT SOLUTIONS ARE OBTAINABLE

If welet v = y'"", then

dv . ﬂ
dx = (I =n)

and Equation (2.38) transforms into
1 dv

I — nix + P(x)v = Q(x)

or, equivalently,
Z—v + (1 = n)P(x)v = (1 — n)Q(x).
Letting

Pi(x) = (1 — n)P(x)

Qi(x) = (1 = n)Q(x),

and

this may be written

d
o P = Qu(x),

which is linear in v. Q.E.D.

EXAMPLE 2.17 s s

[
I +y = xy3 (2.39)

This is a Bernoulli differential equation, where n = 3. We first multiply the
equation through by y~2, thereby expressing it in the equivalent form

s dy

y dx

If weletv = y'™ = y~2, then dv/dx = —2y~3(dy/dx) and the preceding differ-
ential equation transforms into the linear equation

1 dv
-5 tv=x

+ 972 = «.

Writing this linear equation in the standard form

— - 2v = —2x, (2.40)
dx

we see that an integrating factor for this equation is
efP(x)dx = e—f?dx = ¢~ 2%,
Multiplying (2.40) by ¢ ~?*, we find
dv

e7 — — Q¢ 2%y = — Yy~

dx
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or

Integrating, we find
e %y = 37 2Q2x + 1) + ¢,

x + 3+ ce?,

v

where ¢ is an arbitrary constant. But

L1
"
Thus we obtain the solutions of (2.39) in the form
1 — 1 2x
F =x + 3 + ce”.

Note. Consider the equation

df(y)dy
dy dx

where f is a known function of y. Letting v = f(y), we have

dv _dvdy df(y) dy
dx  dydx dy dx’

+ P(x)f(y) = Q(x), (2.41)

and Equation (2.41) becomes

dv

Ix + P(x)v = Q(x),

which is linear in v. We now observe that the Bernoulli differential equation
(2.37) is a special case of Equation (2.41). Writing (2.37) in the form

-n d_y - —
Yyt P(x)y'™ = Q(x)

and then multiplying through by (1 — =), we have
d
(L= my™ 22+ Pyx)y'™ = Qux),

where Pi(x) = (1 — n)P(x) and Q,(x) = (1 — n)Q(x). This is of the form (2.41),
where f(y) = y'7"; letting v = y'", it becomes

dv
Ix + Pi(xp = Q,(x),

which is linear in v. For other special cases of (2.41), see Exercise 37.
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EXERCISES

Solve the given differential equations in Exercises 1-18.

1.%+?’;y=6x2. 2. x4%+2x3y=l.

3. c% + 3y = 3x2% 7. 4. % + 4xy = 8x.
&%+%=$. &mﬂ+n%+4w=3w
7. x%+ 2xx:lly =x - L

8.(x2+x—2)%+3(x+l)y=x—l.

9. xdy + (xy +y — 1)ydx = 0.
10. ydx + (xy? + x — y)dy = 0.

dr
11. 20 + rtan @ = cos 6.

12. cos Odr + (r sin @ — cos* ) d0 = 0.
13. (cos’x — ycos x)dx — (1 + sinx)dy = 0.
14. (y sin 2x — cos x) dx + (1 + sin?x)dy = 0.

2

5.2 _2_ ¥ 16, x 2

A — _9.604
dx «x x dx ty 2x%y"
dx t+ 1 t+ 1
_ Qy-3 — e =
17. dy + (49 — 8 %)xdx = 0. 18. il o7 % et

Solve the initial-value problems in Exercises 19—-30.

Do o _
19. x I 2y = 2x*, y(2) = 8.

D | gy = 42 _
20.dx+3xy—x, 3(0) = 2.

21. e[y — 3(e* + 1)?]dx + (¢ + 1)dy = 0, y(0) = 4.
22. 2x(y + l)dx — (x2 4+ 1)dy = 0, y(1) = —5.

dr . n
L — — , =l =1.
23 d0+rtan0 cos? 0 r()

dx . _
24, g X sin 2t, x(0) = 0.



25.

26.

27.

28.

29.

30.

31.

32.

33.
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YLy _x -
&t ar Ty =2
x ] +y = (xy)*? (1) = 4.
dx ’
dy _ _J2, 0=sx<1, _
I + 9y = f(x), where f(x) = {O, k=1, y(0) = 0.
dy _ _J5, 0=x<10, _
I + 9 = f(x), where f(x) = {l, x = 10, y(0) = 6.
dy _ _Jer, 0=x<2, _
Ix + 9 = f(x), where f(x) = {e‘2, x =2 y(0) = 1.
dy x, 0=x<3,

+ — = = = .

(x +1) I + 9 = f(x), where f(x) {3’ <=3, 3(0) = 1/2

Consider the equation a(dy/dx) + by = ke™*, where a, b, and k are positive

constants and 4 is a nonnegative constant.

(a) Solve this equation.

(b) Show that if 4 = 0 every solution approaches k/b as x — », but if 1 >
0 every solution approaches 0 as x — .

Consider the differential equation

dy

— + P(x)y = 0.

Ix (x)y

(a) Show that if f and g are two solutions of this equation and ¢, and ¢,
are arbitrary constants, then ¢, f + ¢,g is also a solution of this equation.

(b) Extending the result of (a), show that if f,, fs, ..., f, are n solutions
of this equation and ¢, ¢, . . . , ¢, are n arbitrary constants, then

n

z Ckfk

k=1
is also a solution of this equation.

Consider the differential equation

] _
I + P(x)y = 0, (A)

where P is continuous on a real interval I.

(a) Show that the function f such that f(x) = 0 for all x € I is a solution
of this equation.

(b) Show that if f is a solution of (A) such that f(x,) = 0 for some x, €
I, then f(x) = O forallx € I.

(c) Show that if f and g are two solutions of (A) such that f(x,) = g(x,)
for some x, € I, then f(x) = g(x) for allx € I.
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34. (a) Prove thatif f and g are two different solutions of

d
T+ P(x)y = Qx), ()

then f — g is a solution of the equation
wl -
e + P(x)y = 0.

(b) Thus show that if f and g are two different solutions of Equation (A)
and ¢ is an arbitrary constant, then

of —g)+f
is a one-parameter family of solutions of (A).
35. (a) Let f, be a solution of

d
T+ Py = Qi)

and f, be a solution of
d
T+ PGy = Q).

where P, Q,, and Q, are all defined on the same real interval I. Prove
that f, + f5is a solution of

D+ Py = Qux) + Qut)

on I.
(b) Use the result of (a) to solve the equation
U]
dx + 9y = 2sinx + 5 sin 2x.

36. (a) Extend the result of Exercise 35(a) to cover the case of the equation

d n
d—i + PGy = 3 Q)

where P, Q,(k = 1,2, ..., n) are all defined on the same real interval 1.
(b) Use the result obtained in (a) to solve the equation
dy

dx+y— Zsmkx

37. Solve each of the following equations of the form (2.41):

]
dx

(b) (y +l) +x(y2+2y)—x

(a) cosy +lsiny= 1.



38.

39.

40.

41.
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The equation

% = A(x)y? + B(x)y + C(x) (A)

is called Riccati’s equation.

(a) Show that if A(x) = 0 for all x, then Equation (A) is a linear equation,
whereas if C(x) = 0 for all x, then Equation (A) is a Bernoulli equation.

(b) Show that if f is any solution of Equation (A), then the transformation

1
= + -
y=Ff+3
reduces (A) to a linear equation in v.

In each of Exercises 39—-41, use the result of Exercise 38(b) and the given
solution to find a one-parameter family of solutions of the given Riccati
equation:

‘% = (1 — x)y* + (2x — 1)y — x; given solution f(x) = 1.
d—y——2+x + 1; gi luti (x) =

il y ; given solution f(x) = x.

dy 2 3 2 i i

. = —8xy* + 4x(4x + l)y — (8x> + 4x* — 1); given solution f(x) = x.

EXERCISES: MISCELLANEOUS REVIEW

Solve each of the differential equations in Exercises 1-14. Several can be solved
by at least two different methods.

1.
. (BxH? — x)dy + (2xy® — y)dx = 0.

® NS Gk N

10.

6x% dx — (x* + 1)dy = 0.

(y — Ddx + x(x + 1)dy = 0.

(x2 — 2y)dx — xdy = 0.

(3x — by)dx + (x +y)dy = 0.
e*y2dx + (e*y — 2y)dy = 0.

(8x%y — 12x% dx + (x* + 1)dy = 0.
(2x? + xy + y?) dx + 2x2dy = 0.
dy _ 4x%? — 3x%

dx x3 — 2xty

dy I
(x+l)dx+xy—e .
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& _2x — Ty

11. = .
dx 3y — 8x

12. x? ;i—i + xy = xy%

13. (x3 + 1) ;i—i + 6x% = 6x%

d 2x% + y?
14. d—i = %—_—12
Solve the initial-value problems in Exercises 15—24.
15. (x? + 9% dx — 2xydy = 0, y(1) = 2.

16. 2(y2 + 4)dx + (1 — x%)ydy = 0, y(8) = 0.
17. (% — 2x) dx + e*ydy = 0, y(0) = 2.

18. (3x% + 2xy?) dx + (2x%*% + 6y dy = 0, y(l) = 2.

d—y=2+l, y2) = 1.

19. 4xy I

20. % = g;‘—i’—% y(1) = 2.

21. j—i =57, VI =2

22, % +y = f(x), where f(x) = {(1) 2§;’< 2 50 = 0.

23. (x + 2)% +y = f(x), where f(x)= {i"‘x gj" =2 0 =4

d 3
24, x2‘—i% + xy = % y(1) = 1.

2.4 SPECIAL INTEGRATING FACTORS
AND TRANSFORMATIONS

We have thus far encountered five distinct types of first-order equations for
which solutions may be obtained by exact methods, namely, exact, separable,
homogeneous, linear, and Bernoulli equations. In the case of exact equations,
we follow a definite procedure to directly obtain solutions. For the other four
types definite procedures for solution are also available, but in these cases the
procedures are actually not quite so direct. In the cases of both separable and
linear equations we actually multiply by appropriate integrating factors that
reduce the given equations to equations that are of the more basic exact type.
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For both homogeneous and Bernoulli equations we make appropriate transfor-
mations that reduce such equations to equations that are of the more basic
separable and linear types, respectively.

This suggests two general plans of attack to be used in solving a differential
equation that is not of one of the five types mentioned. Either (1) we might
multiply the given equation by an appropriate integrating factor and directly
reduce it to an exact equation, or (2) we might make an appropriate transfor-
mation that will reduce the given equation to an equation of some more basic
type (say, one of the five types already studied). Unfortunately no general di-
rections can be given for finding an appropriate integrating factor or transfor-
mation in all cases. However, there is a variety of special types of equations that
either possess special types of integrating factors or to which special transfor-
mations may be applied. We shall consider a few of these in this section. Since
these types are relatively unimportant, in most cases we shall simply state the
relevant theorem and leave the proof to the exercises.

A. Finding Integrating Factors
The so-called separable equations considered in Section 2.2 always possess in-
tegrating factors that may be determined by immediate inspection. While it is
true that some nonseparable equations also possess integrating factors that may
be determined “by inspection,” such equations are rarely encountered except in
differential equations texts on pages devoted to an exposition of this dubious
“method.” Even then a considerable amount of knowledge and skill are often
required.

Let us attempt to attack the problem more systematically. Suppose the equa-
tion

M(x,y)dx + N(x,y)dy = 0 (2.42)
is not exact and that u(x, y) is an integrating factor of it. Then the equation
u(x, y)M(x, y)dx + u(x,y)N(x,y)dy = 0 (2.43)

is exact. Now using the criterion (2.7) for exactness, Equation (2.43) is exact if
and only if

9 9
5 [u(x, y)M(x,y)] = o [u(x, y)N(x, y)].

This condition reduces to

ou(x,y)

N(x,y) —~ Mx,3) =5 H(x, ).
Here M and N are known functions of x and y, but x is an unknown function
of x and y that we are trying to determine. Thus we write the preceding condition
in the form

u(x,y) _ [BM(x,y) _ N(x,9)
dy dx

ou dp _ | oM(x,y)  IN(x,y)
N(x,y) % M(x, y) By [ 3 o ]u. (2.44)
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Hence p is an integrating factor of the differential equation (2.42) if and only if
it is a solution of the differential equation (2.44). Equation (2.44) is a partial
differential equation for the general integrating factor 4, and we are in no position
to attempt to solve such an equation. Let us instead attempt to determine in-
tegrating factors of certain special types. But what special types might we con-
sider? Let us recall that the linear differential equation

d
d—?’c + P(x)y = Q(x)

always possesses the integrating factor /?®% which depends only upon x. Per-
haps other equations also have integrating factors that depend only upon x. We
therefore multiply Equation (2.42) by u(x), where x4 depends upon x alone. We
obtain

u(x)M(x, y)dx + u(x)N(x, y)dy = 0.

This is exact if and only if

) )
3 [u(x)M(x, y)] = ™ [1(x)N(x, y)].

Now M and N are known functions of both x and y, but here the integrating
factor 4 depends only upon x. Thus the above condition reduces to

OM (x, N (x, d
() P = ) T NGy B
or
du(x) _ 1 [6M(x,y) _ aN(x,y)] 4
. ux) ~ Ny L o e (249
1 [6M(x,y) B aN(x,y)]
N(x,y) ay dx

involves the variable y, this equation then involves two dependent variables and
we again have difficulties. However, if

1 [aM(x,y) _ aN(x,y)]
N(x,y) ay dx

depends upon x only, Equation (2.45) is a separated ordinary equation in the
single independent variable x and the single dependent variable . In this case
we may integrate to obtain the integrating factor

_ 1 OM(x,y)  ON(x,y)
#e) = exP{JN(x,w [ 9 ox ]d"

In like manner, if

1 [6N(x,y) _ 6M(x,y)]
M(x,y) ax ay
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depends upon y only, then we may obtain an integrating factor that depends
only on y.
We summarize these observations in the following theorem.

THEOREM 2.6
Consider the differential equation

M(x,y)dx + N(x,y)dy = 0. (2.42)
If

1 [aM(x,y) _ ON(x,)) (2.46)

N(x,y) ay ax
depends upon x only, then

1 oM(x,y) ON(x,y)
e"p“ N(x,y)[ % ox ]d’“} 247)

is an integrating factor of Equation (2.42). If

1 [BN(x,y) _ aM(x,y)]
M(x,y) dx dy

(2.48)

depends upon y only, then

1 ON(x,y) IM(x,y)
exP{fM(m) [ x % ]dy } =49

is an integrating factor of Equation (2.42).

We emphasize that, given a differential equation, we have no assurance in
general that either of these procedures will apply. It may well turn out that (2.46)
involves y and (2.48) involves x for the differential equation under consideration.
Then we must seek other procedures. However, since the calculation of the
expressions (2.46) and (2.48) is generally quite simple, it is often worthwhile to
calculate them before trying something more complicated.

EXAMPLE 2.18 @i
Consider the differential equation
(2x2 + y)dx + (x®y — x)dy = 0. (2.50)

Let us first observe that this equation is not exact, separable, homogeneous, linear,
or Bernoulli. Let us then see if Theorem 2.6 applies. Here M(x,y) = 2x* + y,
and N(x,y) = x% — x, and the expression (2.46) becomes

1 21 — xy) _ 2

x%y — x[l - @xy = Dl = x(xy — 1) x
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This depends upon x only, and so
2 1
exp(—f;dx) = exp(—2In|x|) = e

is an integrating factor of Equation (2.50). Multiplying (2.50) by this integrating
factor, we obtain the equation

(2 + %) dx + (y - ;lc-) dy = 0. 2.51)

The student may readily verify that Equation (2.51) is indeed exact and that the
solution is
Yoy
2x + 9 Ty &

More and more specialized results concerning particular types of integrating
factors corresponding to particular types of equations are known. However,
instead of going into such special cases we shall now proceed to investigate certain
useful transformations.

B. A Special Transformation

We have already made use of transformations in reducing both homogeneous
and Bernoulli equations to more tractable types. Another type of equation that
can be reduced to a more basic type by means of a suitable transformation is an
equation of the form

(@ix + b1y + c)dx + (agx + bey + co)dy = 0.
We state the following theorem concerning this equation.
THEOREM 2.7
Consider the equation
(@x + b1y + c)dx + (agx + bey + c)dy = 0, (2.52)

where a,, by, ¢y, ay, by, and co are constants.

Case 1. If ay/a, # by/by, then the transformation

x =X+ h,
y=Y +k,

where (h, k) is the solution of the system

alh + b]k +C| = 0,
dgh + bgk + ¢ =

I
e
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reduces Equation (2.52) to the homogeneous equation
(G]X + b]Y) dX + (GQX + ng) dy =0

in the variables X and Y.

Case 2. If ay/a; = by/b, = k, then the transformation z = a;x + b,y reduces the
equation (2.52) to a separable equation in the variables x and z.

Examples 2.19 and 2.20 illustrate the two cases of this theorem.

EXAMPLE 2.19 s e

(x — 2y + 1)dx + 4x — 8y — 6)dy = 0. (2.53)
Herea, = 1,b; = —2,a, = 4, b, = —3, and so
a b 3 a
;‘:’)=4 but b—‘f=§#a—f.
Therefore this is Case 1 of Theorem 2.7. We make the transformation
x =X+ h,
y=Y +k,

where (k, k) is the solution of the system
h—2k+1=0,
4h - 3k — 6 = 0.
The solution of this system is & = 3, k = 2, and so the transformation is
x =X+ 3,
y=Y + 2.
This reduces Equation (2.53) to the homogeneous equation
(X = 2Y)dX + (4X — 3Y)dY = 0. (2.54)

Now following the procedure in Section 2.2 we first put this homogeneous equa-

tion in the form
ar _ 1 - 2(Y/X)
dX 3(Y/X) - 4

and let Y = vX to obtain

dv 1 - 2v
v + Xa = 30 — 4

This reduces to
Bv —4)dv _ dX

32 -2 -1 X (2.55)
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Integrating (we recommend the use of tables here), we obtain

$ln [3v2 — 20 — 1| — §ln zz :_ ?‘ = —In |X| + In e,
or
3v — 3|° ct
2 _ — 1) — — -1
In(3v 2v 1) In 30 7 1 In (X‘*)’
or
Bv + 1)° ct
In 1 = In )F .
or, finally,

X4Bv + 1)°| = clv - 1],

where ¢ = ¢}. These are the solutions of the separable equation (2.55). Now
replacing v by Y/X, we obtain the solutions of the homogeneous equation (2.54)
in the form

3Y + X = ¢|Y — X|.

Finally, replacing X by x — 3 and Y by y — 2 from the original transformation,
we obtain the solutions of the differential equation (2.53) in the form

By —2) + (x = )P =cly - 2 - x + 3
or
lx + 3y — 9 =cly — x + 1.
EXAMPLE 220 Siminonnniiimonmamnnnms
(x + 2y + 3)dx + (2x + 4y — 1)dy = 0. (2.56)

Herea, = 1,b, = 2,a, = 2, by = 4, and ay/a, = by/b;, = 2. Therefore, this is
Case 2 of Theorem 2.7. We therefore let

= x + 2y,

and Equation (2.56) transforms into

=0

(z + 8)dx + (22 — 1)(‘1Z - dx)

2

or
7dx + (2z — 1)dz = 0,

which is separable. Integrating, we have
7x + 22 —z = c.
Replacing z by x + 2y, we obtain the solution of Equation (2.56) in the form

Tx + (x + 292 — (x + 2y) =¢
or
x2 + 4xy + 4y* + 6x — 2y = c.
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C. Other Special Types and Methods;

An Important Reference

Many other special types of first-order equations exist for which corresponding
special methods of solution are known. We shall not go into such highly spec-
ialized types in this book. Instead we refer the reader to Differentialgleichungen:
Losungsmethoden und Losungen, by E. Kamke (Chelsea, New York, 1948). This
volume contains discussions of a large number of special types of equations and
their solutions. We strongly suggest that the reader consult this book whenever
he encounters an unfamiliar type of equation. Of course one may encounter an
equation for which no exact method of solution is known. In such a case one
must resort to various methods of approximation. We shall consider some of
these general methods in Chapter 8.

EXERCISES

Solve each differential equation in Exercises 1-4 by first finding an integrating
factor.

1. (5xy + 49 + 1) dx + (x® + 2xy)dy = 0.

2. 2x + tany)dx + (x — x2tany)dy = 0.

3. [(x + 1) +y]dx + 2xy + 1)dy = 0.

4. (2xy2 + y)dx + (29 — x)dy = 0.
In each of Exercises 5 and 6 find an integrating factor of the form x?y? and solve.
5. (4xy? + 6y) dx + (5x* + 8x)dy = 0.

6. (8x%® — 2y*)dx + (5x%? — 8xy%) dy = 0.

Solve each differential equation in Exercises 7-10 by making a suitable trans-
formation.

7. 6x + 2y + )dx + 2x +y + 1)dy = 0

8 Bx —y + 1)dx — (6x — 2y — 3)dy =0

9. (x — 2y —=3)dx + 2x +y — 1)dy = 0.

10. (10x — 4y + 12)dx — (x + by + 3)dy = 0.

Solve the initial-value problems in Exercises 11-14.

11. (bx + 4y + 1)dx + 4x + 2y + 2)dy = 0, y@) = 3.
12. Bx —y — 6)dx + (x +y + 2)dy =0, y(2) = —-2.
13. 2x + 3y + 1)dx + (4x + 6y + 1)dy = O, y(—2) = 2.
14. (4x + 3y + 1)dx + (x +y + 1)dy = 0, y(3) = —4.
15. Prove Theorem 2.6.

16. Prove Theorem 2.7.
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17.

18.

19.

20.

Show that if u(x, y) and v(x, y) are integrating factors of
M(x,y)dx + N(x,y)dy = 0 (A)
such that u(x,y)/v(x,y) is not constant, then
A(x,y) = colx, )
is a solution of Equation (A) for every constant c.
Show that if the equation
M(x,y)dx + N(x,y)dy = 0 (A)

is homogeneous and M(x, y)x + N(x, y)y # 0, then 1/[M(x, y)x + N(x, y)y]
is an integrating factor of (A).

Show that if the equation M(x, y) dx + N(x,y)dy = 0 is both homogeneous
and exact and if M(x, y)x + N(x, y)y is not a constant, then the solution of
this equation is M(x, y)x + N(x,y)y = ¢, where ¢ is an arbitrary constant.

An equation that is of the form

y =px + f(p), (A)

where p = dy/dx and f is a given function, is called a Clairaut equation. Given
such an equation, proceed as follows:

1. Differentiate (A) with respect to x and simplify to obtain

(o 9
[+ + f(PI = 0. (®)
Observe that (B) is a first-order differential equation in x and p.

2. Assume x + f'(p) # 0, divide through by this factor, and solve the
resulting equation to obtain

p=c (€

where ¢ is an arbitrary constant.
3. Eliminate p between (A) and (C) to obtain
y =cx + f(o) (D)

Note that (D) is a one-parameter family of solutions of (A) and com-
pare the form of differential equation (A) with the form of the family
of solutions (D).

4. Remark. Assuming x + f'(p) = 0 and then eliminating p between
(A) and x + f'(p) = 0 may lead to an “extra” solution that is not a
member of the one-parameter family of solutions of the form (D).
Such an extra solution is usually called a singular solution. For a specific
example, see Exercise 21.
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21. Consider the Clairaut equation

y = px + p?, where pE%.

(a) Find a one-parameter family of solutions of this equation.

(b) Proceed as in the Remark of Exercise 20 and find an “extra” solution
that is not a member of the one-parameter family found in part (a).

(c) Graph the integral curves corresponding to several members of the
one-parameter family of part (a); graph the integral curve correspond-
ing to the “extra” solution of part (b); and describe the geometric re-
lationship between the graphs of the members of the one-parameter
family and the graph of the “extra” solution.

CHAPTER REVIEW EXERCISES

Solve the differential equations in Exercises 1-14.

1. 3x%%dx + 2x% dy = 0.

2. xdy + (x> + 2y — 3)dx = 0.

3. (»* + 29 sinxdx + (y* +y)cosxdy = 0.
4. (sin x + siny)dx + (y + x cosy) dy = 0.
5. bx + y)dx + (4x + y)dy = 0.

1

X .

b
2 9 =
6. (x* + x) I + (bx + 2)y
7. x%(y2 + 1)dx + y(x* + 1)dy = 0.

dy _x
8. I + 4xy = ¥
9. (x* + 2x)e*y dx + (x%* + 2y)dy = 0.
10. (x* — xy + 2y?) dx + (x? — 2xy)dy = 0.

1L (x + 1) % + x% = ¥

12. ydx = (4x + 2y)dy. [Assume x > 0,y > 0.]
13. (2x% — e ) dx + (x + 1)dy = 0.

14. % = (x2 +9)? — 2x. [Hint: Letu = x? + y.]
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Solve the initial-value problems in Exercises 15-20.

15. (2ye®* + y?) dx + (e2* + 2xy) dy = 0,

y(0) = 2.
16 xd—y + 2x2 4+ 1)y = x
" Vdx ’
y(1) =%
17. 2x* + 3xy + y9) dx + (x> + xy)dy = 0,
y(2) = L
dy _ _ J2x, 0=x<3,
18. (x + 1) Ix + 2y = f(x), where f(x) = {4’ x =3,
y(0) = 5.
19. (2xy? + 4x%) dx + (2x%» + x* + 4y) dy = 0,
y(1) = 2.
1, 0=x<3,

20. (x + l)j—i+y={
y(0)

4 — x, x =3,

2.



Applications of First-
Order Equations

In Chapter 1 we pointed out that differential equations originate from the math-
ematical formulation of a great variety of problems in science and engineering.
In this chapter we consider problems that give rise to some of the types of first-
order ordinary differential equations studied in Chapter 2. First, we formulate
the problem mathematically, thereby obtaining a differential equation. Then we
solve the equation and attempt to interpret the solution in terms of the quantities
involved in the original problem.

3.1 ORTHOGONAL AND
OBLIQUE TRAJECTORIES

A. Orthogonal Trajectories

DEFINITION
Let

F(x, y,¢) = 0 3.1)

be a given one-parameter family of curves in the xy plane. A Curve that intersects the
cuves of the family (3.1) at right angles is called an orthogonal trajectory of the given

family.

EXAMPLE 3.1 miessss s s
Consider the family of circles
x2 + y2 = ¢? (3.2)
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with center at the origin and radius ¢. Each straight line through the origin,
y = kx, 3.3)

is an orthogonal trajectory of the family of circles (3.2). Conversely, each circle
of the family (3.2) is an orthogonal trajectory of the family of straight lines (3.3).
The families (3.2) and (3.3) are orthogonal trajectories of each other. In Figure
3.1 several members of the family of circles (3.2), drawn solidly, and several
members of the family of straight lines (3.3), drawn with dashes, are shown.

The problem of finding the orthogonal trajectories of a given family of
curves arises in many physical situations. For example, in a two-dimensional
electric field the lines of force (flux lines) and the equipotential curves are or-
thogonal trajectories of each other.

We now proceed to find the orthogonal trajectories of a family of curves

F(x,y,¢) = 0. 3.1)

We obtain the differential equation of the family (3.1) by first differentiating
Equation (3.1) implicitly with respect to x and then eliminating the parameter ¢
between the derived equation so obtained and the given equation (3.1) itself. We
assume that the resulting differential equation of the family (3.1) can be expressed
in the form

d
ﬁ = fx, y). (3.4)

Thus the curve C of the given family (3.1) which passes through the point (x, y)

FIGURE 3.1
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has the slope f(x, y) there. Since an orthogonal trajectory of the given family
intersects each curve of the family at right angles, the slope of the orthogonal
trajectory to C at (x, y) is

1
Sy

Thus the differential equation of the family of orthogonal trajectories is

dy 1

== —— (3.5)

dx flx, y)
A one-parameter family

G(x,y,¢) =0
or

y = F(x,c)

of solutions of the differential equation (3.5) represents the family of orthogonal
trajectories of the original family (3.1), except possibly for certain trajectories
that are vertical lines.

We summarize this procedure as follows:

Procedure for Finding the Orthogonal
Trajectories of a Given Family
of Curves

Step 1. From the equation

F(x,y,¢) =0 (3.1
of the given family of curves, find the differential equation
dy _

of this family.

Step 2. In the differential equationdy/dx = f(x ,y) so found in Step 1, replace
f(x, y) by its negative reciprocal — 1/f(x, y). This give the differential equation

dy _ 1
dx flx, y)

(3.5)
of the orthogonal trajectories.

Step 3. Obtain a one-parameter family
G(x,y,¢) =0 or y=F(x,c)

of solutions of the differential equation (3.5), thus obtaining the desired family
of orthogonal trajectories (except possibly for certain trajectories that are vertical
lines and must be determined separately).
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Caution: In Step 1, in finding the differential equation (3.4) of the given
family, be sure to eliminate the parameter ¢ during the process.

EXAMPLE 3.2 snnasasinesssnneness e

In Example 3.1 we stated that the set of orthogonal trajectories of the family of
circles

x? + 92 = ¢? 3.2)
is the family of straight lines
y = kx. 3.3)

Let us verify this using the procedure outlined above.

Step 1. Differentiating the equation

x2 + 92 = ¢? (8.2)
of the given family, we obtain
x +y Z—i = 0.

From this we obtain the differential equation

dy x
2= = (3.6)
dy y

of the given family (3.2). (Note that the parameter ¢ was automatically eliminated
in this case.)

Step 2. We replace —x/y by its negative reciprocal y/x in the diffential
equation (3.6) to obtain the differential equation

2.2 32

dx x

of the orthogonal trajectories.

Step 3.  We now solve the differential equation (3.7). Separating variables,
we have

= |&

-l

integrating, we obtain
y = kx. (3.3)

This is a one-parameter family of solutions of the differential equation (3.7) and
thus represents the family of orthogonal trajectories of the given family of circles
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(3.2) (except for the single trajectory that is the vertical line x = 0 and this may
be determined by inspection).

EXAMPLE 3.3 s

Find the orthogonal trajectories of the family of parabolasy = cx?.

Step 1. We first find the differential equation of the given family

y = cx? (3.8)
Differentiating, we obtain

b _ 2cx. 3.9

dx

Eliminating the parameter ¢ between Equations (3.8) and (3.9), we obtain the
differential equation of the family (3.8) in the form

b _ 2 (3.10)

dx x

Step 2. We now find the differential equation of the orthogonal trajectories
by replacing 2y/x in (3.10) by its negative reciprocal, obtaining

b _ _x (3.11)

Step 3. We now solve the differential equation (3.11). Separating variables,
we have

2ydy = —xdx.
Integrating, we obtain the one-parameter family of solutions of (3.11) in the
form

x? + 2y% = k?
where £ is an arbitrary constant. This is the family of orthogonal trajectories of
(3.8); it is clearly a family of ellipses with centers at the origin and major axes

along the x axis. Some members of the original family of parabolas and some of
the orthogonal trajectories (the ellipses) are shown in Figure 3.2.

B. Oblique Trajectories

DEFINITION

Let
F(x,y,¢) =0 (3.12)

be a one-parameter family of curves. A curve that intersects the curves of the family (3.12)
at a constant angle a # 90° is called an oblique trajectory of the given family.
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Suppose the differential equation of a family is
D _
2 S (3.13)

Then the curve of the family (3.13) through the point (x, y) has slope f(x, y) at
(x, ) and hence its tangent line has angle of inclination tan~![ f(x, y)] there. The
tangent line of an oblique trajectory that intersects this curve at the angle a will
thus have angle of inclination

tan™'[f(x, y)] + @
at the point (x, y). Hence the slope of this oblique trajectory is given by

tan{tan"[f(x,y)] + a}

Thus the differential equation of such a family of oblique trajectories is given
by

_ f(x,y) + tan a
"1 - f(x,y)tan &’

dy _ flx,y) + tana

dx 1 — f(x,y)tan o
Thus to obtain a family of oblique trajectories intersecting a given family of
curves at the constant angle a # 90°, we may follow the three steps in the above

procedure (page 73) for finding the orthogonal trajectories, except that we re-
place Step 2 by the following step:

Step 2'. In the differential equation dy/dx = f(x, y) of the given family,
replace f(x, y) by the expression
flx,y) + tan
1 - f(x, y)tan o’

(3.14)
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EXAMPLE 3.4 @ s e

Find a family of oblique trajectories that intersect the family of straight lines

y = c¢x at angle 45°.
Step 1. From y = cx, we find dy/dx = c¢. Eliminating ¢, we obtain the

differential equation
(3.15)

S
I
R I

of the given family of straight lines.

Step 2'.  We replace f(x, y) = y/x in Equation (3.15) by
fl,y) +tana  y/x+ 1 x +y

I = fx,y)tana 1 —y/x x —y
(tan a = tan 45° = 1 here). Thus the differential equation of the desired oblique

trajectories is
(3.16)

Step 3. We now solve the differential equation (3.16). Observing that it is

a homogeneous differential equation, we let y = vx to obtain

After simplifications this becomes

(v = Ddv _ds
v? 4+ 1 x’
Integrating, we obtain
$In(v? + 1) — arctanv = —In x| —In |c|
or
In ¢2x2(v? + 1) — 2 arctanv = 0.

Replacing v by y/x, we obtain the family of oblique trajectories in the form

oo,

In c2(x? + y2) — 2 arctan "




78 APPLICATIONS OF FIRST-ORDER EQUATIONS

EXERCISES

In Exercises 1-9 find the orthogonal trajectories of each given family of curves.
In each case sketch several members of the family and several of the orthogonal
trajectories on the same set of axes.

1.
3.

5.

7.

9.

11.

12.

13.

14.

15.

16.

17.

18.

y = ex. 2. y? = cx.
ex? +y? = 1. 4.y = ¢~
. o ex?

y=x—14+ce™ 6.y—x+l.
x? + 9% = exd. 8 x2=2y — 1 +ce™®

_Y L -
x—Z+F. 10. x* — 92 = cx®
Find the orthogonal trajectories of the family of ellipses having center at

the origin, a focus at the point (¢, 0), and semimajor axis of length 2¢.

Find the orthogonal trajectories of the family of circles which are tangent
to the y axis at the origin.

Find the value of K such that the parabolasy = ¢,x* + K are the orthogonal
trajectories of the family of ellipses x? + 2y2 — y = ¢,.

Find the value of n such that the cuves x” + y* = ¢, are the orthogonal
trajectories of the family

X

r= 1 —¢ Qx.

A given family of curves is said to be self-orthogonal if its family of orthogonal
trajectories is the same as the given family. Show that the family of parabolas
3% = 2cx + ¢? is self orthogonal.

Find a family of oblique trajectories that intersect the family of circles x? +
y® = ¢? at angle 45°.
Find a family of oblique trajectories that intersect the family of parabolas
y% = ¢x at angle 60°.

Find a family of oblique trajectories that intersect the family of curves x +
y = ¢x? at angle a such that tan a = 2.

3.2 PROBLEMS IN MECHANICS

A. Introduction
Before we apply our knowledge of differential equations to certain problems in
mechanics, let us briefly recall certain principles of that subject. The momentum



3.2 PROBLEMS IN MECHANICS 79

of a body is defined to be the product mv of its mass m and its velocity v. The
velocity v and hence the momentum are vector quantities. We now state the
following basic law of mechanics:

Newton’s Second Law. The time rate of change of momentum of a body is
proportional to the resultant force acting on the body and is in the direction of
this resultant force.

In mathematical language, this law states that

d
7 (mv) = KF,
where m is the mass of the body, v is its velocity, F is the resultant force acting

upon it, and K is a constant of proportionality. If the mass m is considered
constant, this reduces to

dv
m E = KF,
or
a = KE, (3.17)
m
or
F = kma, (3.18)

where k¢ = 1/K and a = dv/dt is the acceleration of the body. The form (3.17)
is a direct mathematical statement of the manner in which Newton’s second law
is usually expressed in words, the mass being considered constant. However, we
shall make use of the equivalent form (3.18). The magnitude of the constant of
proportionality £ depends upon the units employed for force, mass, and accel-
eration. Obviously the simplest systems of units are those for which £ = 1. When
such a system is used (3.18) reduces to

F = ma. (3.19)

It is in this form that we shall use Newton’s second law. Observe that Equation
(3.19) is a vector equation.

Several systems of units for which £ = 1 are in use. In this text we shall use
only three: the British gravitational system (British), the centimeter-gram-second
system (cgs), and the meter-kilogram-second system (mks). We summarize the
various units of these three systems in Table 3.1.

TABLE 3.1
British System cgs System mks System
force pound dyne newton
mass slug gram kilogram
distance foot centimeter meter
time second second second

acceleration ft/sec? cm/sec? m/sec?
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Recall that the force of gravitational attraction that the earth exerts on a
body is called the weight of the body. The weight, being a force, is expressed in
force units. Thus in the British system the weight is measured in pounds; in the
cgs system, in dynes; and in the mks system, in newtons.

Let us now apply Newtons’s second law to a freely falling body (a body falling
toward the earth in the absence of air resistance). Let the mass of the body be
m and let w denote its weight. The only force acting on the body is its weight
and so this is the resultant force. The acceleration is that due to gravity, denoted
by g, which is approximately 32 ft/sec? in the British system, 980 cm/sec? in the
cgs system, and 9.8 m/sec? in the mks system (for points near the earth’s surface).
Newton’s second law F = ma thus reduces to w = mg. Thus

m = —, (3.20)

a relation that we shall frequently employ.

Let us now consider a body B in rectilinear motion, that is, in motion along
a straight line L. On L we choose a fixed reference point as origin O, a fixed
direction as positive, and a unit of distance. Then the coordinate x of the position
of B from the origin O tells us the distance or displacement of B. (See Figure
3.3) The instantaneous velocity of B is the time rate of change of x:

Note that x, v, and a are vector quantities. All forces, displacements, velocities,
and accelerations in the positive direction on L are positive quantities; while those
in the negative direction are negative quantities.

If we now apply Newton’s second law F = ma to the motion of B along L,
noting that
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we may express the law in any of the following three forms:

dv
mo = F, (3.21)
d?x
m i F, (3.22)
mo® = F, (3.23)
dx

where F is the resultant force acting on the body. The form to use depends upon
the way in which F is expressed. For example, if F is a function of time ¢ only
and we desire to obtain the velocity v as a function of ¢, we would use (3.21);
whereas if F is expressed as a function of the displacement x and we wish to find
v as a function of x, we would employ (3.23).

B. Falling Body Problems

We shall now consider some examples of a body falling through air toward the
earth. In such a circumstance the body encounters air resistance as it falls. The
amount of air resistance depends upon the velocity of the body, but no general
law exactly expressing this dependence is known. In some instances the law
R = kv appears to be quite satisfactory, while in others R = kv? appears to be
more exact. In any case, the constant of proportionality £ in turn depends on
several circumstances. In the examples that follow we shall assume certain rea-
sonable resistance laws in each case. Thus we shall actually be dealing with
idealized problems in which the true resistance law is approximated and in which
certain comparatively negligible factors are disregarded.

EXAMPLE 3.5 s

A body weighing 8 Ib falls from rest toward the earth from a great height. As it
falls, air resistance acts upon it, and we shall assume that this resistance (in
pounds) is numerically equal to 2v, where v is the velocity (in feet per second).
Find the velocity and distance fallen at time ¢ seconds.

Formulation. We choose the positive x axis vertically downward along the path
of the body B and the origin at the point from which the body fell. The forces
acting on the body are:

1. F,, its weight, 8 Ib, which acts downward and hence is positive.
2. F,, the air resistance, numerically equal to 2v, which acts upward and hence
is the negative quantity —2v.

See Figure 3.4, where these forces are indicated.
Newton’s second law, F = ma, becomes
dv

—=F, + F
mdt 1 2
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or, taking ¢ = 32 and usingm = w/g = & = §,

1dv
i 8 — 2v. (3.24)
Since the body was initially at rest, we have the initial condition
v(0) = 0. (3.25)

Solution. Equation (3.24) is separable. Separating variables, we have

dv
8 — 2v

= 4 dt.

Integrating we find
—43In |8 — 2u| = 4t + ¢,
which reduces to
8 — 2u = ce”®.

Applying the condition (3.25) we find ¢, = 8. Thus the velocity at time ¢ is given
by

v =4(1 — ¢ %), (3.26)
Now to determine the distance fallen at time ¢, we write (3.26) in the form

dx _ 41 _ ,-u

1 4(1 — e™%)

and note that x(0) = 0. Integrating the above equation, we obtain

x =40 + 7% + cq
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Since x = 0 when ¢t = 0, we find ¢, = —1% and hence the distance fallen is given
by

x = 4(t + $e 7% — 3§). (3.27)

Interpretation of Results. Equation (3.26) shows us that as ¢t — o, the velocity v
approaches the limiting velocity 4(ft/sec). We also observe that this limiting velocity
is approximately attained in a very short time. Equation (3.27) states that as t —
®, x also — . Does this imply that the body will plow through the earth and
continue forever? Of course not; for when the body reaches the earth’s surface
its motion will certainly cease. How then do we reconcile this obvious end to the
motion with the statement of Equation (3.27)? Itis simple: When the body reaches
the earth’s surface, the differential equation (3.24) and hence Equation (3.27)
no longer apply!

EXAMPLE 3.6 s ey

A skydiver equipped with parachute and other essential equipment falls from
rest toward the earth. The total weight of the man plus the equipment is 160
Ib. Before the parachute opens, the air resistance (in pounds) is numerically
equal to 3v, where v is the velocity (in feet per second). The parachute opens 5
sec after the fall begins; after it opens, the air resistance (in pounds) is numerically
equal to §v%, where v is the velocity (in feet per second). Find the velocity of the
skydiver (A) before the parachute opens, and (B) after the parachute opens.

Formulation. We again choose the positive x axis vertically downward with the
origin at the point where the fall began. The statement of the problem suggests
that we break it into two parts: (A) before the parachute opens; (B) after it opens.

We first consider problem (A). Before the parachute opens, the forces acting
upon the skydiver are:

1. F,, the weight, 160 Ib, which acts downward and hence is positive.

2. F,, the air resistance, numerically equal to v, which acts upward and hence
is the negative quantity —%v.

We use Newton’s second law F = ma, where F = F, + Fy, letm = w/g, and
take g = 32. We obtain
dv
5 pri 160 — }v.
Since the skydiver was initially at rest, v = 0 when ¢ = 0. Thus, problem (A),
concerned with the time before the parachute opens, is formulated as follows:
dv

5 P 160 — %v. (3.28)

v(0) = 0. (3.29)
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We now turn to the formulation of problem (B). Reasoning as before, we
see that after the parachute opens, the forces acting upon the skydiver are:

1. F, = 160, exactly as before.

2. F, = —%v? (instead of —3v).
Thus, proceeding as above, we obtain the differential equation
5 Sid—zt) = 160 — 3v2

Since the parachute opens 5 sec after the fall begins, we have v = v, when ¢t =
5, where v, is the velocity attained when the parachute opened. Thus, problem
(B), concerned with the time after the parachute opens, is formulated as follows:

dv _ 5,2
5 i 160 — gv?, (3.30)
v(5) = v,. (3.31)

Solution. We shall first consider problem (A). We find a one-parameter family
of solution of

dv N
— = - v 3.28
5 =160 — 4o (3.28)
Separating variables, we obtain
dv
v — 320 ~ o dt.
Integration yields
In(v — 320) = — 45t + ¢,

which readily simplifies t6 the form
v = 320 + ce Y10,

Applying the initial condition (3.29) thatv = O at¢t = 0, we find thatc = —320.
Hence the solution to problem (A) is

v = 320(1 — ¢7¥10), (3.32)
which is valid for 0 = ¢ = 5. In particular, where t = 5, we obtain
v, = 320(1 — ¢~1'%) = 126, (3.33)

which is the velocity when the parachute opens.
Now let us consider problem (B). We first find a one-parameter family of
solutions of the differential equation
dv

=T =160 — 302 30
5 =160 - fv (3.30)
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Simplifying and separating variables, we obtain

dv  _ dt
v? - 256 8
Integration yields
il v—16 ¢ +
32 v+ 16 8 *
or
v — 16
lnv + 16 = —4t + Cy.
This readily simplifies to the form
v—16
> 716 ce (3.34)

and solving this for v we obtain

16(ce=% + 1)
V=

4t

(3.35)

1 = ce”
Applying the initial condition (3.31) that v = v, at ¢t = 5, where v, is given by
(3.33) and is approximately 126, to (3.34), we obtain
¢ = H3e®.
Substituting this into (3.35) we obtain
v = 16(13e® % + 1)

l_%_‘lu%eﬂ)—‘lt ’

(3.36)
which is valid for ¢ = 5.

Interpretation of Results. Let us first consider the solution of problem (A), given
by Equation (3.32). According to this, as t — %, v approaches the limiting velocity
320 ft/sec. Thus if the parachute never opened, the velocity would have been
approximately 320 ft/sec at the time when the unfortunate skydiver would have
struck the earth! But, according to the statement of the problem, the parachute
does open 5 sec after the fall begins (we tacitly and thoughtfully assume 5 <<
T, where T is the time when the earth is reached!). Then, referring to the solution
of problem (B), Equation (3.36), we see that as t — ®, v approaches the limiting
velocity 16 ft/sec. Thus, assuming that the parachute opens at a considerable
distance above the earth, the velocity is approximately 16 ft/sec when the earth
is finally reached. We thus obtain the well-known fact that the velocity of impact
with the open parachute is a small fraction of the impact velocity that would
have occurred if the parachute had not opened. The calculations in this problem
are somewhat complicated, but the moral is clear: Make certain that the parachute
opens!
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C. Frictional Forces

If a body moves on a rough surface, it will encounter not only air resistance but
also another resistance force due to the roughness of the surface. This additional
force is called friction. It is shown in physics that the friction is given by wN,
where

1. pis a constant of proportionality called the coefficient of friction, which depends
upon the roughness of the given surface; and

2. N is the normal (that is, perpendicular) force which the surface exerts on the
body.

We now apply Newton’s second law to a problem in which friction is involved.

EXAMPLE 3.7

An object weighing 48 1b is released from rest at the top of a plane metal slide
that is inclined 30° to the horizontal. Air resistance (in pounds) is numerically
equal to one-half the velocity (in feet per second), and the coefficient of friction
is one-quarter.

A. What is the velocity of the object 2 sec after it is released?

B. If the slide is 24 ft long, what is the velocity when the object reaches the
bottom?

Formulation. The line of motion is along the slide. We choose the origin at the
top and the positive x direction down the slide. If we temporarily neglect the
friction and air resistance, the forces acting upon the object A are:

1. Its weight, 48 lb, which acts vertically downward; and
2. The normal force, N, exerted by the slide which acts in an upward direction
perpendicular to the slide. (See Figure 3.5.)

The components of the weight parallel and perpendicular to the slide have
magnitude

48 sin 30° = 24

FIGURE 3.5
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and
48 cos 30° = 24V'3,
respectively, The components perpendicular to the slide are in equilibrium and
hence the normal force N has magnitude 24V'3.
Now, taking into consideration the friction and air resistance, we see that
the forces acting on the object as it moves along the slide are the following:

1. Fy, the component of the weight parallel to the plane, having numerical value
24. Since this force acts in the positive (downward) direction along the slide,
we have

F 1 = 24.

2. F,, the frictional force, having numerical value uN = :}(24\/5). Since this

acts in the negative (upward) direction along the slide, we have

F2 = _6\/—3—.

3. F3, the air resistance, having numerical value 3v. Since v > 0 and this also
acts in the negative direction, we have

F3 = _%v.

We apply Newton’s second law F = ma. Here F = F|, + F, + F3 = 24 —
6V3 — fvand m = w/g = 4§ = % Thus we have the differential equation

3 dv
oo = %- 6V3 — v (8.37)
Since the object is released from rest, the initial condition is
v(0) = 0. (3.38)

Solution. Equation (3.37) is separable; separating variables we have
dv _ dt
48 - 12V3 - v 3
Integrating and simplifying, we find
v =48 — 12V3 — ¢,
The condition (3.38) gives ¢, = 48 — 12V3. Thus we obtain
v = (48 — 12V3)(1 — ¢™*?). (3.39)
Question A is thus answered by letting ¢ = 2 in Equation (3.39). We find
v(2) = (48 — 12V3)(1 — ¢~23) = 13.2(ft/sec).
In order to answer question B, we integrate (3.39) to obtain
x = (48 — 12V3)(t + 3¢7%) + ¢,
Since x(0) = 0, ¢, = —(48 — 12V3)(3). Thus the distance covered at time ¢ is
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given by
x = (48 — 12V3)(t + 3¢~3 — 3).

Since the slide is 24 ft long, the object reaches the bottom at the time T determined
from the transcendental equation

24 = (48 — 12V3)(T + 3¢ T3 — 3),
which may be written as
47 + 2V3 .
13

The value of T that satisfies this equation is approximately 2.6. Thus from
Equation (3.39) the velocity of the object when it reaches the bottom is given
approximately by

3e-T/3 =

(48 — 12V3)(1 — ¢ %)= 16.2 (ft/sec).

EXERCISES

1. A stone weighing 4 Ib falls from rest toward the earth from a great height.
As it falls it is acted upon by air resistance that is numerically equal to 3v(in
pounds), where v is the velocity (in feet per second).

(a) Find the velocity and distance fallen at time ¢ sec.
(b) Find the velocity and distance fallen at the end of 5 sec.

2. A ball weighing 6 1b is thrown vertically downward toward the earth from
a height of 1000 ft with an initial velocity of 6 ft/sec. As it falls it is acted
upon by air resistance that is numerically equal to v (in pounds), where v
is the velocity (in feet per second).

(@) What is the velocity and distance fallen at the end of one minute?
(b) With what velocity does the ball strike the earth?

3. A ball weighing § Ib is thrown vertically upward from a point 6 ft above the
surface of the earth with an initial velocity of 20 ft/sec. As it rises it is acted
upon by air resistance that is numerically equal to gv (in pounds), where v
is the velocity (in feet per second). How high will the ball rise?

4. A ship which weighs 32,000 tons starts from rest under the force of a constant
propeller thrust of 100,000 Ib. The resistance in pounds is numerically equal
to 8000v, where v is in feet per second.

(@) Find the velocity of the ship as a function of the time.

(b) Find the limiting velocity (that is, the limit of v as ¢t — + ).

(c) Find how long it takes the ship to attain a velocity of 80% of the limiting
velocity.

5. A body of mass 100 g is dropped from rest toward the earth from a height



10.

11.

12.
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of 1000 m. As it falls, air resistance acts upon it, and this resistance (in
newtons) is proportional to the velocity v (in meters per second). Suppose
the limiting velocity is 245 m/sec.

(@) Find the velocity and distance fallen at time ¢ secs.

(b) Find the time at which the velocity is one-fifth of the limiting velocity.

. An object of mass 100 g is thrown vertically upward from a point 60 cm

above the earth’s surface with an initial velocity of 150 cm/sec. It rises briefly
and then falls vertically to the earth, all of which time it is acted on by air
resistance that is numerically equal to 200v (in dynes), where v is the velocity
(in cm/sec).

(a) Find the velocity 0.1 sec after the object is thrown.

(b) Find the velocity 0.1 sec after the object stops rising and starts falling.

. Two people are riding in a motorboat and the combined weight of individ-

uals, motor, boat, and equipment is 640 Ib. The motor exerts a constant
force of 20 lb on the boat in the direction of motion, while the resistance
(in pounds) is numerically equal to one and one-half times the velocity (in
feet per second). If the boat started from rest, find the velocity of the board
after (a) 20 sec, (b) 1 min.

A boat weighing 150 1b with a single rider weighing 170 Ib is being towed
in a certain direction at the rate of 20 mph. At time ¢t = 0 the tow rope is
suddenly cast off and the rider begins to row in the same direction, exerting
a force equivalent to a constant force of 12 Ib in this direction. The resistance
(in pounds) is numerically equal to twice the velocity (in feet per second).
(@) Find the velocity of the boat 15 sec after the tow rope was cast off.
(b) How many seconds after the tow rope is cast off will the velocity be
one-half that at which the boat was being towed?

A bullet weighing 1 oz is fired vertically downward from a stationary heli-
copter with a muzzle velocity of 1200 ft/sec. The air resistance (in pounds)
is numerically equal to 1675v%, where v is the velocity (in feet per second).
Find the velocity of the bullet as a function of the time.

A shell weighing 1 Ib is fired vertically upward from the earth’s surface with
a muzzle velocity of 1000 ft/sec. The air resistance (in pounds) is numerically
equal to 107*v?, where v is the velocity (in feet per second).

(@) Find the velocity of the rising shell as a function of the time.

(b) How long will the shell rise?

An object weighing 16 Ib is dropped from rest on the surface of a calm lake
and thereafter starts to sink. While its weight tends to force it downward,
the buoyancy of the object tends to force it back upward. If this buoyancy
force is one of 6 1b and the resistance of the water (in pounds) is numerically
equal to twice the square of the velocity (in feet per second), find the formula
for the velocity of the sinking object as a function of the time.

An object weighing 12 Ib is placed beneath the surface of a calm lake. The
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13.

14.

15.

16.

17.

18.

buoyancy of the object is 30 lb; because of this the object begins to rise. If
the resistance of the water (in pounds) is numerically equal to the square of
the velocity (in feet per second) and the object surfaces in 5 sec, find the
velocity of the object at the instant when it reaches the surface.

A man is pushing a loaded sled across a level field of ice at the constant
speed of 10 ft/sec. When the man is halfway across the ice field, he stops
pushing and lets the loaded sled continue on. The combined weight of the
sled and its load is 80 Ib; the air resistance (in pounds) is numerically equal
to $v, where v is the velocity of the sled (in feet per second); and the coefficient
of friction of the runners on the ice is 0.04. How far will the sled continue
to move after the man stops pushing?

A girl on her sled has just slid down a hill onto a level field of ice and is
starting to slow down. At the instant when their speed is 5 ft/sec, the girl’s
father runs up and begins to push the sled forward, exerting a constant
force of 15 Ib in the direction of motion. The combined weight of the girl
and the sled is 96 Ib, the air resistance (in pounds) is numerically equal to
one-half the velocity (in feet per second), and the coefficient of friction of
the runners on the ice is 0.05. How fast is the sled moving 10 sec after the
father begins pushing?

A case of canned milk weighing 24 Ib is released from rest at the top of a
plane metal slide which is 30 ft long and inclined 45° to the horizontal. Air
resistance (in pounds) is numerically equal to one-third the velocity (in feet
per second) and the coefficient of friction is 0.4.

(a) What is the velocity of the moving case 1 sec after it is released?

(b) What is the velocity when the case reaches the bottom of the slide?

A boy goes sledding down a long 30° slope. The combined weight of the
boy and his sled is 72 Ib and the air resistance (in pounds) is numerically
equal to twice their velocity (in feet per second). If they started from rest
and their velocity at the end of 5 sec is 10 ft/sec, what is the coefficient of
friction of the sled runners on the snow?

An object weighing 32 1b is released from rest 50 ft above the surface of a
calm lake. Before the object reaches the surface of the lake, the air resistance
(in pounds) is given by 2v, where v is the velocity (in feet per second). After
the object passes beneath the surface, the water resistance (in pounds) is
given by 6v. Further, the object is then buoyed up by a buoyancy force of
8 Ib. Find the velocity of the object 2 sec after it passes beneath the surface
of the lake.

A rocket of mass m is fired vertically upward from the surface of the earth
with initial velocity v = v,. The only force on the rocket that we consider is
the gravitational attraction of the earth. Then, according to Newton’s law
of gravitation, the acceleration a of the rocket is given by a = —k/x?, where
k > 0 is a constant of proportionality and x is the distance “upward” from
the center of the earth along the line of motion. Attime ¢ = 0,x = R (where
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R is the radius of the earth), a = —g (where g is the acceleration due to

gravity), and v = v, Express a = dv/dt as in Equation (3.23), apply the
appropriate initial data, and note that v satisfies the differential equation

2

4o _ R

dx x2

Solve this differential equation, apply the appropriate initial condition, and
thus express v as a function of x. In particular, show that the minimum value
of vy for which the rocket will escape from the earth is V2gR. This is the
so-called velocity of escape; and using R = 4000 miles, g = 32 ft/sec?, one
finds that this is approximately 25,000 mph (or 7 mi/sec).

A body of mass m is in rectilinear motion along a horizontal axis. The
resultant force acting on the body is given by —kx, where £ > 0 is a constant
of proportionality and x is the distance along the axis from a fixed point O.
The body has initial velocity v = v, when x = x,. Apply Newton’s second
law in the form (3.23) and thus write the differential equation of motion in
the form

mv T = —kx.

Solve the differential equation, apply the initial condition, and thus express
the square of the velocity v as a function of the distance x. Recalling that
v = dx/dt, show that the relation between v and x thus obtained is satisfied

for all time ¢ by
2
x = q|x§ + @—Osin<\/£t + d)),
k m

where ¢ is a constant.

3.3 RATE PROBLEMS

In certain problems the rate at which a quantity changes is a known function of
the amount present and/or the time, and it desired to find the quantity itself. If

x denotes the amount of the quantity present at time ¢, then dx/dt denotes the

rate at which the quantity changes and we are at once led to a differential
equation. In this section we consider certain problems of this type.

A. Rate of Growth and Decay

EXAMPLE 3.8 s en

The rate at which radioactive nuclei decay is proportional to the number of such
nuclei that are present in a given sample. Half of the original number of radio-
active nuclei have undergone disintegration in a period of 1500 years.
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1. What percentage of the original radioactive nuclei will remain after 4500
years?
2. In how many years will only one-tenth of the original number remain?

Mathematical Formulation Letx be the amount of radioactive nuclei present after
t years. Then dx/dt represents the rate at which the nuclei decay. Since the nuclei
decay at a rate proportional to the amount present, we have
dx

— = Kx, 3.40

7 (3.40)
where K is a constant of proportionality. The amount x is clearly positive; further,
since x is decreasing, dx/dt < 0. Thus, from Equation (3.40), we must have K <
0. In order to emphasize that x is decreasing, we prefer to replace K by a positive

constant preceded by a minus sign. Thus we let £ = —K > 0 and write the
differential equation (3.40) in the form
dx
— = —kx. 41
o kx (3.41)

Letting x, denote the amount initially present, we also have the initial condition
x(0) = xo. (3.42)

We know that we shall need such a condition in order to determine the arbitrary
constant that will appear in a one-parameter family of solutions of the differential
equation (3.41). However, we shall apparently need something else, for Equation
(3.41) contains an unknown constant of proportionality k. This “something else”
appears in the statement of the problem, for we are told that half of the original
number disintegrate in 1500 years. Thus half also remain at that time, and this
at once gives the condition

x(1500) = bx,. (3.43)

Solution The differential equation (3.41) is clearly separable; separating vari-
ables, integrating, and simplifying, we have at once

x = ce™™.
Applying the initial condition (3.42), x = x, whent = 0, we find that ¢ = x, and
hence we obtain

x = xge M. (3.44)

We have not yet determined k. Thus we now apply condition (3.43), x =
#xo when ¢ = 1500, to Equation (3.44). We find

1 — — 1500k
§x0 - xoe )
or

(e~Hy1s0 = 3
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or finally

e—k = (%)1/1500.

From this we find

In 2
= 1500 = 0.00046.
Using this, (3.44) becomes
x = xoe 000046 (3.45)

Alternately, we note that we do not actually need k itself in (3.44), but rather
only ¢~*, which we have already obtained. We found

e—k — (%)1/1500’

and we now substitute this into (3.44) to obtain

x = xo(e—kt = xo[(_%)lllSOO]t
or
x = xo(3)"15, (3.46)

Each of the two equivalent expressions (3.45) and (3.46) gives the number x of
radioactive nuclei that are present at time ¢. We shall use formula (3.46) to answer
questions 1 and 2.

Question 1 asks what percentage of the original number will remain after
4500 years. We thus let t = 4500 in Equation (3.46), and find

x = xo(3)° = #x,.

Thus, one-eighth or 12.5% of the original number remain after 4500 years.
Question 2 asks us when only one-tenth will remain. Thus we let x = 75x, in
Equation (3.46) and solve for t. We have

& = G)v1s0,

Using logarithms, we then obtain

] 1)\ /1500 ; 1
ln<m> = ln(é-) = 1500 ln<§> .

From this it follows at once that

=S

t In

1500  In}

or
1500 In 10
= "o 4985 (years).

EXAMPLE 3.9 mnsnsemiaiss s

Newton’s Law of Cooling states that the rate of change of the temperature of a
cooling body is porportional to the difference between the temperature of the
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body and the constant temperature of the medium surrounding the body. Apply
this law to the following problem.

A body of temperature 80°F is placed in a room of constant temperature
50°F at time ¢ = 0; and at the end of 5 minutes, the body has cooled to a
temperature of 70°F. Determine the temperature of the body as a function of
time for ¢ > 0. In particular answer the following questions:

1. What is the temperature of the body at the end of 10 minutes?
2. When will the temperature of the body be 60°F?

3. After how many minutes will the temperature of the body be within 1°F of
the constant 50° temperature of the room?

Solution. Let x be the Fahrenheit temperature of the body at time ¢. By New-
ton’s Law of Cooling, we at once have the differential equation
dx
— = — 4
" k(x — 50), (3.47)
where k is the constant of proportionality. The initial temperature of 80° gives
the initial condition

x(0) = 80; (3.48)
and the 70° temperature at the end of 5 minutes gives the additional condition
x(5) = 70. (3.49)

The differential equation (3.47) is both separable and linear. We solve it as
a separable equation, and write
dx
x — 50

= kdt.

Integrating, we find
In |x — 50| = kt + c¢,,

and from this,

|x — 50| = ce*.
Since x = 50, |x — 50| = x — 50, and so we have
x = 50 + cet. (3.50)

We apply the initial condition (3.48) to this. We let x = 80 and ¢t = 0 in
(3.50) to obtain 80 = 50 + ¢, from which ¢ = 30. Thus (3.50) becomes

x = 50 + 30e¥. (3.51)

We now apply the additional condition (3.49) to (3.51). We letx = 70 and ¢t =
5 to obtain 70 = 50 + 30e*, from which

eSh =% (3.52)
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From this, 2 = 3 In 3, and then a calculator or table gives k = —0.08109. Using
this, (3.51) becomes

x = 50 + 30008109 (3.53)

Alternately, we note that we do not need £ itself in (3.51), but rather only
¢*. From (3.52), we have

et = (315,
Using this (3.51) becomes
x = 50 + 30(3)"°. (3.54)

Each of the equivalent expressions (3.53) and (3.54) gives the temperature of
the body as a function of the time for ¢ > 0. We shall use form (3.54) to answer
questions 1, 2, and 3.

Question 1 asks for the temperature at the end of 10 minutes. Thus we let
t = 10 in (3.54). We find

x = 50 + 30(3)* = 63.33°F.

Question 2 asks when the temperature x will be 60°. Thus we letx = 60 in (3.54)
and solve for t. We have

60 = 50 + 30(3)"5,
from which
@5 = 3.
From this,

In}

t = 5 {— ] = 13.55 (minutes).
In %

Question 3 asks after how many minutes the temperature will be within 1° of
the constant 50° room temperature. Thus we seek the time when the temperature
x is 51. Thus letting x = 51 in (3.54), we quickly find

B = &

from which

t =25 (ln 516) =~ 41.94 (minutes).

In %

So in approximately 42 minutes the temperature of the body will be within 1°
of that of the room.

B. Population Growth

We next consider the growth of a population (for example, human, an animal
species, or a bacteria colony) as a function of time. Note that a population actually
increases discontinuously by whole-number amounts. However, if the population
is very large, such individual increases in it are essentially negligible compared
to the entire population itself. In other words, the population increase is ap-
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proximately continuous. We shall therefore assume that this increase is indeed
continuous and in fact that the population is a continuous and differentiable
function of time.

Given a population, we let x be the number of individuals in it at time ¢. If
we assume that the rate of change of the population is proportional to the number
of individuals in it at any time, we are led to the differential equation

- = 3.55
a - (3.55)
where £ is a constant of proportionality. The population x is positive and is
increasing, and hence dx/dt > 0. Therefore, from (3.55), we must have £ > 0.
Now suppose that at time ¢, the population is x,. Then, in addition to the dif-
ferential equation (3.55) we have the initial condition

x(to) = xo. (3.56)

The differential equation (3.55) is separable. Separating variables, integrating,
and simplifying, we obtain
x = ce.

Applying the initial condition (3.56), x = x, at ¢t = ¢,, to this, we have x, =
ce*o. From this we at once find ¢ = x,¢~*, and hence obtain the unique solution

x = xqek¢=% (8.57)

of the differential equation (3.55) which satisfies the initial condition (3.56).

From (3.57) we see that a population governed by the differential equation
(3.55) with £ > 0 and initial condition (3.56) is one that increases exponentially
with time. This law of population growth is called the Malthusian law. We should
now inquire whether or not there are cases in which such a model for population
growth is indeed realistic. In answer to this, it can be shown that this model,
with a suitable value of %, is remarkably accurate in the case of the human
population of the earth during the last several decades (see Problem 14(b)). It
is also known to be outstandingly accurate for certain mammalian species, with
suitable £, under certain realizable conditions and for certain time periods. On
the other hand, turning back to the case of the human population of the earth,
it can be shown that the Malthusian law turns out to be quite unreasonable when
applied to the distant future (see Problem 14(e)). It is also completely unrealistic
for other populations (for example, bacteria colonies) when applied over suffi-
ciently long periods of time. The reason for this is not hard to see. For, according
to (3.57), a populatlon modeled by this law always increases and indeed does so
at an ever increasing rate; whereas, observation shows that a given population
simply does not grow indefinitely.

Population growth is represented more realistically in many cases by assum-
ing that the number of individuals x in the population at time ¢ is described by
a differential equation of the form

dx

7 = kx — Ax2, (3.58)
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where £ > 0 and A > 0 are constants. The additional term — Ax? is the result of
some cause that tends to limit the ultimate growth of the population. For example,
such a cause could be insufficient living space or food supply, when the population
becomes sufficiently large. Concerning the choice of —Ax? for the term repre-
senting the effect of the cause, one can argue as follows: Assuming the cause
affects the entire population of x members, then the effect on any one individual
is proportional to x. Thus the effect on all x individuals in the population would
be proportional to x - x = x2.

We thus assume that a population is described by a differential equation of
the form (3.58) with constants £ > 0 and A > 0, and an initial condition of the
form (3.56). In most such cases, it turns out that the constant 4 is very small
compared to the constant k. Thus for sufficiently small x, the term kx predom-
inates, and so the population grows very rapidly for a time. However, when x
becomes sufficiently large, the term — Ax? is of comparatively greater influence,
and the result of this is a decrease in the rapid growth rate. We note that the
differential equation (3.58) is both a separable equation and a Bernoulli equation.
The law of population growth so described is called the logistic law of growth.
We now consider a specific example of this type of growth.

EXAMPLE 3.10 @i
The population x of a certain city satisfies the logistic law
de_ 11
dt — 1007 (10)°

where time ¢ is measured in years. Given that the population of this city is 100,000
in 1980, determine the population as a function of time for ¢ > 1980. In particular,
answer the following questions:

(@) What will be the population in 2000?

(b) In what year does the 1980 population double?

(c) Assuming the differential equation (3.59) applies for all t > 1980, how large
will the population ultimately be?

2 (3.59)

Solution. We must solve the separable differential equation (3.59) subject to the

initial solution
x(1980) = 100,000. (3.60)

Separating variables in (3.59) we obtain

dx

10 % — (10) % _ &

and hence
dx

10y & — (10) &~ %
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Using partial fractions, this becomes

1, 4o | _
100[x o (IO)_ﬁx] dx = dt.

Integrating, assuming 0 < x < 10, we obtain
100{ln x — In[1 — (10)"%]} = ¢ + ¢,

and hence
X
lnli———————1 — (10)‘6x] = 1hot + cy.
Thus we find
X
i_:_.(m = ce!!100.

Solving this for x, we finally obtain

Cet/lOO

T T (10) S

(3.61)

Now applying the initial condition (3.60) to this, we have

ce 19.8

5 - —_—m—m
(10) 1 + (10) 5ce'98’
from which we obtain
(10)° _ 10y
e19.8[1 _ (10)5(10)—6] - Qpl98 "

Substituting this value for ¢ back into (3.61) and simplifying, we obtain the
solution in the form

cC =

(10)°

= 1 + 9glos-ui00

This gives the population x as a function of time for ¢ > 1980.

We now consider the questions (a), (b), and (c) of the problem. Question (a)
asks for the population in the year 2000. Thus we let ¢t = 2000 in (3.62) and
obtain

(10)°

T T ¥ 90

(3.62)

=~ 119,495.

Question (b) asks for the year in which the population doubles. Thus we let
x = 200,000 = 2(10)® in (3.62) and solve for ¢. We have
(10)°
2(10y° = 1 + 9g'198-1/100°
from which

£198-1100 — 4

and hence
t = 2061.
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Question (c) asks how large the population will ultimately be, assuming the
differential equation (3.59) applies for all ¢ > 1980. To answer this, we evaluate
lim x as ¢t — « using the solution (3.62) of (3.59). We find

, . (10)°
= I T gememo

= (10)® = 1,000,000.

C. Mixture Problems

We now consider rate problems involving mixtures. A substance $ is allowed to
flow into a certain mixture in a container at a certain rate, and the mixture is
kept uniform by stirring. Further, in one such situation, this uniform mixture
simultaneously flows out of the container at another (generally different) rate;
in another situation this may not be the case. In either case we seek to determine
the quantity of the substance § present in the mixture at time ¢.

Letting x denote the amount of § present at time ¢, the derivative dx/dt
denotes the rate of change of x with respect to ¢. If IN denotes the rate at which
S enters the mixture and OUT the rate at which it leaves, we have at once the
basic equation

dx

~ = IN-ouT (3.63)

from which to determine the amount x of § at time ¢. We now consider examples.

EXAMPLE 3.11 o s

A tank initially contains 50 gal of pure water. Starting at time ¢ = 0 a brine
containing 2 Ib of dissolved salt per gallon flows into the tank at the rate of 3
gal/min. The mixture is kept uniform by stirring and the well-stirred mixture
simultaneously flows out of the tank at the same rate.

1. How much salt is in the tank at any time ¢t > 0?

2. How much salt is present at the end of 25 min?
3. How much salt is present after a long time?

Mathematical Formulation. Let x denote the amount of salt in the tank at time
t. We apply the basic equation (3.63)
dx _ IN - OUT.
dt
The brine flows in at the rate of 3 gal/min, and each gallon contains 2 Ib of salt.
Thus
IN = (2 lb/gal)(3 gal/min) = 6 Ib/min.

Since the rate of outflow equals the rate of inflow, the tank contains 50 gal of
the mixture at any time ¢. This 50 gal contains x lb of salt at time ¢, and so the
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concentration of salt at time ¢ is s5x Ib/gal. Thus, since the mixture flows out at
the rate of 3 gal/min, we have

OuT = ( lb/gal)(S gal/min) = §— 1b/min.

Thus the differential equation for x as a function of ¢ is

dx 3x
P 6 — 50" (3.64)
Since initially there was no salt in the tank, we also have the initial condition
x(0) = 0. (3.65)

Solution. Equation (3.64) is both linear and separable. Separating variables, we
have

Integrating and simplifying, we obtain
x = 100 + ce3/50,

Applying the condition (3.65), x = 0 at¢ = 0, we find that ¢ = —100. Thus we
have
x = 100(1 — e~3%), (3.66)

This is the answer to question 1. As for question 2, at the end of 25 min, ¢t =
25, and Equation (3.66) gives

x(25) = 100(1 — ¢~ = 78(lb).

Question 3 essentially asks us how much salt is present as ¢ — «. To answer this
we let t = » in Equation (3.66) and observe that x — 100.

EXAMPLE 3.12 e

A large tank initially contains 50 gal of brine in which there is dissolved 10 b
of salt. Brine containing 2 Ib of dissolved salt per gallon flows into the tank at
the rate of 5 gal/min. The mixture is kept uniform by stirring, and the stirred
mixture simultaneously flows out at the slower rate of 3 gal/min. How much salt
is in the tank at any time ¢ > 0?

Mathematical Formulation. Let x = the amount of salt at time ¢. Again we shall
use Equation (3.63)
dx

dt
Proceeding as in Example 3.10,
= (2 Ib/gal)(5 gal/min) = 10 lb/min;

= IN — OUT.
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also, once again
OUT = (C Ib/gal)(3 gal/min),

where C lb/gal denotes the concentration. But here, since the rate of outflow is
different from that of inflow, the concentration is not quite so simple. At time
t = 0, the tank contains 50 gal of brine. Since brine flows in at the rate of 5
gal/min but flows out at the slower rate of 3 gal/min, there is a net gain of
5 — 3 = 2 gal/min of brine in the tank. Thus at the end of ¢ minutes the
amount of brine in the tank is

50 + 2¢ gal.
Hence the concentration at time ¢ minutes is
x
50 + 2t Ib/gal,
and so
3x .
OUT = 50 + 9 1b/min.
Thus the differential equation becomes
dx 3x
i 10 — 50 + 9 (3.67)
Since there was initially 10 b of salt in the tank, we have the initial condition
x(0) = 10. (3.68)

Solution. The differential equation (3.67) is not separable but it is linear. Putting
it in standard form,

dx 3

T au+s0 T

10,

we find the integrating factor

3 — 3/2
exp<f o 5Odt> = (2t + 50)*2.

Multiplying through by this, we have

(2t + 50)372 ‘2—’; + 3(2¢t + 50)V2x = 10(2t + 50)%2

or

d%[(?t + 50)%2x] = 10(2t + 50)*2.
Thus

(2t + 50)32%x = 2(2t + 50)°% + ¢
or

c

x=4(t+25)+m.
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Applying condition (3.68), x = 10 at¢t = 0, we find

4
10_100+W

¢ = —(90)(50%2 = —22,500V2.

Thus the amount of salt at any time ¢ > 0 is given by

22 5002

= + _— ——
X =4+ 100 - S

EXERCISES

1. Assume that the rate at which radioactive nuclei decay is proportional to the

number of such nuclei that are present in a given sample. In a certain sample

10% of the original number of radioactive nuclei have undergone disinte-

gration in a period of 100 years.

(@) What percentage of the original radioactive nuclei will remain after
1000 years?

(b) In how many years will only one-fourth of the original number remain?

. A certain chemical is converted into another chemical by a chemical reaction.

The rate at which the first chemical is converted is proportional to the amount

of this chemical present at any instant. Ten percent of the original amount

of the first chemical has been converted in 5 min.

(@) What percent of the first chemical will have been converted in 20 min?

(b) In how many minutes will 60% of the first chemical have been con-
verted?

. A chemical reaction converts a certain chemical into another chemical, and
the rate at which the first chemical is converted is proportional to the amount
of this chemical present at any time. At the end of one hour, 50 gm of the
first chemical remain; while at the end of three hours, only 25 gm remain.
(a) How many grams of the first chemical were present initially?

(b) How many grams of the first chemical will remain at the end of five

hours?
(c) In how many hours will only 2 gm of the first chemical remain?

. A chemical reaction converts a certain chemical into another chemical, and
the rate at which the first chemical is converted is proportional to the amount
of this chemical present at any time. At the end of one hour, two-thirds kg
of the first chemical remains, while at the end of four hours, only one-third
kg remains.

(a) What fraction of the first chemical remains at the end of seven hours?
(b) When will only one-tenth of the first chemical remain?
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In a certain bacteria culture the rate of increase in the number of bacteria
is proportional to the number present.

(@) If the number triples in 5 hr, how many will be present in 10 hr?

(b) When will the number present be 10 times the number initially present?

A mold grows at a rate that is proportional to the amount present. Initially
there is 3 oz of this mold, and 10 hours later there is 5 oz.

(a) How much mold is there at the end of 1 day?

(b) When is there 10 oz of the mold?

Assume Newton’s Law of Cooling to solve the following problem: A body
of temperature 100°F is placed at time ¢ = 0 in a medium the temperature
of which is maintained at 40°F. At the end of 10 min, the body has cooled
to a temperature of 90°F.

(a) What is the temperature of the body at the end of 30 min?

(b) When will the temperature of the body be 50°F?

Assume Newton’s Law of Cooling to solve the following problem: A body
cools from 60°C to 50°C in 15 min in air which is maintained at 30°C. How
long will it take this body to cool from 100°C to 80°C in air that is maintained
at 50°C?

. A hot pie is taken directly from an oven and placed outdoors on a porch

table to cool on a day when the surrounding outdoor temperature is a
constant 80°F. The temperature of the pie was 350°F at the instant ¢t = 0
when it was placed on the table, and it was 300°F 5 minutes later.

(a) What was the temperature 10 minutes after it was placed on the table?
(b) When was its temperature 100°F?

At 10 A.M. a woman took a cup of hot instant coffee from her microwave

oven and placed it on a nearby kitchen counter to cool. At this instant the

temperature of the coffee was 180°F, and 10 minutes later it was 160°F.

Assume the constant temperature of the kitchen was 70°F.

(@) What was the temperature of the coffee at 10:15 A.m.?

(b) The woman of this problem likes to drink coffee when its temperature
is between 130°F and 140°F. Between what times should she have drunk
the coffee of this problem?

Assume that the population of a certain city increases at a rate proportional
to the number of inhabitants at any time. If the population doubles in 40
years, in how many years will it triple?

The population of the city of Bingville increases at a rate proportional to
the number of its inhabitants present at any time ¢. If the population of
Bingville was 30,000 in 1970 and 35,000 in 1980, what will be the population
of Bingyville in 1990?

The rodent population of a certain isolated island increases at a rate pro-
portional to the number of rodents present at any time ¢. If there are x,
rodents on the island at time ¢ = 0 and twice that many at time T > 0, how
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14.

15.

16.

17.

many rodents will there be at (a) time 27, (b) time 37T, (c) time nT, where
n is a positive integer.

Assume that the rate of change of the human population of the earth is
proportional to the number of people on earth at any time, and suppose
that this population is increasing at the rate of 2% per year. The 1979 World

Almanac gives the 1978 world population estimate as 4219 million; assume

this figure is in fact correct.

(@) Using this data, express the human population of the earth as a function
of time.

(b) According to the formula of part (a), what was the population of the
earth in 1950? The 1979 World Almanac gives the 1950 world population
estimate as 2510 million. Assuming this estimate is very nearly correct,
comment on the accuracy of the formula of part (a) in checking such
past populations.

(c) According to the formula of part (a), what will be the population of
the earth in 2000? Does this seem reasonable?

(d) According to the formula of part (a), what was the population of the
earth in 1900? The 1970 World Almanac gives the 1900 world population
estimate as 1600 million. Assuming this estimate is very nearly correct,
comment on the accuracy of the formula of part (a) in checking such
past populations.

(e) According to the formula of part (a), what will be the population of
the earth in 2100? Does this seem reasonable?

The human population of a certain island satisfies the logistic law (3.58) with

k = 0.03, 2 = 3(10)"% and time ¢ measured in years.

(a) If the population in 1980 is 200,000, find a formula for the population
in future years.

(b) According to the formula of part (a), what will be the population in the
year 2000?

(c) What is the limiting value of the population at t — «?

This is a general problem about the logistic law of growth. A population

satisfies the logistic law (3.58) and has x, members at time ¢,.

(@) Solve the differential equation (3.58) and thus express the population
x as a function of ¢.

(b) Show that as t — «, the population x approaches the limiting value
kiA.

(c) Show that dx/dt is increasing if x < k/24 and decreasing if x > k/24.

(d) Graph x as a function of ¢ for ¢t > ¢,.

(e) Interpret the results of parts (b), (c), and (d).

The human population of a certain small island would satisfy the logistic
law (3.58), with £ = 335, 4 = (10)78, and ¢ measured in years, provided the
annual emigration from the island is neglected. However, the fact is that
every year 100 people become disenchanted with island life and move from
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the island to the mainland. Modify the logistic differential equation (3.58)
with the given k and 4 5o as to include the stated annual emigration. Assuming
that the population in 1980 is 20,000, solve the resulting initial-value problem
and thus find the population of the island as a function of time.

Under natural circumstances the population of mice on a certain island
would increase at a rate proportional to the number of mice present at any
time, provided the island had no cats. There were no cats on the island from
the beginning of 1970 to the beginning of 1980, and during this time the
mouse population doubled, reaching an all-time high of 100,000 at the
beginning of 1980. At this time the people of the island, alarmed by the
increasing number of mice, imported a number of cats to kill the mice. If
the indicated natural rate of increase of mice was thereafter offset by the
work of the cats, who killed 1000 mice a month, how many mice remained
at the beginning of 1981?

An amount of invested money is said to draw interest compounded continuously

if the amount of money increases at a rate proportional to the amount

present. Suppose $1000 is invested and draws interest compounded contin-

uously, where the annual interest rate is 6%.

(a) How much money will be present 10 years after the original amount
was invested?

(b) How long will it take the original amount of money to double?

Suppose a certain amount of money is invested and draws interest com-

pounded continuously.

(a) If the original amount doubles in two years, then what is the annual
interest rate?

(b) If the original amount increases 50% in six months, then how long will
it take the original amount to double?

A tank initially contains 100 gal of brine in which there is dissolved 20 Ib of
salt. Starting at time ¢ = 0, brine containing 3 Ib of dissolved salt per gallon
flows into the tank at the rate of 4 gal/min. The mixture is kept uniform
by stirring and the well-stirred mixture simultaneously flows out of the tank
at the same rate.

(a) How much salt is in the tank at the end of 10 min?

(b) When is there 160 b of salt in the tank?

A large tank initially contains 100 gal of brine in which 10 Ib of salt is

dissolved. Starting at ¢ = 0, pure water flows into the tank at the rate of 5

gal/min. The mixture is kept uniform by stirring and the well-stirred mixture

simultaneously flows out at the slower rate of 2 gal/min.

(a) How much salt is in the tank at the end of 15 min and what is the
concentration at that time?

(b) If the capacity of the tank is 250 gal, what is the concentration at the
instant the tank overflows?
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23.

24.

25.

26.

27.

28.

29.

A tank initially contains 100 gal of pure water. Starting at ¢ = 0, a brine
containing 4 Ib of salt per gallon flows into the tank at the rate of 5 gal/min.
The mixture is kept uniform by stirring and the well-stirred mixture flows
out at the slower rate of 3 gal/min.

(a) How much salt is in the tank at the end of 20 min?

(b) When is there 50 1b of salt in the tank?

A large tank initially contains 200 gal of brine in which 15 Ib of salt is

dissolved. Starting at ¢t = 0, brine containing 4 Ib of salt per gallon flows

into the tank at the rate of 3.5 gal/min. The mixture is kept uniform by

stirring and the well-stirred mixture leaves the tank at the rate of 4 gal/min.

(a) How much salt is in the tank at the end of one hour?

(b) How much salt is in the tank when the tank contains only 50 gal of
brine?

A 500 liter tank initially contains 300 liters of fluid in which there is dissolved
50 gm of a certain chemical. Fluid containing 30 gm per liter of the dissolved
chemical flows into the tank at the rate of 4 liters/min. The mixture is kept
uniform by stirring, and the stirred mixture simultaneously flows out at the
rate of 2.5 liters/min. How much of the chemical is in the tank at the instant
it overflows?

A 200 liter tank is initially full of fluid in which there is dissolved 40 gm of
a certain chemical. Fluid containing 50 gm per liter of this chemical flows
into the tank at the rate of 5 liters/min. The mixture is kept uniform by
stirring, and the stirred mixture simultaneously flows out at the rate of 7
liters/min. How much of the chemical is in the tank when it is only half full?

The air in a room whose volume is 10,000 cu ft tests 0.15% carbon dioxide.

Starting at t = 0, outside air testing 0.05% carbon dioxide is admitted at the

rate of 5000 cu ft/min.

(@) What is the percentage of carbon dioxide in the air in the room after
3 min?

(b) When does the air in the room test 0.1% carbon dioxide.

The air in a room 50 ft by 20 ft by 8 ft tests 0.2% carbon dioxide. Starting
att = 0, outside air testing 0.05% carbon dioxide is admitted to the room.
How many cubic feet of this outside air must be admitted per minute in
order that the air in the room test 0.1% at the end of 30 min?

A useful new product is introduced into an isolated fixed population of
1,000,000 people, and 100 of these people adopt this product initially, that
is, at time ¢t = 0. Suppose the rate at which the product is adopted is pro-
portional to the number of the people who have adopted it already multiplied
by the number of them who have not yet done so. If we let x denote the
number of people who have adopted the product at time ¢, measured in
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weeks, then we have the initial-value problem

dx
i kx (1,000,000 — x),
x(0) = 100,

where £ is the constant of proportionality.

(@) Solve this initial-value problem.

(b) How many people have adopted the product after two weeks?
(c) When will one half of the given population have adopted it?

Exactly one person in an isolated island population of 10,000 people comes
down with a certain disease on a certain day. Suppose the rate at which this
disease spreads is proportional to the product of the number of people who
have the disease and the number of people who do not yet have it. If 50
people have the disease after 5 days, how many have it after 10 days?

Two chemicals ¢, and ¢, react to form a third chemical ¢;. The rate of change
of the number of pounds of ¢; formed is proportional to the amounts of ¢,
and ¢, present at any instant. The formation of ¢; requires 3 1b of ¢, for each
pound of ¢,. Suppose initially there are 10 Ib of ¢, and 15 Ib of ¢, present,
and that 5 Ib of ¢ are formed in 15 minutes.

(@) Find the amount of ¢; present at any time.

(b) How many Ib of ¢; are present after 1 hour?

Suggestion Let x be the number of pounds of ¢; formed in time ¢ > 0. The
formation requires three times as many pounds of ¢, as it does of ¢, so to
form x Ib of ¢;, 3x/4 Ib of ¢, and x/4 Ib of ¢, are required. So, from the given
initial amounts, there are 10 — x/4 b of ¢, and 15 — 3x/4 Ib of ¢, present
at time ¢ when x b of ¢; are formed. Thus we have the differential equation

dx X 3x
i k(lO - Z>(15 - Z) ,

where £ is the constant of proportionality. We have the initial condition
x(0) =0

and the additional condition
x(15) = 5.

The rate at which a certain substance dissolves in water is proportional to
the product of the amount undissolved and the difference ¢, — ¢,, where ¢,
is the concentration in the saturated solution and ¢, is the concentration in
the actual solution. If saturated, 50 gm of water would dissolve 20 gm of
the substance. If 10 gm of the substance is placed in 50 gm of water and
half of the substance is then dissolved in 90 min, how much will be dissolved
in 3 hr?
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CHAPTER REVIEW EXERCISES

1. Find the orthogonal trajectories of the family of curves

—cx+-l
b X"

2. Find the orthogonal trajectories of the family of curves
x® + 3xy? = c.

3. An object weighing 4 1b is thrown vertically downward toward the earth
from a height of 2000 ft with an initial velocity of 2 ft/sec. As it falls it is
acted upon by air resistance that is numerically equal to v/2 (in pounds),
where v is the velocity (in feet per second).

(@) What is the velocity and distance fallen at the end of 1 second?
(b) With what velocity does the object strike the earth?

4. A person is riding in a motorboat, and the combined weight of the person,
motor, boat, and equipment is 480 lb. The motor exerts a constant force of
16 b on the boat in the direction of motion, whereas the resistance (in
pounds) is numerically equal to the square of the velocity (in feet per second).
Suppose the boat started from rest. What is the velocity of the boat after (a)
2 seconds? (b) 5 seconds?

5. A piece of wood weighing 160 1b is pushed from the top of a plane slide
which is 50 feet long and inclined 30° to the horizontal. Air resistance (in
pounds) is numerically equal to the velocity (in feet per second), the coef-
ficient of friction is 0.5, and the wood starts sliding with initial velocity 8 ft/
sec.

(a) How fast is the wood moving 2 seconds after it starts sliding?
(b) How far has it slid 2 seconds after it starts sliding?

6. A mold grows at a rate that is proportional to the amount present. In 24
hours the amount of it has grown from 2 grams to 3 grams. How many
grams of it are present at the end of 24 more hours?

7. Assume that the rate at which radioactive nuclei decay is proportional to the
number of such nuclei that are present in a given sample. In a certain sample
one-fourth of the original number of radioactive nuclei have undergone
disintergration in a period of 500 years.

(a) What fraction of the original radioactive nuclei will remain after 1000
years?
(b) In how many years will one-half of the original number remain?

8. A pan of hot water is removed from the stove and placed nearby to cool.
At this instant the temperature of the water was 200°F, and five minutes
later it was 190°F. Assuming that Newton’s Law of Cooling applies and that
the temperature surrounding the pan of cooling water is 60°, what will be
the temperature of the water 20 minutes after it was set down to cool?
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The human population of a small Pacific island satisfies the logistic law (3.58)

with £ = 0.04, 4 = 2(10)~7, and time ¢ measured in years. The population

at the start of 1980 is 50,000.

(@) Find a formula for the population in future years.

(b) According to the formula of part (a), what will be the population at the
start of 2000?

(c) When will the population double?

A tank initially contains 300 gal of brine in which 20 Ib of salt is dissolved.
Starting at ¢ = 0, brine containing 3 Ib of salt per gallon flows into the tank
at the rate of 3 gal/min. The mixture is kept uniform by stirring, and the
well-stirred mixture leaves the tank at the rate of 5 gal/min. How much salt
is in the tank at the end of 15 minutes?



Explicit Methods of
Solving Higher-Order
Linear Differential
Equations

The subject of ordinary linear differential equations is one of great theoretical
and practical importance. Theoretically, the subject is one of simplicity and el-
egance. Practically, linear differential equations originate in a variety of appli-
cations to science and engineering. Fortunately many of the linear differential
equations that thus occur are of a special type, linear with constant coefficients,
for which explicit methods of solution are available. The main purpose of this
chapter is to study certain of these methods. First, however, we need to consider
certain basic theorems that will be used throughout the chapter. These theorems
are stated and illustrated in Section 4.1, but proofs are omitted in this intro-
ductory section. By far the most important case is that of the second-order linear
differential equation, and we shall explicitly consider and illustrate this case for
each important concept and result presented. In the final section of the chapter
we return to this fundamental theory and present theorems and proofs in this
important special case. Proofs in the general case are given in Chapter 11 of the
author’s Differential Equations.

4.1 BASIC THEORY OF LINEAR
DIFFERENTIAL EQUATIONS

A. Definition and Basic Existence Theorem

NOTATION s

In the preceding chapters we used the dy/dx notation to denote the derivative
of a function y of x. In this and the following chapters we shall generally use the
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prime notation to denote derivatives. Thus, for example, instead of writing

d?y o dy
paliPA - 4+ — X
X + 3x I 6xy = e,
we write
xy" + 3x%' + 6xy = e~
DEFINITION

A linear ordinary differential equation of order n in the dependent variable y
and the independent variable x is an equation that is in, or can be expressed in the form

aox)y™ + a(x)y® D + -+ + a,1(x)y" + a,(x)y = F(x), (4.1)

where ay is not identically zero. We shall assume that ay, a,, . . . , a, and F are continuous
real functions on a real interval a < x =< b and that ay(x) # 0 for any x on a =< x < b.
The right-hand member F (x) is called the nonhomogeneous term. If F is identically
zero, Equation (4.1) reduces to

ag®)y®™ + a;(x)y*P + - + @, (x)y" + a,x)y = 0 (4.2)
and s then called homogeneous.
For n = 2, Equation (4.1) reduces to the second-order nonhomogeneous
linear differential equation
ag®)y" + ar(x)y’ + ax(x)y = F(x) (4.3)
and (4.2) reduces to the corresponding second-order homogeneous equation
ag®)y" + ai(x)y’ + asx)y = 0. (4.4)

Here we assume that ay, a,, @y, and F are continuous real functions on a real
interval ¢ = x =< b and that ay(x) # 0 foranyx ona < x < b.

EXAMPLE 4.1 mssssisris s,

The equation
"+ 3xy’ + x¥ = e~

is a linear ordinary differential equation of the second order.

EXAMPLE 4.2 mEmusmsamesemnsissimensee

The equation
" + xy" + 3x%’ — 5y = sinx

is a linear ordinary differential equation of the third order.
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We now state the basic existence theorem for initial-value problems associ-
ated with and nth-order linear ordinary differential equation:

THEOREM 4.1
Hypothesis
1. Consider the nth-order linear differential equation
a)(X)y® + a;(x)y" Y + - + a,_1(x)y’ + a,(x)y = F (x), 4.1)
where ay, ay, . . ., a, and F are continuous real functions on a real interval a < x < b

and ay(x) # O for any x on a < x < b.

2. Let x, be any point of the interval a < x < b, and let ¢y, ¢y, ..., €,y ben
arbitrary real constants.

Conclusion. There exists a unique solution f of (4.1) such that

f(x(}) = cO’f’(xO) = Cpy v vf(n_l)(x(}) = Cp-1s

and this solution is defined over the entire interval a < x < b.

Suppose that we are considering an nth-order linear differential equation
(4.1), the coefficients and nonhomogeneous term of which all possess the con-
tinuity requirements set forth in Hypothesis 1 of Theorem 4.1 on a certain
interval of the x axis. Then, given any point x, of this interval and any n real
numbers ¢y, ¢y, . . . , ¢,_1, the theorem assures us that there is precisely one solution
of the differential equation that assumes the value ¢, at x = x, and whose kth
derivative assumes the value ¢, foreachk = 1,2,...,n — 1 atx = x,. Further,
the theorem asserts that this unique solution is defined for all x in the above-
mentioned interval.

For the second-order linear differential equation,

agx)y” + a(x)y’ + asxx)y = F(x), (4.3)

the requirements of Hypothesis 1 of Theorem 4.1 are that a, a,, @, and F be
continuous on a real interval ¢ = x =< b and that ay(x) # 0 for any x on this
interval. Then, if x, is any point of the interval @ = x = b and ¢, and ¢, are any
two real numbers, the theorem assures us that there is precisely one solution f of
the second-order differential equation (4.3) which assumes the value ¢, at x =
xy and whose first derivative assumes the value ¢, at x = x,:

fo) = co,  [f'(x) = c1. (4.5)

Moreover, the theorem asserts that this unique solution f of Equation (4.3) which
satisfies conditions (4.5) is defined for all x on the interval a = x < b.
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EXAMPLE 4.3 o e
Consider the initial-value problem
'+ 3xy" + x3y = e*,
y(1) =2,
y'(1) = =5.

The coefficients 1, 3x, and x3, as well as the nonhomogeneous term ¢*, in this
second-order differential equation are all continuous for all values of x, —%» <
x < «. The point x, here is the point 1, which certainly belongs to this interval;
and the real numbers ¢, and ¢, are 2 and —5, respectively. Thus Theorem 4.1
assures us that a solution of the given problem exists, is unique, and is defined
forallx, —o < x < o,

EXAMPLE 4.4 s e e e e R e
Consider the initial-value problem

2y", + xy” + Sny' — 5)} = SiIl X,

y4) =3,
y'(4) =5,
y'(4) = -4

Here we have a third-order problem. The coefficients 2, x, 3x2, and —5, as well
as the nonhomogeneous term sin x, are all continuous for all x, —% < x < oo,
The point x, = 4 certainly belongs to this interval; the real numbers ¢, ¢,, and
¢y in this problem are 3, 5, and —%, respectively. Theorem 4.1 assures us that
this problem also has a unique solution which is defined for all x, —® < x < o,

A useful corollary to Theorem 4.1 is the following:

COROLLARY

Hypothesis. Let f be a solution of the nth-order homogeneous linear differential equa-
tion

ag®)y® + a,x)y""Y + - + a,1(x)y’ + a,x)y = 0 (4.2)
such that
f&xo) = 0,f'(xg) = 0, ..., " Dxp) =0,
where x, is a point of the interval a < x =< b in which the coefficients ay, a,, . . . , a, are

all continuous and ay(x) # 0.

Conclusion. Then f(x) = O forallx ona <x < b.
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Let us suppose that we are considering a homogeneous equation of the form
(4.2), all the coefficients of which are continuous on a certain interval of the x
axis. Suppose further that we have a solution f of this equation which is such
that f and its first » — 1 derivatives all equal zero at a point x, of this interval.
Then this corollary states that this solution is the “trivial” solution f such that
fx) = 0 for all x on the above-mentioned interval.

EXAMPLE 4.5 s e
The unique solution f of the third-order homogeneous equation

"+ 29" + 4xy’ + x%y = 0,

@) =@ =f@2 =0

is the trivial solution f such that f(x) = 0 for all x.

which is such that

B. The Homogeneous Equation
We now consider the fundamental results concerning the homogeneous equation

ag®)y® + a;x)y" " + - + a,1(x)y’ + a,(x)y = 0. (4.2)

We first state the following basic theorem:

THEOREM 4.2 BASIC THEOREM ON LINEAR HOMOGENEOUS
DIFFERENTIAL EQUATIONS

Hypothesis. Letf, fo, . . ., f. be any m solutions of the homogeneous linear differential
equation (4.2).

Conclusion. Then c¢\f; + cofs + - + cufn 15 also a solution of (4.2), where ¢, cy,
., €y are m arbitrary constants.

Theorem 4.2 states that if m known solutions of (4.2) are each multiplied
by an arbitrary constant and the resulting products are then added together, the
resulting sum is also a solution of (4.2). We may put this theorem in a very simple
form by means of the concept of linear combination, which we now introduce.

DEFINITION

Iffi, fo, - . . » [ Gre m given functions, and c,, ¢y, . . . , ¢, are m constants, then the
expression

lel + szz + - + Cmfm

is called a linear combination of f1, fo, . . ., fu-
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In terms of this concept, Theorem 4.2 may be stated as follows:

THEOREM 4.2 (RESTATED)

Any linear combination of solutions of the homogeneous linear differential equation (4.2)
is also a solution of (4.2).

In particular, any linear combination

lel + 02f2 + o+ C,,,fm

of m solutions f}, f,, . . ., f,, of the second-order homogeneous linear differential
equation
ao(x)y" + a)(x)y’ + axx)y = 0 (4.4)

is also a solution of (4.4).

EXAMPLE 4.6 e
The student will readily verify that sin x and cos x are solutions of
¥y +3y=0.

Theorem 4.2 states that the linear combination ¢, sin x + ¢, cos x is also a solution
for any constants ¢; and c,. For example, the particular linear combination

5sinx + 6 cos x
is a solution.

EXAMPLE 4.7 s
The student may verify that e*, ¢ %, and ¢** are solutions of
ylll _ 2yu _ yl + 2y = 0.

Theorem 4.2 states that the linear combination c;e* + ce™ + c3¢* is also a
solution for any constants ¢, ¢y, and ¢;. For example, the particular linear com-
bination

2¢* — 3¢7* + %%
is a solution.

We now consider what constitutes the so-called general solution of (4.2). To
understand this we first introduce the concepts of linear dependence and linear
independence.
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DEFINITION
The n functions fy, fo, . . ., f, are called linearly dependent on a < x < b if there
exist constants ¢y, Co, . . . , C,, Not all zero, such that

i) + cofox) + 0 + e fulx) = 0

for all x such that a = x = b.
In particular, two functions f, and f, are linearly dependent on @ < x < b if there
exist constants ¢, ¢y, not both zero, such that

cifi(x) + cofe(x) = 0
for all x such that a = x = b.

EXAMPLE 4.8 i e

We observe that x and 2x are linearly dependent on the interval 0 =< x < 1. For
there exist constants ¢, and ¢y, not both zero, such that

ax + ¢co(2x) = 0

for all x on the interval 0 = x =< 1. For example, let¢; = 2,¢, = — 1.

EXAMPLE 4.9 s

We observe that sin x, 3 sin x, and —sin x are linearly dependent on the interval
—1 =x =< 2. For there exist constants c;, ¢, cs, not all zero, such that

¢y sinx + ¢o(3 sinx) + ¢g(—sinx) = 0

for all x on the interval —1 = x = 2. For example, let¢, = 1,¢, = 1,¢5 = 4.
DEFINITION
The n functions f,, fs, ..., f. are called linearly independent on the interval
a =< x = b if they are not linearly dependent there. That s, the functions f, fo, . . ., fx

are linearly independent on a < x < b if the relation
cifil®) + cofol®) + 0 + e fulx) = 0
Jor all x such that a = x < b implies that
g =¢cg =+ =¢, =0.

In other words, the only linear combination of f1, fo, . . ., f, that is identically zero on
a = x =< b s the trivial linear combination

0-fi+0-fo+ - +0-f

In particular, two functions f, and f, are linearly independent on a = x < b if
the relation

afilx) + cofolx) = 0
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for all x on a = x < b implies that

Cl=62=0.

EXAMPLE 4.10 s e

We assert that x and x* are linearly independent on 0 = x = 1, since ¢;x +
cex® = 0 forall x on 0 = x = 1 implies that both ¢, = 0 and ¢, = 0. We may
verify this in the following way. We differentiate both sides of ¢,x + c,x? = 0 to
obtain ¢, + 2¢yx = 0, which must also hold for all x on 0 = x < 1. Then from
this we also have ¢;x + 2¢,x? = 0 for all such x. Thus we have both

cx + cx2 =0 and c¢;x + 2¢x2 = 0 (4.6)

for all x on 0 = x < 1. Subtracting the first from the second gives cox? = 0 for
all x on 0 = x = 1, which at once implies ¢, = 0. Then either of (4.6) show
similarly that ¢, = 0.

The next theorem is concerned with the existence of sets of linearly inde-
pendent solutions of an nth-order homogeneous linear differential equation and
with the significance of such linearly independent sets.

THEOREM 4.3
The nth-order homogeneous linear differential equation

agX)y™ + ay(x)y" Y + - + a,_1(x)y" + a,x)y =0 (4.2)
always possesses n solutions that are linearly independent. Further, if f\, fo, . . ., fr aren

linearly independent solutions of (4.2), then every solution f of (4.2) can be expressed as
a linear combination

lel + szg + o0+ C,,_f,,

of these n linearly independent solutions by proper choice of the constants ¢y, c, . . ., ¢,

Given an nth-order homogeneous linear differential equation, this theorem
assures us first that a set of n linearly independent solutions actually exists. The
existence of such a linearly independent set assured, the theorem goes on to tell
us that any solution whatsoever of (4.2) can be written as a linear combination of
such a linearly independent set of n solutions by suitable choice of the constants
C15 €y « v vy Cpe

For the second-order homogeneous linear differential equation

ay(x)y" + ai(x)y’ + as(x)y = 0, (4.4)

Theorem 4.3 first assures us that a set of two linearly independent solutions
exists. The existence of such a linearly independent set assured, let f, and f, be
a set of two linearly independent solutions. Then if f is any solution of (4.4), the
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theorem also assures us that f can be expressed as a linear combination ¢, f, +
¢y f2 of the two linearly independent solutions f; and f, by proper choice of the
constants ¢; and c,.

EXAMPLE 411 i seyheeeeeeweeeys
We have observed that sin x and cos x are solutions of
Yy +y=0 4.7

for all x, —o <x < . Further, one can show that these two solutions are linearly
independent. Now suppose f is any solution of (4.7). Then by Theorem 4.3 f can
be expressed as a certain linear combination ¢, sin x + ¢, cos x of the two linearly
independent solutions sin x and cos x by proper choice of ¢; and ¢,. That is, there
exist two particular constants ¢, and ¢, such that

flx) = ¢, sinx + ¢y cos x (4.8)

for all x, —» < x < «. For example, one can easily verify that f(x) =
sin(x + 7/6) is a solution of Equation (4.7). Since

si + 2 Sin X Cos = + oS x sin = v + S
nlx + =] = X = xsin = = —sinx + = cosx,
6 6 6 2 2
we see that the solution sin(x + 7/6) can be expressed as the linear combination
V3

7sinx + % cosx

of the two linearly independent solutions sin x and cos x. Note that this is of the
form in the right member of (4.8) with ¢, = V3/2 and ¢, = %.

Now let fi, fo, . . ., f, be a set of n linearly independent solutions of (4.2).
Then by Theorem 4.2 we know that the linear combination

lel + Cgfg + e C,,f,,, (49)

where ¢y, ¢y, . .., ¢, are n arbitrary constants, is also a solution of (4.2). On the
other hand, by Theorem 4.3 we know that if f is any solution of (4.2), then it
can be expressed as a linear combination (4.9) of the n linearly independent

solutions fi, f5, . . . , f, by a suitable choice of the constants ¢y, ¢y, . . ., ¢,. Thus
a linear combination (4.9) of the n linearly independent solutions fi, fo, . . ., f,
in which ¢y, ¢y, . . ., ¢, are arbitrary constants must include all solutions of (4.2).

For this reason, we refer to a set of n linearly independent solutions of (4.2) as
a “fundamental set” of (4.2) and call a “general” linear combination of » linearly
independent solutions a “general solution” of (4.2), in accordance with the fol-
lowing definition:
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DEFINITION

If fi, fo» - . ., fu are n linearly independent solutions of the nth-order homogeneous
linear differential equation

ao®)y™ + a;(x)y® P + -+ + a,_1(x)y’ + a,(x)y = 0 (4.2)

ona=<x=<b,thenthesetf,, fs, ...,f,is called a fundamental set of solutions of (4.2)
and the function f defined by

fl) = cifikx) + cofolx) + o+ + ¢, folx), a=x=b,
where ¢\, ¢y, . .., ¢, are arbitrary constants, is called a general solution of (4.2) on

a=x=<hb

Therefore, if we can find n linearly independent solutions of (4.2), we can
at once write the general solution of (4.2) as a general linear combination of
these n solutions.

The reader who has studied linear algebra will observe that the set of all
solutions of (4.2) forms a real vector space of dimension =z, of which any subset
of n linearly independent solutions is a basis.

For the second-order homogeneous linear differential equation

agx)y” + ai(x)y’ + ax(x)y = 0 (4.4)

a fundamental set consists of two linearly independent solutions. If f; and f, are a
fundamental set of (4.4) on a = x = b, then a general solution of (4.4) on a <
x =< b is defined by

a1 filx) + cof5(x), as=x=b,

where ¢, and ¢, are arbitrary constants.

EXAMPLE 412 oy e
We have observed that, sin x and cos x are solutions of
Yy +y =10

for all x, — <x < . Further, one can show that these two solutions are linearly
independent. Thus, they constitute a fundamental set of solutions of the given
differential equation, and its general solution may be expressed as the linear
combination

¢, sinx + ¢y COS X,

where ¢, and ¢, are arbitrary constants. We write this asy = ¢, sinx + ¢, cos x.

EXAMPLE 4.13 i e e s

The solutions e*, e *, and ¢ of

ym_2yu_yl +2y=0
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may be shown to be linearly independent for all x, — < x < «. Thus, ¢, 7%,
and ¢ constitute a fundamental set of the given differential equation, and its
general solution may be expressed as the linear combination

c€* + coe™* + cse?,
where ¢, ¢y, and ¢; are arbitrary constants. We write this as

Yy = c1e* + ce™F + cge®.

The next theorem gives a simple criterion for determining whether or not
n solutions of (4.2) are linearly independent. We first introduce another concept.

DEFINITION

Let fi, fo, . . ., f, be n real functions each of which has an (n — 1)st derivative on
a real interval a < x < b. The determinant

fi fe v fa
W(fl’f2’ cee ’fn) = fl f2 f" »
fgn—l) f;n—l) f7('n—l)

in which primes denote derivatives, is called the Wronskian of these n functions. We
observe that W (f\, fa, . . ., f,) is itself a real function defined on a < x =< b. Its value
at x is denoted by W (f1, fo, . . ., f)(x) or by W[ fi(x), fo(x), . . ., fu(x)].

THEOREM 4.4

The n solutions fi, fo, . . ., fo of the nth-order homogeneous linear differential equation
(4.2) are linearly independent on a = x = b if and only if the Wronskian of f, fo, . . .,
[ is different from zero for some x on the interval a = x < b.

We have further:

THEOREM 4.5

The Wronskian of n solutions f, fo, . . . , f, of (4.2) is either identically zeroona = x < b
or else is never zero on a < x < b.

Thus if we can find n solutions of (4.2), we can apply the Theorems 4.4 and
4.5 to determine whether or not they are linearly independent. If they are linearly
independent, then we can form the general solution as a linear combination of
these n linearly independent solutions.
In the case of the general second-order homogeneous linear differential equa-
tion
ag(x)y” + a,(x)y’ + as(x)y = 0, 4.4)
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the Wronskian of two solutions f, and f; is the second-order determinant

Winfo = 0 2| = psi - fife
fi f2

By Theorem 4.4, two solutions f, and f, of (4.4) are linearly independent on
a = x = b if and only if their Wronskian is different from zero for some x on
a = x = b; and by Theorem 4.5, this Wronskian is either always zero or never
zero on a =< x < b. Thus if W[f,(x), fo(x)] # 0 on a =< x =< b, solutions f; and f, of
(4.4) are linearly independent on ¢ < x < b and the general solution of (4.4) can
be written as the linear combination

cifilx) + cofolx),

where ¢, and ¢, are arbitrary constants.

Note About Determinants. It should be clear that the correct evaluation of
the Wronskian determinant is essential. The reader who is unfamiliar with de-
terminants is referred to Appendix 1 for some useful background material on
evaluating them.

EXAMPLE 4.14 s s

We apply Theorem 4.4 to show that the solutions sin x and cos x of

y'+y=0
are linearly independent. We find that
. sin x Cos x .
W (sin x, cos x) = . = —gin?x — cos2x = —1%#0
cosx —sinx

for all real x. Thus, since W(sin x, cos x) # 0 for all real x, we conclude that
sin x and cos x are indeed linearly independent solutions of the given differ-
ential equation on every real interval.

EXAMPLE 415 s
The solutions e*, e™*, and ¢2* of
ylll —- 2y" —_ yl + 2)’ = 0

are linearly independent on every real interval, for

e~ e e 1 1 1
We*, e, e?*) = |e¢ —e™* 2e¥| =e*|1 -1 2| = —6e*# 0
e* e™* 4 1 1 4

for all real x.
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EXERCISES

1. Theorem 4.1 applies to one of the following problems but not to the other.
Determine to which of the problems the theorem applies and state precisely
the conclusion which can be drawn in this case. Explain why the theorem
does not apply to the remaining problem.

(a) y" + by’ + 6y = ¢, y(0) = 5, y'(0) = 7.
(b) y" + 5y' + 6y = ¢, y(0) = 5, y'(1) = 7.

. Answer orally: What is the solution of the following initial-value problem?
Why?

Yy +xy +x%y =0, 9y(1)=0, y'(l)=0.

3. Prove Theorem 4.2 for the case m = n = 2. That is, prove that if f;(x) and

f2(x) are two solutions of
agx)y” + ai(x)y’ + ag(x)y = 0,

then ¢, fi(x) + cafs(x) is also a solution of this equation, where ¢, and ¢, are
arbitrary constants.

. Consider the differential equation
Y-y’ + 3y =0 (A)

(a) Show that each of the functions ¢* and e3* is a solution of differential
equation (A) on the interval ¢ = x =< b, where a and b are arbitrary real
numbers such that a < b.

(b) What theorem enables us to conclude at once that each of the functions

He* + 23, 6e* — 4¢3, and —7e* + He?*

is also a solution of differential equation (A) ona < x < b?
(c¢) Each of the functions

3e*, —4e%, 5¢*, and 6e*
is also a solution of differential equation (A) on a = x < b. Why?

. Again consider the differential equation (A) of Exercise 4.

(a) Use the definition of linear dependence to show that the four functions
of part (c) of Exercise 4 are linearly dependent ona = x < b.

(b) Use Theorem 4.4 to show that each pair of the four solutions of dif-
ferential equation (A) listed in part (c) of Exercise 4 are linearly de-
pendentona = x < b.

. Again consider the differential equation (A) of Exercise 4.

(a) Use the definition of linear independence to show that the two functions
¢* and ¢* are linearly independent on a < x < b.

(b) Use Theorem 4.4 to show that the two solutions ¢* and ¢** of differential
equation (A) are linearly independent ona = x < b.
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. Consider the differential equation

" — 5y + 6y = 0.

Show that ¢?* and e are linearly independent solutions of this equation
on the interval —o <x < o,

Write the general solution of the given equation.

Find the solution that satisfies the conditionsy(0) = 2,y'(0) = 3. Explain
why this solution is unique. Over what interval is it defined?

. Consider the differential equation

Y =2y +9y=0.

Show that ¢* and xe* are linearly independent solutions of this equation
on the interval —o < x < o,

Write the general solution of the given equation.

Find the solution that satisfies the condition y(0) = 1,y'(0) = 4. Explain
why this solution is unique. Over what interval is it defined?

Consider the differential equation

(a)

(b)
()

x2y" — 2xy" + 2y = 0.

Show that x and x? are linearly independent solutions of this equation
on the interval 0 <x < o,

Write the general solution of the given equation.

Find the solution that satisfies the conditions y(1) = 3,y'(1) = 2. Explain
why this solution is unique. Over what interval is this solution defined?

Consider the differential equation

(a)

(b)
©

x%y" + xy' — 4y = 0.

Show thatx? and 1/x? are linearly independent solutions of this equation
on the interval 0 <x < o,

Write the general solution of the given equation.

Find the solution that satisfies the conditions y(2) = 3, y'(2) = -1.
Explain why this solution is unique. Over what interval is this solution
defined?

Consider the differential equation

(a)
(b)
(c)
(d)

3" =5y + 4y = 0.

Show that each of the functions ¢*, e**, and 2¢* — 3¢* is a solution of
this equation on the interval —o <x < o,

Show that the solutions ¢* and ¢** are linearly independent on —® <
x < %,

Show that the solutions e* and 2¢* — 3e** are also linearly independent
on —o < x < 0,

Are the solutions e** and 2¢* — 3e¢* still another pair of linearly in-
dependent solutions on —® < x < %? Justify your answer.
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12. Given that e7*, %, and e** are all solutions of
" — 6y" + 5y" + 12y = 0,

show that they are linearly independent on the interval — < x < % and
write the general solution.

13. Given that x, x2, and x* are all solutions of
x3y" — 4x%y" + 8xy' — 8y = 0,

show that they are linearly independent on the interval 0 < x <  and write
the general solution.

C. Reduction of Order

In Section 4.2 we shall begin to study methods for obtaining explicit solutions
of higher-order linear differential equations. There and in later sections we shall
find that the following theorem on reduction of order is often quite useful.

THEOREM 4.6

Hypothesis. Let fbe a nontrivial solution of the nth-order homogeneous linear differential
equation
ap®)y™ + a;(@)y® D + - + a,_1(x)y" + a,x)y = 0. (4.2)

Conclusion. The transformation y = f(x)v reduces Equation (4.2) to an (n — 1)st-
order homogeneous linear differential equation in the dependent variable w = dv/dx.

This theorem states that if one nonzero solution of the nth-order homo-
geneous linear differential equation (4.2) is known, then by making the appro-
priate transformation we may reduce the given equation to another homoge-
neous linear equation that is one order lower than the original. Since this theorem
will be most useful for us in connection with second-order homogeneous linear
equations (the case where n = 2), we shall now investigate the second-order case
in detail. Suppose f is a known nontrivial solution of the second-order homoge-
neous linear equation

ag(x)y” + a\(x)y’ + aqlx)y = 0. (4.10)

Let us make the transformation
y = fx)v, (4.11)

where f is the known solution of (4.10) and v is a function of x that will be
determined. Then, differentiating, we obtain

y' =[x + fx)v, (4.12)
Yy = fx)v" + 2f'x)v" + fx)v. (4.13)
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Substituting (4.11), (4.12), and (4.13) into (4.10), we obtain
ag@)[fx)v” + 2f'(x)v" + f'x)v] + a\(x)[ fix)v' + f'(x)v] + axx)f(x)v = 0

or

ao(x)f (x)0" + [2a0()f'(x) + a\(x)f(x)]v’
+ [ao)f"(x) + ai(x)f’(x) + as(x)f(x)]v = 0.

Since f is a solution of (4.10), the coefficient of v is zero, and so the last equation
reduces to

ao(x)f(x)v" + [2a0x)f'(x) + a,(x)f(x)]v' = 0.

Letting w = v’, this becomes
ay(x)f (x) (;—Z: + [2aox)f'(x) + a,(x)f(x)]Jw = 0. (4.14)

This is a first-order homogeneous linear differential equation in the dependent
variable w. The equation is separable; thus, assuming f(x) # 0 and ay(x) # 0, we

may write
dw | f®) | aix)
w - [Qf(x) ¥ am] .

Thus integrating, we obtain

In |w| = —In[f(x)]? — fzg—z;dx + In ||

a,(x)
c exp[ —f e dx]
)] '

This is the general solution of Equation (4.14); choosing the particular solution
for which ¢ = 1, recalling that dv/dx = w, and integrating again, we now obtain

a,(x)
e"p[ ‘f ao(x) d"]

or

v )P *
Finally, from (4.11), we obtain
a,(x)
exp[ fao(x) dx] ) -
=@ | 0% * *

The function defined in the right member of (4.15), which we shall henceforth
denote by g, is actually a solution of the original second-order equation (4.10).
Furthermore, this new solution g and the original known solution f are linearly
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independent, since

fx)  gk) f&)  flx)o
f'&) g’k f'&) flo' + )

)]0’ = exp[—fzg—g;dx] # 0.

Thus the linear combination

W(f, ) =

af + cog

is the general solution of Equation (4.10). We now summarize this discussion in
the following theorem.

THEOREM 4.7
Hypothesis. Let f be a nontrivial solution of the second-order homogeneous linear dif-

ferential equation
ao(x)y" + a,(x)y’ + as(x)y = 0. (4.10)

Conclusion 1. The transformation y = f(x)v reduces Equation (4.10) to the first-order
homogeneous linear differential equation

ao(x)f (x) % + [2a0x)f" (%) + ax)fx)]w = 0 (4.14)

in the dependent variable w, where w = v'.

Conclusion 2. The particular solution

_[a®)

CXP[ J dx]
[f))

of Equation (4.14) gives rise to the function v, where

_[ak)
. CXP[ J o d"] ]
o) = [ —E &

The function g defined by g(x) = f(x)v(x) is then a solution of the second-order equation
(4.10).

Conclusion 3. The original known solution f and the “new” solution g are linearly
independent solutions of (4.10), and hence the general solution of (4.10) may be expressed
as the linear combination

aof + cg.
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Let us emphasize the utility of this theorem and at the same time clearly
recognize its limitations. Certainly its utility is by now obvious. It tells us that if
one solution of the second-order equation (4.10) is known, then we can reduce
the order to obtain a linearly independent solution and thereby obtain the general
solution of (4.10). But the limitations of the theorem are equally obvious. One
solution of Equation (4.10) must already be known to us in order to apply the
theorem. How does one “already know” a solution? In general one does not. In
some cases the form of the equation itself or related physical considerations
suggest that there may be a solution of a certain special form: for example, an
exponential solution or a linear solution. However, such cases are not too com-
mon and if no solution at all can be so ascertained, then the theorem will not

aid us.
We now illustrate the method of reduction of order by means of the following

example.

EXAMPLE 4.16 sl rnTEnTEeT
Given that y = x is a solution of
(x? + 1)y" — 2xy" + 2y = 0, (4.16)

find a linearly independent solution by reducing the order.

Solution. First observe thaty = x does satisfy Equation (4.16). Then let
y = xv.
Then

’

y' =xv' +v and y" = xv" + 20"
Substituting the expressions for y, y’, and y” into Equation (4.16), we obtain

&2 + 1)xv" + 20') — 2x(xv’ + v) + 2xv = 0

or
x(x? + 1ov”" + 20’ = 0.

Letting w = v’ we obtain the first-order homogeneous linear equation
dw
xx?2 + 1)— + 2w = 0.
dx

Treating this as a separable equation, we obtain
dw 2 dx

w Cx(x? + 1)

dl’=(-3+ 2 )dx.

or

x x4+ 1
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Integrating, we obtain the general solution

ek + 1)
==
Choosing ¢ = 1, we recall that v’ = w and integrate to obtain the function v
given by
1

v(x) = x — -

Now forming g = fv, where f(x) denotes the known solution x, we obtain the
function g defined by

g(x) =x(x - -31;) =x? - L

By Theorem 4.7 we know that this is the desired linearly independent solution.
The general solution of Equation (4.16) may thus be expressed as the linear
combination ¢,x + ¢y(x* — 1) of the linearly independent solutions f and g. We
thus write the general solution of Equation (4.16) as

y = ax + c(x? — 1).

D. The Nonhomogeneous Equation
We now return briefly to the nonhomogeneous equation

ag®)y™ + a;(x)y"H + o + a,_1(x)y" + a,(x)y = F(x). (4.1)

The basic theorem dealing with this equation is the following.

THEOREM 4.8

Hypothesis

(1) Let v be any solution of the given (nonhomogeneous) nth-order linear differential
equation (4.1). (2) Let u be any solution of the corresponding homogeneous equation

agx)y™ + a,(x)y™ "V + -+ + a,1(x)y" + a,(x)y = 0. (4.2)

Conclusion. Then u + v is also a solution of the given (nonhomogeneous) equation
(4.1).

EXAMPLE 4.17 s
Observe that y = x is a solution of the nonhomogeneous equation

Y +y =x
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and that y = sin x is a solution of the corresponding homogeneous equation
Y + 93 =0.
Then by Theorem 4.8 the sum
sinx + x
is also a solution of the given nonhomogeneous equation
Y +y =x

The student should check that this is indeed true.

Now let us apply Theorem 4.8 in the case where v is a given solution y, of
the nonhomogeneous equation (4.1) involving no arbitrary constants, and u is
the general solution

Yo = €1y T €Yo T 0+ 60

of the corresponding homogeneous equation (4.2). Then by this theorem,

Y. +y/’

is also a solution of the nonhomogeneous equation (4.1), and it is a solution
involving n arbitrary constants ¢y, ¢, . . . , ¢,. Concerning the significance of such
a solution, we now state the following result.

THEOREM 4.9

Hypothesis

(1) Let y,, be a given solution of the nth-order nonhomogeneous linear equation (4.1)
involving no arbitrary constants. (2) Let

Yo = Y1+ Y2 T Tt Y

be the general solution of the corresponding homogeneous equation (4.2).

Conclusion. Then every solution & of the nth-order nonhomogeneous equation (4.1) can
be expressed in the form

Vet Yps
that is,

1y T €Yo + 0 F Y T Y

for suitable choice of the n arbitrary constants ¢, cq, . . ., Cp.
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This result suggests that we call a solution of Equation (4.1) of the form
Yo + %, a general solution of (4.1), in accordance with the following definition:
DEFINITION
Consider the nth-order (nonhomogeneous) linear differential equation
ao®)y™ + a)(x)y"D + o+ + a,_1(x)y" + a,(x)y = F(x) (4.1
and the corresponding homogeneous equation
ag®)y® + a)(x)y®= " + - + a,1(x)y" + a.x)y = 0. 4.2)

1. The general solution of (4.2) is called the complementary function of Equation
(4.1). We shall denote this by y,.

2. Any particular solution of (4.1) involving no arbitrary constants is called a particular
integral of (4.1). We shall denote this by y,.

3. The solution y, + y, of (4.1), where y, is the complementary function and y, is a
particular integral of (4.1) is called the general solution of (4.1).
Thus to find the general solution of (4.1), we need merely find:

1. The complementary function, that is, a “general” linear combination of » linearly
independent solutions of the corresponding homogeneous equation (4.2); and

2. A particular integral, that is, any particular solution of (4.1) involving no ar-
bitrary constants.

EXAMPLE 4.18 s
Consider the differential equation

Y +y=x
The complementary function is the general solution

Y. = ¢;sinx + ¢; COS X

of the corresponding homogeneous equation

Y +y=0.
A particular integral is given by

I =X

Thus the general solution of the given equation may be written

Yy =9 +y =csinx + c;cosx + x.

In the remaining sections of this chapter we shall proceed to study methods
of obtaining the two constituent parts of the general solution.
We point out that if the nonhomogeneous member F(x) of the linear dif-
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ferential equation (4.1) is expressed as a linear combination of two or more
functions, then the following theorem may often be used to advantage in finding
a particular integral.

THEOREM 4.10

Hypothesis.
1. Let f, be a particular integral of
ag®)y™ + a\(x)y®P + - + a,_,(x)y" + a,(x)y = Fyx). 4.17)
2. Let fy be a particular integral of
ap®)y™ + a;(x)y® D + - + g, 1(x)y" + a,(x)y = Folx). (4.18)

Conclusion. Then k,f, + kofs is a particular integral of
ao(x)y® + ar@)y® D + 4 @@y + aux)y = kiFi(x) + ke Fax),
(4.19)

where k, and ky are constants.

EXAMPLE 4.19 EEEississeEese e

Suppose we seek a particular integral of

3" + 9y =3x + 5tanx. (4.20)
We may then consider the two equations
Y +y=x (4.21)
and
y" + 9 = tanx. (4.22)

We have already noted in Example 4.18 that a particular integral of Equation
(4.21) is given by
y = x.

Further, we can verify (by direct substitution) that a particular integral of Equa-
tion (4.22) is given by

y = —(cos x)In [sec x + tan x|.
Therefore, applying Theorem 4.10, a particular integral of Equation (4.22) is
y = 3x — 5(cos x)In [sec x + tan x|.

This example makes the utility of Theorem 4.10 apparent. The particular integral
y = x of (4.21) can be quickly determined by the method of Section 4.3 (or by
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direct inspection!), whereas the particular integral
y = —(cos x)In |sec x + tan x|

of (4.22) must be determined by the method of Section 4.4, and this requires
considerably greater computation.

EXERCISES

1. Given thaty = x is a solution of
x%y" — 4xy' + 4y = 0,

find a linearly independent solution by reducing the order. Write the general
solution.

2. Given thaty = x + 1 is a solution of
(x + 1)%" — 3 + 1)y’ + 3y =0,

find a linearly independent solution by reducing the order. Write the general
solution.

3. Given thaty = x is a solution of
(x? = 1)y" — 2xy" + 2y = 0,

find a linearly independent solution by reducing the order. Write the general
solution.

4. Given thaty = x is a solution of
2 —x + 1)y — x* + x)y" + (x + 1)y = 0,

find a linearly independent solution by reducing the order. Write the general
solution.

5. Given thaty = ¢** is a solution of
2x + 1)y" — 4(x + 1)y’ + 4y = 0,

find a linearly independent solution by reducing the order. Write the general
solution.

6. Given thaty = x? is a solution of
&® — x%)y" — (x® + 2x2 — 2x)y’ + (2x2 + 2x — 2)y = O,

find a linearly independent solution by reducing the order. Write the general
solution.

7. Given thaty = x is a solution of

(x? — 2x + 2)y" — x%" + xy = 0,
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find a linearly independent solution by reducing the order. Write the general
solution.

. Given that y = ¢ is a solution of

(6 2y~ -2y~ 6+ 2y =0,

find a linearly independent solution by reducing the order. Write the general
solution.

. Prove Theorem 4.8 for the casen = 2. That is, prove that if u is any solution

of
ag(x)y" + a,(x)y’ + asx)y = 0

and v is any solution of
ax)y" + ailx)y’ + asx)y = F(x),
then u + v is also a solution of this latter nonhomogeneous equation.

Consider the nonhomogeneous differential equation
' — 3y + 2y = 4x%
(a) Show that ¢* and e?* are linearly independent solutions of the corre-
sponding homogeneous equation

Y =3y’ + 2y = 0.
(b) What is the complementary function of the given nonhomogeneous
equation?
(c) Show that 2x? + 6x + 7 is a particular integral of the given equation.
(d) What is the general solution of the given equation?

Given that a particular integral of
1
3 — 5y +6y=1 is Y=g
a particular integral of

" — b5y + 6y =x is y=%+86,

and a particular integral of

X

¥ — By + 6y = ¢ is y=e§,

use Theorem 4.10 to find a particular integral of

3" — 5y + 6y =2 — 12x + 6e*.
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4.2 THE HOMOGENEOUS LINEAR EQUATION
WITH CONSTANT COEFFICIENTS

A. Introduction

In this section we consider the special case of the nth-order homogeneous linear
differential equation in which all of the coefficients are real constants. That is,
we shall be concerned with the equation

ay™ + a;y* " + - +a,,y +ay =0 (4.23)

where ag, @y, ..., a,-, a, are real constants. We shall show that the general
solution of this equation can be found explicitly.

In an attempt to find solutions of a differential equation we would naturally
inquire whether or not any familiar type of function might possibly have the
properties that would enable it to be a solution. The differential equation (4.23)
requires a function f having the property such that if it and its various derivatives
are each multiplied by certain constants, the g;, and the resulting products, a;f"~?,
are then added, the result will equal zero for all values of x for which this result
is defined. For this to be the case we need a function such that its derivatives
are constant multiples of itself. Do we know of functions f having this property
that

dk
T L) = of)

for all x? The answer is “yes,” for the exponential function f such that f(x) =
e¢™, where m is a constant, is such that
k

d_k (emx) = mkemx‘
X

Thus we shall seek solutions of (4.23) of the form y = ¢™, where the constant
m will be chosen such that e™ does satisfy the equation. Assuming then that y =
e™ is a solution for certain m, we have:

[
y = me™,

y" = ermx,
y(n) = pre™,
Substituting in (4.23), we obtain

agme™ + am" " le™ + - + a,_me™ + ae™ =0
or
e™(agm® + aym™~' + - + a,_ym + a,) = 0.

Since e™ # 0, we obtain the polynomial equation in the unknown m:
agm™ + aym™ ' + - + a,_m + a, = 0. (4.24)

This equation is called the auxiliary equation or the characteristic equation of the
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given differential equation (4.23). If y = ¢™ is a solution of (4.23), then we see
that the constant m must satisfy (4.24). Hence, to solve (4.23), we write the
auxiliary equation (4.24) and solve it for m. Observe that (4.24) is formally ob-
tained from (4.23) by merely replacing the kth derivative in (4.23) by m*(k = 0,
1, 2, ..., n). Three cases arise, according as the roots of (4.24) are real and
distinct, real and repeated, or complex.

Note About Cubic and Quartic Equations. 'The auxiliary equation of a third-
order homogeneous linear differential equation is a cubic equation, that of a
fourth-order differential equation is a quartic equation, and so on. The reader
who is unfamiliar with such equations is referred to Appendix 2 for some useful
background material on solving them.

B. Case 1. Distinct Real Roots
Suppose the roots of (4.24) are the n distinct real numbers

my, Mo, ..., M,.
Then

mx moXx m,x
em* ™ ., e™

are n distinct solutions of (4.23). Further, using the Wronskian determinant one
may show that these n solutions are linearly independent. Thus we have the
following result.

THEOREM 4.11

Consider the nth-order homogeneous linear differential equation (4.23) with constant
coefficients. If the auxiliary equation (4.24) has the n distinct real roots my, my, . . . , m,,
then the general solution of (4.23) is

Yy = c1e™* + cee™* + o0+ c.e™

where ¢\, ¢y, . . ., ¢, are arbitrary constants.

EXAMPLE 4.20 s i renen
Consider the differential equation

y — 3y +2y=0.
The auxiliary equation is
m? — 3m + 2 = 0.
Hence
m — )m — 2) = 0, m, = 1, my = 2.
The roots are real and distinct. Thus ¢* and ¢** are solutions and the general
solution may be written

y = c1¢* + coe™.
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We verify that e* and ¢** are indeed linearly independent. Their Wronskian is
e* e?x
e~ 2e2x

Thus by Theorem 4.4 we are assured of their linear independence.

W (e*, ) = = % # (.

EXAMPLE 4.21 s e s

Consider the differential equation

Yy —4y" + 9" + 6y = 0.

The auxiliary equation is
m® — 4m?> + m + 6 = 0.

We observe that m = —1 is a root of this equation. By synthetic division we
obtain the factorization

(m + 1)(m®2 — 5m + 6) = 0
or

(m + )(m — 2)(m — 3) = 0.
Thus the roots are the distinct real numbers
m, = —1, my = 2, mg = 3,
and the general solution is

Y = ce™ + coe® + e

C. Case 2. Repeated Real Roots
We shall begin our study of this case by considering a simple example.

EXAMPLE 4.22: Introductory Example i
Consider the differential equation

y' =6y’ + 9 = 0. (4.25)
The auxiliary equation is

m2—6m+9=0
or
(m — 3)? = 0.

The roots of this equation are

(real but not distinct).
Corresponding to the root m; we have the solution ¢*, and corresponding
to my we have the same solution ¢3*. The linear combination ¢,e3* + c.¢3* of these
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“two” solutions is clearly not the general solution of the differential equation
(4.25), for it is not a linear combination of two linearly independent solutions. Indeed
we may write the combination c,e** + c¢pe® as simply coe®, where ¢y = ¢, + ¢y
and clearly y = ¢oe*, involving one arbitrary constant, is not the general solution
of the given second-order equation.

We must find a linearly independent solution; but how shall we proceed to
do so? Since we already know the one solution ¢*, we may apply Theorem 4.7
and reduce the order. We let

y = e?»xv’

where v is to be determined. Then
Yy = e + 3¢,
Y = e>v" + 6e>v’ + 9e3v.
Substituting into Equation (4.25) we have
(€*v" + 6e>v’ + 9e%v) — 6(e>v’ + 3e>v) + 9e¥v = 0

or
" = 0.
Letting w = v’, we have the first-order equation
dw
3x . —
e 0
or simply
dw
— = 0.
dx

The solutions of this first-order equation are simply w = ¢, where c is an arbitrary
constant. Choosing the particular solution w = 1 and recalling that v’ = w, we
find

v(x) = x + ¢,

where ¢, is an arbitrary constant. By Theorem 4.7 we know that for any choice
of the constant ¢y, v(x)e®* = (x + co)e> is a solution of the given second-order
equation (4.25). Further, by Theorem 4.7, we know that this solution and the
previously known solution ¢3* are linearly independent. Choosing ¢, = 0, we
obtain the solution

y = xe*,

and thus corresponding to the double root 3 we find the linearly independent
solutions

3x

e and xe®

of Equation (4.25).
Thus the general solution of Equation (4.25) may be written

y = cie® + coxe™ (4.26)
or

y = (c; + cox)e™. (4.27)
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With this example as a guide, let us return to the general nth-order equation
(4.23). If the auxiliary equation (4.24) has the double real root m, we would surely
expect that ¢e™ and xe™ would be the corresponding linearly independent solu-
tions. This is indeed the case. Specifically, suppose the roots of (4.24) are the
double real root m and the (n — 2) distinct real roots

my, My, . ..\ My_s.
The linearly independent solutions of (4.23) are

e™, xe™, e™, e™*, . .., ™%,
and the general solution may be written

Y = c1e™ + coxe™ + c3e™F + ce™  + oo+ ™Y
or
y = (€ + CoX)e™ + cge™* + g™ + o+ ™

In like manner, if the auxiliary equation (4.24) has the triple real root m,
corresponding linearly independent solutions are

e™, xe™, and x2™.
The corresponding part of the general solution may be written
(c; + cox + czx?)e™,

Proceeding further in like manner, we summarize Case 2 in the following theo-
rem:

THEOREM 4.12

1. Consider the nth-order homogeneous linear differential equation (4.23) with con-
stant coefficients. If the auxiliary equation (4.24) has the real root m occurring k times,
then the part of the general solution of (4.23) corresponding to this k-fold repeated root
is

(c1 + cox + ¢3x® + -+ + gt e,

2. If, further, the remaining roots of the auxiliary equation (4.24) are the distinct
real numbers my., . . . , My, then the general solution of (4.23) s

Y = (c) + cox + c3x2 + 0 4 gxtTNe™ + g @™ 4 e+ g™

3. If, however, any of the remaining roots are also repeated, then the parts of the
general solution of (4.23) corresponding to each of these other repeated roots are expressions
similar to that corresponding to m in part 1.

We now consider several examples.



4.2 THE HOMOGENEOUS LINEAR EQUATION WITH CONSTANT COEFFICIENTS 139

EXAMPLE 4.23 @mminssisnmnaniiannnimsmnrmisnninnmaes
Find the general solution of
" — 4" — 3y + 18y = 0.
The auxiliary equation
m3 —4m? — 3m + 18 = 0
has the roots, 3, 3, — 2. The general solution is

y = c1e® + coxe® + cae™*
or

(€1 + cox)e®™ + cse ™%,

y

EXAMPLE 4.24 i s e
Find the general solution of

YW= 5" + 6" + 49" — 8 = 0.
The auxiliary equation is

m* — 5m3 + 6m? + 4m — 8 = 0,

with roots 2, 2, 2, —1. The part of the general solution corresponding to the
three-fold root 2 is
M = (¢ + cox + cx?)e
and that corresponding to the simple root — 1 is simply
Yo = Cqe "
Thus the general solution isy = y; + y,, that is,

Y = (61 + cox + cgx)e® + e

D. Case 3. Conjugate Complex Roots
Now suppose that the auxiliary equation has the complex number a + bi(a, b
real,i?= —1,b#0)asa nonrepeated root. Then, since the coefficients are real,
the conjugate complex number a — bi is also a nonrepeated root. The corre-
sponding part of the general solution is

kle(a+bi)x + k2e(a—bi)x’

where k; and k; are arbitrary constants. The solutions defined by e©@*?* and ¢~ %>
are complex functions of the real variable x. It is desirable to replace these by
tworeal linearly independent solutions. This can be accomplished by using Euler’s
formula,

e® = cos O + 7 sin 0,*

* We borrow this basic identity from complex variable theory, as well as the fact that e+ = ¢
holds for complex exponents.
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which holds for all real 6. Using this, we have
kie@+ix 4 pop@=bdx = k paxpbix | ko gaxy=bix
e [kie®™ + koe "]
e”[ki(cos bx + ¢ sin bx) + ko(cos bx — i sin bx)]
e™[(ky + ko)cos bx + i(k; — ko)sin bx]

e™[c, sin bx + ¢4 cos bx],

where ¢, = i(k, — ky), co = k; + ky are two new arbitrary constants. Thus the
part of the general solution corresponding to the nonrepeated conjugate complex
roots a * bi is

e™[c, sin bx + ¢, cos bx].

Combining this with the result of Case 2, we have the following theorem covering
Case 3.

THEOREM 4.13

1. Consider the nth-order homogeneous linear differential equation (4.23) with con-
stant coefficients. If the auxiliary equation (4.24) has the conjugate complex roots a + bi
and a — bi, neither repeated, then the corresponding part of the general solution of (4.23)
may be written

y = ¢%(c; sin bx + ¢4 cos bx).

2. If, however, a + bi and a — bi are each k-fold roots of the auxiliary equation
(4.24), then the corresponding part of the general solution of (4.23) may be written

y = e®[(c; + cox + ¢c3x% + o+ + ¢x*)sin bx
+ (ck+l + Cpiox + Ck+3x2 + e+ Cgkxk_l)COS bx].

We now give several examples. -

EXAMPLE 4.25 S

Find the general solution of
¥ + 9y =0.

We have already used this equation to illustrate the theorems of Section 4.1. Let
us now obtain its solution using Theorem 4.13. The auxiliary equation m? +
1 = 0 has the roots m = *i. These are the pure imaginary complex numbers
a * bi, wherea = 0, b = 1. The general solution is thus

y = e%c;sinl-x + ¢cycos 1 -x),
which is simply

Yy = ¢, sinx + ¢y COS X.
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EXAMPLE 4.26 s
Find the general solution of
" — 6y’ + 25y = 0.
The auxiliary equation is m* — 6m + 25 = 0. Solving it, we find
6*V36 - 100 68
" 2 T2

Here the roots are the conjugate complex numbers a * bi, wherea = 3,5 = 4.
The general solution may be written

=3 = 4.

y = (¢, sin 4x + ¢y cos 4x).

EXAMPLE 4.27 G
Find the general solution of

YYo= 4" + 149" — 20y' + 25y = 0.
The auxiliary equation is

m* — 4m® + 14m? — 20m + 25 = 0.

The solution of this equation presents some ingenuity and labor. Since our
purpose in this example is not to display our mastery of the solution of algebraic
equations but rather to illustrate the above principles of determining the general
solution of differential equations, we unblushingly list the roots without further
apologies.
They are
1+ 24, 1 - 2, 1 + 2, 1 — 2.

Since each pair of conjugate complex roots is double, the general solution is

y = e*[(c; + cox)sin 2x + (c3 + c4x)cos 2x]
or
Yy = ¢1e* sin 2x + coxe” sin 2x + cze* cos 2x + c¢4xe” cos 2x.

E. An Initial-Value Problem

We now apply the results concerning the general solution of a homogeneous
linear equation with constant coefficients to an initial-value problem involving
such an equation.

EXAMPLE 4.28 s e
Solve the initial-value problem

" — 6y" + 25y = 0, (4.28)

y(0) = -3, (4.29)

y'(0) = — 1. (4.30)
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First let us note that by Theorem 4.1 this problem has a unique solution defined
for all x, — < x < ». We now proceed to find this solution; that is, we seek the
particular solution of the differential equation (4.28) that satisfies the two initial
conditions (4.29) and (4.30). We have already found the general solution of the
differential equation (4.28) in Example 4.26. It is

y = e%(c, sin 4x + ¢y cos 4x). (4.31)
From this, we find
y' = e*[(8c; — 4cy)sin 4x + (4¢; + 3cy)cos 4x]. (4.32)

We now apply the initial conditions. Applying condition (4.29), y(0) = —3, to
Equation (4.31), we find

—8 = ¢%¢; sin 0 + ¢, cos 0),

which reduces at once to
c = —3. (4.33)

Applying condition (4.30), y'(0) = —1, to Equation (4.32), we obtain
—1 = e%[(8c; — 4c¢y)sin 0 + (4¢; + 3c¢y)cos 0],

which reduces to
4c; + 3¢y = — 1. (4.34)

Solving Equations (4.33) and (4.34) for the unknowns ¢; and ¢y, we find
¢ = 2, ¢ = —3.
Replacing ¢, and ¢, in Equation (4.31) by these values, we obtain the unique
solution of the given initial-value problem in the form
y = ¢*(2 sin 4x — 3 cos 4x).

Recall from trigonometry that a linear combination of a sine term and a
cosine term having a common argument ¢x may be expressed as an appropriate
constant multiple of the sine of the sum of this common argument cx and an
appropriate constant angle ¢. Thus the preceding solution can be reexpressed
in an alternative form involving the factor sin(4x + ¢) for some suitable ¢. To
do this we first multiply and divide by V/(2)? + (=3)? = V13, thereby obtaining

V13
From this we may express the solution in the alternative form
y = V13> sin(4x + ¢),

where the angle ¢ is defined by equations

y = V13e3"[ 2 sin 4x — vfil-—gcos 4x].

. 3 2
sin ¢ = Vit cos ¢ = Vis




4.2 THE HOMOGENEOUS LINEAR EQUATION WITH CONSTANT COEFFICIENTS 143

EXERCISES

Find the general solution of each of the differential equations in Exercises 1—
36.

© 00 I O Gt OO

10.
11.

13. y" — 5" + 7y’ — 3y = 0.
14. 4" + 4" — Ty’ + 2y = 0.
15. y" —y" + 9" —y = 0.

16. y" + 49" + 5y’ + 6y = 0.
17. y" — 8’ + 16y = 0.

19. y" — 49" + 13y = 0.

21. 9" + 9y = 0.

23. y" — 6" + 12y’ — 8 =0

24.
25.
26.
27.
28.
29,
30.
31.
32.
33.

<y =5 + 6y =0.
4" - 129" + 5y = 0.
2" +9" =6y = 0.

e 2" 4+ 3y" — 2y = 0.
4" -4 +y=0.

' =4+ 4y = 0.
9"+ 6y + 11y = 0.
16y" + 32y" + 25y = 0.
" — 3y —y" + 3y =0.

&" + 12" + 6y’ +y
yv = 0.

yv —9y = 0.
Y+ 8" + 16y = 0.

Y = Y+ y" = 0.

W+ 3y + 3y + 9 = 0.

yiv _ ylll —_ 3ylr + yr + Qy —_ 0.
YYo= 3" = 29" + 29" + 12y = 0.
Y+ 6" + 15y + 20y’ + 12y = 0.

2. 9" = 29" — 3y = 0.
4. 3y" — 149’ — 5y = 0.

12. y" — 6" + 5y' + 12y = 0.

18. 49" + 49" +y = 0.
20. y" + 6y’ + 25y = 0.
22. 4" +y = 0.

Y+ HY 4+ 10" + 10" + 5" +y = 0.
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34.
35.
36.

y = 2" +y = 0.
y +y=0.
M+ 64y = 0.

Solve the initial-value problems in Exercises 37—56.

37.
38.
39.
40.
41.
42,
43.
4.
45.
46.
47,
48.
49.
50.
51.
52,
53.
54,
55.

56.
57.

58.

Y =9y = 12y = 0,

Yy + 7y + 10y = 0,
y' = 6y" + 8 =0,

3" + 4y’ — 4y = 0,
y'+ 6"+ Y =0,

4" — 129" + 9y = 0,
Y+ 4y + 4y
P -6 +y =0,
Y'Y+ 2y
3" + 6y’ + 58y
'+ 6y + 13y
Yy + 2y + 5 =0,

P" + 6" + 5y = 0,
4" + 4" + 37 = 0,
' -6+ 1y - 6 =0,
Y-ty - =0,
" = 3y" + 4y =0,

=B Y =By =0,
I = 3" + 2" = 0,

y"(0) = 2.

y - 16y =0, 30 =1,
Given that

m* + 4m® + 10m? + 6m

find the general solution of

yiv + 4yrll + 10}’"

Given that

m*t + 2m3 + 5m® + 4m

find the general solution of

y(0) = 3,
y(0) = —4,
y(0) = 1,
y(0) = 2,
y(0) = 2,
y(0) = 4,
0, 0 =3,
y(0) = 3,
0, ) =0,
0, 0 = -1,
0, y0) =3,
y(0) = 2,
y(0) = 6,
y(0) = 2,
y(0) = 0,
y(0) = 2,
y(0) = 1,
y(0) =0,
y(0) = 2,

y'(0) = -8,

y'(0) = 5.

y'(0) = 2.

y'(0) = 6.

y'(0) = —4.

y'(0) = —3.

'(0) = 9.

y'(0) = 7.
y'0) = —1.

y'(0) = 5.
y'(0) = 5.
y'(0) = -1

y'(0) = 6.

y'(0) = 0.
y'(0) = —4.
y'(0) = 0,

y'(0) = 0,

y"(0) =

y'0) = 1,

y'(0) = 0,

-4, "0) = 4,

+ 9 = (m?+ 2m + 3),

+ 6y + 9 = 0.

+4=m+m+ 203

W+ 29" + 5" + 4" + 4 =0.

y"(0) = 2.
y"(0) = 0.

—4.

y"(0) = 6.
yn(o) = 2

’

yl'l(O) = 0.
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59. The roots of the auxiliary equation, corresponding to a certain 10th-order
homogeneous linear differential equation with constant coefficients, are
4, 4, 4, 4, 2+ 3, 2 -3, 2+ 3, 23, 2+ 3, 2- 3
Write the general solution.

60. The roots of the auxiliary equation, corresponding to a certain 12th-order
homogeneous linear differential equation with constant coefficients, are

2,2,2,2, 2,2, 3+ 4,3 -4, 3+ 4,34 3+ 4 33— 4
Write the general solution.
61. Given that sin x is a solution of
Yo+ 2" 4+ 6" + 2y + 5y =0,
find the general solution.
62. Given that ¢* sin 2x is a solution of
Yo+ 3" + 9" + 13y" + 30y = 0,

find the general solution.

4.3 THE METHOD OF UNDETERMINED
COEFFICIENTS

A. Introduction; An lllustrative Example
We now consider the (nonhomogeneous) differential equation

ap)™ + apy® "V + -+ a,.y" + 4y = Flx), (4.35)

where the coefficients ay, ay, . . ., a, are constants, but where the nonhomoge-
neous term F is (in general) a nonconstant function of x. Recall that the general
solution of (4.35) may be written

Y=t Dps

where y, is the complementary function, that is, the general solution of the corre-
sponding homogeneous equation (Equation (4.35) with F replaced by 0), and y,
is a particular integral, that is, any solution of (4.35) containing no arbitrary
constants. In Section 4.2 we learned how to find the complementary function;
now we consider methods of determining a particular integral.

We consider first the method of undetermined coefficients. Mathematically
speaking, the class of functions F to which this method applies is actually quite
restricted; but this mathematically narrow class includes functions of frequent
occurrence and considerable importance in various physical applications. And
this method has one distinct advantage—when it does apply, it is relatively simple!
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EXAMPLE 4.29: Introductory Example s
' = 2" — 3y = 2e* (4.36)

We proceed to seek a particular integral y,; but what type of function might
be a possible candidate for such a particular integral? The differential equation
(4.36) requires a solution which is such that its second derivative, minus twice
its first derivative, minus three times the solution itself, add up to twice the
exponential function ¢*. Since the derivatives of ¢** are constant multiples of
e*, it seems reasonable that the desired particular integral might also be a con-
stant multiple of ¢**. Thus we assume a particular integral of the form

y, = Ae*, (4.37)

where A is a constant (undetermined coefficient) to be determined such that
(4.37) is a solution of (4.36). Differentiating (4.37), we obtain

y, = 4Ae* and y, = 16Ae*.
Then substituting into (4.36), we obtain
16Ae*™ — 2(4Ae*) — 3Ae* = 2¢*
or
5Aet = 2¢%. (4.38)

Since the solution (4.37) is to satisfy the differential equation identically for all
x on some real interval, the relation (4.38) must be an identity for all such x, and
hence the coefficients of ¢** on both sides of (4.38) must be respectively equal.
Equating these coefficients, we obtain the equation

5A = 2,
from which we determine the previously undetermined coefficient
A=t
Substituting this back into (4.37), we obtain the particular integral
Y = Fe.
Now consider the differential equation
Y = 2y — 3y = 2¢%, (4.39)

which is exactly the same as Equation (4.36) except that ¢* in the right member
has been replaced by ¢°*. Reasoning as in the case of differential equation (4.36),
we would now assume a particular integral of the form

Y, = Ae*. (4.40)
Then differentiating (4.40), we obtain
y, = 3A¢** and y; = 9Ae*.
Then substituting into (4.39), we obtain
9Ae* — 2(8Ae>) — 3(Ae®) = 2¢*
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or
0 - A = 2¢%
or simply
0 = 2¢%,

which does not hold for any real x. This impossible situation tells us that there
is no particular integral of the assumed form (4.40).

As noted, Equations (4.36) and (4.39) are almost the same, the only difference
between them being the constant multiple of x in the exponents of their respective
nonhomogeneous terms 2¢* and 2¢%*. The equation (4.36) involving 2¢* had a
particular integral of the assumed form Ae*, whereas Equation (4.39) involving
2¢% did not have one of the assumed form Ae®. What is the difference in these
two so apparently similar cases?

The answer to this is found by examining the solutions of the differential
equation

Yy =2 =3 =0, (4.41)

which is the homogeneous equation corresponding to both (4.36) and (4.39).
The auxiliary equation is m? — 2m — 3 = 0 with roots 3 and —1; and so

3x

e* and e*

are (linearly independent) solutions of (4.41). This suggests that the failure to
obtain a solution of the form y, = Ae* for Equation (4.39) is due to the fact that
the function ¢* in this assumed solution is a solution of the homogeneous equa-
tion (4.41) corresponding to (4.39); and this is indeed the case. For, since Ae*
satisfies the homogeneous equation (4.41), it reduces the common left member

Y- =Y
of both (4.41) and (4.39) to 0, not 2¢>*, which a particular integral of Equation
(4.39) would have to do.

Now that we have considered what caused the difficulty in attempting to
obtain a particular integral of the form Ae** for (4.39), we naturally ask what
form of solution should we seek? Recall that in the case of a double root m for
an auxiliary equation, a solution linearly independent of the basic solution ¢™
was xe™. While this in itself tells us nothing about the situation at hand, it might
suggest that we seek a particular integral of (4.39) of the form

y, = Axe®. (4.42)
Differentiating (4.42), we obtain
¥, = 3Axe® + Ae>, y, = 9Axe® + 6Ae™.
Then substituting into (4.39), we obtain

(9Axe® + 6Ae%) — 2(8Axe® + Ae’) — 3Axe’ = 2%
or
(9A — 6A — 3A)xe> + 4Ae3 = 2¢%
or simply
Oxe® + 4Ae% = 23, (4.43)
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Since the (assumed) solution (4.42) is to satisfy the differential equation identically
for all x on some real interval, the relation (4.43) must be an identity for all such
x, and hence the coefficients of ¢* on both sides of (4.43) must be respectively
equal. Equating coefficients, we obtain the equation

4A = 2,
from which we determine the previously undetermined coefficient
A=4
Substituting this back into (4.42), we obtain the particular integral
Y, = Bxe®.

We summarize the results of this example. The differential equations

Yy = 29" — 3y = 2e* (4.36)
and

' =2 — 3y = 2> (4.39)
each have the same corresponding homogeneous equation

' = 29" = 3y =0. (4.41)

This homogeneous equation has linearly independent solutions

3x

e’ and e7%,

and so the complementary function of both (4.36) and (4.39) is
Yo = > + coe™

The right member 2¢* of (4.36) is not a solution of the corresponding homo-
geneous equation (4.41), and the attempted particular integral

y, = Ae® (4.37)

suggested by this right member did indeed lead to a particular integral of this
assumed form, namely, y, = %¢**. On the other hand, the right member 2¢** of
(4.39) s a solution of the corresponding homogeneous equation (4.41) [with
¢; = 2and ¢, = 0], and the attempted particular integral

y, = Ae* (4.40)

suggested by this right member failed to lead to a particular integral of this form.
However, in this case, the revised attempted particular integral,

Y, = Axe™, (4.42)

obtained from (4.40) by multiplying by x, led to a particular integral of this
assumed form, namely, y, = 3xe®~.
The general solutions of (4.36) and (4.39) are, respectively,
Y = 1% 4 coe™ + Be*
and
y = 1e® + coe™F + xed”.
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The preceding example illustrates a particular case of the method of un-
determined coefficients. It suggests that in some cases the assumed particular
integral y, corresponding to a nonhomogeneous term in the differential equation
is of the same type as that nonhomogeneous term, whereas in other cases the
assumed y, ought to be some sort of modification of that nonhomogeneous term.
It turns out that this is essentially the case. We now proceed to present the method
systematically.

B. The Method
We begin by introducing certain preliminary definitions.

DEFINITION

We shall call a function a UC function ¢f it is either (1) a function defined by one
of the following:
(¢) x", where n is a positive integer or zero,
(i2) e™, where a is a constant # 0,
(ez) sin(bx + c), where b and ¢ are constants, b # 0,
(tv) cos(bx + c), where b and c are constants, b # 0,

or (2) a function defined as a finite product of two or more functions of these four types.

EXAMPLE 4.30 s RReenneeee

Examples of UC functions of the four basic types (¢), (i), (i), (iv) of the preceding

definition are those defined, respectively, by
x3, e 2, sin(3x/2), cos(2x + w/4).

Examples of UC functions defined as finite products of two or more of these
four basic types are those defined, respectively, by

x%e3, x cos 2x, e sin 3x,

sin 2x cos 3x, x3¢% sin Hx.

The method of undetermined coefficients applies when the nonhomoge-
neous function F in the differential equation is a finite linear combination of UC
functions. Observe that given a UC function f, each successive derivative of f is
either itself a constant multiple of a UC function or else a linear combination of
UC functions.

DEFINITION

Consider a UC function f. The set of functions consisting of f itself and all linearly
independent UC functions of which the successive derivatives of f are either constant
multiples or linear combinations will be called the UC set of f.
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EXAMPLE 4.31 mSimmsssEssine e

The function f defined for all real x by f(x) = x* is a UC function. Computing
derivatives of f, we find

fl(x) = 3%,  f'(x) =6x, f"x)=6=6-1, [f"x) =0 for n>3.

The linearly independent UC functions of which the successive derivatives of f
are either constant multiples or linear combinations are those given by

x2, x, 1.

Thus the UC set of x% is the set § = {x3, x2, x, 1}.

EXAMPLE 4.32 EESpimemmsss e

The function f defined for all real x by f(x) = sin 2x is a UC function. Computing
derivatives of f, we find

f'(x) = 2cos2x, f"(x) = —4sin 2x,

The only linearly independent UC function of which the successive derivatives
of f are constant multiples or linear combinations is that given by cos 2x. Thus
the UC set of sin 2x is the set S = {sin 2x, cos 2x}.

These and similar examples of the four basic types of UC functions lead to
the results listed as numbers 1, 2, and 3 of Table 4.1.

TABLE 4.1
UC function UC set
1 x" {x*, x"~ 1, x"2 ..., x, 1}
2 e {e*}
3 sin(bx + ¢) or {sin(bx + c), cos(bx + ¢)}
cos(bx + ¢)
4 x"e™ {xme®, x"~le™, x"" 2% ..., xe*™, e*}
5 x™ sin(bx + c) or {x" sin(bx + c), x" cos(bx + c),
x™ cos(bx + ¢) x"~Usin(bx + c), x""! cos(bx + c¢),
..., xsin(bx + ¢), x cos(bx + ¢),
sin(bx + c), cos(bx + c¢)}
6 e* sin(bx + c) or {e* sin(bx + c), e* cos(bx + ¢)}
e™ cos(bx + c)
7 x"e®™ sin(bx + ¢) or {x"e® sin(bx + c), x"e* cos(bx + c),
x"e*™ cos(bx + ¢) x""le™ sin(bx + ¢), x" " 'e* cos(bx + ¢), ...,
xe®™ sin(bx + c), xe™ cos(bx + ¢),
e* sin(bx + c), e* cos(bx + ¢)}
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EXAMPLE  4.33 0000000 s s

The function f defined for all real x by f(x) = x? sin x is the product of the two
UC functions defined by x? and sin x. Hence f is itself a UC function. Computing
derivatives of f, we find

f'(x) = 2x sinx + x2 cos x,
f'(x) = 2sinx + 4x cos x — x? sin x,
f"(x) = 6 cosx — 6x sin x — x? cos x,

No “new” types of functions will occur from further differentiation. Each deriv-
ative of f is a linear combination of certain of the six UC functions given by
x? sin x, x% cos x, x sin x, x cos x, sin x, and cos x. Thus the set

S = {x? sin x, x? cos x, x sin x, x €oOs x, sin x, COS x}

is the UC set of x? sin x. Note carefully that x?, x, and 1 are not members of this
UC set.

Observe that the UC set of the product x? sin x is the set of all products
obtained by multiplying the various members of the UC set {x%, x, 1} of x? by
the various members of the UC set {sin x, cos x} of sin x. This observation
illustrates the general situation regarding the UC set of a UC function defined
as a finite product of two or more UC functions of the four basic types. In
particular, suppose 4 is a UC function defined as the product fg of two basic UC
functions f and g. Then the UC set of the product function # is the set of all the
products obtained by multiplying the various members of the UC set of f by the
various members of the UC set of g. Results of this type are listed as numbers
4, 5, and 6 of Table 4.1 and a specific illustration is presented in Example 4.34.

EXAMPLE 4.34 s s s

The function defined for all real x by f(x) = x* cos 2x is the product of the two
UC functions defined by x* and cos 2x. Using the result stated in the preceding
paragraph, the UC set of this product x* cos 2x is the set of all products obtained
by multiplying the various members of the UC set of x* by the various members
of the UC set of cos 2x. Using the definition of UC set or the appropriate numbers
of Table 4.1, we find that the UC set of x3 is

{x3, x%, x, 1}
and that of cos 2x is
{sin 2x, cos 2x}.

Thus the UC set of the product x* cos 2x is the set of all products of each of x?,
x%, x, and 1 by each of sin 2x and cos 2x, and so it is

{x3 sin 2x, x3 cos 2x, x2 sin 2x, x% cos 2x, x sin 2x, x cos 2x, sin 2x, cos 2x}.
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Observe that this can be found directly from Table 4.1, number 5, withn = 3,
b=2andc = 0.

We now outline the method of undetermined coefficients for finding a par-
ticular integral y, of

agy™ + apy®V + -+ a1y’ + ay = Fl),
where F is a finite linear combination
F = Alul + A2u2 + -+ Amum

of UC functions u,, uy, . . ., u,, the A; being known constants. Assuming the
complementary function y, has already been obtained, we proceed as follows:

1. For each of the UC functions
Uy, Ugy . o o, Uy

of which F is a linear combination, form the corresponding UC set, thus
obtaining the respective sets

S5, 8e, .o, Sa

2. Suppose that one of the UC sets so formed, say §;, is identical with or com-
pletely included in another, say S;. In this case, we omit the (identical or
smaller) set §; from further consideration (retaining the set Sj).

3. We now consider in turn each of the UC sets which still remain after Step 2.
Suppose now that one of these UC sets, say S, includes one or more members
which are solutions of the corresponding homogeneous differential equation.
If this is the case, we multiply each member of S, by the lowest positive integral
power of x so that the resulting revised set will contain no members that are
solutions of the corresponding homogeneous differential equation. We now
replace S, by this revised set, which has been so obtained. Note that here we
consider one UC set at a time and perform the indicated multiplication, if
needed, only upon the members of the one UC set under consideration at
the moment.

4. In general there now remains:
(i) certain of the original UC sets, which were neither omitted in Step 2 nor
needed revision in Step 3, and
(i) certain revised sets resulting from the needed revision in Step 3.

Now form a linear combination of all of the sets of these two categories, with
unknown constant coefficients (undetermined coefficients).

5. Determine these unknown coefficients by substituting the linear combination
formed in Step 4 into the differential equation and demanding that it iden-
tically satisfy the differential equation (that is, that it be a particular solution).

This outline of procedure at once covers all of the various special cases to
which the method of undetermined coefficients applies, thereby freeing one from
the need of considering separately each of these special cases.
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Before going on to the illustrative examples of Part C following, let us look
back and observe that we actually followed this procedure in solving the differ-
ential equations (4.36) and (4.39) of the Introductory Example 4.29. In each of
those equations, the nonhomogeneous member consisted of a single term that
was a constant multiple of a UC function; and in each case we followed the
outline procedure step by step, as far as it applied.

For the differential equation (4.36), the UC function involved was ¢*, and
we formed its UC set, which was simply {¢*} (Step 1). Step 2 obviously did not
apply. Nor did Step 3, for as we noted later, ¢** was not a solution of the cor-
responding homogeneous equation (4.41). Thus we assumed y, = Ae** (Step 4)
substituted in differential equation (4.36), and found A and hence y, (Step 5).

For the differential equation (4.39), the UC function involved was ¢*, and
we formed its UC set, which was simply {¢*} (Step 1). Step 2 did not apply here
either. But Step 3 was very much needed, for ¢* was a solution of the corre-
sponding homogeneous equation (4.41). Thus we applied Step 3 and multi-
plied ¢** in the UC set {¢*} by x, obtaining the revised UC set {xe*}, whose
single member was not a solution of (4.41). Thus we assumed y, = Axe™
(Step 4), substituted in the differential equation (4.39), and found A, and hence
9y, (Step 5).

The outline generalizes what the procedure for the differential equation of
Introductory Example 4.29 suggested. Equation (4.39) of that example has al-
ready brought out the necessity for the revision described in Step 3 when it
applies. We give here a brief illustration involving this critical step.

EXAMPLE 4.35 @i s
Consider the two equations

Y = 3y + 2y = x%* (4.44)
and
Y = 2y +y = x%* (4.45)

The UC set of x%”* is
S = {x%*, xe*, e*}.

The homogeneous equation corresponding to (4.44) has linearly indepen-
dent solutions ¢* and ¢, and so the complementary function of (4.44) is y, =
cie* + cee®. Since member ¢* of UC set S is a solution of the homogeneous
equation corresponding to (4.44), we multiply each member of UC set S by the
lowest positive integral power of x, so that the resulting revised set will contain
no members that are solutions of the homogeneous equation corresponding to
(4.44). This turns out to be x itself; for the revised set

S = {x3*, x%*, xe*}

has no members that satisfy the homogeneous equation corresponding to (4.44).

The homogeneous equation corresponding to (4.45) has linearly indepen-
dent solutions ¢* and xe*, and so the complementary function of (4.45) is y, =
c1€” + coxe*. Since the two members of ¢* and xe* of UC set S are solutions of the
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homogeneous equation corresponding to (4.45), we must modify S here also.
But now x itself will not do, for we would get S’, which still contains xe*. Thus
we must here multiply each member of § by x? to obtain the revised set

S = {xie*, x3%*, x%*},

which has no member that satisfies the homogeneous equation corresponding
to (4.45).

C. Examples

A few illustrative examples, with reference to the above outline, should make
the procedure clear. Our first example will be a simple one in which the situations
of Steps 2 and 3 do not occur.

EXAMPLE 4.36 G
3" — 2y" — 3y = 2¢* — 10 sin x.
The corresponding homogeneous equation is
Y =2y =3y =0
and the complementary function is
Y. = e + coe ™.
The nonhomogeneous term is the linear combination 2¢* — 10 sin x of the two
UC functions given by ¢* and sin x.
1. Form the UC set for each of these two functions. We find
S, = {e},
S, = {sin x, cos x}.
2. Note that neither of these sets is identical with nor included in the other;

hence both are retained.

3. Furthermore, by examining the complementary function, we see that none
of the functions ¢*, sin x, cos x in either of these sets is a solution of the
corresponding homogeneous equation. Hence neither set needs to be revised.

4. Thus the original sets §; and S, remain intact in this problem, and we form
the linear combination
Ae* + B sinx + C cos x
of the three elements ¢*, sin x, cos x of S, and §,, with the undetermined
coeflicients A, B, C.

5. We determine these unknown coefficients by substituting the linear combi-
nation formed in Step 4 into the differential equation and demanding that it
satisfy the differential equation identically. That is, we take

y, = Ae* + Bsinx + C cos x
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as a particular solution. Then
¥, = Ae* + B cosx — Csinx,
y, = Ae* — Bsinx — C cos x.
Actually substituting, we find

(Ae* — Bsinx — C cosx) — 2(Ae* + B cosx — C sin x)
— 3(Ae* + Bsinx + Ccosx) = 2¢* — 10 sin x

or
—4Ae¢* + (—4B + 2C)sinx + (—4C — 2B)cos x = 2¢* — 10 sin «.

Since the solution is to satisfy the differential equation identically for all x on
some real interval, this relation must be an identity for all such x, and hence
the coefficients of like terms on both sides must be respectively equal. Equating
coefficients of these like terms, we obtain the equations

—4A = 2, —-4B + 2C = —-10, —-4C - 2B = 0.
From these equations, we find that
A=-3 B=2 C= -1,
and hence we obtain the particular integral
yp = —3%* + 2sinx — cos x.
Thus the general solution of the differential equation under consideration is

y=3ty= c1e¥* + coe™* — 3¢* + 2sinx — cosx.

EXAMPLE 4.37 e eeneeens

Yy = 3y + 2y = 2x% + ¢ + 2xe" + 4e*.

The corresponding homogeneous equation is

Y =3 +2)=0

and the complementary function is

Yo = €€* + e

The nonhomogeneous term is the linear combination

2x2 + ¢* + 2xe* + 4e*

of the four UC functions given by x?, ¢*, xe*, and .

1. Form the UC set for each of these functions. We have

Sl = {xQ’ X, l}’
S? = {ex}’
S3 = {xex’ ex}’

S, = {e*}.
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2. We note that S, is completely included in §;, so S, is omitted from further
consideration, leaving the three sets

Sl = {x2, X, 1}’ SB = {xex’ ex}’ S4 = {eBx}.

3. We now observe that S35 = {xe*, ¢*} includes e*, which is included in the com-
plementary function and so is a solution of the corresponding homogeneous
differential equation. Thus we multiply each member of S; by x to obtain the
revised family

S5 = {x%*, xe*},

which contains no members that are solutions of the corresponding homo-
geneous equation.

4. Thus there remain the original UC sets

S, = {x% x, 1}
and
Sy = {7}
and the revised set
S3 = {x%*, xe*}.

These contain the six elements
x%, x, 1, €%, x%* xe*.
We form the linear combination
Ax? + Bx + C + De* + Ex%* + Fxe*
of these six elements.
5. Thus we take as our particular solution,
¥, = Ax* + Bx + C + De* + Ex%* + Fxe".

From this, we have

¥, = 2Ax + B + 3De®* + Ex%* + 2Exe* + Fxe* + Fe*,

¥, = 2A + 9De* + Ex%* + 4Exe® + 2Ee* + Fxe* + 2Fe*.

We substitute y,, y,, y, into the differential equation for y, y', y", respectively,
to obtain:
2A + 9De* + Ex?%* + (4E + F)xe* + (2E + 2F)e*

— 3[2Ax + B + 3De%* + Ex?%* + (2E + F)xe* + Fe*]

+ 2(Ax? + Bx + C + De%* + Ex%* + Fxe*)

= 2x* + ¢ + 2xe* + 4e¥,

or
(2A — 3B + 2C) + (2B — 6A)x + 2Ax? + 2De* + (—2E)xe* + (2E — F)e*

= 2x2 + ¢ + 2xe* + 4¢3
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Equating coefficients of like terms, we have:

2A - 3B + 2C = 0,
2B — 6A = 0,
2A = 2,

2D = 4,
—2E = 2,

2E - F = 1.

FromthisA = 1,B =3,C =% D = 2, E
particular integral is

—1, F = =3, and so the

¥, = x% + 3x + § + 2¢% — x%* — 3xe*.
The general solution is therefore

=9+ 9y, =ce* + ce®™ + x%+ 3x + § + 23 — x%* — 3xe*.
y=y Yp

EXAMPLE 4.38 s R
y¥ + 9" = 3x? + 4sinx — 2 cos x.
The corresponding homogeneous equation is
Wy =0,
and the complementary function is
Y = ¢ + cx + ¢3sinx + ¢4 cOS x.
The nonhomogeneous term is the linear combination
3x% + 4 sinx — 2 cos x
of the three UC functions given by
x2, sinx, and cos x.
1. Form the UC set for each of these three functions. These sets are, respectively,
S = {x% x, 1},
S, = {sin x, cos x}
Ss = {cos x, sin x}.

2. Observe that S, and S; are identical and so we retain only one of them, leaving
the two sets
S, = {x% x, 1}, S, = {sin x, cos x}.

3. Now observe that §; = {x?,x, 1} includes 1 and x, which, as the complementary
function shows, are both solutions of the corresponding homogeneous dif-
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ferential equation. Thus we multiply each member of the set S, by x? to obtain
the revised set

S1 = {x* %3, x%,

none of whose members are solutions of the homogeneous differential equa-
tion. We observe that multiplication by x instead of x* would not be sufficient,
since the resulting set would be {x*, x?,x}, which still includes the homogeneous
solution x. Turning to the set Sy, observe that both of its members, sin x and
cos x, are also solutions of the homogeneous differential equation. Hence we
replace S, by the revised set

S5 = {x sin x, x cos x}.

4. None of the original UC sets remain here. They have been replaced by the
revised sets S| and S containing the five elements

x4, x3 x2, x sin x, X COS X.
We form a linear combination of these,
Ax* + Bx® + Cx* + Dx sinx + Ex cos x,
with undetermined coefficients A, B, C, D, E.
5. We now take this as our particular solution

y, = Ax* + Bx® + Cx* + Dx sin x + Ex cos x.
Then
¥, = 4Ax® + 3Bx? + 2Cx + Dx cosx '+ D sinx — Exsinx + E cos x,

y, = 12Ax* + 6Bx + 2C — Dx sinx + 2D cosx — Ex cos x — 2E sinx,

y, = 24Ax + 6B — Dx cosx — 3D sinx + Ex sinx — 3E cos x,

y§V = 24A + Dx sinx — 4D cosx + Ex cos x + 4E sin x.
Substituting into the differential equation, we obtain
24A + Dx sinx — 4D cos x + Ex cos x + 4E sinx + 12Ax? + 6Bx + 2C

— Dxsinx + 2D cosx — Ex cosx — 2F sin x

= 3x? + 4 sinx — 2 cos x.
Equating coefficients, we find

24A + 2C =0
6B = 0
12A = 3
-2D = -2
2E = 4.

Hence A = 1,B =0,C = —3,D = 1, E = 2, and the particular integral is

Y, = 1x* — 3x2 + x sinx + 2x cos x.
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The general solution is

Y=t
=¢ + cox + c3sinx + cscosx + jx* — 3x2 + xsinx + 2x cos x.

EXAMPLE 4.39: An Initial-Value Problem s

We close this section by applying our results to the solution of the initial-value
problem

9" — 2y’ — 3y = 2¢* — 10 sinx, (4.46)
y(0) = 2, (4.47)
y'(0) = 4. (4.48)

By Theorem 4.1, this problem has a unique solution, defined for all x,
—o <x < ; let us proceed to find it. In Example 4.36 we found that the general
solution of the differential equation (4.46) is

y = 1% + cee™* — 36" + 2sinx — cos x. (4.49)

From this, we have

Z_g’c = 3c1¥ — coe ™ — $¢* + 2 cosx + sinx. (4.50)

Applying the initial conditions (4.47) and (4.48) to Equations (4.49) and (4.50),
respectively, we have

2 = ¢1e® + coe® — 3% + 2sin 0 — cos 0,
4 = 3¢1e® — coe® — 3° + 2 cos 0 + sin 0.
These equations simplify at once to the following:
c + ¢ =13, 3¢, — ¢y = 3.
From these two equations we obtain
a=3% =2

Substituting these values for ¢; and ¢, into Equation (4.49) we obtain the unique
solution of the given initial-value problem in the form

y = 3* 4+ 2¢7* — $¢* + 2sinx — cosx.

EXERCISES

Find the general solution of each of the differential equations in Exercises
1-34.

L y" — 3y + 2y = 4x2
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9= 2" — 8y = 462 — 217

.y + 2" + 5y = 6sin 2x + 7 cos 2x.
.y + 29" + 2y = 10 sin 4x.

<9+ 29" + 4y = 13 cos 4x.

<y = 3y — 4y = 16x — 12¢%.

<"+ 6y + by = 2¢° + 10e*.

< 9" + 29" + 10y = bxe 2"

. 29" + 3y’ — 2y = 6x%* — 4x? + 12

© 00 I & Ot b N

-
<

.y + 6y' + 8y = 6xe?* + 8x2%

o
—

.y + 4y = 4sin 2x + 8 cos 2x.

p—
N

.y — 4y = 16xe*.

—
[

A" =y 4y =+ e

.y = 6y + 9y = 6e* + Bxe'.

"+ 4" +y — 6y = —18x% + 1.

C Y+ 29" — 3y — 10y = 8Bxe 2.

<y +y" + 3y — 5y = 5sin2x + 10x* + 3x + 7.

e e
W I O G A

. 4" — 49" — By’ + 3y = 3x> — 8x.

Y 4y — 6y = 10e% — 18¢% — 6x — 11.
Yy = 2y = 672 + 3¢* — 4x2

.y = 6y’ + By = 24x%* + 8>

.y — 49" + By = 6e2* cos x.

N N N N -
O N = O O

Y = 3"+ 4y = 45 — 18e7.
9" = 29" — 9 4+ 2y = 9e?F — 8e3x.

N N
[SA0

<" + 3" = 2x? + 4sinx.
Y = 3" + 2" = 3¢ + 6% — 6x.

»nN
(=)

27. y" — 6" + 11y’ — 6y = xe* — 4e®* + 6e*.
28. y" — 4" + By’ — 2y = 3x%* — Te~.

29. y" — 4" + 4y’ = 24xe™ + 16 + 9e*~.

30. y" — 4y’ = 32xe™ — 24x%

31. y" +y = xsinx.

o
N

.y + 4y = 12x* — 16x cos 2x.
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33. y¥ + 29" — 3y" = 18x% + 16xe* + 4e> — 9.
34. y" — 5" + 7y" — By’ + 6y = 5sinx — 12 sin 2x.
Solve the initial-value problems in Exercises 35—50:

35. 9" — 4y’ + 3y =92+ 4, y0) =6, y'(0) =8

36. y" + 5y’ + 4 = 16x + 20¢7, y(0) = 0, y'(0) = 3.
37. 9" — 8" + 15y = 9xe®, y(0) =5, y'(0) = 10.
38. 9" + 7y + 10y = 4xe™%, y(0) =0, y'(0) = —1.
39. y" + &' + 16y = 872,  y(0) =2, y'(0) = 0.

40. 3" + 6y’ + 9 = 27¢°5%,  3(0) = —2, y'(0) = 0.
4.y + 49’ + 13y = 1872, y(0) = 0, y'(0) = 4.
42. 9" — 10y" + 2% = 8>, y(0) =0, y'(0) = 8.
43.y" — 4’ + 13y = 8sin3x, y(0) =1, y'(0) = 2.

4. 9" — y' — 6y = 8¢ — Be¥%,  y(0) =3, y'(0) = 5.
45. 9" — 29" +y = 2xe™ + 6¢5, y(0) =1, y'(0) = 0.
46. y" —y = 3x%*, y(0) =1, y'(0) = 2.
47. y" +y = 3x* — 4sinx, y0) =0, '(0) = 1.
48. y" + 49 = 8sin2x, y(0) =6, y'(0) = 8.
49. y" — 49" + 9" + 6y = 3xe* + 2¢* — sinx,
O =2y =0 yO=0.
50. y" — 6y" + %' — 4y = 8% + 3 — 6%,
y0) =1, »'0) =17 »"0) = 10.

For each of the differential equations in Exercises 51-64 set up the correct linear
combination of functions with undetermined literal coefficients to use in finding
a particular integral by the method of undetermined coefficients. (Do not actually
find the particular integrals.)

5L. y" — 6y’ + 8y =« + x + 7%

52. " + 9 = &> + ¢7% + ¢ sin 3.

53. 9" + 49" + 5y = ¢ ?*(1 + cos x).

54. y" — 6y' + 9y = x'e* + x%2 + x%*.

55. y”

56. y"
N

57.

+ 6y’ + 13y = xe % sin 2x + x%~?* sin 3x.
— 3" + 2" = x%* + 3xe¥ + bx2.
— 6y" + 129" — 8y = xe® + x%3.
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58. y + 39" + 49" + 3y’ + y = x%* + 3¢7'2 cos -

59.
60.

¥ — 16y = x?sin 2x + x%?*.
Y
61. y¥ + 2y" + y = x? cos x.
y
y
Y

it 2yY + By = x3 + x%* 4+ 7 sin 2x.

62. 3" + 16y = xeV® sin V2x + ¢~V% cos V2x.
63. y* + 3y” — 4y = cos®’x — cosh x.

64. y~ + 10" + 9y = sin x sin 2x.

4.4 VARIATION OF PARAMETERS

A. The Method

While the process of carrying out the method of undetermined coefficients is
actually quite straightforward (involving only techniques of college algebra and
differentiation), the method applies in general to a rather small class of problems.
For example, it would not apply to the apparently simple equation

y' + 9y = tanx.

We thus seek a method of finding a particular integral that applies in all cases
(including variable coefficients) in which the complementary function is known.
Such a method is the method of variation of parameters, which we now consider.

We shall develop this method in connection with the general second-order
linear differential equation with variable coefficients

ao(x)y" + ai(x)y’ + aslx)y = F(x). (4.51)

Suppose that y, and y, are linearly independent solutions of the corresponding
homogeneous equation

ao(x)y" + a;(x)y’ + as(x)y = 0. (4.52)
Then the complementary function of Equation (4.51) is

c1y1(x) + coy2(x),

where y; and y, are linearly independent solutions of (4.52) and ¢, and ¢, are
arbitrary constants. The procedure in the method of variation of parameters is
to replace the arbitrary constants ¢, and ¢, in the complementary function by
respective functions v; and vy which will be determined so that the resulting
function, which is defined by

v1®)y1(x) + v2(x)y2(x), (4.53)

will be a particular integral of Equation (4.51) (hence the name, variation of
parameters).
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We have at our disposal the two functions v, and v, with which to satisfy the
one condition that (4.53) be a solution of (4.51). Since we have two functions but
only one condition on them, we are thus free to impose a second condition,
provided this second condition does not violate the first one. We shall see when
and how to impose this additional condition as we proceed.

We thus assume a solution of the form (4.53) and write

¥, (%) = v1(0)y1(x) + va(x)ya(x). (4.54)
Differentiating (4.54), we have
V() = v1(x)y1(x) + va(x)ya(x) + vilx)y:(x) + va(x)y2(x), (4.55)

where we use primes to denote differentiations. At this point we impose the
aforementioned second condition; we simplify y, by demanding that

vi(®)y1(x) + va(x)y2(x) = 0. (4.56)
With this condition imposed, (4.55) reduces to
P ®) = vi®)y1(x) + va(x)y2(x). (4.57)
Now differentiating (4.57), we obtain
9 x) = v1X)Yi(x) + va(¥)y2(x) + vilx)yi(x) + va(x)y2(). (4.58)

We now impose the basic condition that (4.54) be a solution of Equation (4.51).
Thus we substitute (4.54), (4.57), and (4.58) for y, y', and )", respectively, in
Equation (4.51) and obtain the identity

ao()[v1(x)y7(x) + valx)ya(x) + vi(x)yi(x) + valx)ya(x)]
+ a,(0)[vix)y1(x) + va(x)y2(x)] + as@)[vi(x)y1(x) + va(x)ye(x)] = F(x).
This can be written as

v1(®)[ao(x)yi(x) + a1(x)yi1(x) + as(x)yi(x)]
+ va(¥)[ao®)y2(x) + ai(x)y2(x) + ax(x)y2(x)]
+ ao@)[vi®)yi(x) + v2(x)y2(x)] = F(x). (4.59)
Since y, and y, are solutions of the corresponding homogeneous differential

equation (4.52), the expressions in the first two brackets in (4.59) are identically
zero. This leaves merely

F
G + v = 1. (4.60)

This is actually what the basic condition demands. Thus the two imposed
conditions require that the functions v, and v, be chosen such that the system
of equations

NEvix) + yox)vax) = 0,
F(x) (4.61)

PO + het) =
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is satisfied. The determinant of coefficients of this system is precisely

y1(%)  y2(x)
y1(x)  y2(x)
Since y; and y, are linearly independent solutions of the corresponding homo-

geneous differential equation (4.52), we know that W[y, (x), yo(x)] # 0. Hence the
system (4.61) has a unique solution. Actually solving this system, we obtain

W(yi(x), y2(x)] =

0 )’2(")
Fkx)
() =% 7 Flx)ya(x)
(X)) = = — ’
‘ Y1) yalx) o) W[y, (x), y2(x)]
yilx)  yhx)
J’l(x) 0
o
) N ay(x) F(x)y, (x)
Va(x) = = .
’ y1®) 920 | ao@Wyi(x), y2(x)]
yi)  yhex)

Thus we obtain the functions v, and v, defined by
 F()y(0) dt
vi(x) = — ,
0 = [ WO e
s FO)y () dt
vo(x) = .
) = [ WO 2]
Therefore a particular integral y, of Equation (4.51) is defined by

(4.62)

Yp(x) = v1(x)y1 () + vax)ye(x),
where v, and v, are defined by (4.62).

B. Examples

EXAMPLE 4.40 o e e e
Consider the differential equation

¥y +y = tan x. (4.63)
The complementary function is defined by

Y.(x) = ¢; sinx + ¢y cos x.
We assume
%(x) = vi(x)sin x + vp(x)cos x, (4.64)

where the functions v, and v, will be determined such that this is a particular
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integral of the differential equation (4.63). Then
95(x) = vy(x)cos x — vy(x)sin x + vi(x)sin x + vy(x)cos x.

We impose the condition

vi(x)sin x + vy(x)cos x = 0, (4.65)
leaving
95(x) = vi(x)cos x — vy(x)sin x.
From this
¥p(x) = —v (x)sin x — vy(x)cos x + vj(x)cos x — vy(x)sin x. (4.66)
Substituting (4.64) and (4.66) into (4.63), we obtain
vi(x)cos x — vy(x)sin x = tan x. (4.67)

Thus we have the two equations (4.65) and (4.67) from which to determine v;(x),

va(x): )
vi(x)sin x + vy(x)cos x = 0,

vi(x)cos x — vg(x)sin x = tan x.

Solving we find:

0 COS X
, tanx —sinx —cosxtanx .
vi(x) = 7 = = sIn x,
sin x Cos X -1
cosx —sinx
sin x 0
Cos X tan x sin x tan x —sin? x
v3(x) = T = =
sin x Cos X -1 COs x
cosx —sinx
cos?x — 1
= ———— = cosXx — SecX.
COs X
Integrating we find:
vi(x) = —cosx + ¢3, vs(x) = sinx — In[secx + tan x| + c4. (4.68)

Substituting (4.68) into (4.64) we have
Yp(x) = (—cosx + ¢g)sinx + (sinx — In |[sec x + tan x| + c4)cos x
= —sinx cos x + cgsinx + sin x cos x
—In [sec x + tan x| (cos x) + c4cos x
= ¢gsin x + c4cos x — (cos x)(In [sec x + tan x|).

Since a particular integral is a solution free of arbitrary constants, we may assign
any particular values A and B to ¢; and ¢4, respectively, and the result will be the
particular integral

Asinx + B cosx — (cos x)(In |sec x + tan x|).
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Thusy =y, + y, becomes
y =c¢ sinx + cycosx + Asinx + B cosx — (cos x)(In |sec x + tan x|),
which we may write as
y = C;sinx + Cycosx — (cos x)(In |sec x + tan x|),

where C, = ¢, + A,C, = ¢y + B.
Thus we see that we might as well have chosen the constants ¢; and ¢4 both
equal to 0 in (4.68), for essentially the same result,

y = ¢y sinx + cgcosx — (cos x)(In |sec x + tan x|),

would have been obtained. This is the general solution of the differential equation
(4.63).

The method of variation of parameters extends to higher-order linear equa-
tions. We now illustrate the extension to a third-order equation in Example 4.41,
although we hasten to point out that the equation of this example can be solved
more readily by the method of undetermined coefficients.

EXAMPLE 441 s
Consider the differential equation
Yy — 6y" + 11y’ — 6y = e~ (4.69)
The complementary function is
Y.(x) = c16* + coe®* + ¢y’
We assume as a particular integral
Y, (x) = vi(x)e* + vo(x)e?* + vs(x)e®. (4.70)

Since we have three functions v,, vy, vs at our disposal in this case, we can apply
three conditions. We have:

Y, (%) = vi(x)e* + 2up(x)e?* + Bus(x)e®™ + vi(x)e® + vs(x)e?* + vi(x)e®.

Proceeding in a manner analogous to that of the second-order case, we impose
the condition

vi(x)e* + vh(x)e®* + vi(x)e>* = 0, (4.71)
leaving
¥, (x) = vi(x)e* + 2uy(x)e?™ + Sus(x)e®. (4.72)
Then

Y x) = vi(x)e* + 4us(x)e?™ + Yus(x)e®™ + vi(x)e* + 2ug(x)e?* + 3us(x)e®.
We now impose the condition

vix)e* + 2vi(x)e?* + 3Svi(x)e3* = 0, (4.73)
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leaving
¥, &) = vi(x)e* + 4vs(x)e?* + Yus(x)e”. (4.74)
From this,
¥y (k) = vi(x)e* + 8Bug(x)e?* + 27vs(x)e> + vi(x)e* + 4vi(x)e?™ + uz(x)e®.
(4.75)

We substitute (4.70), (4.72), (4.74), and (4.75) into the differential equation (4.69),
obtaining:
vi(x)e* + 8Bus(x)e?* + 2Tvs(x)e® + vi(x)e* + 4vj(x)e?* + ui(x)e>
— 6v(x)e* — 24vuy(x)e?* — Bdug(x)e® + 1luv(x)e* + 22vuy(x)e?* + 33vg(x)e*
—6v,(x)e* — 6uy(x)e?* — bus(x)ed* = e~

or
vi)e* + 4vi(x)e?* + Yui(x)e®* = e*. (4.76)

Thus we have the three equations (4.71), (4.73), (4.76) from which to determine
v1(x), vs(x), vs(x):
vi(x)e* + vi(x)e?* + vi(x)e® = 0,
vi@er + 205(x)e> + Svj)e™ = 0,
vi(x)e® + dvi(x)e?* + ui(x)e> = e*.

Solving, we find

0 o2 %
0 2% 3¢ g6 |1 1’
, e 4e?* Q¢¥ 2 3 1
vilx) = e o | 11 1| 2
e* 2% 3e¥|  €*|1 2 3
6* 4e** 9e% 1 4 9
e 0 e*
s 0 3¢ g |1 1'
vi) = ——2 L B LI —e7%,
PR PR ™ 9,6
e 2e%* 3¢3
e 4e?* 9e%
e* e 0
=20 0wl 1'
x 4,2% 1 2 1
o) = I = e = S e

e* 2¢2%  3¢3
e* 4e?* 9e3*
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We now integrate, choosing all the constants of integration to be zero (as the
previous example showed was possible). We find:

vix) = dx,  wve(x) = e, wuslx) = —de7
Thus
V() = Exe* + e7e? — je~¥e’ = fxe* + fen.

Thus the general solution of Equation (4.53) is

Y =9 F Y, = 1€ + coe® + 363 + dxer + fer
or
Yy = cie* + e + cze® + fxe,

where ¢} = ¢; + 4.

In Examples 4.40 and 4.41 the coefficients in the differential equation were
constants. The general discussion at the beginning of this section shows that the
method applies equally well to linear differential equations with variable coeffi-
cients, once the complementary function y, is known. We now illustrate its ap-
plication to such an equation in Example 4.42.

EXAMPLE 4.42 ErRaEasEss
Consider the differential equation
(2 + 1)y" — 2xy" + 2y = 6(x2 + 1)% (4.77)
In Example 4.16 we solved the corresponding homogeneous equation
& + 1)y" — 2xy’" + 2y = 0.

From the results of that example, we see that the complementary function of
equation (4.77) is

y.(x) = c1x + co(x? — 1).
To find a particular integral of Equation (4.77), we therefore let

Ppx) = vi(@)x + vy(x)(x?* — 1). (4.78)
Then
V() = vi(x) - 1 + vo(x) - 2x + vi(x)x + vy(x)(x* — 1).

We impose the condition
vix)x + vilx)x® — 1) = 0, (4.79)

leaving
¥p(x) = v1(x) - 1 + vp(x) - 2x. (4.80)

From this, we find
Yp(x) = vilx) + 2v5(x) + va(x) - 2x. (4.81)
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Substituting (4.78), (4.80), and (4.81) into (4.77) we obtain

(x? + Dvix) + 2vus(x) + 2xvi(x)] — 2x[v,(x) + 2xvs(x)]
+ 2vi(x)x + valx)(x2 — 1)] = 6(x2 + 1)?
or
*x? + Dvi(x) + 2xv(x)] = 6(x2 + 1)2 (4.82)

Thus we have the two equations (4.79) and (4.82) from which to determine vj(x)
and vy(x); that is, vi(x) and vy(x) satisfy the system

v1(x)x + ve(x)[x2 — 1] = 0,
vi(x) + va(x)[2x] = 6(x2 + 1).

Solving this system, we find

0 x? — 1
vlx) = 6(x2 + 1) 2x _ —6(x2 + l)(x2 -1 = —6( 2 _ 1)
! B x x2—1 B x2 + 1 B x ’
1 2x
x 0
1 6(x%+ 1) 6x(x2 + 1)
va(x) = P E Il = 6x.
1 2x

Integrating, we obtain
vi(x) = —2x3 + 6x, vo(x) = 3x2, (4.83)

where we have chosen both constants of integration to be zero. Substituting
(4.83) into (4.78), we have

(—2x% + 6x)x + 3x2(x2 — 1)

= x* + 3x%

9 (%)

Therefore the general solution of Equation (4.77) may be expressed in the form

Y=Yty
=cx + co(x® — 1) + x* + 3x2

EXERCISES

Find the general solution of each of the differential equations in Exercises
1-18.

1.y +y = cotx. 2. y" +y = tan®x.
3.y +y = secx. 4. 9" +y = sec® x.
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10.
11.
12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

®» N @ o

Yy + 4y = sec? 2x.
9" + y = tan x sec x.
Yy + 4y + By = 7% sec x.
Y — 2y + By = e* tan 2x.
" ! e_gx
¥+ 6y + 9y = P
Y =2y + 9y =xeInx (x > 0).
y" + 3y = sec x csc x.
Y + 9y = tan®x.

1
II+ ’ =
Y EY A=
"+ 3y + 2y = !
y y y - 1 + e2x
" —_l__
Y YT T ¥sinx
Y =2y +y = e sin"!x.

” ' _e——x
Y+ 3y + 2y ot

' =2y +y=xInx (x>0).
Find the general solution of
x2y" — 6xy’ + 10y = 3x* + 6«3,

given that y = x? and y = x° are linearly independent solutions of the cor-
responding homogeneous equation.

Find the general solution of
(c + 12" — 2(x + 1)y + 2y = 1,

given thaty = x + 1 andy = (x + 1)? are linearly independent solutions of
the corresponding homogeneous equation.

Find the general solution of
(*? + 2x)y" — 2(x + 1)y’ + 2y = (x + 2)%,

given thaty = x + 1 and y = x? are linearly independent solutions of the
corresponding homogeneous equation.

Find the general solution of

Xy —x(x + 2)y + (x + 2)y = x5,
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given that y = x and y = xe* are linearly independent solutions of the cor-
responding homogeneous equation.

23. Find the general solution of
x(x — 2)y" — (2 — 2)y' + 2(x — 1)y = 3x*(x — 2)%*,

given thaty = ¢* and y = x? are linearly independent solutions of the cor-
responding homogeneous equation.

24. Find the general solution of
(2x + D + 1)y" + 2xy’ — 2y = 2x + 1)?,

given thaty = x andy = (x + 1)7' are linearly independent solutions of the
corresponding homogeneous equation.

25. Find the general solution of
(sin? x)y” — (2 sin x cos x)y’ + (cos?x + 1)y = sin’«x,

given that y = sin x and y = x sin x are linearly independent solutions of
the corresponding homogeneous equation.

26. Find the general solution of

x9" — 2x + 1)y + x + 1)y = Qx—i,

given that y = ¢* and y = x%" are linearly independent solutions of the
corresponding homogeneous equation.

In each of Exercises 27 and 28, find the general solution by two methods:

27. y" — 29" = 8xe®.

28. y" — 3y" — 9y’ + 3y = x%~.

4.5 THE CAUCHY-EULER EQUATION

A. The Equation and the Method of Solution
In the preceding sections we have seen how to obtain the general solution of the
nth-order linear differential equation with constant coefficients. We have seen that
in such cases the form of the complementary function may be readily determined.
The general nth-order linear equation with variable coefficients is quite a different
matter, however, and only in certain special cases can the complementary func-
tion be obtained explicity in closed form. One special case of considerable prac-
tical importance for which it is fortunate that this can be done is the so-called
Cauchy—Euler equation (or equidimensional equation). This is an equation of the
form

apx™y™ + a;x*ly@ b + o + g, 1xy" + a,y = F(x), (4.84)
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where ag, a4, . .., a,_1, a, are constants. Note the characteristic feature of this
equation: Each term in the left member is a constant multiple of an expression
of the form

xhy®,

How should one proceed to solve such an equation? About the only hopeful
thought that comes to mind at this stage of our study is to attempt a transfor-
mation. But what transformation should we attempt and where will it lead us?
While it is certainly worthwhile to stop for a moment and consider what sort of
transformation we might use in solving a “new” type of equation when we first
encounter it, it is certainly not worthwhile to spend a great deal of time looking
for clever devices which mathematicians have known about for many years. The
facts are stated in the following theorem.

THEOREM 4.14
The transformation x = e' reduces the equation
apx™™ + ax* "yt + -+ a,_1xy' + a,y = F(x) (4.84)

to a linear differential equation with constant coefficients.

We shall prove this theorem for the case of the second-order Cauchy—Euler
differential equation
,d? d
agx dy2 + alxa2 + agy = F(x). (4.85)
The proof in the general nth-order case proceeds in a similar fashion. Letting
x = ¢', assuming x > 0, we have ¢t = In x. Then

by _Hdt _1dy
dx dtdx x dt
and
@y _1d (), dd(1\_1(dyd) _ 1d
x?  x dx \dt dt dx \x x \dt? dx x? dt’
1(dy1 _ld_y_i d’y _dy
x \dt? x x2 dt dt2  dt
Thus
by _d o 4%y _dYy
Ydx ot " xd“’_dt“’ di

Substituting into Equation (4.85) we obtain

d? dy dy — moat
(dt2 dt) + a, = o + ayy = F(e')
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or
d? dy
A(,;Eg +AIZ + Ay = GO, (4.86)
where
Ay = a, A, = a; — a,, Ay = ay, G(t) = F(e").

This is a second-order linear differential equation with constant coefficients, which
was what we wished to show.

Remarks. 1. Note that the leading coefficient a;x" in Equation (4.84) is zero
for x = 0. Thus the basic interval @ = x < b, referred to in the general theorems
of Section 4.1, does not include x = 0.

2. Observe that in the above proof we assumed that x > 0. If x < 0, the
substitution x = —e¢' is actually the correct one. Unless the contrary is explicitly
stated, we shall assume x > 0 when finding the general solution of a Cauchy-
Euler differential equation.

B. Examples

EXAMPLE 4.43 s e
2 4% dy
x2 i 2xd— + 2y = x> (4.87)
Let x = ¢'. Then, assuming x > 0, we have ¢t = In x, and

dx  dtdx  «xdt’
‘ﬂ_l(‘ﬂﬂ) ldy=i<d_“'y_d_3’>

dx? dt? dx x? dt a2 dt)’
Thus Equation (4.87) becomes
d23’ ﬂ dy = o3
" a tatHe
or
d?y dy
—_— + = 3’. 4.88
de? dt 2y = (488)

The complementary function of this equation is y, = ¢,¢' + c¢*. We find a
particular integral by the method of undetermined coefficients. We assume y, =
Ae*. Then y, = 3Ae™, y;= 9A¢*, and substituting into Equation (4.88) we obtain

24Ae% = ¥,

Thus A = } and we have y, = %¢*. The general solution of Equation (4.88) is
then
y = cie' + coe? + fe¥.
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But we are not yet finished! We must return to the original independent variable
x. Since ¢’ = x, we find

Y = cx + cex? + 3x3

This is the general solution of Equation (4.87).

Remarks. 1. Note carefully that under the transformation x = ¢ the right
member of (4.87), x®, transforms into ¢*. The student should be careful to trans-
form both sides of the equation if he or she intends to obtain a particular integral
of the given equation by finding a particular integral of the transformed equation,
as we have done here.

2. We hasten to point out that the following alternative procedure may be
used. After finding the complementary function of the transformed equation
one can immediately write the complementary function of the original given
equation and then proceed to obtain a particular integral of the original equation
by variation of parameters. In Example 4.43, upon finding the complementary
function ¢,¢' + cy¢* of Equation (4.88), one can immediately write the comple-
mentary function ¢;x + cox? of Equation (4.87), then assume the particular in-
tegral y,(x) = v,(x)x + vy(x)x?, and from here proceed by the method of variation
of parameters. However, when the nonhomogeneous function F transforms into
a linear combination of UC functions, as it does in this example, the procedure
illustrated is generally simpler.

EXAMPLE 4.44 Eamssmmesss s

d®y . 4%y dy
s34y _
X 4x d2+8xd 8 = 4Inx. (4.89)
Assuming x > 0, we let x = ¢. Thent = In x, and
b _1ld
dx x dt’
d?y _ 1 (dy dy
dx? dt2  dt
dy
Now we must consider e
dy _1.d(dy &) _2(dy d
dx®  x2dx \d?  dt x> \dt2  dt
_l dydt d¥ydt _2 * _d
ox2\di®dx  di? dx 2 dt
_ L (dy _dy 2 d_“’y_@
T ox% \de? dﬁ a2 dt
1 d?y dy
Tl (dtf’ Sdt“’ 2dt>'
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Thus, substituting into Equation (4.89), we obtain
iy _Jdy b dy & dy\ _ o _
<dt3 S T2y N w) T8 Y=Y
d?

d® dy
dt? 7 dt? + 14 dt

The complementary function of the transformed equation (4.90) is

or

— 8y = 4. (4.90)

Y. = 16t + coe® + cget.

We proceed to obtain a particular integral of Equation (4.90) by the method of

"

undetermined coefficients. We assume y, = At + B. Theny, = A,y, =y, = 0.
Substituting into Equation (4.90), we find

14A — 8At — 8B = 4t.
Thus
—8A4 = 4, 14A — 8B = 0,

and so A = —3, B = —§. Thus the general solution of Equation (4.90) is
Yy = et + coe® + cget — 3t — 1§,
and so the general solution of Equation (4.89) is

y =cix + cox? + cx* — tlnx — &

Remarks. In solving the Cauchy—Euler equations of the preceding exam-
ples, we observe that the transformation x = ¢‘ reduces

) dy o 4%y d*y _dy
Yo P Yae C @ W
and
d% d% d?y dy
3 2 —_— —Z -
X dxd to de’ Sdﬁ’ * th'

We now show (without proof) how to find the expression into which the general
term

dy

dx™’

where n is an arbitrary positive integer, reduces under the transformation x = ¢'.
We present this as the following formal four-step procedure.

n

1. For the given positive integer n, determine
rr = D) —2) - [r = — 1)
2. Expand the preceding as a polynomial of degree n in r.

k
3. Replace r* by %, foreachk =1,2,3,...,n.
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dry
dx®

For example, when n = 3, we have the following illustration.

4. Equate x" to the result in Step 3.

1. Sincen = 3,n — 1 = 2 and we determine r(r — 1)(r — 2).
2. Expanding the preceding, we obtain r* — 372 + 2r.

d’y

3. Replacing 7% by —= o r? by %, and 7 by D we have

3’ d
Py _gd% o
o
. d¥y
4. Equating x° ke this, we have the relation

o _dy d?y dy
dx T 3dt2 2dt'

Note that this is precisely the relation we found in Example 4.44 and stated
above.

EXERCISES

Find the general solution of each of the differential equations in Exercises 1—
22. In each case assume x > 0.

1. x%" — 3xy’ + 3y = 0. 2. x%y" + xy' — 4y = 0.
3. 4x%" — 4xy’ + 3y = 0. 4. x%" — 3xy' + 4y = 0.
5. x%" + xy' + 4y = 0. 6. x%" — 3xy’ + 13y = 0.
7. 3x%" — 4xy’ + 2y = 0.

8. x%" + xy' + 9y = 0.

9. 9x%" + 3xy' +y = 0.

10. x%y" — Bxy’ + 10y = 0.
11. x3%y" — 3x%" + 6xy' — 6y =

12. x%" + 2x%" — 10xy’ — 8y = 0.
13. x%y" — x%" — 6xy’ + 18y

+

14. x*y" — 4x%" + 8xy' — 8y = 0

15. x*" — 4xy’ + 6y = 4x — 6.
16. x*y" — Bxy’ + 8y = 2x3.
17. x*" + 4xy' + 2y = 4In«x.
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18. x%" + xy' + 4y = 2x Inx.

19. x%" + xy' + y = 4 sin In«.

20. x%" — 3xy' + By = bx2

21. x%y" — 8x%" + 28xy’ — 40y = —9/x.
22, x%" — x%" + 2xy' — 2y = x5

Solve the initial-value problem in each of Exercises 23—30. In each case assume
x> 0.

23. x%" — 2xy' — 10y =0, (1) =5, (1) =4
24. x%" —4xy' + 6y = 0, y2) =0, (2 =4
25. x%" + Bxy’ + 3y =0, 9y(1)=1, (1) = —5.
26. x%" — 2y =4x — 8, y1)=4, y(1)=-1
27. x%" — 4xy' + 4y = 4x? — 6x°, 32 =4, Q) = -1
28. x%y" + 2xy' — 6y = 10x2, y(1) =1, y'(1) = —6.
29. x%" — bxy' + 8y = 2x%,  y(2) =0, y'(2Q) = -8.
30. x%" — 6y = Inx, (1) =43 ()= -4
31. Solve:

(x + 2% — (x +2)y —3y=0.
32. Solve:

@x — 3)%" — 6(2x — 3)y’ + 12y = 0.

4.6 STATEMENTS AND PROOFS OF
THEOREMS ON THE SECOND-ORDER
HOMOGENEOUS LINEAR EQUATION

Having considered the most fundamental methods of solving higher-order linear
differential equations, we now return briefly to the theoretical side of the subject
and present detailed statements and proofs of the basic theorems concerning the
second-order homogeneous equation. The corresponding results for both the
general nth-order equation and the special second-order equation were intro-
duced in Section 4.1B and employed frequently thereafter. By restricting atten-
tion here to the second-order case we shall be able to present proofs which are
completely explicit in every detail. However, we point out that each of these
proofs may be extended in a straightforward manner to provide a proof of the
corresponding theorem for the general nth-order case. For general proofs, we
again refer to Chapter 11 of the author’s Differential Equations.

We thus consider the second-order homogeneous linear differential equation

ag(x)y” + a,(x)y’ + asx(x)y = 0, (4.91)
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where ay, a,, and a, are continuous real functions on a real interval a = x < b
and ay(x) # O for any x ona = x < b.

In order to obtain the basic results concerning this equation, we shall need
to make use of the following special case of Theorem 4.1 and its corollary.

THEOREM A

Hypothesis. Consider the second-order homogeneous linear equation (4.91), where a,,
ay, and aq are continuous real functions on a real interval a = x < b and ay(x) # 0 for
any x on a < x < b. Let x, be any point of a < x < b; and let ¢, and c, be any two real
constants.

Conclusion 1. Then there exists a unique solution f of Equation (4.91) such that f(x,) =
co and f'(xo) = ¢y, and this solution f is defined over the entire interval a < x < b.

Conclusion 2. In particular, the unique solution f of Equation (4.91), which is such
that f(xo) = 0 and f'(xo) = 0, is the function f such that f(x) = 0 for all x on a =

x<b.

Besides this result, we shall also need the following two theorems from
algebra.

THEOREM B

Two homogeneous linear algebraic equations in two unknowns have a nontrivial solution
if and only if the determinant of coefficients of the system is equal to zero.

THEOREM C

Two linear algebraic equations in two unknowns have a unique solution if and only if the
determinant of coefficients of the system is unequal to zero.

We shall now proceed to obtain the basic results concerning Equation (4.91).
Since each of the concepts involved has already been introduced and illustrated
in Section 4.1, we shall state and prove the various theorems without further
comments or examples.

THEOREM 4.15

Hypothesis. Let the functions f, and f, be any two solutions of the homogeneous linear
differential equation (4.91) on a < x < b, and let ¢, and c, be any two arbitrary constants.

Conclusion. Then the linear combination c, fi + ca fs of fi1 and fy is also a solution of
Equation (4.91) on a < x < b.
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Proof. We must show that the function f defined by

f&) = aifix) + cofolx), a=x=b, (4.92)
satisfies the differential equation (4.91) on a = x < b. From (4.92), we see that

f'x) = c1fi(x) + cafs(x), a=x=b, (4.93)
and

f'x) = c1fi(x) + cofa(x), a<x=<5hH. (4.94)

Substituting f(x) given by (4.92), f'(x) given by (4.93), and f"(x) given by (4.94)
fory, y', and y”, respectively, in the left member of differential equation (4.91),
we obtain

ao@)[e1 f1&) + cof2(®)] + ar@)eifi(x) + cafax)]
+ ax®)e1filx) + cafe(x)]. (4.95)
By rearranging terms, we express this as
cilao(®)f1(®) + a1@®)fi(x) + as(x)fi(x)]
+ cofao@®)f3(x) + a1®)f2(x) + as(x)fa(x)]. (4.96)

Since by hypothesis, f; and f, are solutions of differential equation (4.91) ona =
x = b, we have, respectively,

ao®)f 1) + a(x)f1(x) + ax(x)filx) = 0
ao®)f2(x) + a\(x)f2(x) + ax(x)fa(x) = 0

forallx ona =x = b.
Thus the expression (4.96) is equal to zero for allx ona <x =< b, and therefore
so is the expression (4.95). That is, we have

ao®)e1f1(x) + cof3x)] + a1 x)e1f1(x) + cofsx)] + az(x)[cifi(x) + cofolx)] = O

for all x on @ = x = b, and so the function ¢, f; + ¢y f; is also a solution of
differential equation (4.91) on this interval. Q.E.D.

and

THEOREM 4.16

Hypothesis. Consider the second-order homogeneous linear differential equation (4.91),
where ay, a,, and ay are continuous on a =< x = b and ag(x) # O on a = x < b.

Conclusion. There exists a set of two solutions of Equation (4.91) that are linearly
independent on a = x < b.

Proof. We prove this theorem by actually exhibiting such a set of solutions. Let
xo be a point of the interval @ =< x < b. Then by Theorem A, Conclusion 1, there
exists a unique solution f; of Equation (4.91) such that

file) =1 and fi(xo) = 0 (4.97)
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and a unique solution f; of Equation (4.91) such that
fo(xo) = 0 and f3(xo) = 1. (4.98)

We now show that these two solutions f; and f; are indeed linearly indepen-
dent. Suppose they were not. Then they would be linearly dependent; and so by
the definition of linear dependence, there would exist constants ¢, and ¢,, not
both zero, such that

lel(JC) + CQfQ(JC) =0 (499)
for all x such that ¢ < x < 4. Then also
cifilx) + cofslx) = 0 (4.100)

for all x such that ¢ = x = b. The identities (4.99) and (4.100) hold at x = x,,
giving
afilxo) + cafolxo) = 0, c1filxo) + cofs(xo) = 0.
Now apply conditions (4.97) and (4.98) to this set of equations. They reduce to
ci(1) + ¢(0) = 0, ¢,(0) + ¢co(1) =0

or simply ¢; = ¢, = 0, which is a contradiction (since ¢, and ¢, are not both zero).
Thus the solutions f; and f, defined, respectively, by (4.97) and (4.98) are linearly
independent on a < x < b. Q.E.D.

THEOREM 4.17

Two solutions f, and f; of the second-order homogeneous linear differential equation (4.91)
are linearly independent on a < x < b if and only if the value of the Wronskian of f, and
fa is different from zero for some x on the interval a = x < b.

Method of Proof. We prove this theorem by proving the following equivalent
theorem.

THEOREM 4.18

Two solutions f, and f; of the second-order homogeneous linear differential equation (4.91)
are linearly dependent on a < x < b if and only if the value of the Wronskian of f, and
fais zero forall x on a < x < b:

fl(x) fz(x)
f1kx)  fa(x)

Proof. Part 1. We must show that if the value of the Wronskian of f; and f; is
zero for all x on a = x < b, then f; and f, are linearly dependent on a = x = b.
We thus assume that

=0 forallxona =x =b.

fl(x) f2(x)
fikx)  falx)
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for all x such that a = x < b. Then at any particular x, such that a = x, < b, we
have

fl(xo) fz(xo)
fi(xo) fé(xo)

Thus, by Theorem B, there exist constants ¢, and ¢y, not both zero, such that
1 fio) + cafolxe) = 0,
a1 f1(xo) + cofalxe) = 0.
Now consider the function f defined by
flx) = ¢ fi(x) + cofalx), a=x=<h.

By Theorem 4.15, since f; and f; are solutions of differential equation (4.91), this
function f is also a solution of Equation (4.91). From (4.101), we have

f(xo) =0 and f'(xo) = 0.

Thus by Theorem A, Conclusion 2, we know that

= 0.

(4.101)

fx) =0 forallxona =x=<2b.
That is,
cifix) + cafelx) = 0

for all x on @ = x = b, where ¢, and ¢, are not both zero. Therefore the solutions
f1 and f; are linearly dependent on a < x < b.

Part 2. We must now show that if f; and f, are linearly dependent on a =
x =< b, then their Wronskian has the value zero for all x on this interval. We thus
assume that f; and f, are linearly dependent on a < x < b. Then there exist
constants ¢; and ¢y, not both zero, such that

cifilx) + cafolx) = 0 (4.102)
for all x on @ = x = b. From (4.102), we also have
cifi(x) + cofslx) = 0 (4.103)

for all x on a = x = b. Now let x = x, be an arbitrary point of the interval a =
x = b. Then (4.102) and (4.103) hold at x = x,. That is,

c1filxo) + cafalxo) = O,
c1filxo) + cofalxo) = 0,
where ¢, and ¢, are not both zero. Thus, by Theorem B, we have

fl(xO) fQ(xo)

Fitko) fateo)| ~ O
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But this determinant is the value of the Wronskian of f; and f; at x = x,, and x,
is an arbitrary point of a = x =< b. Thus we have

SHi&)  folx)
i) falx)
forallx ona=x=b. Q.E.D.

THEOREM 4.19

The value of the Wronskian of two solutions f, and f, of differential equation (4.91) either
is zero for all x on a < x < b or is zero for nox on a < x < b.

Proof. If f, and f; are linearly dependent on a =< x < b, then by Theorem 4.18,
the value of the Wronskian of f; and f; is zero for all x ona = x < b.

Now let f; and f, be linearly independent on a < x < b; and let W denote
the Wronskian of f; and f,, so that

_ fl(x) f2(x)
YO = Trw fiw|

Differentiating this, we obtain

1) fax)
fi()  fa(x)

fik)  falx)

W) = ,
® £t fie)

4

and this reduces at once to

Si&)  folx)
i) fi)|

Since f; and f, are solutions of differential equation (4.91), we have, respectively,
ao®)f1(x) + a1()f1(x) + ax(x)fi(x) = 0,
ao(®)f2(x) + ai(x)f2(x) + axx)fo(x) = O,

W) =

(4.104)

and hence
a2(x)

fie) = — (")f.u— /1

i) = —“'("“)f2< ) - ““"’ﬁ( )

on a < x < b. Substituting these expressions into (4.104), we obtain

fi®) f2x)

W) =| _a fl()_axx) 0 _alix; fQ()_axx)

P fe®)|
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This reduces at once to

fl(x) f?(x) fl(x) f2(x)
W =| e, a®), |+ e Ca®, |,
ao(x)fl (x) ao(x)fQ(x) ao(x)fl (%) ao(x)f2(x)

and since the last determinant has two proportional rows, this in turn reduces
to

_a® ik fulx)

W'(x) = ,
¥ Taw [fiw) fiw
which is simply
' _ _al(x)
W'x) = a—o(x) W (x).

Thus the Wronskian W satisfies the first-order homogeneous linear differ-
ential equation

aw k)

dx = aylx) w=0.

Integrating this from x, to x, where x, is an arbitrary point of ¢ = x =< b, we obtain

W) =c exp[—fx Z;—z;dt].

Letting x = x,, we find that ¢ = W(x,). Hence we obtain the identity

Wx) = W(xo)exp[ - f Fa®) dt] , (4.105)
xo a’O(t)
valid for all x on @ = x < b, where x, is an arbitrary point of this interval.

Now assume that W(x,) = 0. Then by identity (4.105), we have W(x) = 0
for all x on a =< x < b. Thus by Theorem 4.18, the solutions f; and f, must be
linearly dependent on a < x =< b. This is a contradiction, since f, and f; are linearly
independent. Therefore the assumption that W(x,) = 0 is false, and so W(x,) #
0. But x, is an arbitrary point of a =< x < b. Thus W(x) is zero for no x on a =
x = b. Q.E.D.

THEOREM 4.20

Hypothesis. Letf, and f, be any two linearly independent solutions of differential equation
4.91)ona =x=<b.

Conclusion. Then every solution f of differential equation (4.91) can be expressed as a
suitable linear combination

cifi + caofe

of these two linear independent solutions.
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Proof. Let x, be an arbitrary point of the interval a = x < b, and consider the
following system of two linear algebraic equations in the two unknowns &,
and k,:

kifi(xo) + kofa(xo) = f(x0),

kifi(xo) + kafalxo) = f'(xo).

Since f) and f; are linearly independent on ¢ =< x < b, we know by Theorem 4.17
that the value of the Wronskian of f, and f; is different from zero at some point
of this interval. Then by Theorem 4.19 the value of the Wronskian is zero for
no x on a = x = b, and hence its value at x, is not zero. That is,

fl(xO) fQ(xo)
filxo)  falxo)

Thus by Theorem C, the algebraic system (4.106) has a unique solution &, = ¢,
and ky = ¢y. Thus for k; = ¢, and ky = c,, each left member of system (4.106)
is the same number as the corresponding right member of (4.106). That is, the
number ¢, fi(xo) + ¢ fo(xo) is equal to the number f(x,), and the number
c1f1(xo) + cafs(xo) is equal to the number f'(x,). But the numbers ¢, fi(xo) + ¢

falxo) and ¢, f1(xo) + cof2(xo) are the values of the solution ¢; f; + ¢ f; and its first
derivative, respectively, at x; and the numbers f(x,) and f’(x,) are the values of
the solution f and its first derivative, respectively, at x,. Thus the two solutions
¢1fi + cofs and f have equal values and their first derivative also have equal values
at xo. Hence by Theorem A, Conclusion 1, we know that these two solutions are
identical throughout the interval ¢ = x = b. That is,

f&) = cifilx) + cofalx)

for all x on a = x < b, and so f is expressed as a linear combination of f; and f;.
Q.E.D.

(4.106)

# 0.

EXERCISES

1. Consider the second-order homogenous linear differential equation
Yy — 3y + 2y =0.

(a) Find the two linearly independent solutions f; and f, of this equation
which are such that

fi(0) =1 and fi(0) =0
and
£20) = 0 and f3(0) = 1.

(b) Express the solution
3e* + 2¢%*

as a linear combination of the two linearly independent solutions f, and
/2 defined in part (a).
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2. Consider the second-order homogeneous linear differential equation
a(x)y" + ax)y’ + asxlx)y = 0, (A)

where a,, a,, and a, are continuous on a real interval ¢ =< x < b, and ay(x) #
0 for all x on this interval. Let f and f; be two distinct solutions of differential
equation (A) ona =< x < b, and suppose f,(x) # 0 for all x on this interval. Let
W[ fi(x), f2(x)] be the value of the Wronskian of f; and f; at x.

(a) Show that

4 [m] _ _WIA®), ()]
dx | folx) [f2(x)]?

forallx ona=x=b.

(b) Use the result of part (a) to show that if W[ fi(x), fo(x)] = O for all x such
that @ =< x < b, then the solutions f; and f, are linearly dependent on this
interval.

(c) Suppose the solutions f, and f; are linearly independent on a < x < b,
and let f be the function defined by f(x) = fi(x)/fz(x), a = x = b. Show
that f is a monotonic function on @ = x < b.

3. Let f, and f, be two solutions of the second-order homogeneous linear dif-
ferential equation (A) of Exercise 2.
(@) Show that if f; and f, have a common zero at a point x, of the interval
a =< x =< b, then f; and f, are linearly dependent on a < x < b.
(b) Show that if f; and f; have relative maxima at a common point x, of the
interval ¢ = x < b, then £, and f; are linearly dependent ona < x < b.

4. Consider the second-order homogeneous linear differential equation (A) of

Exercise 2.

(@) Letf, and f, be two solutions of this equation. Show that if f; and f, are
linearly independent on a = x =< b and A,, A,, B}, and B, are constants
such that A|B; — AyB, # 0, then the solutions A, f; + Ayf; and B, f; +
B, f, of Equation (A) are also linearly independent on a = x < b.

(b) Let{f), fs} be one set of two linearly independent solutions of Equation
(A)ona = x = b, and let {g,, g7} be another set of two linearly indepen-
dent solutions of Equation (A) on this interval. Let W[ f(x), fo(x)] denote
the value of the Wronskian of f; and f; at x, and let W[g,(x), go(x)] denote
the value of the Wronskian of g; and g, at x. Show that there exists a
constant ¢ # 0 such that

W[fl(x)’fQ(x)] = W[gix), gz(x)]

forallxona =x < b.

5. Let f, and f; be two solutions of the second-order homogeneous linear dif-
ferential equation (A) of Exercise 2. Show that if f; and f, are linearly inde-
pendent on a < x < b and are such that f7(x;) = f3(xo) = 0 at some point x,
of this interval, then a,(x;) = as(x,) = 0.
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CHAPTER REVIEW EXERCISES

1. Find the general solution of each of the following differential equations.

@ Yy =«x (b) »" =y.
© ¥y =y @ ¥y ==x+y.
(€ y" =x+y. By =y+y.
2. Each of y = x and y = ¢ is a solution of the differential equation
=1y —x' +y=0 (A)
on the interval a = x = b, where a and b are real numbers satisfying
1<a<b.

(a) State the theorem that enables one to conclude that each ot
2x + 3e*, x —e*, and 3¢ — bx

is also a solution of (A) ona < x < b.

(b) Use the definition of linear independence to show that x and ¢* are
linearly independent on a < x < b.

(c) Use the appropriate theorem to show that the solutionsy = x and y =
¢* of (A) are linearly independent on a = x < b.

(d) What is the general solution of (A)?

(e) Answer orally: What is the solution of the initial-value problem

x—1)y" —xy +9y=0, ¥2) = 0, y'(2) = 0?

Explain.
(f) Find the solution of the initial-value problem

(= 1" —x" +y=0, 2 =2, (@2 =1
Is the solution unique? Explain.

Find the general solution of each of the differential equations in Exercises
3-18.

3.y"+ 4" + 7y =0.

4. 49" — 24y’ + 61y = 0.

5.9" — 49" + 3y = 9x? + 16e7* — 5.
6. y" + 4y + 5y = 2¢7* + 8sin«x.
7.9 + 2y — 8y = 24¢2* + 32xe*.
8. 9" + 4y = 16x cos 2x + 12 cos 2x.
9.y" + 4y + 4y = x %%,

10. y" + y = csc?x.
11. x%" — 6xy’ + 10y = 4x>.



4.6 STATEMENTS AND PROOFS OF THEOREMS 187

12. 2x%" — xy' — By = 6x2.

13. 29" — 11y" + 12y" + 9y = 0.
14. y

15. " + 4y' = 2x + 6 sin x.

16. y" + 3y" — 4y = 18¢* + 16¢**.
17. y¥ — 29" 4+ y" = 4¢* + 6x.

"+ 6y + 12y + 8y = 0.

18. y¥ + 9" = 6x + 4¢* + 8 sin x.
Solve each of the initial-value problems in Exercises 19-24.
19. 4" — 129" + 99 =0, y»0) =2, »'(0) =7
20. y" + 109" + 34y =0, 9y0) =1, y'(0) = 4.
21. 3" + 7y' + 2y = 4x + 562,  y(0) = 0, '(0) = L
22. 9" + 8" + 25y = 27¢*,  y(0) =5, y'(0) = 1.
23. 9" + 9" — 2y = 18xe*, y(0) =6, »'(0) = 1.
24. y" = 3" + 4 — 12y =0, 30) =5, 3'(0) =0, y'(0)=6.
25. Given that
mt + 6m® + 1lm?2 + 6m + 1 = m® + 3m + 1)%

find the general solution of
W+ 6y" + 11y + 69" + 9y = 0.

26. Given that
m* + 2m® + 9m? + 8m + 16 = (m? + m + 4)%
find the general solution of
Yo+ 29" + 9" + 8y + 16y = 0.

In each of Exercises 27 and 28, set up the correct linear combination of functions
with undetermined literal coefficients to use in finding a particular integral by
the method of undetermined coefficients. (Do not actually find the particular
integral.)

27. 4y¥ — 4y + 9" = x2(e¥? + 1) + 100.
28. y¥ — 2y + 6y" + 22y’ + 13y = x% = + xe?* sin 3x.
29. Given thaty = ¢* is a solution of

(= 1)y — @+ 1)y + 2y =0,

find a linearly independent solution by reducing the order. Write the general
solution.
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30. Find the general solution of

Vi

(x2 = 1)y" — 2xy" + 2y = "

given thaty = x and y = x? + 1 are linearly independent solutions of the
corresponding homogeneous equation.

In each of Exercises 31 and 32, find the general solution by two methods.

31. y" +y" — 6y = 28e*.

32. 9" = 3y" + 2y’ = 12>



Applications of Second-
Order Linear Differential
Equations with
Constant Coefficients

Higher-order linear differential equations, which were introduced in the previous
chapter, are equations having a great variety of important applications. In par-
ticular, second-order linear differential equations with constant coefficients have
numerous applications in physics and in electrical and mechanical engineering.
Two of these applications will be considered in the present chapter. In Sections
5.1-5.5 we shall discuss the motion of a mass vibrating up and down at the end
of a spring, while in Section 5.6 we shall consider problems in electric circuit
theory.

5.1 THE DIFFERENTIAL EQUATION OF THE
VIBRATIONS OF A MASS ON A SPRING

The Basic Problem

A coil spring is suspended vertically from a fixed point on a ceiling, beam, or
other similar object. A mass is attached to its lower end and allowed to come to
rest in an equilibrium position. The system is then set in motion either (1) by
pulling the mass down a distance below its equilibrium position (or pushing it
up a distance above it) and subsequently releasing it with an initial velocity (zero
or nonzero, downward or upward) at ¢t = 0; or (2) by forcing the mass out of
its equilibrium position by giving it a nonzero initial velocity (downward or
upward) at ¢ = 0. Our problem is to determine the resulting motion of the mass
on the spring. In order to do so we must also consider certain other phenomena
that may be present. For one thing, assuming the system is located in some sort
of medium (say “ordinary” air or perhaps water), this medium produces a re-
sistance force that tends to retard the motion. Also, certain external forces may
be present. For example, a magnetic force from outside the system may be acting
upon the mass. Let us then attempt to determine the motion of the mass on the
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spring, taking into account both the resistance of the medium and possible
external forces. We shall do this by first obtaining and then solving the differential
equation for the motion.

In order to set up the differential equation for this problem we shall need
two laws of physics: Newton’s second law and Hooke’s law. Newton’s second law
was encountered in Chapter 3, and we shall not go into a further discussion of
it here. Let us then recall the other law that we shall need.

Hooke’s Law

The magnitude of the force needed to produce a certain elongation of a spring
is directly proportional to the amount of this elongation, provided this elongation
is not too great. In mathematical form,

|F| = ks,

where F is the magnitude of the force, s is the amount of elongation, and % is a
constant of proportionality which we shall call the spring constant.

The spring constant k£ depends upon the spring under consideration and is
a measure of its stiffness. For example, if a 30-1b weight stretches a spring 2 ft,
then Hooke’s law gives 30 = (k)(2); thus, for this spring k¢ = 15 Ib/ft.

When a mass is hung upon a spring of spring constant k£ and thus produces
an elongation of amount s, the force F of the mass upon the spring therefore
has magnitude ks. The spring at the same time exerts a force upon the mass
called the restoring force of the spring. This force is equal in magnitude but
opposite in sign to F, and hence has magnitude —ks.

Let us formulate the problem systematically. Let the coil spring have natural
(unstretched) length L. The mass m is attached to its lower end and comes to
rest in its equilibrium position, thereby stretching the spring an amount [ so that
its stretched length is L + [. We choose the axis along the line of the spring,
with the origin O at the equilibrium position and the positive direction downward.
Thus, letting x denote the displacement of the mass from O along this line, we
see that x is positive, zero, or negative according to whether the mass is below,
at, or above its equilibrium position. (See Figure 5.1.)

Forces Acting Upon the Mass

We now enumerate the various forces that act upon the mass. Forces tending to
pull the mass downward are positive, while those tending to pull it upward are
negative. The forces are:

1. Fy, the force of gravity, of magnitude mg, where g is the acceleration due to
gravity. Since this acts in the downward direction, it is positive, and so

Fy = mg. (5.1)

2. F,, therestoring force of the spring. Since x + [is the total amount of elongation,
by Hooke’s law the magnitude of this force is k(x + /). When the mass is below
the end of the unstretched spring, this force acts in the upward direction and
so is megative. Also, for the mass in such a position, x + [ is positive. Thus,
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FIGURE 5.1

when the mass is below the end of the unstretched spring, the restoring force
is given by
Fy = —k(x +1). (5.2)

This also gives the restoring force when the mass is above the end of the
unstretched spring, as one can see by replacing each italicized word in the
three preceding sentences by its opposite. When the mass is at rest in its
equilibrium position the restoring force F, is equal in magnitude but opposite
in direction to the force of gravity and so is given by —mg. Since in this
position x = 0, Equation (5.2) gives

—-mg = —k(O + 1)
or
mg = kl.

Replacing k! by mg in Equation (5.2) we see that the restoring force can thus
be written as

Fy = —kx — mg. (5.3)

. Fs, the resisting force of the medium, called the damping force. Although the
magnitude of this force is not known exactly, it is known that for small velocities
it is approximately proportional to the magnitude of the velocity:

dx

Fi =
lsl adt

, (5.4)

where a > 0 is called the damping constant. When the mass is moving downward,
Fs acts in the upward direction (opposite to that of the motion) and so F5 <
0. Also, since m is moving downward, x is increasing and dx/dt is positive. Thus,
assuming Equation (5.4) to hold, when the mass is moving downward, the
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damping force is given by

dx
Fs = —a— > 0). 5.5
s=-a7 (@>0) (5.5)
This also gives the damping force when the mass is moving upward, as one
may see by replacing each italicized word in the three preceding sentences
by its opposite.
4. F,, any external impressed forces that act upon the mass. Let us denote the
resultant of all such external forces at time ¢ simply by F(t) and write

F, = F(¢). (5.6)

We now apply Newton’s second law, F = ma, where F = F; + F; +
Fs + F,. Using (5.1), (5.3), (5.5), and (5.6), we find
d’ dx

ﬁ=mg—kx—mg—adt+F(t)
or

mx" + ax' + kx = F(t), (5.7

where the primes denote derivatives with respect to t. This we take as the
differential equation for the motion of the mass on the spring. Observe that
it is a nonhomogeneous second-order linear differential equation with con-
stant coefficients. If @ = 0, the motion is called undamped; otherwise, it is
called damped. If there are no external impressed forces, F(t) = 0 for all ¢
and the motion is called free; otherwise, it is called forced. In the following
sections we consider the solution of (5.7) in each of these cases.

5.2 FREE, UNDAMPED MOTION

We now consider the special case of free, undamped motion, that is, the case in
which both a = 0 and F(¢t) = 0 for all t. The differential equation (5.7) then
reduces to

mx" + kx = 0, (5.8)

where m(>0) is the mass and k£(>0) is the spring constant. Dividing through by
m and letting k/m = 2%, we write (5.8) in the form

x" + A% = 0. (5.9)
The auxiliary equation
2+ 2=0
has roots r = =1i and hence the general solution of (5.8) can be written
X = ¢, sin & + ¢y cos A, (5.10)

where ¢, and ¢, are arbitrary constants.
Let us now assume that the mass was initially displaced a distance x, from
its equilibrium position and released from that point with initial velocity vo. Then,
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in addition to the differential equation (5.8) [or (5.9)], we have the initial con-
ditions

x(0) = x,, (5.11)
x'(0) = v,. (5.12)

Differentiating (5.10) with respect to ¢, we have
x' = ¢, A cos At — ¢y sin At. (5.13)

Applying conditions (5.11) and (5.12) to Equations (5.10) and (5.13), respectively,
we see at once that

Co = X,
Cll = Vp.

Substituting the values of ¢; and ¢, so determined into Equation (5.10) gives the
particular solution of the differential equation (5.8) satisfying the conditions
(5.11) and (5.12) in the form

Vo .
x=70smlt+xocoslt.

We put this in an alternative form by first writing it as

x = c[(—vgcﬁ—) sin At + ?cos At], (5.14)
where
ve\2
¢ = (7") + %2> 0. (5.15)
Then, letting
(Voc/l) = —sin ¢,
(5.16)
%o _
. cos ¢,

Equation (5.14) reduces at once to
x = ¢ cos(it + @), (5.17)

where ¢ is given by Equation (5.15) and ¢ is determined by Equations (5.16).
Since 4 = Vk/m, we now write the solution (5.17) in the form

X =c cos<\/£t + (b). (5.18)
m

This, then, gives the displacement x of the mass from the equilibrium position
O as a function of the time (¢t > 0). We see at once that the free, undamped
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motion of the mass is a simple harmonic motion. The constant ¢ is called the amplitude
of the motion and gives the maximum (positive) displacement of the mass from
its equilibrium position. The motion is a periodic motion, and the mass oscillates

back and forth between x = ¢ and x = —¢. We have x = ¢ if and only if
k
—_ = +
ﬁt + ¢ *+2nm,
n=20,1,2,3,...;t> 0. Thus the maximum (positive) displacement occurs if
and only if
t = \/% (£2nm — ¢) > 0, (5.19)

wheren = 0,1,2,3,....
The time interval between two successive maxima is called the period of the
motion. Using (5.19), we see that it is given by

9 9
\/;% = 7"- (5.20)

The reciprocal of the period, which gives the number of oscillations per second,
is called the natural frequency (or simply frequency) of the motion. The number ¢
is called the phase constant (or phase angle). The graph of this motion is shown in
Figure 5.2.

EXAMPLE 5.1 i i e s

An 8-lb weight is placed upon the lower end of a coil spring suspended from
the ceiling. The weight comes to rest in its equilibrium position, thereby stretch-
ing the spring 6 in. The weight is then pulled down 3 in. below its equilibrium
position and released at ¢t = 0 with an initial velocity of 1 ft/sec, directed down-
ward. Neglecting the resistance of the medium and assuming that no external

XA

Amplitude

Period

L — ~——

~Y

FIGURE 5.2
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forces are present, determine the amplitude, period, and frequency of the re-
sulting motion.

Formulation. This is clearly an example of free, undamped motion, and hence
Equation (5.8) applies. Since the 8-1b weight stretches the spring 6 in. = 1 ft,
Hooke’s law F = ks gives 8 = k(3), and so £ = 16 Ib/ft. Also, m = w/g = &
(slugs), and so Equation (5.8) gives

8 ” _
32x + 16x = 0

or
x" + 64x = 0. (5.21)

Since the weight was released with a downward initial velocity of 1 ft/sec from
a point 3 in. (= % ft) below its equilibrium position, we also have the initial
conditions

x(0) =1 x'(0) =1 (5.22)

Solution. The auxiliary equation corresponding to Equation (5.21) is * + 64
= 0, and hence r = =8i. Thus the general solution of the differential equation
(5.21) may be written

x = ¢; sin 8¢ + ¢, cos 8t, (5.23)

where ¢, and ¢, are arbitrary constants. Applying the first of conditions (5.22) to
this, we find ¢; = §. Differentiating (5.23), we have

x' = 8¢, cos 8t — 8¢, sin 8t.

Applying the second of conditions (5.22) to this, we have 8¢, = 1, and hence
¢; = %. Thus the solution of the differential equation (5.21) satisfying the con-
ditions (5.22) is

x = %sin 8 + % cos 8t. (5.24)

Let us put this in the form (5.18). We find

IO

and thus write

_\/3(\/5 _ t+2\/5 St)
X = 8 5 sin 5 COS .
Thus, letting
2V5
cos ¢ = —,
5 (5.25)
, V5
sin p = —
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we write the solution (5.24) in the form

X =

5

?cos(St + @), (5.26)
where ¢ is determined by Equations (5.25). From these equations we find that
¢ ~ —0.46 radians. Taking V5 ~ 2.236, the solution (5.26) is thus given ap-
proximately by

x = 0.280 cos(8¢ — 0.46).

The amplitude of the motion V5/8 ~ 0.280 (ft). By formula (5.20), the period
is 27/8 = n/4 (sec), and the frequency is 4/ oscillations/sec. The graph is shown
in Figure 5.3.

Before leaving this problem, let us be certain that we can set up initial
conditions correctly. Let us replace the third sentence in the statement of the
problem by the following: “The weight is then pushed up 4 in. above its equilibrium
position and released at ¢ = 0, with an initial velocity of 2 ft/sec, directed upward.”
The initial conditions (5.22) would then have been replaced by

x(0) = -3
x'(0) = —2.
The minus sign appears before the § because the initial position is 4 in. = § foot

above the equilibrium position and hence is negative. The minus sign before the
2 is due to the fact that the initial velocity is directed upward, that is, in the negative
direction.
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FIGURE 5.3
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EXERCISES

Note

In Exercises 1-9 neglect the resistance of the medium and assume that

no external forces are present.

1.

A 12-lb weight is placed upon the lower end of a coil spring suspended from
the ceiling. The weight comes to rest in its equilibrium position, thereby
stretching the spring 1.5 in. The weight is then pulled down 2 in. below its
equilibrium position and released from rest at ¢ = 0. Find the displacement
of the weight as a function of the time; determine the amplitude, period,
and frequency of the resulting motion; and graph the displacement as a
function of the time.

. A 16-lb weight is placed upon the lower end of a coil spring suspended

vertically from a fixed support. The weight comes to rest in its equilibrium

position, thereby stretching the spring 6 in. Determine the resulting dis-

placement as a function of time in each of the following cases.

(@) If the weight is then pulled down 4 in. below its equilibrium position
and released at ¢t = 0 with an initial velocity of 2 ft/sec, directed down-
ward.

(b) If the weight is then pulled down 4 in. below its equilibrium position
and released at¢ = 0 with an initial velocity of 2 ft/sec, directed upward.

(c) If the weight is then pushed up 4 in. above its equilibrium position and
released at ¢ = 0 with an initial velocity of 2 ft/sec, directed downward.

. A 250-gm mass is placed upon the lower end of a coil spring suspended

from the ceiling. The mass comes to rest in its equilibrium position, thereby
stretching the spring 2 cm. At time ¢ = 0, the mass is then struck so as to
set it into motion with an initial velocity of 3 cm/sec, directed upward. Find
the displacement of the weight as a function of the time; determine the
amplitude, period, and frequency of the resulting motion; and graph the
displacement as a function of the time.

A 450-gm mass is placed upon the lower end of a coil spring suspended
from the ceiling. The mass comes to rest in its equilibrium position, thereby
stretching the spring 5 cm. The mass is then pulled down 3 cm below its
equilibrium position and released at ¢t = 0 with an initial velocity of 2 ft/sec,
directed downward. Find the amplitude, period, and frequency of the re-
sulting motion.

. A 4-1b weight is attached to the lower end of a coil spring suspended from

the ceiling. The weight comes to rest in its equilibrium position, thereby

stretching the spring 6 in. At time ¢ = 0 the weight is then struck so as to

set it into motion with an initial velocity of 2 ft/sec, directed downward.

(@) Determine the resulting displacement and velocity of the weight as
functions of the time.

(b) Find the amplitude, period, and frequency of the motion.
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10.

(c) Determine the times at which the weight is 1.5 in. below its equilibrium
position and moving downward.

(d) Determine the times at which it is 1.5 in. below its equilibrium position
and moving upward.

A 64-1b weight is placed upon the lower end of a coil spring suspended from

a rigid beam. The weight comes to rest in its equilibrium position, thereby

stretching the spring 2 ft. The weight is then pulled down 1 ft below its

equilibrium position and released from rest at¢ = 0.

(a) What is the position of the weight at ¢ = 57/12? How fast and which
way is it moving at the time?

(b) At what time is the weight 6 in. above its equilibrium position and
moving downward? What is its velocity at such time?

. A coil spring is such that a 25-1b weight would stretch it 6 in. The spring is

suspended from the ceiling, a 16-Ib weight is attached to the end of it, and

the weight then comes to rest in its equilibrium position. It is then pulled

down 4 in. below its equilibrium position and released at ¢ = 0 with an initial

velocity of 2 ft/sec, directed upward.

(@) Determine the resulting displacement of the weight as a function of
the time.

(b) Find the amplitude, period, and frequency of the resulting motion.

(c) At what time does the weight first pass through its equilibrium position
and what is its velocity at this instant?

An 8-1b weight is attached to the end of a coil spring suspended from a beam
and comes to rest in its equilibrium position. The weight is then pulled down
A feet below its equilibrium position and released at ¢t = 0 with an initial
velocity of 3 ft/sec, directed downward. Determine the spring constant k
and the constant A if the amplitude of the resulting motion is V% and the
period is 7/2.

An 8-1b weight is placed at the end of a coil spring suspended from the
ceiling. After coming to rest in its equilibrium position, the weight is set into
vertical motion and the period of the resulting motion is 4 sec. After a time
this motion is stopped, and the 8-lb weight is replaced by another weight.
After this other weight has come to rest in its equilibrium position, it is set
into vertical motion. If the period of this new motion is 6 sec, how heavy is
the second weight?

A simple pendulum is composed of a mass m (the bob) at the end of a straight
wire of negligible mass and length /. It is suspended from a fixed point S
(its point of support) and is free to vibrate in a vertical plane (see Figure
5.4). Let SP denote the straight wire; and let 8 denote the angle that SP
makes with the vertical SP, at time ¢, positive when measured counterclock-
wise. We neglect air resistance and assume that only two forces act on the
mass m: F), the tension in the wire; and F,, the force due to gravity, which
acts vertically downward and is of magnitude mg. We write Fy = F; + Fy,
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FIGURE 5.4

where Fr is the component of F; along the tangent to the path of m and Fy
is the component of F; normal to F7. Then Fy = —F, and F; = —mg sin 0,
and so the net force acting onm is F; + F, = F, + F; + Fy = —mg sin 6,
along the arc PyP. Letting s denote the length of the arc P P, the acceleration
along this arc is s". Hence applying Newton’s second law, we have ms” =
—mg sin 6. But since s = 16, this reduces to the differential equation

mlf” = —mgsinf or 0" + lgsin 0 =0.

(@) The equation

0" +%sin6 =0

is a nonlinear second-order differential equation. Now recall that

. ¢ P
Sln0=9—'§+a—"'.
Hence if 6 is sufficiently small, we may replace sin 6 by 6 and consider
the approximate linear equation

o +%60=0

Assume that § = 6,and 8’ = 0 when ¢ = 0. Obtain the solution of this
approximate equation that satisfies these initial conditions and find the
amplitude and period of the resulting solution. Observe that this period
is independent of the initial displacement.
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(b) Now return to the nonlinear equation

6" +&sin6 = 0.

l
Multiply through by 26’, integrate, and apply the initial condition
0 = 6y, ' = 0. Then separate variables in the resulting equation to
obtain
df =+ Q—gdt.

\Vcos 6 — cos 0, l

From this equation determine the angular velocity 6’ as a function of
6. Note that the left member cannot be integrated in terms of elementary
functions to obtain the exact solution 6(t) of the nonlinear differential
equation.

5.3 FREE, DAMPED MOTION

We now consider the effect of the resistance of the medium upon the mass
on the spring. Still assuming that no external forces are present, this is then
the case of free, damped motion. Hence with the damping coefficient a > 0 and
F(t) = 0 for all ¢, the basic differential equation (5.7) reduces to

mx" + ax' + kx = 0. (5.27)

Dividing through by m and putting k/m = A* and a/m = 2b (for convenience)
we have the differential equation (5.27) in the form

x" + 2bx' + 22x = 0. (5.28)
Observe that since a is positive, b is also positive. The auxiliary equation is
r2 + 2br + A2 = 0. (5.29)
Using the quadratic formula we find that the roots of (5.29) are

—2b = V4b2 — 41 B
5 =

Three distinct cases occur, depending upon the nature of these roots, which in
turn depends upon the sign of 6* — A2

—-b £ Vb2 - 22 (5.30)

Case 1. Damped, Oscillatory Motion or Underdamped Motion. Here we con-
sider the case in which b < A, which implies that > — 4*> < 0. Then the roots
(5.30) are the conjugate complex numbers —b = VA2 — b? i and the general
solution of Equation (5.28) is thus

x = e ¥c,; sinVA2 — b2t + ¢y cosVA2 — b? 1), (5.31)
where ¢, and ¢, are arbitrary constants. We may write this in the alternative form

x = ce ¥ cos(VA2 — b2t + ¢), (5.32)
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where ¢ = V¢i + ¢ > 0 and ¢ is determined by the equations

1

———— = —sin @,
c? + c}

Co

——==— = 05 ¢.
Vet + ¢} ¢
The right member of Equation (5.32) consists of two factors,
ce™™ and cos(VA?2 — b2t + ¢).

The factor ce " is called the damping factor, or time-varying amplitude. Since ¢ >
0, it is positive; and since b > 0, it tends to zero monotonically as t = . In other
words, as time goes on this positive factor becomes smaller and smaller and
eventually becomes negligible. The remaining factor, cos(VA* — b2t + ¢), is,
of course, of a periodic, oscillatory character; indeed it represents a simple har-
monic motion. The product of these two factors, which is precisely the right
member of Equation (5.32), therefore represents an oscillatory motion in which
the oscillations become successively smaller and smaller. The oscillations are said
to be “damped out,” and the motion is described as damped, oscillatory motion or
underdamped motion. Of course the motion is no longer periodic. The time interval
between two successive (positive) maximum displacements is called the quasi
period. This is given by
2n

The graph of such a motion is shown in Figure 5.5, in which the damping factor
ce™ and its negative are indicated by dashed curves.
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The ratio of the amplitude at any time T to that at time

2n
V2= b2

one quasi period before T is the constant

27nb
o\ -7/
Thus the quantity 2nb/V'A?* — b?is the decrease in the logarithm of the amplitude
ce " over a time interval of one quasi period. It is called the logarithmic decrement.
If we now return to the original notation of the differential equation (5.27),

we see from Equation (5.32) that in terms of the original constants m, a, and &,
the general solution of (5.27) is

B k a?®
x = ce @ cos\\|= — —t + @) (5.33)
m  4m

Since b < A is equivalent to a/2m < Vk/m, we can say that the general solution
of (5.27) is given by (5.33) and that damped, oscillatory motion occurs when
a < 2Vkm. The frequency of the oscillations

T —

cos( ko i2—t + ¢) (5.34)

is

If damping were not present, a would equal zero and the natural frequency
of an undamped system would be (1/27) Vk/m. Thus the frequency of the os-
cillations (5.34) in the damped, oscillatory motion (5.33) is less than the natural
frequency of the corresponding undamped system.

Case 2. Critical Damping. This is the case in which & = A, which implies
thatb? — 22 = 0. The roots (5.30) are thus both equal to the real negative number
—b, and the general solution of Equation (5.28) is thus
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